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Abstract

The incorporation of ‘effective sample size’ (ESS) in integrated assessments is an
approximate but simple way of modelling the distribution of catch-at-age or catch-
at-length frequencies using a multinomial likelihood when there is extra-multinomial
heterogeneity. Accurate estimation of ESS for catch-frequency data for each fishery and
fishing year is important for such assessments, and this issue is studied using simulation.
Between-haul heterogeneity within fishing year was simulated using samples from the
Dirichlet-multinomial (D-M) distribution, with marginal class probabilities generated
using a simple age-structured model incorporating fishing selectivity. Four methods of
estimation of effective sample size were compared using this simulation model and its
variants. One of the methods is based on the lack-of-fit of predictions of class probabilities
using aggregate year-level frequencies. The other three estimators use the haul-level
frequencies, including a method based on an approximate profile maximum likelihood
estimate (PMLE) of the D-M dispersion parameter. The remaining two estimators based
on haul-level frequencies are derived from models for the empirical coefficient of variation
(CV) in the proportions, with one being based on an existing CV model used for CCAMLR
fisheries while the other is a new method. The methods that use haul-level frequencies
gave accurate estimators of an ESS that is appropriate for haul-level heterogeneity with
increasing accuracy in the following order: (i) the estimator based on the existing CV
model; (ii) that based on the new CV model; and (iii) that based on the PMLE. The year-
level method gave very inaccurate estimates of this ESS with relative mean square error
two orders of magnitude worse than the best haul-level method.

To account for process error in the calculation of the ESS, the lack of fit of the age-
structured model in predicting class/bin by year frequencies is used to obtain a single,
across-years, over-dispersion parameter. The ESS is then rescaled by dividing by the over-
dispersion parameter, and the model refitted, giving a two-step iterative procedure. The
ESS will be over-corrected if there is a systematic component to the lack of fit. A simple
generic model of systematic lack-of-fit (SLOF) is presented, and its performance, in terms
of providing unbiased estimates of ESS when SLOF is either present or absent, is studied
using perturbations of the age-structured model. These perturbations consisted of either
systematic or random variation across years in one of the selectivity function parameters
and similarly for the mortality rate parameter when combined with systematic or random
variation in recruitment. The SLOF model substantially reduced the bias when SLOF was
present and is useful when its source is not clear or cannot be rectified by changing the
underlying age-structured assessment model.

Résumé

L'intégration de la "taille effective d'un échantillon" (ESS pour effective sample size)
dans les évaluations intégrées est un moyen approximatif mais simple de modéliser la
distribution des fréquences d'ages ou de longueurs dans la capture selon une vraisemblance
multinomiale en présence d'une hétérogénéité extra-multinomiale. L'estimation exacte de
I'ESS relative aux données de fréquence dans la capture pour chaque pécherie et année de
péche étant importante pour ces évaluations, cette question est étudiée par simulation.
L'hétérogénéité entre traits en une année de péche est simulée a I'aide d'échantillons de la
distribution multinomiale de Dirichlet (D-M), les probabilités marginales des classes d'age
étant générées au moyen d'un modele simple structuré selon 1'dge et tenant compte de la
sélectivité de la péche. Quatre méthodes d'estimation de la taille effective d'un échantillon
sont comparées par ce modele de simulation et ses variantes. L'une d'elles est basée sur
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le défaut d'ajustement des prédictions des probabilités liées aux classes d'age en utilisant
des fréquences agrégées au niveau de I'année. Les trois autres estimateurs utilisent les
fréquences au niveau du trait, y compris une méthode fondée sur un profil d'estimation
de maximum de vraisemblance (PMLE pour profile maximum likelihood estimate) du
parametre de dispersion de D-M. Les deux autres estimateurs basés sur les fréquences au
niveau du trait sont tirés de modeles du coefficient de variation (CV) empirique dans les
proportions, I'un étant basé sur un modele de existant de CV, utilisé pour les pécheries
de la CCAMLR, alors que l'autre est une nouvelle méthode. Les méthodes utilisant les
fréquences au niveau du trait ont donné des estimateurs exacts d'une ESS adéquate pour
I'hétérogénéité au niveau du trait avec une précision croissante dans l'ordre suivant :
i) l'estimateur basé sur le modele de CV existant ; ii) celui basé sur le nouveau modele
de CV ; et iii) celui basé sur le PMLE. La méthode au niveau de l'année a donné des
estimations trés inexactes de cette ESS ; en effet, I'erreur quadratique moyenne relative est
pire que celle de la meilleure méthode au niveau du trait, de 'ordre d'un facteur 100.

Pour tenir compte de l'erreur de traitement dans le calcul de 1'ESS, on utilise le défaut
d'ajustement du modele structuré selon 1'age dans la prévision des fréquences des classes/
lots par année pour obtenir un parametre de surdispersion unique, sur I'ensemble des
années. L'échelle de I'ESS est ensuite modifiée en divisant 1'ESS par le parametre de
surdispersion, puis le modele est réajusté, donnant une procédure itérative a deux étapes.
L'ESS sera surcorrigée si le défaut d'ajustement montre un élément systématique. Un
modeéle générique simple de défaut d'ajustement systématique (SLOF pour systematiclack-
of-fit) est présenté ; au moyen des perturbations du modéle structuré selon 'dge, on étudie
sa performance, lorsqu'il s'agit de fournir des estimations d'ESS non biaisées en présence
ou en 'absence du SLOF. Ces perturbations consistent en une variation systématique ou
aléatoire sur plusieurs années de 1'un des parametres de la fonction de sélectivité, et il en
est de méme pour le parametre du taux de mortalité lorsqu'il est combiné a une variation
systématique ou aléatoire du recrutement. Le modele du SLOF réduit considérablement le
biais en présence du SLOF et il est utile lorsque sa source n'est pas évidente ou ne peut étre
rectifiée en modifiant le modele d'évaluation de base structuré selon I'age.

Pesrome

Bxitrouenue «3ddexruBHoro pazmepa Beioopkm» (ESS) B KOMILICKCHBIC OIICHKH SIBJISCTCS
NPUOIN3UTEIBHBIM, HO TIPOCTBIM CIIOCOOOM MOJICIIMPOBAHUSI YACTOTHOTO PACHPEICIICHUS
BO3PAcTOB U JUIMH B YJIOBaX C HCIOIB30BaHNEM MYJIBTHHOMHUAIBLHOTO IIPaBONOI00Ms ITpH
HAJIMYNH IOTIOJTHUTENILHOM MY IBTHHOMHUAIbHOM rereporenHocTH. [Ipn mpoBeieHny Taknx
OLICHOK B)XKHO TOYHO onpenenuts ESS B cirydae MaHHBIX O YaCTOTHOM pacIpeieieHHN
VIOBOB JJIS KaXKIOTO IPOMBICTA W TPOMBICIOBOTO TO/A; 3TOT BOIPOC H3YyJaeTCs
MTOCPEICTBOM MOJCITUPOBAHUSA. | €TepOTeHHOCTh YIIOBOB B T€UCHHE MIPOMBICIIOBOTO TOIA
MOJICITUPOBANIACH C MCIIOIB30BAaHUEM BBIOOPOK U3 MYABTHHOMHAIFHOTO pPaclpeIeICHIs
Hupuxne (D-M), e npenensl BEpOSTHOCTH KJIACCOB, IOIYYEHBI C IIOMOMIBIO POCTOMH
BO3PAaCTHOM MOJIEIH, BKJIIOYAIOUIEH MPOMBICIOBYIO CEJIeKTHBHOCTh. Ha ocHoBe 3Toit
HMHTaHHOHHOﬁ MOJCIIU U €€ BApUAHTOB 6BIJ'IO IMMPOBEACHO CPAaBHCHUEC YCTHIPEX MECTOI0OB
orpezaeseHust 3pGeKTUBHOrO pasMepa BhIOOpKH. OIIMH M3 3THX METO0B OCHOBBIBACTCS
Ha HEa/IEKBaTHOCTH PacuyeTOB BEPOSITHOCTH KJIACCOB C MCIIOJIb30BAHUEM arperupoBaHHbIX
4acTOT Ha TOZI0BOM ypoBHe. Tpu Ipyrux MeTo/a UCIIOIb3YIOT YaCTOTHl Ha YPOBHE YJIOBa,
BKJIFOYAsi METOJI, OCHOBaHHBIN Ha NPHOIU3UTEIHLHON OIEHKE MPO(UIsT MAaKCUMAIBHOTO
npasrononoous (PMLE) napamerpa nucnepcun D-M. OcranbHble 1Ba METONA OLEHKH
Ha OCHOBE YaCTOT Ha YPOBHE YJIOBA MOIYYCHBI IPU TOMOIIH MOJAETCH IMITUPHUICCKOTO
ko3¢ unuenta Bapuanuu (CV) B COOTHOIICHMSX, INIE€ OJMH METOX OEpeT 3a OCHOBY
cymectyomulyto Monenb CV, ucnonbdyemyro mna npomsicioB AHTKOMa, a apyroit
METOJ SBISIETCS HOBBIM. METOJBI, MCTIONB3YIOMNE YacTOTHl Ha YPOBHE YIIOBA, JArOT
TOYHYI0 OIIeHKY ESS, KoTopas cOOTBETCTBYET IreTepOTeHHOCTH Ha YPOBHE YIIOBA, IPUYEM
TOYHOCTH BO3pacTaeT B cieayromieM nopsjke: (1) olleHKka Ha OCHOBE CYIIECTBYIOIIEH
mozenu CV; (ii) olreHka Ha ocHOBe HOBo# Moaenmu CV; u (iii) onieHka Ha ocHoBe PMLE.
Merton Ha ypoBHE roja Jajl OueHb HETOUYHbIE OLleHKH 3Toro ESS, rae oTHocuTenpHas
CpenHssl KBafpaTHyHasl olnOKa Oblila Ha JiBa OPS/KA XyXKe, YeM Y HAWITyUIlIero MeTosa
Ha ypOBHE YJIOBa.

