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Abstract

Seabird distributions in the Southern Ocean are influenced by the location and accessibility 
of suitable breeding sites, but also by the environmental factors that influence the 
distribution and availability of their prey. For example, oceanic fronts, concentrate prey 
at their surface and therefore present important foraging areas for many seabirds. This 
study investigated the latitudinal distribution and abundance of seabirds in the African 
sector of the Southern Ocean. In particular, we investigated the relationship of seabird 
assemblages and densities to key biophysical environmental parameters (SST, sea surface 
height, bathymetry) and the main oceanic fronts. 

There was a high density of seabirds north of the Subtropical Convergence (STC), which 
is situated at approximately 39°S, with declining densities farther south. There was 
latitudinal segregation between several species, e.g. black-browed albatross (Thalassarche 
melanophris) occurred north of the STC, and grey-headed albatross (T. chrysostoma) 
occurred to south of it. The Subantarctic Front (SAF) and the Antarctic Polar Front (APF) 
had less influence on seabird populations than the STC. Latitude was the greatest predictor 
of seabird assemblages and densities, reflecting environmental gradients in physical and 
biological parameters and their influences on prey distributions. Of the environmental 
parameters, sea surface temperature and bathymetry were the most important physical 
features influencing seabird assemblages. In particular, the density of seabirds north of 
STC declined with increasing sea surface temperature and had a negative relationship 
with bathymetry, with most seabirds occurring in shallower waters. In contrast, seabird 
density had a positive linear relationship with sea surface height. Relationships with other 
environmental parameters, such as wind, salinity and chlorophyll concentration (as a 
proxy for productivity), were less well-defined. 
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Résumé 

La distribution des oiseaux marins dans l’océan Austral est influencée par l’emplacement 
et l’accessibilité des sites de reproduction appropriés, mais aussi par les facteurs 
environnementaux qui influencent la distribution et la disponibilité de leurs proies. Par 
exemple, les fronts océaniques concentrent les proies à leur surface et constituent donc 
des zones d’alimentation importantes pour de nombreux oiseaux de mer. Cette étude porte 
sur la distribution latitudinale et l’abondance des oiseaux de mer dans le secteur africain 
de l’océan Austral. Nous avons notamment étudié la relation entre les assemblages et 
les densités d’oiseaux marins, d’une part, et les principaux paramètres biophysiques 
de l’environnement (température de surface de la mer, hauteur de la surface de la mer, 
bathymétrie) et les principaux fronts océaniques, d’autre part. 

Une forte densité d’oiseaux marins a été observée au nord de la convergence subtropicale 
(STC), située à environ 39°S, avec une diminution de la densité plus au sud. Une 
ségrégation latitudinale a été observée entre plusieurs espèces, par exemple l’albatros 
à sourcils noirs (Thalassarche melanophris) au nord du STC et l’albatros à tête grise 
(T. chrysostoma) au sud de celui-ci. Le Front subantarctique (FSA) et le Front polaire 
antarctique (FPA) ont moins d’influence sur les populations d’oiseaux marins que la 
convergence subtropicale. La latitude est le principal facteur prédictif des rassemblements 
et des densités d’oiseaux marins, reflétant les gradients environnementaux dans les 
paramètres physiques et biologiques et leurs influences sur la répartition des proies. Parmi 
les paramètres environnementaux, la température de surface de la mer et la bathymétrie 
sont les caractéristiques physiques les plus importantes influençant les assemblages 
d’oiseaux marins. En particulier, la densité des oiseaux marins au nord de la convergence 
subtropicale (STC) a diminué avec l’augmentation de la température de surface de la 
mer et présente une relation négative avec la bathymétrie, la plupart des oiseaux marins 
se trouvant dans des eaux moins profondes. En revanche, la densité des oiseaux marins 
présente une relation linéaire positive avec la hauteur de la surface de la mer. Les relations 
avec d’autres paramètres environnementaux, tels que le vent, la salinité et la concentration 
en chlorophylle (comme indicateur de la productivité), sont moins bien définies. 

Абстракт

На распределение морских птиц в Южном океане влияют расположение и 
доступность подходящих мест гнездования, а также экологические факторы, 
влияющие на распределение и доступность их добычи. Например, океанические 
фронтальные структуры концентрируют добычу у своей поверхности и поэтому 
представляют собой важные кормовые зоны для многих морских птиц. В данном 
исследовании изучается широтное распределение и численность морских 
птиц в африканском секторе Южного океана. В частности, мы исследовали 
взаимосвязь между сообществами морских птиц и их плотностью, и ключевыми 
биофизическими параметрами окружающей среды (температура поверхности 
моря, высота поверхности моря, батиметрия), а также основными океаническими 
фронтами. 

К северу от субтропической конвергенции (СТК), расположенной примерно на 
39° ю.ш., наблюдалась высокая плотность морских птиц, которая уменьшалась по 
мере продвижения на юг. Несколько видов продемонстрировали межширотную 
сегрегацию. Например, чернобровый альбатрос (Thalassarche melanophris) 
встречался к северу от СТК, а сероголовый альбатрос (T. Chrysostom) — к югу от 
нее. Субантарктический фронт (САФ) и Антарктический полярный фронт (АПФ) 
оказывали меньшее влияние на популяции морских птиц, чем СТК. Широта была 
основным фактором, определяющим состав и плотность популяций морских птиц, 
отражая градации физических и биологических параметров окружающей среды и 
их влияние на распределение кормовых ресурсов. Из экологических параметров 
наиболее важными физическими характеристиками, влияющими на сообщества 
морских птиц, были температура поверхности моря и батиметрия. В частности, 
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плотность морских птиц к северу от СТК уменьшалась с повышением температуры 
поверхности моря и имела отрицательную зависимость от батиметрии, при этом 
большинство морских птиц встречалось в более мелких водах. Напротив, плотность 
морских птиц продемонстрировала прямую зависимость от высоты поверхности 
моря. Взаимосвязь с другими экологическими параметрами, такими как ветер, 
соленость и концентрация хлорофилла (как показатель продуктивности), была 
менее четко определена. 

Resumen

La distribución de las especies de aves marinas en el Océano Austral depende en parte 
de la ubicación y la accesibilidad de sitios adecuados para la reproducción, pero también 
de factores medioambientales que influyen en la distribución y la disponibilidad de 
sus presas. Por ejemplo, los frentes oceánicos llevan a la concentración de presas en la 
superficie y, por tanto, constituyen importantes zonas de búsqueda de alimentación para 
muchas aves marinas. Este artículo estudia la distribución latitudinal y la abundancia de 
aves marinas en el sector africano del Océano Austral. En particular, se estudia la relación 
de los agrupamientos y densidades de aves marinas con parámetros medioambientales 
biofísicos clave (SST, altura de la superficie del mar, batimetría) y con los principales 
frentes oceánicos. 

La densidad de aves marinas al norte de la Convergencia Subtropical (STC), situada 
aproximadamente a 39°S, es elevada, y disminuye hacia el sur. Varias especies presentan 
una segregación latitudinal, por ejemplo, el albatros ojeroso (Thalassarche melanophris) 
se da al norte de la STC, y el albatros de cabeza gris (T. chrysostoma), al sur. El Frente 
Subantártico (SAF) y el Frente Polar Antártico (APF) ejercen menos influencia sobre 
las poblaciones de aves marinas que la STC. La latitud es el factor predictivo de los 
agrupamientos y las densidades de aves marinas más importante, y refleja gradientes 
medioambientales de parámetros físicos y biológicos y la consiguiente influencia en 
la distribución de las presas. De los parámetros medioambientales, la temperatura de 
la superficie del mar y la batimetría son las características físicas más importantes que 
influencian los agrupamientos de aves marinas. En particular, la densidad de aves marinas 
al norte de la STC disminuye con el aumento de la temperatura de la superficie del mar 
y presenta una relación negativa con la batimetría, dándose la presencia de aves marinas 
principalmente en las aguas menos profundas. En cambio, la densidad de aves marinas 
tiene una relación lineal positiva con la altura de la superficie del mar. Las relaciones con 
otros parámetros ambientales, como el viento, la salinidad y la concentración de clorofila 
(como indicador indirecto de la productividad) están menos claramente definidas. 
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Introduction
Marine predators are useful focal organisms to 

study scale-dependent foraging behaviour in rela-
tion to environmental heterogeneity because of 
the wide spatial and temporal scales over which 
the abundance and distribution of their prey varies 
(Pinaud and Weimerskirch, 2007). The distribution 
of upper trophic level predators in the marine envi-
ronment reflects the abundance and availability of 
their prey (e.g. zooplankton, krill, nekton and small 
fish), which in turn respond to lower trophic level 
processes (Hyrenbach et al., 2007). These, together 
with ocean currents, bathymetry and other physical 
and biological processes, promote the growth and 
retention of plankton, leading to spatial heteroge-
neity in the distribution of organisms, influencing 
the distribution of top predators such as seabirds 
(Pinaud and Weimerskirch, 2007). Top predators 
can therefore be used as indicators of localised 
areas of high biological production (Joiris et al., 
2007, 2013).

Studies of seabirds’ life at sea are essential to 
the comprehensive understanding of their for-
aging behaviour, distribution and assemblages, 
since many species spend most of their time at sea 
(Balance, 2007). At-sea data provide insights into 
the biology of individual species at several eco-
logical scales, including distribution, abundance 
(particularly for species that are difficult to census 
at colonies) and species–habitat relationships, the 
relationships between distribution and physical/
biological ocean characteristics (Balance, 2007). 
In addition, seabird distributions are influenced not 
only by oceanographic conditions (such as fronts 
and eddies that tend to concentrate potential prey) 
but also by the location and accessibility of suitable 
breeding sites (Bost et al., 2009; Commins et al., 
2014). In particular, high relative abundance of sea-
birds often occurs at mesoscale features (< 100 km 
in diameter) associated with upwelling (Abrams, 
1985; Commins et al., 2014) and at hydrodynamic 
features near the continental margin (Hoffman et 
al., 1981; Briggs et al., 1984; Abrams and Miller, 
1986).

At-sea seabird data provide more easily identi-
fiable and detectable insights into oceanic ecosys-
tems. Seabirds are wholly dependent upon marine 
systems for food. They are highly mobile, thereby 
integrating environmental signals on large spatial 
scales, making them important indicator species 
(Balance, 2007; Commins et al., 2014; Hazen et al., 

2019). Seabirds provide a potential model for the 
successful management of oceanic resources that 
can provide a mechanism for the conservation of 
other trans-habitat and transboundary species.

Although there have been advances in technol-
ogy that have allowed unprecedented insights into 
the movements of marine predators (Watanabe and 
Papastamatiou, 2023), this is restricted to small 
samples of individuals and tends to be biased 
to specific life-history stages (mainly breeding 
adults). Direct observations at sea allow broad-
scale distribution patterns to be assessed and thus 
augment understanding of the distribution of 
marine predators. This study reports the effect of 
environmental parameters on the density, distribu-
tion and abundance of seabirds in the African sec-
tor of the Southern Ocean. 

Methods
We used data from the Atlas of Seabirds at Sea 

(AS@S), a citizen science programme collaboration 
between the Department of Forestry, Fisheries and 
the Environment (DFFE), BirdLife South Africa 
and the FitzPatrick Institute of African Ornithology, 
University of Cape Town. The AS@S database is 
an open-access website hosting data collected from 
vessels of opportunity, which follow a standard 
protocol for counting seabirds within the Southern 
Ocean (AS@S, 2023). We downloaded data from 
the area 30–55°S and 0–40°E, from 2016 to 2021. 
No data were collected in 2020 due to vessel opera-
tion restrictions during the COVID-19 lockdowns. 
Data in 2021 were recorded as point counts rather 
than transects; hence, to include 2021 and select 
dominant species, we jointly modelled the transect 
and point counts as presence and absence. 

These data were augmented by transect counts 
aboard the SA Agulhas II, which undertakes an 
annual cruise between Cape Town and the Prince 
Edward Islands in April–May each year, Antarctica 
in December–February each year, and Gough 
Island in September–October, western Atlantic 
Ocean to resupply the research and weather station, 
and exchange overwintering teams. It is important 
to note that sampling efforts were only in summer 
months. This possibly affected the distributions 
of species modelled. For example, most great-
winged petrels are observed in the warmer waters 
because they are not breeding during the surveys. 
Birds were observed from a variety of vessels and 
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locations (bridge, on top of the bridge, forecastle, 
and bow) depending on the ship used. Standardized 
(10 minutes) effort-based transect counts were used 
to observe seabird distribution, abundance and den-
sity. All birds were identified to species level or the 
lowest possible taxon within 300 m, in a 90° or 180° 
arc from the bow. Further details of methodologies 
used to collect seabird at sea data are reported in 
AS@S (2023). 