Jns toro urobsl mpu pacyere ESS yuects ommbky o06paboTkm, HealeKBaTHOCTD
BO3pPAcTHOM MOJENN TPH IMPOTHO3WPOBAHUM YacTOT KIJIACCOB/MHTEPBAJOB IO TOAaM
HCIIONB3YeTCsl IS IMOJTYyYSHUsl ONHOI0 mHapamMerpa H30BITOYHOW IHCIIEPCHH 3a BCE
rogsl. 3arem ESS mepecunThiBacTCS MyTeM [ENEHUS HA MapamMerp H30BITOYHOM
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JIICTIEPCHH, ¥ BHOBB ITOA0OMPAETCS] MOJIEITb, YTO MPEACTABISIET COOOI IBYXCTYIIEHUATYIO
UTepaTuBHYyI0 mpoueaypy. Ilpu HamuuuM  cuUCTeMaTH4YecKoil — cocTaBistoLiel
HECOOTBETCTBHsl KoppekTHpoBka ESS Oynmer upesmepnoi. IIpeacraBnena mpocras
THUIIOBasi MOJieNIb cuctemarndeckoro HecoorBercTBus (SLOF) m, ¢ mcmonp3oBanneM
OTKJIOHEHH BO3PAaCTHON MOJIENH, pACCMaTPUBAIOTCS €€ Pe3yNbTaThl B IUIaHE MOMYyUYCHUS
HecMeleHHbIX oneHok ESS mpu mammuuu wnu B orcyrctBue SLOF. OTH oTKIOHEHHS
BKJIIOYQIM CHUCTEMaTHUYECKUE WM CIydaiHble M3MEHEHHMsS OJHOTO M3 TapaMeTpoB
(DYHKIMY CEJIEKTUBHOCTH I10 TOJIaM M, aHAJIOTUYHBIM 00pa3oM, napamerpa koaddunrenra
CMEPTHOCTH B COUYETAHUU C CHCTEMATHUECKUMH WIH CIyYalHBIMH H3MEHEHUSIMU
nononHeHus. Monens SLOF 3HauntensHO yMeHbIImIA cMenienne npu Hanuaun SLOF;
OHA MOXKET MCIOJIb30BaThes, Koraa uctouHnk SLOF HensBecTeH MM He MOXET OBITH
yCTpaHEeH IMyTeM U3MEHEHMS UCXOIHOW BO3PACTHOI MOJIENIN OLEHKH.

Resumen

La incorporacién del “tamaiio efectivo de la muestra” (ESS) en las evaluaciones integradas
es una forma aproximada, pero sencilla, de modelar la distribucién de la frecuencia de
edades o tallas de la captura mediante una funcién de probabilidad multinomial cuando
la heterogeneidad multinomial es mayor. La estimacién precisa del ESS a partir de los
datos de frecuencia de edad o talla de la captura para cada pesqueria y afio de pesca es
importante para estas evaluaciones, y este problema se estudia mediante simulaciones. La
heterogeneidad entre los lances efectuados en un afio de pesca fue simulada utilizando
muestras de la distribucién multinomial de Dirichlet (D-M), donde la probabilidad
marginal de las clases de edad fue calculada mediante un modelo simple estructurado
por edades que incorpora la selectividad por pesca. Se compararon cuatro métodos
para estimar el tamafo efectivo de la muestra mediante este método de simulacién y
sus variantes. Uno de los métodos se basa en la falla del ajuste de las predicciones de la
probabilidad de las clases de edad y utiliza frecuencias agregadas de las clases anuales.
Los otros tres estimadores utilizan frecuencias a nivel de lance, incluido un método basado
en una estimacién aproximada del perfil de maxima verosimilitud (PMLE) del parametro
de dispersiéon D-M. Los dos estimadores restantes basados en la frecuencia a nivel de
lance se derivan de los modelos para simular el coeficiente de variacién empirico (CV)
en las proporciones, estando uno basado en el modelo existente del CV utilizado para
las pesquerias de la CCRVMA, mientras que el otro es un nuevo método. Los métodos
que utilizan las frecuencias a nivel de lance produjeron estimaciones exactas de un ESS
apropiado para la heterogeneidad entre lances con precision creciente en el siguiente
orden: (i) el estimador basado en el modelo existente del CV; (ii) el estimador basado en
el nuevo modelo del CV; y (iii) el estimador basado en el PMLE. El método que utiliza
frecuencias agregadas de clases anuales dio estimaciones muy imprecisas de este ESS
con un error cuadratico medio relativo peor -en dos 6rdenes de magnitud- que el mejor
método basado en las frecuencias a nivel de lances.

Para tomar en cuenta el error de tratamiento en el calculo del ESS, se utiliza la falla del
ajuste del modelo estructurado por edades en la prediccién de la frecuencia anual de
clases o intervalos para obtener un solo parametro de sobredispersion para todos los afios.
El ESS se reajusta entonces dividiéndolo por el parametro de sobredispersion, y se vuelve
a reajustar lo que resulta en un método iterativo de dos fases. El ESS sera corregido en
exceso si la falla del ajuste incluye un componente sistematico. Se presenta un modelo
general simple de falla sistematica del ajuste (SLOF), y se estudia sus resultados, en
términos de proveer estimaciones de ESS sin sesgos en presencia y ausencia de SLOF a
partir de las perturbaciones del modelo estructurado por edades. Estas perturbaciones
consistieron de variaciones ya sea sisteméticas o aleatorias a través de los afios en uno de
los pardmetros de la funciéon de selectividad y de manera similar, para el pardmetro de
la tasa de mortalidad cuando se combina con una variacién sistemédtica o aleatoria en el
reclutamiento. El modelo SLOF redujo substancialmente el sesgo cuando existe una falla
sistematica del ajuste y resulta ttil cuando el origen de esta falla es incierta o no puede ser
rectificada cambiando el modelo subyacente de evaluacién basado en la edad.

Keywords: Dirichlet-multinomial distribution, integrated assessment, effective sample
size, profile maximum likelihood, process error, model lack-of-fit, CCAMLR
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Introduction

Integrated assessments that estimate model
parameters using diverse datasets implicitly
assign weights to each dataset via their respective
definitions of the log-likelihood. To provide the
most accurate parameter estimates, the likelihood
defined for each dataset should reflect as faithfully
as possible the systematic and stochastic variation
in the data, including both population-level vari-
ation in biological attributes and variation result-
ing from the sampling processes used to obtain the
data. Catch-at-age or catch-at-length data consist of
sample frequencies for each age class or length bin
usually obtained from a large number of fish sam-
pled randomly from hauls in each year of fishing.
The CASAL assessment software (Bull et al., 2005)
currently used by CCAMLR allows a multinomial
likelihood to be used for the frequencies in these
classes/bins aggregated across hauls for each year
of fishing. CASAL does not allow haul-level fre-
quencies to be used as data and, correspondingly,
cannot incorporate a mixed-effects multinomial
log-likelihood to account for multi-level sampling
using units such as vessels or hauls within vessel
and year.

Further, CASAL requires the catch-at-age or
catch-at-length data to be input as the total yearly
frequency in the form of class proportions com-
bined with the corresponding multinomial sam-
ple size. Similar integrated assessment software
of MULTIFAN-CL (Fournier et al., 1998) and Stock
Synthesis Program (Methot, 2000, 2005) also limit
input of catch-at-length or catch-at-age frequencies
to values aggregated across hauls. In the absence
of haul-level data input, an approximate but sim-
ple way of accounting for random variations in
class proportions due to the two levels of sampling
(i.e. fish within hauls for ‘level 1" sampling and
hauls within year and fishery for ‘level 2’ sampling)
is to replace the total sample size of fish measured
in the year by the effective sample size (ESS) as the
nominal multinomial sample size. To demonstrate
this, consider a single fishery and let the number
of fish sampled from age class a for year y, aggre-
gated across allhauls (j=1,...,h,) inyeary, given by
My, = Z].il 15, be multinomially distributed condi-
tional on total sample size n, (where 1, = Zuﬂw).
Note that in this notation a missing subscript for
a frequency implies that the variable is the value
totalled over the range of the missing subscript.
The variance of the observed class proportions, o
=My, / ny, conditional on 1, can be specified as

ya
Y

Var(OW =0y,

pya/ny):pya(l_pyu)/ny 1)
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where p,, =E (N /Ny ‘N y) (where random vari-
ables are denoted using upper case while their cor-
responding sample realisations by lower case).

However, if the true variance is given by

Var, (O

ya = Oya Pyu'"y) = ("’y /”y)pw (1_pw) 2
where ¢, is an over-dispersion parameter then ESS,
n'y, is given by n’y =n, / ¢, Therefore if the ¢, were
known or could be estimated then n; could be pro-
vided to CASAL as though this n;-size sample of
‘fish” can be assumed to be independent samples
from a nominal multinomial distribution. This
assumed ‘distribution” has a variance relationship
that corresponds marginally (i.e. averaged across
hauls) to a particular mixed-effect multinomial dis-
tribution model, called the Dirichlet-multinomial
(D-M) distribution (Johnson and Kotz, 1969;
Polacheck et al., 2006) given that n, = h,m, where h,
is the number of hauls and m, is the number of fish
measured per haul in year y (in what follows, the
assumption, that my, is constant across hauls within
each year, is relaxed).

A key issue is whether either of 1, or ¢, can be
reliably estimated from catch-at-age or catch-at-
length frequencies at either the haul level or the
year level (i.e. frequencies aggregated across hauls).
This paper examines four methods of estimation
using simulated data generated from a D-M distri-
bution for haul-level frequencies.

A possible criticism of the use of the D-M dis-
tribution in this context derives from the study of
actual catch-at-length data from surveys of Atlantic
cod (Gadus morhua) by Hrafnkelsson and Stefansson
(2004). They examined the empirical correlation in
frequency between length bins and were able to
model the observed moderate to strong positive
correlations between length bins for small lags
(e.g. adjacent bins have lag 1) (see also Miller and
Skalski, 2006) using a Gaussian-multinomial (G-M)
model whereas the D-M model is constrained to
estimate only a single negative and, generally,
small value for across-bin correlations. Note how-
ever, that considering the sample of fish measured
for a haul as a cluster sample, the D-M model esti-
mates the correlation between any two fish in the
cluster in terms of their class/bin membership as
a positive value determined by the intra-cluster
correlation coefficient (Zhu, 2002). Unlike the D-
M model, explicit formulae for the marginal vari-
ance and covariances for the G-M model are not
available and therefore ESS due to between-haul
heterogeneity cannot be defined for this model.
Instead, Hrafnkelsson and Stefansson (2004) used
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numerical Bayesian techniques involving Markov
Chain Monte Carlo (MCMC) methods to sample
from the posterior distribution of the parameters
defining the G-M distribution. Although they con-
dition on the sample sizes, m, which can vary across
stations (i.e. hauls), the posterior estimates of vari-
ance/covariance do not explicitly account for dif-
ferent m’s as is possible using the D-M distribution.
In practical terms, the G-M model although more
flexible in modelling correlations, comes at the cost
of considerably more parameters and is much more
numerically intensive to estimate via MCMC sam-
pling than the method described here for estima-
tion of effective sample size under a D-M model. In
order to incorporate catch-at-length data with an
appropriate likelihood into integrated assessments,
Hrafnkelsson and Stefansson (2004) suggested for
the G-M model that the MCMC mean vector of
the posterior sample of class/bin probabilities be
used as ‘data’ in an approximate log-likelihood.
Maximising this log-likelihood is equivalent to a
generalised least-squares minimisation using the
empirical variance-covariance matrix of the pos-
terior sample as the prior precision matrix for the
‘data’. This approach is currently not possible in
CASAL.

This study focuses on numerically efficient
approaches for determining an ESS to apply within
existing, commonly available, integrated assess-
ment software. Given the catch-at-age or catch-at-
length data is generated from a D-M distribution
at the haul level, the performance of a set of four
alternative estimators of ESS is examined.

The estimation methods examined were:
(i) maximum likelihood estimation of ¢,; (ii) the
method of McAllister and Ianelli (1997) that used
aggregate year-level frequencies; (iii) the method
of Dunn and Hanchet (2007); and (iv) a new
method that has recently been implemented for the
CASAL-based assessment for Patagonian toothfish
(Dissostichus eleginoides) fisheries around Heard
and McDonald Islands (Candy and Constable,
2008) and based in part on the method described
by Constable et al. (2006). These last two methods
also use haul-level catch-at-age or catch-at-length
frequencies.

These four estimation methods are examined
using a simulation model that uses the D-M distri-
bution to draw catch-at-age samples from a simple
age-structured model with constant recruitment
and instantaneous mortality rate parameter, M.
A model of age-dependent fishing selectivity was
applied. To generate catch-at-length frequencies, the
catch-at-age data were converted to catch-at-length

data using an assumed von Bertalanffy growth
model for length given age with lognormal distri-
bution of length about its expected value.

Further, to account for process error in inte-
grated assessments, an appropriate distributional
model that incorporates year-to-year process error
in addition to haul-level heterogeneity while giv-
ing an explicit marginal variance relationship,
which allows an ESS to be appropriately defined,
does not appear to be available. Therefore, in order
to estimate the ESS when significant between-year
process error is assumed to occur, a more heuristic
approach is adopted based on Finney’s heteroge-
neity factor (Finney, 1971; McCullagh and Nelder,
1989, p. 128) whereby the lack-of-fit in class/bin by
year frequencies is used to obtain a single, across-
years, over-dispersion parameter. The ESS is then
rescaled by dividing by the over-dispersion param-
eter and the assessment model refitted in a two-step
iterative procedure that has some similarities to the
procedure described by Hillary et al. (2006) and
Dunn and Hanchet (2007). However, the rescaled
ESS will be over-corrected if there is a systematic
component to the lack-of-fit. Therefore, a simple
generic model of systematic lack-of-fit (SLOF) is
presented and its performance in terms of provid-
ing unbiased estimates of ESS when SLOF is either
present or absent, is studied using perturbations
of the age-structured model. These perturbations
were either systematic or random variation across
years in one of the selectivity function parameters
and similarly for the mortality rate parameter when
combined with systematic or random variation in
recruitment. The SLOF model is useful when the
source of SLOF is not clear or cannot be rectified
by changing the underlying age-structured assess-
ment model. For example, different datasets may
‘pull” age-structured model parameters in different
directions resulting in SLOF for one or more data-
sets depending on the weight they receive in esti-
mation (Candy and Constable, 2008).

First, the D-M distribution is described along
with the methods used to simulate this distribu-
tion in the context of catch-at-age or catch-at-length
frequency data. The estimation methods are then
given for dealing with haul-level heterogeneity in
class proportions as simulated by the D-M distribu-
tion. Next, methods of dealing with the addition of
systematic or process error are described, followed
by details of how the simulations were structured.
This is followed by results of the simulation study
when process error and systematic error in class
proportions were set to zero. This study com-
pares the accuracy of the alternative estimators of
ESS using the theoretically derived value based
on the parameter values used in the simulations.
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Finally, the performance of the proposed method
of accounting for year-to-year process error and
systematic error is then studied when these errors
were incorporated in the simulation model. Since
the D-M distribution does not extend to this case,
formal comparisons with a theoretical value of ESS
were no longer possible.

The Dirichlet-multinomial model

Consider initially a single year, a sample of
h hauls, and A age classes from age 1 to age A.
The Dirichlet distribution for a set of proportions
@ = (7y,...,my) that sum to 1 is given by Gelman et
al. (2004)

F((D) A _op,-1
Pr(n|0)= —— 21— o

where the parameter set is given by 6 = (o,py,...,
pa), 0 < p; <1 forall j, Zjﬂpu =1, and I'()) is the
gamma function. Random values of & can be drawn
using random draws from a set of A independ-
ent gamma distributed variables, X = (Xj,...,X4),
each with scale parameter 1 and shape parameter
o,=wp, (a=1,...,A), where o= Z::}lau, to give
a random haul value of n=X/ za:l
Pr(X, =x) =x% g™ /T(

and variance of the &, are given by p, and p,(1 -p,)/

X, where

a,). The expected value

(1+w) respectively, while the covariance between n,
and n, is given by —p,p,/ (1 + ®). Given a particular
value of & of m; which represents the class probabili-
ties for the local aggregation of fish that the jth haul
samples with a size-m; random sample of fish, then
the number of fish in each class, N;, with realisa-
tion n; = (1;4,...,1j4), conditional on m; and x; can
be simply assumed to have the multinomial distri-

bution given by

m;! A
] nj:z
A ' I Ia:l nf“
[Tt (4)

wherem; =¥ n,and 3% 1, =1(forj=1,...h).
More rigorously, the size-m; sample is a random
sub-sample of the total number of fish caught in
the haul, say mj, so a multivariate hypergeometric
distribution (Johnson and Kotz, 1969) for N; con-
ditional on both M =m; and M'=
more appropriate. However, given mj is typically

Pr(Nf =1

Ermj):

m} would be
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estimated, sometimes with poor accuracy at the
haul-level, estimation error in M]’ adds a much
greater degree of complexity and will not be con-
sidered further.

The distribution of Mj expected for a random
haul is given by the marginal distribution (i.e. cal-
culated as the expectation across random values
from the distribution of n given by equation 3)
and is given by Mosimann (1962, equation 7) and
Johnson and Kotz (1969, equation 102)

m:! A .
Pr(y; :ﬂf\mf):WE(HaJ?é )
a=1 74"

) m; !
I“(mj +(x)) H::1nfﬂ !
HA F(nja+mpu)

=t T (op,) ().

From this marginal distribution the expected
value and variance of N, conditional on m;, are
given by m;p, and ¢; m; p,(1-p,) respectively, while
the covariance between N;, and Nj, is given by —¢;
m; p, Py where ¢; is a dispersion parameter which
depends on m; obtained from the relation ¢; = (m;
+ ®)/(1+o®) (Johnson and Kotz, 1969, equations
105, 106; Hrafnkelsson and Stefdnsson, 2004). If
¢ is defined as the average value of the d)] then
¢ =(in+0)/(1+w), where = hz ,mj, then a
single parameter corresponding to ¢ can be defined
as ¢ (for the following the bar notation will be
dropped). The intra-cluster correlation coefficient
for the D-M distribution, p, is given by p = 1/(1 +
®) (Zhu, 2002) and this correlation is therefore posi-
tive. The greater variability in the n; due to lower
values of o results in higher values of p.