Three oceanic fronts occur in the study area: the 
Subtropical Convergence (STC), the Subantarctic 
Front (SAF) and the Antarctic Polar Front (APF). 
Based on these fronts, seabird counts were ana-
lysed according to four distinct water masses and 
biogeographical zones defined by previous studies 
(Pollard et al., 2002; Force et al., 2015; Whitehead, 
2017): i) the Subtropical Zone (STZ) north of 
the STC, ii) the Subantarctic Zone (SAZ) located 
between the STC and SAF, iii) the Polar Frontal 
Zone (PFZ) between SAF and APF, and iv) the 
Antarctic Zone south of APF. Frontal positions 
within the Southern Ocean were detected from sea 
surface height (SSH) values using methods adapted 

from Swart et al. (2010) and Carpenter-Kling et al. 
(2020).

Environmental data
To test the hypothesis that seabird distribution 

and density are influenced by environmental fac-
tors, in-situ and satellite remote-sensed oceano-
graphic predictors (sea surface temperature (SST), 
SSH, sea surface salinity (SSS), wind speed, chlo-
rophyll a concentration (CHL)) were downloaded 
from https://resources.marine.copernicus.eu/ 
(Table 1). Bathymetry was also considered a poten-
tial driver of seabird assemblage at 1 arc-minute 
spatial resolution. Seabird counts were matched 
to the environmental data’s mean daily averages 
in their respective native spatial resolutions, using 
the mean centroid position of each transect section 
(henceforth, ‘samples’). Compared to the 10-min-
ute count transects, oceanographic data usually 
have low spatial resolutions with pixels/grid cells 
covering large areas; this could reduce the power of 
analyses to detect the relationships between seabird 
abundance, density (birds/km2) and oceanographic 
data. 

Table 1:	 Environmental variables used in analysis. Daily throughout the observation period

Variable Abbreviation Temporal 
Resolution 

Spatial 
Resolution 

Source 

Sea surface 
temperature 

SST Daily 0.083° x 0.083° GLOBAL_MULTIYEAR_PH
Y_001_030a 

Sea surface 
height 

SSH Daily 0.125° x 0.125° 
 

GLOBAL_MULTIYEAR_PH
Y_001_030a 

Sea surface 
salinity 

SSS Daily 0.125° x 0.125° GLOBAL_MULTIYEAR_PH
Y_001_030a 

Bathymetry Bathy  1 Arc-minute GLOBAL RELIEF MODEL 
ETOPO 1b 

Wind speed Wind Daily 0.25° x 0.25° WIND_GLO_WIND_L4_REP
_OBSERVATIONS_012_006a 

Chlorophyll a 
concentration 

CHL Daily 0.25° x 0.25° GLOBAL_MULTIYEAR_BG
C_001_029a 

 
a 	 Copernicus Marine Service Information (https://marine.copernicus.eu/)
b	 NOAA National Centers for Oceanographic Information, global relief model (https://www.ngdc.noaa.gov/mgg/

global/global.html)
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Statistical Analysis
For determining seabird assemblages, samples 

in waters <1000 m deep were excluded to reduce 
the effect of attraction to land. Before analysis, sea-
bird density and abundance data were transformed 
using Tukey’s Ladder of Powers using function 
transformTukey in package rcompanion (Tukey, 
1977; Mangiafico, 2024) in R (R Core Team 2022). 
It uses a Shapiro-Wilks test to calculate an arbi-
trary lambda value for the data which is closest to 
achieving normality, and the value is used to trans-
form the data. Species recorded in fewer than five 
transects were excluded from analyses: flesh-footed 
shearwater (1), long-tailed jaeger (5), northern 
royal albatross (1), Salvin’s prion (5), spectacled 
petrel (1), chinstrap penguin (2), greater crested 
tern (3), grey-backed storm petrel (2), grey-headed 
gull (2), king penguin (2), Leach’s storm petrel (2), 
light-mantled albatross (2), brown skua (3), com-
mon tern (3), Antarctic tern (4), Manx shearwater 
(4). Biases existed in the identification of prions, 
given that they typically fly in huge groups, limit-
ing appropriate distinction.

To determine evidence of species assemblage 
and recognise species that likely occur in the same 
samples, we calculated a Spearman’s rank correla-
tion similarity distance matrix of species density 
across all samples. This was visualised using an 
agglomerative, hierarchical cluster analysis to pro-
duce a dendrogram with Ward’s minimum variance 
method (Murtagh and Legendre, 2014). To avoid 
the bias of arbitrary choosing of clusters in the 
absence of a priori groups, we significantly deter-
mined clusters at the 1% significance level (alpha 
= 99) with 1000 permutations using the similarity 
profile permutation test (SIMPROF, Clarke et al., 
2008). 

Analysis of similarity was carried out using 
function ‘Anosim’ in package ‘vegan’ to test the 
null hypothesis of no difference in groups of sam-
ples delimited by the oceanic fronts (biogeographic 
zones) within the Southern Ocean (Anderson and 
Walsh, 2013; Oksanen et al., 2020). A non-paramet-
ric multidimensional scaling (nMDS) allows for a 
2-dimensional visualisation of the dissimilarity in 
sampled groupings. We used the nMDS model with 
a Bray Curtis similarity matrix in package ‘vegan’ 
to explore differences in species distribution across 
a priori group of samples (Oksanen et al., 2020). 
The goodness of fit of the model was evaluated 

using a stress level criterion (Kruskal, 1964; Zhu 
and Yu, 2009).

Finally, to detect the existence of a non-linear 
relationship between seabird distribution and envi-
ronmental predictor variables (Guisan et al., 2002) 
we used a generalised additive model (GAM) with 
the ‘gam’ function in the R package ‘mgcv’ (Wood, 
2022). The models were fitted with a Gaussian 
error distribution. If effective degrees of free-
dom (edf) <1, the relationship was deemed linear. 
Remote-sensed satellite data had different spatial 
resolutions (Table 1) and to avoid multicollinearity 
and concavity across predictors, we ran univariate 
GAMs (including samples with depth <1000 m in 
analysis). Model diagnostics were assessed using 
the package ‘Dharma’. 