The catch-at-age or catch-at-length data that
CASAL requires are the frequencies aggregated
across hauls given by the sum of # random haul fre-
quency sets to give 11, Zj’ 1o If N; has the D-M
distribution (equation 5), then the sum N = z
with sample realisation n_= (1,..

4N
.My) has a com—

plex distribution determined by the h-fold convo-
lution of density function (5) on itself (Feller, 1968).
However, the mean and variance of N are easily
calculated with corresponding ath components of
hinp, and ¢hinp, (1—
covariance component of —Qhinp,p,

p.) respectively, and (a,a")th
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1 <¢or o 1
where (P:(h_n_,lzj—lmj + coj(1+co) .

This follows simply from the independence
of the haul-level samples and is a special case of
that given by Brown and Payne (1986). Note that if
m; =m for all hauls, then ¢;=¢ = o.

In terms of CASAL’s requirements, the theoreti-
cal ESS determined as n' = hini / ¢ can be used since
the multinomial approximation to the true distri-
bution of N is correct up to second-order moments
in that the mean and (co)variance are the same as
the theoretical values for the h-fold convolution of
the D-M distribution.

In terms of maximum likelihood estimation of ®
the distribution of N is not required since this esti-
mation uses the haul-level frequencies with mar-
ginal likelihood (based on equation 5).

Estimation methods

In order to handle multiple years of data col-
lection, the y subscript is introduced to represent
the year. The first method estimates ¢, so that
given the known values of m,; the estimate of 1,
can be obtained. This estimator of ¢, assumes that,
for each year considered independently, the haul-
level class frequencies are random realisations of
a D-M distribution and use an approximate profile
likelihood to determine ®, from haul-level class
frequency data and thus determine ¢, from equa-
tion (6) in order to determine the variance of the
aggregate frequency across hauls for the year y.

Maximum likelihood estimation requires the
log-likelihood based on equation (5), ¢, to be max-
imised withrespect to the parameterset0 = (o,py,...,
Pa-1) Where

(= Z;loge {Pr(N i =1 ‘m].,e)} ).

However, in the simulation study A is large
(49 age classes, 19 length bins) so in order to sim-
plify estimation of o, since the p’s are effectively nui-
sance parameters, ¢ was maximised by profiling ¢
across values of o while fixing the value of the p’s to
their sample estimates given by p, =1, /nfora=1,
...,A. If any of the classes have 1, of zero and thus
P, =0 the value of p, in this case, for the purposes
of determining /¢ from equations (5) and (7), was
set to a small arbitrary constant of 1.0e™®. The size
of this arbitrary constant does not affect estimation

since it can be seen from equation (5) that the con-
tribution to ¢ in this case is zero. The estimate of
o, Co( E), obtained in this way is called the profile
maximum likelihood estimate (PMLE) but strictly
it is only an approximation to the true PMLE since
it is conditioned on P and not the maximum likeli-
hood estimate of P obtained given a value of . The
merits or otherwise of this approximation is left to
the discussion. Suppressing the dependence on p,
this estimate of o is used to obtain the approximat_e
PMLE of ¢, §(®), using the relation between ¢
and o that is given by equation (6). The estimate
of effective sample size given by #'(§) = hin/ §(®)
corresponds to estimation Method 1 (PML). The
theoretical (i.e. true) effective sample size is given
by n'(¢)=hin/¢(w). When catch-at-age frequen-
cies for a series of years are given these formulae
are simply replicated for each year, so the profile
maximum likelihood estimator is given by

i =hyﬁ1y/¢’y(6’y) (8).

Method 2 (MI) is that described in Appendix 2 of
McAllister and Ianelli (1997). McAllister and Ianelli
(1997) used the year-level frequencies and so can
only provide estimates of 1, if catch-at-age frequen-
cies for a series of years are available. They esti-
mate 1, directly based on the empirical estimates
of the observed class proportions, at the year-level,
0,4 = 11,/ and the relationship between their var-
iance and expected value as a function of predicted
class proportions, p,,, assuming a multinomial dis-
tribution of n; independently sampled fish. The
predicted class proportions were obtained from
the fit of an integrated assessment model using an
age-structured population model fitted to a com-
mercial catch series, a catch-at-age series, and two
abundance series obtained from trawl surveys. To
provide initial estimates of p,,, a starting constant
value for effective sample size, n’ (i.e. n, =n'), is
used in the integrated assessment, then 7;, is esti-
mated externally via the above method and aver-
aged across years to give an updated estimate of n’.
This two-step procedure is iterated until n” con-
verges. Although the McAllister and lanelli (1997)
estimation method is not implemented here within
a full simulated integrated assessment, the simula-
tion environment used is a simple and ideal way to
investigate the principle of their method, which is
estimation of 1, from the year-to-year ‘lack-of-fit’
(LOF) in p,, as a predictor of 0,,. Since the four esti-
mation methods are compared using the simulation
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model with no process error or systematic error, a
simple mean of the o,, over the set of years is the
appropriate value to use for p,.

Therefore the equivalent method to McAllister
and Ianelli (1997, Appendix 2, equation 2.5) used
here is to estimate n; directly by

_ Zleﬁa (1_@1)

' Y i(0 =P )2 )

ny,/n, and

il

where 0, =p,, and where Pya =

Po= fzyzl Pya where R is the number of years in
the series. Note that this method of calculating ESS
was also used by Methot (2000, equation 37).

The third method (Dunn) is that of Dunn and
Hanchet (2007) who used the individual haul-
level frequencies to estimate n, directly based on
a non-linear regression of In(c,,) on ln(ﬁya) where
the ¢,, are the empirical coefficients of variation
(CVs) of the mean of the observed class propor-
tions across hauls, where the haul-level propor-
i Z 1, so that
Cya =[Var( yfﬂ)/ ( ypyu )T Dunn and Hanchet

(2007) solve the following equation for n,,

tions are oy, = n,,/n, ﬂ W?ere n

[n’y {1—%“}}%

1
"l P

yu):ln

(10)

using nonlinear least squares (A. Dunn, pers.

comm.). The least-squares estimate of n; can

also be obtained from the fit of the fgllow—
ing linear regression, separately for each year,
ln(cw ) =a, —%ln(ﬁya /{ 1- ﬁw}) where the sin-
gle parameter a, is estimated and the fixed term
—1In (f?yu / { 1-Py }) is included as an offset. In this
case the ESS, ny, is then estimated as exp(—Zﬁy). This
linear regression with a single estimated parameter
was used to apply the Dunn and Hanchet (2007)

method.

An alternative to the Dunn and Hanchet (2007)
regression is to fit cja as a linear regression, again
separately for each year, through the origin, on
(1— ﬁya)/ Pya so that the estimate of n; is given by
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the inverse of the regression slope estimate. The
fourth and final method (glm) examined is that of
estimating 7, in the above way after fitting this sim-
ple linear regression as a generalised linear model
(GLM) with gamma error structure and a linear
‘link” function (McCullagh and Nelder, 1989) with
again the regression constant omitted. The differ-
ence between Methods 3 and 4 is the assumption of
a lognormal distribution for ¢, for Method 3 com-
pared to a gamma d15tr1but10r1 assumed for Cy,z, for
Method 4. For both the Dunn and Hanchet (2007)
regression and gamma GLM methods it is neces-
sary to exclude values of ¢, from the regression
for which pw is zero since 1n this case ¢, cannot
be calculated. Also, to avoid extreme values of ¢,,,
those values of ¢, for which hycyu was either zero
or greater than 15 were excluded.

Estimates of 71’ are compared to the theoretical
value given earlier by n'=hin/¢ using summary
statistics for percent relative error, 100(#'—n')/n’,
and the relative mean square error (RMSE) given

byzrlA’_; (512 (” 7’1) where S is

the total sample size of estimates (i.e. 2000 in the
simulation studies) and 7’ is the mean of the simu-
lated theoretical values of ESS. Smaller values of
RMSE indicate better accuracy and in the limit a
perfect estimator has a 1:1 relationship with the
theoretical ESS, n’, and thus an RMSE of zero.

Process error and systematic lack-of-fit

Assessment methods for the Ross Sea (Dunn
and Hanchet, 2007) and South Georgia toothfish
fisheries (Hillary et al., 2006) incorporate estimates
of process error using an iterative procedure of fit-
ting CASAL and then using lack-of-fit statistics to
determine process error. These estimates of process
error are then applied with an updated CASAL run
and this two-step procedure repeated until there
are only small changes in the estimates of process
error (A. Dunn, pers. comm.). For catch-at-length
or catch-at-age data, incorporation of process error
involved modifying the ESS values derived from
Method 3 above. However, for process errors to
be random deviations of model-fitted values from
observed values, then any SLOF, either across age
classes/length bins or across years, should first be
removed.

Fitting a generic SLOF model was achieved here
by fitting a simple parametric model to the devia-
tions between observed and fitted values in propor-
tions by age class or length bin, where the fitted val-
ues are the simple means across years as described
for Method 2. The parametric model incorporated
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both linear and quadratic terms in the continuous
values of age (or length bin mid-point) and year
number, including the interaction between years
and age for these terms (i.e. liny, x liny,, ling, x
quady,, quady, x ling,, quady, x quady,). A Poisson
GLM was fitted to the nominal counts obtained as
the ESS values multiplied by proportions by age
class or length bin to give numbers by class/bin
and year, an offset of log of predicted number, the
above parametric SLOF model, and a main effect of
year (as a factor) in order for the Poisson model to
be constrained to give a log-likelihood equivalent
to that of the multinomial. Class or bin number was
also included as a factor. This model is described

by
log, {E(Zyu )} =log, (ﬁ’yﬁw ) +By + 2:22 Bily,
+ Z:iz BYH’&IW + BY+Ay,ﬂ'

[2 r ! [2
PByiany @ +Byiannya

+BY+A+3y,2a'2 (11)

where a Poisson distribution is assumed for the
response variable Z,, =1;0,, ' is the centred year
value obtained from the integer values of year, v,
so that for a 20-year simulation period v’ =y — 10,
similarly a” is the centred value obtained from the
integer values of age or the mid-point of the length
bins, I, is a set of dummy variables specifying
years as a ‘factor’ so that I,;, =1 if h = y and zero
otherwise, similarly J,, is a set of dummy variables
specifying classes/bins as a ‘factor’ so that J,, = 1 if
r = a and zero otherwise, and the f’s are parameters
to be estimated. Note that since year is included
as a factor, the Poisson deviance for this model is
the same as that for Z,, considered as multinomial
conditional on the fz’y (McCullagh and Nelder, 1989,
p- 212) and, additionally, quasi-likelihood theory
(McCullagh and Nelder, 1989, p. 323) allows this
response variable to be non-integer as long as it
takes positive (i.e. including zero) values.

The adjustment to the estimated ESS due to proc-
ess error was obtained simply by dividing 7, by the
dispersion parameter which was estimated as the
residual mean deviance (McCullagh and Nelder,
1989) from the fit of the SLOF model. Therefore if
the dispersion parameter estimate, ¢, is obtained as
the residual mean deviance, then the ESS adjusted
for process error, after removing SLOF, is given by
y =, / ®. This adjustment is based on Finney’s
heterogeneity factor (Finney, 1971; McCullagh and
Nelder, 1989, p. 128) and is consistent with the
approach of scaling the actual sample size given in
the introduction where in this case the year-specific
estimated ESSs are considered as ‘actual’ sample
sizes. Note that a single scale parameter, ¢, is used

across all years. This approach of simply scaling by
® is a heuristic approximation in the absence of a
theoretical statistical model that can incorporate
process error in addition to between-haul hetero-
geneity and at the same time allow these random
processes to be accounted for by the use of an ESS.
In practice in order to prevent over-fitting, the full
SLOF model above is only fitted if the dispersion
parameter for the minimal SLOF model (i.e. only
including the offset and year plus class/bin fac-
tors in the linear predictor) is significantly greater
than 1. It is worth noting that a parametric model
is required to model the age class/length bin by
year interaction since, if the non-parametric term
consisting of the interaction of these two variables
considered as factors was included in the GLM,
then the residual deviance would be zero since
the model would be ‘saturated” with parameters.
Also, in the simulation studies described below, the
simple averages across years were used for predic-
tions, so that p,, = p,, whereas for a general inte-
grated assessment the predictions p,, would vary
by year.

The simulation model

A simulation model consisted of simulating
100 replications of a series of 20 fishing years of
either catch-at-age or catch-at-length frequencies.

First, a population age-structure was generated
by calculating the probability density for each of
1001 values of age, a’, taken uniformly between
age 0 and age 50 (i.e. consecutive age values
50/1 001 years apart) using the exponential density
function Pr(Age =a’) = P(a’) = Me™M* where M is the
instantaneous mortality rate parameter. The raw
density values, P(a’), were scaled by dividing by

. . 1001 .
their sum to give P'(a; ) = P(a{)/Z:i:1 P(a}). Using
the 50 integer age classes given by {(0,1],...,(49,50]},
denoting the vector a as the upper limit of each class,
the class membership of each of the 1 001 ages was
determined and used to determine class probabili-
ties. This numerical integration method of deter-
mining the age structure was used in preference to
the method that uses the simple analytical integral,
since the former allows more accurate calculation
of class probabilities when fishing selectivity is
incorporated as described next.

If fishing selectivity was to be imposed, then
P’(a) was multiplied by S(a) to give P”(a) where
S(a) was determined from the double-normal selec-
tivity function given by
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S@) =21/l

o llenred sy (12)

ash

where A is a cut-point parameter corresponding to
the age at which S(a) is 1, and 6, and oy; are param-
eters denoting the standard deviations of the scaled
normal density functions specifying the lower and
upper arms of the function respectively. For the
simulations, the parameters 6; and o;; were always
set to 1 and 25 respectively. For simulation Model 1
the cut-point parameter A was set to 7 years. The
integer-age population-class probabilities were
obtained by accumulating the sum of the P”(a)
using their integer-age class membership to give P,
wherea =1,...,50.

The line in Figure 1 shows the values of P,
for S(a) obtained from equation (12) with A set to
7 years (Model 1).

Simulated catch-at-length data were generated
by converting P, to be a function of length using a
von Bertalanffy growth model for length as a func-
tion of age with expected value I(2) and lognormal
errors with a CV of 0.1. Therefore the equivalent
marginal function to P, in terms of length is given

by

P =3 Pr(L=1€Ba)P,

where B; represents the kth length bin where
19 bins from 300 to 2 200 mm were used giving a
bin width of 100 mm and with the first bin having
a range of 1 to 300 mm giving 20 bins in total. The
line in Figure 2 shows B versus length bin mid-
points generated using the age distribution and
age-dependent selectivity function used to gener-
ate Figure 1.

The second step of the simulation involved
generating random catch-at-age data from simu-
lated sampling of the population age structure.
For each of the 20 years in a replicate, catch-at-
age frequencies were generated for a sample of
100 hauls where across hauls the expected number
of fish sampled, m, was 150. Alternative simula-
tions where m was reduced to 100 and 50 were also
carried out to determine the effect of expected sam-
ple size on the accuracy of the alternative estima-
tors. The expected value of the total sample size for
a year, 1,, is therefore 15 000, 10 000 or 5 000 cor-
responding to expected haul-level sample sizes of
150, 100 and 50 respectively. For each haul, random
values of t were drawn from the Dirichlet distri-
bution with expected value of the typical element
of P, using the method described above in ‘The
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Dirichlet-multinomial model” where for each rep-
licate and year (but not each haul) a separate ran-
dom value of ¢ was drawn from a Poisson distribu-
tion with a specified expected value. Extra-Poisson
variability in sample draws of ¢ was applied by
multiplying the Poisson-expected value by the
exponential of a normal error with expected value
of zero and standard deviation of ¢,. For all simula-
tion models ¢, was set to 0.1. The corresponding
value of the Dirichlet parameter ® was obtained
from equation (6) assuming ¢=¢. Given o, = and m,
multinomial samples 7; for a random haul condi-
tional on n; were drawn by first drawing a random

sample size M; = m; for the haul using a Poisson

distribution given by Pr(Mj = mj) =e"m" /m;!

where E(M;) = m. Given the value of m; the multi-
A
nomial frequencies n; (where Zu:l 1,

=m;) were
generated using a set of sequential conditional
binomial samples commonly known as continu-
ation ratios (Fienberg, 1980) using the R-function
rmultinom() (R Development Core Team, 2006). The
same method was used to simulate catch-at-length

frequencies with P replacing P,.

For simulation Model 2, to obtain the P, for each
year, the selectivity parameter A was varied ran-
domly as a lognormal variate with expected value 7
and CV (c;) of 0.2. For simulation Model 3, the selec-
tivity parameter A was varied linearly from 5.88 for
the first year of the 20-year simulation period to
8.12 for the last year with a value at year 10.5 of 7.

For simulation Model 4 to obtain the P, for each
year, annual recruitment was varied as a lognor-
mal variate about a mean of 100 000 with CV (cg)
of 0.6 with an initialisation period of 50 years (i.e.
the 20-year simulation period for evaluating the
SLOF model started in year 51). For Model 4, the
mortality rate, M, was varied also as a lognormal
variable about a mean of 0.13 with CV (cp) of 0.2
from the beginning of the initialisation period. For
Model 5, the simulation was the same as Model 1
for the initialisation period, but after this period M
was varied linearly starting at 0.1055 for year 1 and
increasing to 0.1544 by year 20 with a value of 0.13
at year 10.5 and recruitment was also varied lin-
early, but in this case, declining from 196 939 for
year 1 to 3 061 for year 20 with a value of 100 000
at year 10.5.

Therefore, a simulation model for a given
number of replicates and years, is defined by the
parameter values for A (number of integer-age
classes or length bins), M, ¢, o1, 6y, A, ¢, 4, Cr, Cmt
and m (note that ¢ here means its expected value not
the randomly drawn value from the Poisson dis-
tribution). For all simulations ¢ was set to 10. The
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Table 1: =~ Comparison of accuracy of estimation methods for simulation model 1!
and catch-at-length data. RMSE - relative mean square error; IQ — inter
quartile; PML — profile maximum likelihood; MI — McAllister and Ianelli
(1997); Dunn — Dunn and Hanchet (2007).

Estimation Expected Statistics for %relative error of estimate RMSE

method sample [100(ﬁ'— n')/ n]
(number) ":‘,ize2 ,m
101 Mean 1Q3 SD
PML (1)’ 50 -2.02 1.10 4.03 4.66 0.0610
100 -2.22 1.27 444 490 0.0132
150 -1.79 1.41 4.59 4.78 0.0126
MI (2)* 50 -21.12 39.58 71.65 96.49 6.6013
100 -18.77 45.00 75.59 100.81 5.3729
150 -16.66 43.99 74.32 94.00 5.1519
Dunn (3)° 50 1.71 6.88 11.44 7.71 0.0674
100 1.51 6.82 11.45 7.88 0.0502
150 1.87 717 11.80 7.73 0.0514
glm 4)° 50 -0.24 449 8.93 6.70 0.0447
100 -0.65 411 8.64 7.12 0.0315
150 -0.48 4.34 8.62 6.85 0.0308

No process error and no systematic error.
Sample sizes across hauls generated as a Poisson random variable with given

expected value. Realised maximum and minimum sample sizes (min,max) for
expected values of 50, 100, 150 were (35,63), (68,145), and (116,177) respectively.