Predictive modelling methods and data 
analysis

Oceanographic data were used to predict the 
distribution of birds, between 30 and 60°S and 0 
to 50°E, with year as a factor. Seabirds were mod-
elled as density on a logarithmic scale to prevent 
the effect of extreme outliers and to normalise the 
data. For selected species, seabirds were modelled 
as presence and absence (1,0). Survey data provide 
count and presence data, with mostly no absence 
data, hence, we selected a few seabird species, and 
the empty transects were used as absence data. 

The predictive performance of a species distri-
bution model is affected by spatial autocorrelation. 
Ecological data are usually clustered, such that 
observations close together are more similar than 
those that are farther apart. A Moran’s I test was 
used to detect spatial autocorrelation in the data-
set, with values between -1 (where if dissimilar 
values are close together, there is perfect disper-
sion and scattering in the dataset) and 1 (where if 
similar values are close together, there is perfect 
correlation and grouping in the dataset). Using the 
R package ‘ape’ and function ‘Moran.I’, we found 
that the data was significantly spatially autocor-
related (Moran’s I =0.03. p-value< 0.05). Four 
models were selected to predict the distribution of 
seabird density and four selected seabird species 
(Paradis and Schliep, 2019). Two spatial general 
linear regression models were used with latitude 
and longitude modelled as spatially correlated 
random effects with a Matern covariance using 
package ‘glmmfields’ and ‘spatMM’ (Anderson et 
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al., 2020; Rousset et al., 2022). A global random 
forest model was used because it allows for the 
existence of spatial non-stationarity in data, using 
the machine learning ‘h20’ package (LeDell et al., 
2022). A GAM was also used with latitude and lon-
gitude as smoothed effects with a Gaussian/kriging 
process smoothing term, using ‘mgcv’ package 
(Wood, 2022). For seabird density, all four models 
were run with a Gaussian distribution process, and 
for presence and absence, all four models were run 
with a binomial distribution. 

Weighted averages were used to create a single 
ensemble model to boost accuracy and predictive 
performance. The weights for each model were 
calculated using machine learning through a neural 
network library with ‘neuralnet’ package (Fritsch 
et al., 2019). The weights for each model were also 
calculated using a general linear regression model 
and the output of two ensemble methods were com-
pared, and the better-performing one was chosen 
for the ensemble. The GAM was used to determine 
the relationship between seabird distribution and 
oceanographic data, to account for a non-linear 
relationship between seabird density and oceano-
graphic variables.

Model diagnostics and performance
The test dataset was used to determine the pre-

dictive performance, while the training dataset was 

used to train (fit) the model. Firstly, we ran the four 
spatial models for density and presence/absence 
using the training data, with the oceanographic 
variables as predictors. The models were used to 
predict seabird distribution on the test dataset. To 
determine the predictive performance of each model 
we compared the observed and the predicted values 
in the test dataset. Model diagnostics were carried 
out using package ‘DHARMa’ and ‘gam.check’ 
function for the GAM model in the ‘mgcv’ package 
(Hartig and Lohse, 2022; Wood, 2022). Diagnostic 
values, root mean square error (RMSE), R2, corre-
lation, mean absolute error (MAE) and area under 
receiver-operated characteristic curve (AUC) were 
used to assess the performance of each model in 
predicting the seabird distribution, by using the 
models created from the training data to predict 
the independent test data (Supplementary Figures 
S1-S9 and Supplementary Table S1-S5). After mod-
elling seabird distribution with oceanographic data, 
we used oceanographic data to predict the distribu-
tion of seabirds from 2016–2021 (excluding 2020 
because there were no observations made in that 
year), creating distribution maps for both density 
and probability of occurrence (presence/absence, 
0/1) of selected seabirds between 30°S and 55°S 
and 0°E to 40°E grid scale. All data analyses were 
carried out in R (R Core Team, 2022).

Figure 1:	 Distribution of seabird density throughout the study area. Mean locations of the Subtropical Convergence (STC), 
Subantarctic Front (SAF), Antarctic Polar Front (APF), Southern Antarctic Circumpolar Front (SACCF) and 
Southern Boundary (SB) are based on Orsi et al. (1995), dividing the Southern Ocean into the Subtropical Zone 
(STZ), Subantarctic Zone (SAZ), Polar Frontal Zone (PFZ) and the Antarctic Zone (AZ) south of the APF.
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Results
We analysed 2284 transects, spanning a mean 

length of 3.4 ± 1.2 km, and covering a total of 
77,893 km from 2016–2019. A total of 160 hours of 
seabird counts were made during the study period, 
recording 4,544 birds across 52 taxa (Table 2). Due 
to the opportunistic nature of the data used, the 
analysis had an unbalanced study design (uneven 
samples across groupings, spatial and temporal dis-
tribution). The highest seabird densities occurred 
within the STZ and the SAZ (Figures 1 and 2). 

Seabird density increased from 3.7 birds/km2 
to 4.8 birds/km2 from the STZ to the SAZ then 

reduced to 1.7 birds/km2 and 0.7 birds/km2 towards 
the PFZ and AZ, respectively (Table 2). The ele-
vated seabird densities in STZ and SAZ came from 
the high numbers of Antarctic prions in the samples 
(Table 2; Figure 4). Seabird densities were binned 
according to 1° latitudinal sections and predictably 
there was high seabird density around the STC at 
~39 S (Figure 3). Ten of the numerically dominant 
seabird species’ densities were also binned into 1° 
latitudinal sections and spatial means calculated, 
showing spatial segregation in their latitudinal 
distribution and evidence of Antarctic prions peak-
ing around the STZ and SAZ (Figure 4). 

Figure 2:	 Seabird densities plotted along the latitudinal range along the study, dashed lines showing the latitudinal average 
position of Subtropical Front (STC), Subantarctic Front (SAF) and Antarctic Polar Front (APF).
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Figure 3:	 One-degree latitudinal spatial mean of total seabird densities. Dashed lines show the latitudinal average position of 
the Subtropical Front (STC), Subantarctic Front (SAF) and Antarctic Polar Front (APF).

Figure 4:	 One-degree latitudinal spatial means of the 10 most abundant seabird species. Dashed lines show the average latitu-
dinal position of the Subtropical Front (STC), Subantarctic Front (SAF) and Antarctic Polar Front (APF).
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Table 2:	 Abundance, density and frequency of occurrence (%) of seabird species throughout the study, along the transects 
sampled with the Southern Ocean from 2016-2019.

Biogeographic 
zone 

 STZ SAZ PFZ AZ 

Common name Scientific name n density Freq 
(%) 

n densi
ty 

Freq 
(%) 

n densi
ty 

Freq 
(%) 

n densi
ty 

Freq 
(%) 

Grey-headed 
Gull 

Chroicocephalus 
cirrocephalus 

6 1.9 0.3 - - - - - - - - - 

Kelp Gull Larus 
dominicanus 

30 1.5 1.9 - - - - - - - - - 

Antarctic Tern Sterna vittata 18 4.1 0.6 - - - - - - - - - 
Arctic Tern Sterna paradisaea 12 2 0.9 1 0.7 0.7 - - - - - - 
Common Tern Sterna hirundo 7 1.5 0.5 - - - - - - - - - 
Long-tailed 
Jaeger 

Stercorarius 
longicaudus 

5 1.8 0.2 - - - - - - - - - 

Cape Gannet Morus capensis 158 1.5 9.6 - - - - - - - - - 
Antarctic Petrel Thalassoica 

antarctica 
- - - - - - 64 1.2 23.2 8 0.5 15.6 

Atlantic Petrel Pterodroma 
incerta 

4 0.5 0.6 19 0.7 13.3 1 0.7 0.9 - - - 

Black-bellied 
Storm Petrel 

Fregetta tropica - - - 1 0.7 0.7 12 0.5 7.1 - - - 

Blue Petrel Halobaena 
caerulea 

- - - 44 1.1 20.7 99 0.8 58.9 50 0.6 82.2 

Common 
Diving Petrel 

Pelecanoides 
urinatrix 

- - - - - - 11 0.6 8.9 - - - 

European Storm 
Petrel 

Hydrobates 
pelagicus 

11 0.5 1.1 - - - - - - - - - 

Great-winged 
Petrel 

Pterodroma 
macroptera 

226 1 23.1 14 0.6 10.4 8 0.5 6.2 - - - 

Grey-backed 
Storm Petrel 

Garrodia nereis - - - - - - 2 0.4 1.8 - - - 

Grey Petrel Procellaria 
cinerea 

8 1.8 0.6 8 0.8 5.2 1 0.8 0.9 - - - 

Kerguelen 
Petrel 

Aphrodroma 
brevirostris 

1 0.9 0.2 23 1.1 12.6 15 0.5 12.5 2 0.3 4.4 

Leach’s Storm 
Petrel 

Hydrobates 
leucorhous 

11 2 0.3 - - - - - - - - - 

Northern Giant 
Petrel 

Macronectes halli 5 0.5 0.8 - - - 3 0.4 2.7 - - - 

Cape Petrel Daption capense 28 1.6 2.3 9 0.8 5.2 4 0.7 2.7 - - - 
Soft-plumaged 
Petrel 

Pterodroma 
mollis 

738 1.8 47.1 10 0.7 7.4 5 0.7 3.6 - - - 

Southern Giant 
Petrel 

Macronectes 
giganteus 

6 0.8 0.8 9 0.9 5.2 12 0.6 8.9 7 0.5 13.3 

White-chinned 
Petrel 

Procellaria 
aequinoctialis 

404 2.4 21.5 2 0.7 1.5 4 0.5 2.7 - - - 

White-headed 
Petrel 

Pterodroma 
lessonii 

20 0.7 3.1 16 0.9 11.1 4 0.5 3.6 - - - 

Wilson’s Storm 
Petrel 

Oceanites 
oceanicus 

47 2.1 2.6 - - - - - - - - - 

Chinstrap 
Penguin 

Pygoscelis 
antarcticus 

- - - - - - 9 2 1.8 - - - 

Antarctic Prion Pachyptila 
desolata 

590 2.9 22.3 66
5 

7.2 37.8 3 0.6 2.7 - - - 

Broad-billed 
Prion 

Pachyptila vittata - - - 24 16.4 0.7 - - - - - - 

Fairy Prion Pachyptila turtur - - - - - - 18 0.9 6.2 - - - 
Salvin’s Prion Pachyptila salvini 5 0.7 0.5 - - - - - - - - - 
Slender-billed 
Prion 

Pachyptila 
belcheri 

- - - 37 1.8 6.7 - - - - - - 
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Biogeographic 
zone 

  STZ   SAZ   PFZ   AZ  

Common name Scientific name n density Freq 
(%) 

n densi
ty 

Freq 
(%) 

n densi
ty 

Freq 
(%) 

n densi
ty 

Freq 
(%) 

Atlantic 
Yellow-nosed 
Albatross 

Thalassarche 
chlororhynchos 

58 2.9 4.8 - - - - - - - - - 

Black-browed 
Albatross 

Thalassarche 
melanophris 

203 1.7 16.7 18 0.7 10.4 1 0.6 0.9 - - - 

Grey-headed 
Albatross 

Thalassarche 
chrysostoma 

3 0.6 0.5 6 1.1 4.4 9 0.6 6.2 - - - 

Indian Yellow-
nosed Albatross 

Thalassarche 
carteri 

69 1.4 6.2 - - - - - - - - - 

Shy Albatross Thalassarche 
cauta 

91 1.3 8.8 5 0.9 3 - - - - - - 

Sooty Albatross Phoebetria fusca 14 0.7 2 5 1 3.7 4 0.4 3.6 - - - 
Wandering 
Albatross 

Diomedea exulans 18 1.9 2.5 4 0.7 2.2 4 0.5 3.6 - - - 

Southern 
Fulmar 

Fulmarus 
glacialoides 

- - - 4 0.4 3 19 0.5 16.1 1 0.4 2.2 

Cory’s 
Shearwater 

Calonectris 
borealis 

50 2 2.6 - - - - - - - - - 

Great 
Shearwater 

Ardenna gravis 20 3.3 1.5 - - - - - - - - - 

Subantarctic 
Shearwater 

Puffinus elegans 3 0.6 0.5 5 0.7 3.7 - - - - - - 

Manx 
Shearwater 

Puffinus puffinus 7 0.6 0.6 - - - - - - - - - 

Sooty 
Shearwater 

Ardenna grisea 33 1.1 3.3 2 0.6 0.7 - - - - - - 

Total samples 646 135 112 45 
Total birds 3102 1053 321 68 
Species richness 45 26 26 5 
Density (birds/km2) 3.7 4.8 1.4 0.7 

 

Seabird assemblage
The SIMPROF test found significant evidence of 

internal structures within the seabird assemblages. 
Since SIMPROF does not assume any a priori 
groups, the test reveals that there are spatial differ-
ences among assemblages (across biogeographical 
zones) of seabirds. The clusters are evident in the 
dendrogram showing four main groups. Group (a) 
had 13 species with high-density aggregations in 
the warm waters of the STZ. Group (b) had two 
taxa, fairy prion and lack-bellied storm petrel, rep-
resentative of the PFZ. Group (c) was characterised 
by six taxa with high densities south of the SAF 
within the PFZ and the AZ. The last group, (d), had 
species with the largest latitudinal range, occurring 
in waters stretching from the STZ to the north of 
APF, including 13 taxa (Figure 5; Table 2). 