Based on approximate PMLE of o.
McAllister and Ianelli (1997)
Dunn and Hanchet (2007)

simulation models were coded in the R-package
(R Development Core Team, 2006) in a way that
allows all these parameters to be varied.

Results

The points in Figure 1 show the probabilities,
P, =1, /n, for one year’s set of randomly generated
catch-at-age frequencies where these values were
obtained with selectivity given by equation (12)
with A set to 7, a value of ¢ of 10 and m = 150.
Figure 2 shows the corresponding catch-at-length
bin probabilities.

The key feature of the first simulation model
tested (Model 1) was that selectivity was set using
equation (12) with A set to 7 and each of ¢,, cg and
¢y set to zero thus giving zero year-to-year process
error and systematic error. Table 1 gives summary
statistics for percent relative error and the RMSE for
each estimation method for the catch-at-length data
and sample sizes of 50, 100 and 150 fish per haul.
Figure 3 shows the mean of the estimates of ESS
versus mean theoretical values of ESS for a sample
size of 150 fish where means were calculated over
the 20 years giving 100 mean values in each case.

New estimation method based on fit of a gamma GLM.

The corresponding results for Model 1 simulations
of catch-at-age data are not given, since they were
very similar to those for the catch-at-length data.

The performance of the full SLOF model is com-
pared using simulation Models 2 to 5. For simula-
tion Models 2 and 4 where only random process
error is involved, the estimate ® for the full SLOF
model should be substantially greater than 1 and
only slightly less than the estimate obtained from
the fit of the minimal SLOF model. For simula-
tion Models 3 and 5 where only systematic error is
involved, the estimate ® for the full SLOF model,
if successful in removing SLOF, should be close to
1 and substantially less than the estimate obtained
from the fit of the minimal SLOF model.

Table 2 gives summary statistics for & for the
100 replicates of the 20-year simulation period. The
residual degrees of freedom for the full and mini-
mal SLOF models were 357 and 361 respectively.

Corresponding results for simulations of catch-
at-age data were similar, with the performance of
the generic SLOF model slightly better than that for
the catch-at-length data for simulation Models 2, 4
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Table 2:  Comparison of dispersion parameter estimates from fit of minimal and SLOF models to simulation
model catch-at-length frequencies. IQ — inter quartile.
Simulation Expected Full SLOF model Minimal SLOF model Ratio'
model sample Q1  Median  1Q3 Q1  Median  1Q3  SLOF/Min
size, m
(min,max)
2 50 3.453 3.902 4.783 3.727 4.238 5.131 0.921
(39,67)
100 6.197 7.427 8.805 6.504 7.842 9.589 0.947
(75,123)
150 8.877 11.060 12.920 10.010 12.090 14.100 0.915
(128,185)
3 50 0.878 0.917 0.979 1.670 1.829 1.935 0.501
(35,65)
100 1.149 1.225 1.295 2.781 2.965 3.176 0.413
(78,123)
150 1.354 1.450 1.556 3.757 4.053 4.527 0.358
(124,180)
4 50 1.665 1.976 2.546 1.910 2.334 2.712 0.847
(28,68)
100 2.546 3.360 4.286 3.097 3.824 4913 0.879
(79,122)
150 4151 5.115 6.676 4516 5.613 6.927 0911
(127,184)
5 50 0.880 0.921 0.990 1.7585 1.905 2.066 0.483
(32,78)
100 1.181 1.265 1.347 3.016 3.290 3.547 0.384
(70,121)
150 1.418 1.534 1.670 4.283 4.557 4.926 0.337
(114,185)

Random year-to-year variation in selectivity.

and 5 but slightly worse for simulation Model 3.
For simulation Model 1, the median & for both the
minimal and full SLOF models was close to 0.7 for
all three values of m which indicates over-fitting.
When the class/bin factor was dropped from these
models, the median estimate was close to 1 for both
models and for all values of m as expected for this
simulation model. However, when this factor was
dropped from both minimal and full SLOF models
for simulation Models 2 to 5, the performance of
the SLOF model was not as good as that shown in
Table 2. Note that Table 2 shows that & increases
as m increases which, as mentioned above, was
not the case for simulation Model 1. This suggests
that process and systematic error, in terms of their
determination of @, are scaled by expected haul-
level sample size, m.

Figure 4 shows the observed and predicted (i.e.

the average across years) proportion by length bin
for a single simulation of Model 3 and a sample size
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Systematic year-to-year variation (linear) in selectivity.
Random year-to-year variation in recruitment and mortality rate.

Ratio of median dispersion estimate for full SLOF model to the corresponding median for the minimal model.

Systematic (linear) year-to-year variation in recruitment and mortality rate.

of 100 fish per haul. Figure 5 shows the predicted
SLOF trends (i.e. constructed using only the terms
in continuous variables and excluding the offset)
corresponding to observed and predicted propor-
tions shown in Figure 4.

Figures 6 and 7 show the corresponding results
for a single simulation of Model 5.

Discussion

Itis clear from the results of the simulation stud-
ies that when between-haul (within-year) hetero-
geneity in class proportions is simulated using the
D-M model, and year-to-year process error is set to
zero, that within-year, haul-by-haul class frequen-
cies are required in order to accurately estimate the
appropriate effective sample size. The methods that
use haul-by-haul data gave acceptable accuracy.
Method 1 was better than Methods 3 and 4 (Table 1;
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Figure 3) for catch-at-length data with very similar
results obtained for catch-at-age data (results not
given). The haul-level profile maximum likelihood
method (Method 1, 'PML’) of estimating ESS intro-
duced here gave substantial improvement in accu-
racy to that described by Dunn and Hanchet (2007)
(Method 3, Dunn) under the assumption of a D-M
distribution (Table 1; Figure 3). The gamma GLM
(Method 4, glm) is slightly superior to Method 3,
under the D-M assumption. Method 1 is reasonably
precise in estimating ESS with a standard deviation
in percent relative error of only 5%. The effect of
varying haul-level sample size on accuracy of esti-
mates is very slight (Table 1).

Method 1 is a simple approximate implementa-
tion of the PMLE which handles zero-class prob-
abilities very conveniently since, as described
earlier, they drop out of the log-likelihood when
the zeros are replaced by an arbitrarily small
number. Also, this method accounts directly for the
variability in the haul-by-haul sample size, m;. In
order to estimate the D-M dispersion parameter,
o, the likelihood was conditioned on the sample
values for the class probabilities where these are
sufficient statistics when the haul-level data is
assumed to be multinomial rather than D-M. This
is an approximation but it appears adequate for the
purpose of estimating ESS, although Table 1 and
Figure 3 show that there is a slight positive bias in
the estimates but this is minimal compared to the
alternative estimators. If full maximum likelihood
estimation is required for all parameters in the set
0 = (®,p1,-..,p41) simultaneously under a D-M dis-
tribution, then the exact Fisher information matrix
is given by Paul et al. (2005). Full maximum likeli-
hood estimation, with the appropriate constraint of
Za: Po <1, could be used to potentially improve
estimation over the PML method used here but at
considerable extra computational cost.

Clearly the method of McAllister and Ianelli
(1997) (Method 2, MI) which relies on model lack-
of-fit to estimate ESS from year-level data gives
poor estimates of the appropriate ESS when hetero-
geneity is between hauls (Table 1; Figure 3).

When substantial year-to-year process error
was introduced into the simulations using Models
2 and 4, the accuracy of Methods 1, 3 and 4 were
unaffected in terms of the appropriate ESS for
between-haul heterogeneity (results not given)
which is not surprising since these models condi-
tion on the specific values of p,, for each year. The
method of McAllister and Ianelli (1997) obtains
n’ by averaging year-to-year ‘lack-of-fit" in the
Pya. Assuming for simplicity that the errors are
Gaussian, then year-to-year ‘lack-of-fit’ in the p,,

would be the weighted sum of the three compo-
nents of: (i) mean squares of systematic year-to-
year deviations of oy, from p,,; (ii) variance of any
additional random year-to-year deviations (i.e.
process error); and (iii) variance of within-year (i.e.
between-haul) deviations respectively. For mixed-
effect multinomial distributions these components
do not partition so neatly into additive components
but the principle is the same. This study has con-
centrated on estimating the effective sample size to
account for the last of these components, however,
the case for including year-to-year process error in
calculating 1, was addressed in order to clear up
some of the confusion in these issues. For exam-
ple, in the justification for the need to scale down
the actual sample size of fish measured for age, n,,
McAllister and Ianelli (1997, Appendix 2) men-
tion only the effect of the cluster sampling of fish
by level-2 sampling units (i.e. hauls for trawlers or
sets for longliners) in order to allow a multinomial
likelihood to be used when the true marginal vari-
ance is given by equation (2). However, it is clear
that the sources of variation in 0,, in addition to (iii)
above, that are involved in determining n" using
their method, is that due to at least (ii) and possibly
both (i) and (ii).