The results of the nMDS supported the cluster-
ing, showing that samples grouped according to 
biogeographic zones with overlaps between them 

(Figure 6). nMDS axis 1 showed substantial over-
lap across the groups, but nMDS axis 2 separated 
the samples across biogeographic zones (Figure 6). 
Stress for the two-dimensional nMDS was 0.005, 
indicating that the plot was an accurate represen-
tation of the sample’s a priori group relationships. 
According to the ANOSIM, there was a significant 
difference in sample species assemblages across 
biogeographical zones (R = 0.28, p-value < 0.01). 
However, biogeographic zones only explained 8% 
of the variance in seabird assemblages. The GAM 
models showed that there was a non-linear relation-
ship between environmental variables and seabird 
distribution (edf > 1). Latitude was the greatest 
predictor of seabird assemblages and densities, 
reflecting environmental gradients in physical and 
biological parameters, within and between water 
masses, and their influences on prey distributions. 
SST and bathymetry had the highest explanatory 
power (deviance explained). These results highlight 
the dynamic influence of oceanographic variables 
on the distribution of seabirds (Table 3; Figure 6).
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Figure 5:	 A dendrogram of seabird assemblages, along with SIMPROF test identifying significant clusters of seabird group-
ings. Four main groups were identified (A, B, C, D, colours) and distinguished according to the different biogeo-
graphic zones.

Figure 6:	 Non-parametric multi-dimensional scaling (nMDS) of seabird density assemblages grouped according to biogeo-
graphic zones: Subtropical Zone (STZ), Subantarctic Zone (SAZ), Polar Frontal Zone (PFZ) and Antarctic Zone 
(AZ)
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Seabird density relative to oceanographic 
variables

There was mostly a non-linear relationship 
between the oceanographic variables and the den-
sity of all seabirds. Seabird density reduced with 
increasing SST (GAM, edf = 3.39, F =1.83, p-value 
= 0.02, adjusted R2 =0.48, deviance explained = 
54%, Figure 2) and had a negative relationship with 
bathymetry (GAM, edf = 5.64, F = 6.33, p-value 

<0.01, adjusted R2 = 0.48, deviance explained = 
54%, Figure 7). Seabird density had a positive but 
linear relationship (edf < 1) with SSH (GAM, edf = 
0.91, F = 0.38, p-value <0.003, adjusted R2 = 0.48, 
deviance explained = 54%, Figure 7). Relationships 
with other environmental parameters (wind, SSS 
and chlorophyll) were less defined. The presence of 
white-chinned petrels was variable, with low densi-
ties in 2015 but more abundant in 2016 and 2017.

Variables Edf Ref. df F-value Deviance 
Explained (%) 

P-value 

SSH 7.1 8.09 17.29 13.00 <0.01 
SST 8.6 8.96 19.23 16.00 <0.01 
CHL 7.9 8.60 6.80 6.40 <0.01 
Wind 8.6 8.90 12.60 11.00 <0.01 
Bathymetry 8.6 8.90 6.60 6.04 <0.01 
Latitude 6.2 7.30 22.00 15.00 <0.01 

 

Table 3:	 Results of univariate generalised additive models (GAMs) of total seabird density against environmental variables; sea 
surface height (SSH), sea surface temperature (SST), chlorophyll-a (CHL), wind, ocean depth and latitude.

Figure 7:	 Generalised additive model response curves showing the relationships between the density of all seabirds from 
2016–2019 and oceanographic variables: sea surface temperature (SST), wind, bathymetry, sea surface salinity 
(SSS), seas surface height (SSH) and chlorophyll-a (CHL).
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Discussion
Within ocean ecosystems, biological resources 

are heterogeneous in distribution and abundance 
and depend to some degree on the physical char-
acteristics of the water column (Bradshaw et al., 
2004). Ocean fronts are not only the most important 
foraging areas for many top predators, but they also 
define the biogeographic boundaries for species in 
the Southern Ocean and play a critical role in struc-
turing of seabird assemblages (Bost et al., 2009; 
Commins et al., 2013). Water masses and fronts, 
pack ice and ice margins, and eddies are some of 
the main hydrological factors explaining the distri-
bution of seabirds in the ocean; this has been known 
for decades (Wynne-Edwards, 1935; Joiris, 1979; 
Pocklington, 1979; Kinder et al., 1983) and has 
been confirmed by for example Elphick and Hunt, 
1993; Bost et al., 2009;  Joiris and Falck, 2010 and 
this study. Seabird densities were highest within 
the STZ and SAZ, with their distribution and abun-
dance closely linked to hydrographic features such 
as convergences, divergences, and fronts (Griffiths 
et al., 1982; Abrams, 1985; this study). In addition, 
seabird distributions are known to be influenced not 
only by oceanographic conditions that tend to con-
centrate potential prey, but also by breeding stages, 
the location and accessibility of suitable breeding 
sites (Cumming et al. 2013; Bost et al. 2009). It 
is therefore worth noting that during the period of 
observation, which was mainly in summer, and the 
resulting distribution applies to this time frame, as 
seabird activity and environmental conditions dif-
fer throughout the seasons.

Seabird densities increased from the STZ to 
the SAZ (from 3.7 birds/km2 to 4.8 birds/km2), 
and then decreased to 1.7 birds/km2 and 0.7 birds/
km2 moving south to the PFZ and AZ. The waters 
between the STC and SAF support a diverse array 
of seabirds (this study). Sea surface temperature 
(SST) plays a key role in determining the biogeog-
raphy and biogeochemistry of the Southern Ocean 
(Gibbons, 1997), particularly in the STC. 