In contrast to the McAllister and Ianelli (1997)
method, the approach of Dunn and Hanchet (2007)
and the other two approaches introduced here, first
estimate an ESS due to between-haul heterogene-
ity using haul-level data and then scale this ESS to
account for possible process error. The extra step
recommended here is that systematic lack-of-fit
should first be examined and removed before cal-
culating the effect of process error on the final ESS.
Unfortunately, since an appropriate distributional
model that incorporates process error in addition
to haul-level heterogeneity while giving a mar-
ginal variance relationship which allows an ESS
to be appropriately defined does not appear to be
available, it is not possible to compare these two
methods of adjusting ESS for process error to a the-
oretical value as was the case when process error
was not included. Nevertheless, the results given
in Table 2 show that the full SLOF has close to the
required properties since when only process error
was simulated the over-dispersion parameter esti-
mate was only slightly reduced to a value of about
90% of that of the minimal SLOF model and when
only SLOF was present the over-dispersion param-
eter estimated was substantially reduced to close
to 1. This suggested that the full SLOF model can
be fitted routinely since it gives a reasonably close
approximation to the appropriate over-dispersion
parameter estimate whether or not process errors
or systematic errors are present in catch-at-length
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predicted frequencies. However, it is recommended
that ESS values should only be scaled by ¢ when
the estimate of @ is greater than 1, in case the mini-
mal SLOF model is over-parameterised, particu-
larly due to the presence in the model of the class/
bin factor. For simulation Models 3 and 5, depend-
ing on the sample size of fish, failure to adjust for
SLOF using the full model would have resulted in
reducing the ESS to between approximately one
half and one third of the appropriate value (i.e. cor-
responding to a bias ranging from 50% to 66%).

Figures 5 and 7 demonstrate that the generic
SLOF model has been able to model the SLOF in
catch-at-length proportions displayed in Figures
4 and 6 respectively. The possible exception is for
years 1 and 2 in Figures 6 and 7 where the SLOF
trend appears stronger in Figure 7 than that
expected from Figure 6. For years 10 and 11, which
straddle the time point for which the parameters
assumed by the age-structured model are correct
compared to the simulation, the trend line has close
to zero slope across length bins and falls on the zero
deviation line in both Figure 5 and 7 as expected.

The use here of the interaction of linear and
quadratic terms to remove SLOF is only a crude
empirical approximation to any possible true SLOF
and was not derived from any particular mecha-
nism that generates SLOF such as a model of the
effect of the linear shift in selectivity parameter A
on age-class/length-bin probabilities correspond-
ing to simulation Model 3. However, the main
message from the simulation of SLOF and proc-
ess error is that it is incorrect to routinely attribute
all LOF to process error. If this were done, the ESS
would be substantially over-corrected (Table 2). If
SLOF is substantial (e.g. as in Figure 4), then steps
should be taken to remove or reduce this problem
by restructuring the underlying model that gener-
ates predicted age-class or length-bin probabilities.
In this particular case, if the source of the SLOF
were known, then this could be accommodated in
CASAL using the facility to fit the selectivity func-
tion (equation 12) with a linear shift in parame-
ter A. However, the SLOF model is useful when the
source of SLOF is not clear or cannot be rectified
by changing the underlying age-structured assess-
ment model. For example, different datasets may
‘pull” age-structured model parameters in different
directions resulting in SLOF for one or more data-
sets depending on the weight they receive in esti-
mation (Candy and Constable, 2008). Nevertheless,
the SLOF model should be examined to determine
if all obvious SLOF have been removed. Graphical
examination of Pearson or deviance residuals
(McCullagh and Nelder, 1989) from the SLOF
model for any trends is one way to facilitate this.

128

Based on the above results and discussion, the
following five-step approach to estimating the ESS
for catch-at-age and/or catch-at-length data in
integrated assessments is recommended:

1. Estimate the ESS for each year using haul-
level data as either the PML or that estimate
obtained from the fit of the gamma GLM to the
empirical CVs.

2. Fit overall population dynamic/fishery model
using CASAL (or other software) employing
all datasets using an appropriately defined
log-likelihood in each case.

3. Remove SLOF from the CASAL fit to the catch-
at-age and/or catch-at-length data using the
simple parametric SLOF model across years
and age classes/length bins.

4. Scale the ESS obtained in Step 1 for process
error by dividing by the residual mean devi-
ance for the SLOF Poisson GLM model and
incorporate process error estimated for other
datasets appropriately into log-likelihoods
(e.g. Candy and Constable, 2008).

5. [Iterate Steps 2 to 4 until Step 2 parameter
estimates converge. Note that the likelihoods
defined in Step 2 may be inappropriate, in
terms of systematic trends in residuals, if prac-
tically significant SLOF remains after Steps 3
and 4 of the previous iteration.

The results of this study are predicated on the
assumption that the D-M distribution and the cor-
responding (i.e. 2nd order approximation) multi-
nomial with estimated ESS applied in integrated
assessment software such as CASAL is realistic
enough in terms of actual catch-at-length or catch-
at-age frequencies that conclusions are robust to
departures from these assumptions. Hrafnkelsson
and Stefdnsson (2004) and Miller and Skalski (2006)
indicate that positive correlations between classes/
bins, which cannot be modelled by the D-M dis-
tribution, are prevalent and reasonably strong in
actual data. However, in neither of these studies
were spatial analyses presented that could indicate
if there were any systematic spatial trends involv-
ing aggregations of similar age or length classes
that could explain these correlations with deter-
ministic rather than stochastic model terms.

Clearly further work is required in model-
ling actual and simulated data using appropriate
population biology and statistical methods, and
further development of integrated assessment soft-
ware that can more adequately model such data
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within practical limitations of numerical methods
is required. For example, incorporation of year and
year-by-age-class/length-bin random effects terms
is feasible whereas incorporation of haul-level
random effects for large datasets is probably not
numerically feasible for the near future.

Conclusions

An existing method of estimating ESS for catch-
at-age or catch-at-length data in integrated assess-
ments that uses aggregate year-level data is shown
to have poor accuracy when heterogeneity in class
proportions is due to between-haul within-year
variation. Three alternative methods of estima-
tion based on haul-level data are shown to greatly
improve estimation. Two of these methods, derived
from models for the empirical CV in the propor-
tions, are used in CCAMLR fisheries and these are
shown to give reasonable accuracy in estimating
ESS. The approximate PMLE can also be used and
gives improved accuracy. The issue of process error
is examined and it is shown that when systematic
“lack-of-fit” across years is mis-specified as process
error, then methods which attempt to account for
process error give inappropriately low values of
ESS. This has important implications for determin-
ing the appropriate implicit weight given to com-
mercial catch length or age frequencies versus other
datasets via their negative log-likelihood contribu-
tion to the objective function in integrated assess-
ment software. A five-step approach to estimating
the ESS for catch-at-age and/or catch-at-length
data in integrated assessments is recommended.
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Figure 1:

True population values (line) and simulated sample values for a single year (points) of

integer-age class probabilities versus age, with fishing selectivity from equation (12) with
A, ¢ and m set to 7, 10 and 150 respectively .
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True population values (line) and simulated sample values for a single year (points) of
length-bin probabilities versus length-bin midpoint, with fishing selectivity from equa-
tion (12) with A, ¢ and m set to 7, 10 and 150 respectively.
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Figure 4:  Observed and predicted proportions, by length bins, with predictions from an age-
structured model assuming no year-to-year variation in selectivity for simulation
Model 3 (Model 1 plus systematic variation in selectivity) and one replicate of a
20-year time series of catch-at-length data.
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Predicted SLOF mean trends as deviations from an age-structured model
assuming no year-to-year variation in selectivity for simulation Model 3 (Model 1
plus systematic variation in selectivity) and one replicate of a 20-year time series
of catch-at-length data.
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Figure7:  Predicted SLOF mean trends as deviations from an age-structured model

assuming no year-to-year variation in recruitment or mortality for simulation
Model 5 (Model 1 plus systematic year-to-year variation in recruitment and
mortality) and one replicate of a 20-year time series of catch-at-length data.

135



Candy

Tableau 1:

Tableau 2:

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Tabm. 1:

Tabm. 2:

136

Liste des tableaux

Comparaison del'exactitude des méthodes d'estimation pour le modele de simulation 1! et les données de
capture selon la longueur. RMSE — erreur quadratique moyenne relative ; IQ — inter quartile; PML — profil
du maximum de vraisemblance; MI — McAllister et Ianelli (1997) ; Dunn — Dunn et Hanchet (2007).

Comparaison des estimations des parametres de dispersion a partir de I'ajustement du modele minimal
et dumodele de SLOF aux fréquences de longueurs dans les captures du modele de simulation. IQ —inter
quartile.
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péche étant tirée de 1'équation (12) et A, ¢ et m étant fixés respectivement a 7, 10 et 150.

Valeurs réelles de la population (trait plein) et valeurs simulées de I'échantillon pour une méme année
(points) des probabilités des lots de longueurs par rapport au point central des lots de longueurs, la
sélectivité de la péche étant tirée de I'équation (12) et A, ¢ et m étant fixés respectivement a 7, 10 et 150.

Valeurs moyennes de I'ESS, estimées par rapport a théoriques, du modele de simulation 1 et données
de capture selon I'dge par les méthodes 1 ("PML"), 2 ("MI"), 3 ("Dunn") et 4 ("glm"). Le trait plein est le
trait 1:1.

Proportions observées et prévues, par lots de longueurs, avec prédictions tirées d'un modele structuré
selon l'age présumant l'absence de variation d'une année a l'autre de la sélectivité pour le modele
de simulation 3 (modele 1 plus variation systématique de la sélectivité) et une répétition d'une série
chronologique des données de capture selon I'dge sur 20 ans.