The structure of seabird communities south of 
Africa was best explained by latitude and SST. Both 
these variables reflect changes in physical factors 
within water masses, with resultant impacts on the 
distribution and abundance of prey species. SST 
and bathymetry were the most important physical 
factors determining seabird assemblages, which 
agrees with previous studies in other regions of the 
Southern Ocean (Ainley et al., 1994; Pinaud and 

Weimerskirch, 2007; Ribic et al., 2011; Commins 
et al., 2013). Latitude was the greatest predictor 
of seabird assemblages and densities, reflecting 
environmental gradients in physical and biological 
parameters, within and between water masses, and 
their influences on prey distributions. Due to the 
study design, we cannot attribute seabird assem-
blages to latitude only, but the presence of a rela-
tionship merits further study. These results high-
light the dynamic influence of oceanographic vari-
ables on the distribution of seabirds while reflect-
ing environmental gradients in both physical and 
biological parameters, within and between water 
masses, and their influences on prey distributions 
(Table 3; Figure 6). In contrast, seabird density had 
a positive linear relationship with sea surface height 
(SSH). This may be explained by their proclivity for 
frontal areas, which are characterised by increased 
SSH (Bradshaw  et al., 2004). Relationships with 
other environmental parameters, namely wind, sea 
surface salinity and chlorophyll (as a proxy for pro-
ductivity), were less defined. 

The STC appears to serve as a significant 
demarcation for seabirds, acting as a biogeo-
graphical division between the Southern Ocean 
and the warmer subtropical waters to the north. 
The waters immediately north of the STC exhibit 
high productivity during both early and late sum-
mer (Laubscher et al., 1993; Barange et al., 1998). 
However, seabird densities generally remain low in 
the oceanic waters north of the STC. In contrast, the 
STC area shows high seabird densities, with prions 
being particularly abundant. Numerous species of 
albatrosses and petrels forage along the continental 
shelf of southern Africa. These include the more 
commonly encountered Atlantic and Indian yellow-
nosed, black-browed and shy albatrosses, as well 
as the less common wandering albatross. While 
these species breed in the Subantarctic, as well as 
on islands off South America and Australasia, their 
overall contribution to the total sightings was neg-
ligible compared to the seabird’s species breeding 
in coastal islands of South Africa. The presence of 
white-chinned petrels was variable, with low densi-
ties in 2015 but more abundant in 2016 and 2017.

Not all fronts have a significant impact on dis-
tinct zooplankton communities (Pakhomov et al., 
2000) or seabird assemblages (Bost et al., 2009). 
The SAF and APF have less influence on seabird 
communities than the STC and ice-edge, and no 
clear structure was observed across the SACCF 
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during early summer (Bost et al., 2009). This is, 
however, important, especially that the subsequent 
distribution is primarily for the summer season 
during which this study was conducted, as sea-
bird activity and environmental conditions vary 
throughout the year. Furthermore, most seabirds 
are concentrated in limited regions, which have 
well-defined boundaries in space and time. Abrams 
and Miller (1986) found considerably higher 
abundances of seabirds around the Prince Edward 
Islands compared to the STC or the Antarctic Polar 
Front south of Africa. Both these regions (islands 
off coast of South Africa and the Prince Edward 
Islands) have high densities of seabirds due to their 
proximity to breeding sites (Griffiths et al., 1982; 
Abrams, 1985a). 

Aggregation of seabirds in these areas is likely 
due to the abundance of their prey and the position 
of fronts and water masses, which can vary greatly 
over small-time scales and thus influence seabird 
abundance. This study complements information 
from tracking studies (e.g., Reisinger et al., 2018; 
Hindell et al., 2020) in providing information on 
the distribution of seabirds at sea and the factors 
influencing their presence. This knowledge can 
greatly enhance the management and conserva-
tion efforts in the Southern Ocean through iden-
tifying those areas where seabirds congregate, 
which should be protected and conserved through 
international agreements such as Commission 
for the Conservation of Antarctic Marine Living 
Resources (CCAMLR). Measures like the estab-
lishment of marine protected areas in the high seas, 
which may include the CCAMLR Convention area, 
Area beyond National Jurisdiction and the conti-
nental shelf are crucial for promoting the sustain-
able use of marine resources and safeguarding the 
marine ecosystem.
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Appendix A

Predicted seabird distribution of four most dominant seabirds species

The ensemble model performed better than individual models as it had low error (Table A1), and that 
model was used to produce the seabird density distribution map (Figure A1).

Model RMSE R2 Cor MAE 
GAM 1.03 0.43 0.66 0.79 
GLMM 2.73 0.01 -0.11 2.17 
SPMM 1.04 0.42 0.65 0.79 
RF 0.96 0.50 0.65 0.75 
Ensemble 0.91 0.56 0.75 0.69 

 

Table A1:	 Model diagnostic of observed vs predicted data deduced from the independent test data for the four models and the 
overall ensemble. RMSE (Root mean square deviation), R2 (Variance explained), Cor (Pearson correlation), MAE 
(mean absolute error).

Figure A1:	 The predicted distribution of seabird density (birds/km2) from 2016–2021 (excluding 2020) from 300S to 600S and 
00E to 600E, from the ensemble model. The location of the Prince Edward Islands is indicated by the red dot.

White-chinned petrel
White-chinned petrel probability of occurrence reduced with increasing SST (GAM, edf = 2.83, chi-

square = 24.58, p-value <0.01, adjusted R2 = 0.47, deviance explained = 46%, Figure A2, Table A2, Figure 
A3). Their probability of occurrence increased with reducing ocean depth (GAM, edf = 1.45, chi-square = 
5.61, p-value = 0.01, adjusted R2 = 0.47, deviance explained = 46%, Figure A2). There was no significant 
relationship between white-chinned petrel occurrence and chlorophyll a (GAM, edf = 0.0002, chi-square 
= 0.00, p-value = 0.68, adjusted R2 = 0.47, deviance explained = 46%, Figure A2) and wind (GAM, edf 
= 0.0003, chi-square = 0.00, p-value = 0.63, adjusted R2 = 0.47, deviance explained = 46%, Figure A2). 
White-chinned petrel probability of occurrence increased with SSH at low SSH and then reduced high SSH 
(GAM, edf = 2.91, chi-square = 15.41, p-value<0.01, adjusted R2 = 0.47, deviance explained = 46%, Figure 
A2).
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Model performance 

Figure A2:	 Response curves showing the relationship between the oceanographic variables and the probability of occurrence of 
white-chinned petrel 2016 – 2019, excluding 2020.

Model RMSE R2 Cor AUC 
GAM 0.36 0.44 0.66 0.89 
GLMM 0.43 0.24 0.49 0.78 
SPMM 0.37 0.43 0.65 0.88 
RF 0.35 0.47 0.68 0.90 
Ensemble 0.34 0.47 0.68 0.92 

 

Table A2:	 Model diagnostic of observed vs predicted white chinned petrel data deduced from the independent test data for the 
four models and the ensemble. RMSE (Root mean square error), R2 (Variance explained), Cor (Pearson correlation), 
AUC (Area under receiver-operated characteristic curve)
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Shy albatross
The probability of occurrence of shy albatrosses is reduced with increasing SST (GAM, edf = 1.27, chi-

square = 9.27, p-value = 0.0003, adjusted R2 =0.46, deviance explained = 49%, Figures A4 and A5, Table 
A3). There was a positive relationship between bathymetry and shy albatross (GAM, edf = 1.53, chi-square 
=8.57, p-value < 0.01, adjusted R2 = 0.46, Deviance explained = 49%, Figure A4). Shy albatross probability 
of occurrence reduced with increasing sea surface salinity (GAM, edf = 1.07, chi-square = 5.98, p-value 
= 0.003, adjusted R2 = 0.46, deviance explained = 49%, Figure A4). There was no significant relationship 
between shy albatross and chlorophyll a, wind and SSH (p-value > 0.05).

Model performance

Figure A3:	 The predicted distribution (probability of occurrence) of white-chinned petrels from 2016-2021 (excluding 2020), 
using the ensemble model. The location of the Prince Edward Islands is indicated by the red dot.

Model RMSE R2 Cor AUC 
GAM 0.28 0.36 0.60 0.89 
GLMM 0.33 0.16 0.40 0.80 
SPMM 0.28 0.37 0.60 0.89 
RF 0.24 0.45 0.68 0.95 
Ensemble 0.23 0.62 0.79 0.97 

 

Table A3:	 Model diagnostic of observed vs predicted shy albatross data deduced from the independent test data for the four 
models. RMSE (Root mean square error), R2 (Variance explained), Cor (Pearson correlation), AUC (Area under the 
receiver-operated characteristic curve).
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Figure A4:	 Response curves showing the relationship between the oceanographic variables (sea surface temperature; SST, Wind, 
Bathymetry, sea surface salinity; SSS, seas surface height; SSH and Chlorophyll-a; CHL) and the probability of 
occurrence of shy albatross 2016 – 2021, excluding 2020.

Figure A5:	 The predicted distribution (probability of occurrence) of shy albatross from 2016-2021 (excluding 2020) between 
300S and 600S and 00E to 600E, from the ensemble model. The location of the Prince Edward Islands is indicated 
by the red dot.
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Soft-plumaged petrel
Soft-plumaged petrel had a negative linear relationship (edf < 1) with SST (GAM, edf = 2.62, chi-square 

=1.58, p-value = 0.04, adjusted R2 = 0.64, deviance explained = 66%, Figures A6 and A7, Table A4). Soft-
plumaged petrel probability of occurrence reduced with increasing ocean depth; they occurred more in 
deeper waters (GAM, edf = 2.62, chi-square =15.74, p-value <0.01, adjusted R2 = 0.64, deviance explained 
= 66%, Figure A6). Soft-plumaged petrel probability of occurrence increased with increasing wind speed 
(GAM, edf = 1.67, chi-square =5.17, p-value <0.01, adjusted R2 = 0.01, deviance explained = 66%, Figure 
A6) and SST (GAM, edf = 0.85, chi-square = 3.195, p-value =0.003, adjusted R2 = 0.64, deviance explained 
= 66%, Figure A6).

Figure A6:	 Response curves showing the relationship between the oceanographic variables (sea surface temperature; SST, Wind, 
Bathymetry, sea surface salinity; SSS, seas surface height; SSH and Chlorophyll-a; CHL) and the probability of 
occurrence of soft-plumaged petrel 2016 – 2019 (excluding 2020) based on GAM.

Model performance

Model RMSE R2 Cor AUC 
GAM 0.23 0.58 0.76 0.96 
GLMM 0.27 0.41 0.64 0.92 
SPMM 0.23 0.57 0.76 0.96 
RF 0.21 0.57 0.75 0.96 
Ensemble 0.20 0.60 0.77 0.97 

 

Table A4:	 Model diagnostic of observed vs predicted soft-plummaged petrel data deduced from the independent test data for 
the four models. RMSE (Root mean square error), R2 (Variance explained), Cor (Pearson correlation), AUC (Area 
under the receiver-operated characteristic curve).
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Great-winged petrel

Great-winged petrel had no significant relationship with oceanographic variables (p-value> 0.05), except 
for wind (GAM, edf = 1.06, chi-square = 4.39, p-value = 0.01, adjusted R2 = 0.29, deviance Explained 
= 37%, Figures A8 and A9, Table A5) and SSH (GAM, edf = 4.03, chi-square = 12.03, p-value <0.01, 
adjusted R2 = 0.29, deviance explained = 437%, Figure A8). There was an increased probability of occur-
rence with an increase in wind. There was a non-linear relationship between great-winged petrel with SSH.

Figure A7:	 The predicted distribution (probability of occurrence) of soft-plumaged petrels from 2016-2021 (excluding 2020), 
from ensemble model. The location of the Prince Edward Islands is indicated by the red dot.

Figure A8:	 Response curves showing the relationship between the oceanographic variables (sea surface temperature; SST, Wind, 
Bathymetry, sea surface salinity; SSS, seas surface height; SSH and Chlorophyll-a; CHL) and the probability of 
occurrence of great-winged petrel 2016 – 2021, excluding 2020.
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Model RMSE R2 Cor AUC
GAM 0.26 0.30 0.55 0.90
GLMM 0.30 0.12 0.35 0.72
SPMM 0.27 0.29 0.54 0.88
RF 0.25 0.21 0.46 0.90
Ensemble 0.27 0.22 0.47 0.87

Table A5:	 Model diagnostic of observed vs predicted great-winged petrel data deduced from the independent test data for the 
four models and ensemble. RMSE (Root mean square error), R2 (Variance explained), Cor (Pearson correlation), 
AUC (Area under the receiver-operated characteristic curve).

Figure A9:	 The predicted distribution (probability of occurrence) of great-winged petrels from 2016-2021 (excluding 2020), 
from the ensemble model. The location of the Prince Edward Islands is indicated by the red dot.
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