Tendances moyennes prévues du SLOF en tant qu'écarts tirés d'un modeéle structuré selon1'age présumant
I'absence de variation d'une année a l'autre de la sélectivité pour le modeéle de simulation 3 (modele 1
plus variation systématique de la sélectivité) et une répétition d'une série chronologique des données de
capture selon I'dge sur 20 ans.

Proportions observées et prévues, par lots de longueurs, avec prédictions tirées d'un modele structuré
selon 'dge présumant l'absence de variation d'une année a l'autre du recrutement ou de la mortalité
pour le modele de simulation 5 (modele 1 plus variation systématique du recrutement et de la mortalité
d'une année sur l'autre) et une répétition d'une série chronologique des données de capture selon 1'age
sur 20 ans.

Tendances moyennes prévues du SLOF en tant qu'écarts tirés d'un modele structuré selon l'age
présumant l'absence de variation d'une année a I'autre du recrutement ou de la mortalité pour le modele
de simulation 5 (modele 1 plus variation systématique du recrutement et de la mortalité d'une année sur
l'autre) et une répétition d'une série chronologique des données de capture selon I'dge sur 20 ans.

Crrcok Ta0mmig

CpaBHEHHE TOYHOCTH METOJIOB OLEHKH JUIs MMUTAIMOHHON Mozen 1! 1 aHHBIX O JTMHAX B YJIOBE.
RMSE - orHOcuTenpHas cpemHss KBampaTwyHas ommOka; [Q — mHTepkBapTmin, PML — mpoduns
MakcumanbHoro npasaononodus; MI — McAllister and Ianelli (1997); Dunn — Dunn and Hanchet
(2007).

CpaBHeHHE OIIGHOK MapaMeTpa AUCIEPCHH, MOJYYEHHBIX B pe3ylbTaTe Mmoadopa MUHHUMAIbHON
monenmn U mozaenu SLOF k gacroram /UIMH B yJIOBaX, MOJXYYSHHBIM 10 MMHTAIMOHHOW MOJIEIH.
IQ — uHTEPKBAPTUID.
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Crnucok puCcyHKOB

VicTrHHbBIE 3HAYeHUS MOMY/SIIMU (IMHUA) M CMOAEIMPOBAHHBIC BHIOOPOUHBIC 3HAYEHMS 32 OAWH
roz (TOYKM) AT BEPOSTHOCTEH LIEIOUNCIEHHOTO BO3PACTHOIO KJIAacca IO OTHOIICHHUIO K BO3PACTY, C
MIPOMBICJIOBOH CEIIEKTHBHOCTBIO U3 ypaBHeHus (12), rie 3HaueHus A, ¢ 1 m paBHBI COOTBETCTBEHHO 7,
10 n 150.

VcTrHHbIe 3HAYEHUS MOMYJISINUKE (JIMHUSI) ¥ CMOJCJIMPOBAaHHbBIC BEIOOPOUYHBIC 3HAYCHUS 32 OJUH TOJ
(TOYKM) [UIs BEPOSITHOCTEH MHTEPBAJIOB [UINH [0 OTHOLIEHHIO K [IEHTPY HHTEPBAJIa JUTHH, C IPOMBICIIOBOH
CEJIEKTUBHOCTBIO U3 ypaBHeHus (12), riae 3HaueHus A, ¢ 1 m paBHBI cooTBeTcTBeHHO 7, 10 1 150.

CpemHue OLEHOYHBIC 3HAYCHUS 10 OTHOIICHHIO K CPEJHUM TEOPETHUECKHM 3HadeHUsM ESS mms
MMUTAIMOHHON Mozenu | M JaHHBIE O BO3pacTax B YJlOBax ¢ Hcmoib3oBaHnueM metonoB 1 (PML),
2 (MI), 3 (Dunn) u 4 (glm). CrutomHas muHuS — 3TO JImHuS 1:1.

HaOmronaBiuecs 1 pacyeTHbIE COOTHOIIEHHMS (110 MHTEPBAJIaM [UIMH) C IIPOrHO3aMHU, TIOJIyYSHHBIMH 110
BO3PACTHON MOJICITH, TIPU JIOMYIIEHUH 00 OTCYTCTBUU MEKTOIOBON H3MEHYHBOCTH CCIICKTHBHOCTH ISt
MMUTAIMOHHON Monenu 3 (Mozensb | TUIfoc cucTeMarndeckass i3MEHUYNBOCTh CETIEKTUBHOCTH) M OJTUH
oBTOp 20-JIETHETO BPEMEHHOTO Psijia JaHHBIX O JUTHMHAX B YJIOBaXx.

Pacuernrie cpemume teHneHmr SLOF kak OTKIOHEHWS OT BO3PACTHON MOJENU TP TOMyIIEHHH 00
OTCyTCTBI/II/I MC)KFOI[OBOﬁ U3MCHYUBOCTU CCJICKTUBHOCTU IJIA I/IMI/ITﬁLlHOHHOf/i MOOCIn 3 (MOI[CJ'II: 1
IDTFOC CHCTeMaTHYeCKasi H3MEHYHBOCTh CETICKTHBHOCTH) M OUH MOBTOP 20-JIETHET0 BPEMEHHOTO psijia
JAHHBIX O JJIMHAX B yJ'lOBaX.

HaOmonaBimecs u pacyeTHble COOTHOLICHUS (II0 MHTEpBaJIaM [UIMH) C IPOTHO3aMH, MOJTyYCHHBIMHU
M0 BO3PAaCTHOW MOJENH, MPHU AOMYIIEHUH 00 OTCYTCTBHH MEXIO0BOM M3MEHUYMBOCTH IOTIOIHEHHS
WIX CMEPTHOCTH Al MMUTALMOHHOM Mozenu 5 (Mozpenb | Iuroc cucreMarudeckas MeKrojgoBas
W3MEHYMBOCTD TIOTIOTHEHUSI 1 CMEPTHOCTH) M OJHH MOBTOP 20-JIETHETO BPEMEHHOTO PsAAa JIAHHBIX O
JUIMHAX B YJIOBaX.

Pacuernrie cpemamne teHmeHmn SLOF kak OTKIOHEHWS OT BO3PAaCTHON MOJENHU TIPH TOMYIIECHHH 00
OTCYTCTBUH MEXTOJ0BON M3MEHYUBOCTH MOTOJHEHUS UM CMEPTHOCTHU JUISI UMUTAIIMOHHON MOJIENH 5
(Mozmenp 1 TWTIOC cEcTeMaTHdecKass MEKIOIOBass N3MEHUYNBOCTD ITOMONHEHHUS U CMEPTHOCTH) U OIHWH
nmoBTop 20-JI€THETO BPEMEHHOTO Psiia JAHHBIX O [UTMHAX B yJIOBAaX.

Lista de las tablas

Comparacion de la exactitud de los métodos de estimacion para el modelo de simulacién 1' y los datos
de captura y esfuerzo. RMSE — error cuadrético medio relativo; IQ — intercuartil; PML — perfil de maxima
verosimilitud; MI — McAllister y Ianelli (1997); Dunn — Dunn y Hanchet (2007).

Comparacién de las estimaciones del parametro de dispersién con ajustes de modelos minimos y SLOF
a las frecuencias de tallas de la capturas simuladas. IQ — intercuartil.

Lista de las figuras

Valores reales de la poblacién (curva) y valores simulados de la muestra para un solo afio (puntos) de la
probabilidad de clases anuales (en valores enteros) en funcién de la edad, con la selectividad por pesca
calculada con la ecuacién (12) donde A, ¢ y m se han fijado en 7, 10 y 150 respectivamente.

Valores reales de la poblacién (curva) y valores simulados de la muestra para un solo afio (puntos) de la
probabilidad del intervalo de tallas en funcién del punto medio del intervalo de tallas, con la selectividad
por pesca calculada con la ecuacion (12) donde A, ¢ y m se han fijado en 7, 10 y 150 respectivamente.

Valor promedio estimado en funcién del valor promedio tedrico de ESS para el modelo de simulaciéon 1y

los datos de edad de la captura utilizando los métodos 1 (‘PML), 2 (‘MI’), 3 (‘Dunn’) y 4 (‘glm’). La linea
continua corresponde a la razén 1:1.
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Proporciones observadas y previstas, por intervalo de talla, con las predicciones efectuadas a partir de
un modelo estructurado por edades suponiendo que no hay variacién interanual en la selectividad para
la simulacién con el modelo 3 (Modelo 1 y variacién sistemética de la selectividad) y una repeticion de
una serie cronolégica de datos de captura y esfuerzo de 20 afios.

Tendencias del promedio previstas con SLOF como desviaciones de un modelo estructurado por edades
suponiendo que no existe variacion interanual de la selectividad para la simulacién con el modelo 3
(Modelo 1 y variacion sistematica de la selectividad) y una repeticiéon de una serie cronolégica de datos
de captura y esfuerzo de 20 afos.

Proporciones observadas y previstas, por intervalo de talla, con predicciones efectuadas a partir de un
modelo estructurado por edades suponiendo que no hay variacién interanual en el reclutamiento o
mortalidad para la simulacién con el modelo 5 (Modelo 1y variacién sistematica en el reclutamiento y la
mortalidad) y una repeticion de una serie cronolégica de datos de captura y esfuerzo de 20 afos.

Tendencias del promedio previstas con SLOF como desviaciones de un modelo estructurado por edades
suponiendo que no existe variacién interanual del reclutamiento o mortalidad para la simulacién con el
modelo 5 (Modelo 1 y variacion sistematica en el reclutamiento y la mortalidad) y una repeticién de una
serie cronolégica de datos de captura y esfuerzo de 20 afos.



