
Introduction

Most stock assessments used for management 
purposes around the world are single-area models. 
However, the spatial structure and movement of 
fish has shown the potential to have a strong influ-
ence on stock assessments (e.g. Quinn and Deriso, 
1999; Welsford and Ziegler, 2013) and manage-
ment outcomes, risking overexploitation of those 
stocks (e.g. Ying et al., 2011). 

Spatially explicit stock assessments have been 
limited in applications (see Goethel et al., 2011, for 
a review). They have high computational and data 

requirements, making them unsuitable for all but 
the most data-rich stocks. The modelling of move-
ment of fish populations between areas has general-
ly been either where migration between the areas is 
estimated as an area-specific process (e.g. Goethel 
et al., 2014) or where movement is modelled as an 
advection-diffusion or ‘gravity’ process (e.g. Sibert 
et al., 1999). To model movement across x areas, 
the first approach typically requires a set of param-
eters of order x2–x and is generally only suitable 
for modelling a small number of discrete areas. 
The second approach requires fewer parameters 
(typically order x) but has less flexibility to model 
complex movement patterns. Implementations of 
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Abstract

Population modelling software was developed that captures the dynamics of spatial 
heterogeneity of the population along with age structure, movement and reproductive 
stage transition in a holistic framework. Using this software, three spatially explicit 
age-structured models were developed for the Antarctic toothfish (Dissostichus 
mawsoni) population in the Ross Sea region and used as operating models to evaluate 
the performance of single-area assessments. The models were generalised Bayesian 
population models and were optimised by fitting to fishery observations. Movement 
was parameterised using preference functions based on spatially discrete environmental 
layers. The shapes of the preference functions were established through iterative model 
testing whilst the parameters defining the preference functions were estimated within each 
model. The spatial structure of the models divided the Ross Sea region into 189 equal-
area (24 000 km2) cells. The underlying spatial distribution of the population was either 
restricted to the 65 cells historically fished, to the 120 cells containing habitable depths, or 
to the entire Ross Sea region (all 189 cells). Estimates of movement rates were consistent 
with the results of tagging studies and fits to the other observations (age, reproductive 
development) were adequate. These operating models were then used to investigate 
potential biases of the current single-area stock assessment. Simulations based on the 
three spatial distribution scenarios suggested that the current single-area stock assessment 
is biased low by 19–43%. 
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one or the other of these methods are available in 
various stock assessment modelling software pack-
ages including AD Model Builder using MAST 
(Fournier et al., 2012), CASAL (Bull et al., 2012) 
and SS3 (Methot and Wetzel, 2013). Spatial move-
ment models of fish populations have been used 
in a wide variety of applications, including the 
assessment of stocks that inhabit, or move between, 
multiple areas (e.g. Punt and Walker, 1998; Goethel 
et al., 2014), development of bio-climate envelope 
models to consider population responses to cli-
mate change (e.g. Cheung et al., 2008) or spatially 
explicit predator–prey interactions. 

In order to alleviate the issue of dramatically 
increasing numbers of estimable parameters with 
numbers of spatial areas, Bentley et al. (2004b) 
developed the concept of habitat preference curves, 
where the distribution and inferred movement of 
fish in different areas was related to preference 
functions for environmental variables. Such param-
eterisation allows the movement of fish between 
numerous areas with fewer parameters needed than 
if the movement between each of the areas was 
estimated. Dunn and Rasmussen (2008) devised 
software for spatially explicit population model-
ling (SPM) that allows for a wide range of spatial 
models to be implemented and evaluated. Move-
ment functions available are migration between 
cells, diffusion and preference movement. The pro-
gram structure, assumptions and technical details 
of SPM are described in the SPM user manual 
(Dunn et al., 2012a). In brief, SPM can be used 
to implement aggregate movement models that 
include a spatially explicit statistical catch-at-age 
population dynamics model. SPM incorporates a 
discrete time-step state-space model that represents 
a cohort-based population age structure in a spa-
tially explicit manner. It can model both population 
processes (i.e. ageing, recruitment and mortality) 
and movement processes defined as the product 
of a set of preference functions that are based on 
known attributes of spatial location (e.g. depth). In 
addition, SPM can be used either as an estimation 
model or as an operating model for simulation of 
observations in, for example, management strategy 
evaluations (Butterworth, 2007; de Oliveira et al., 
2008). SPM was used to develop spatial models 
of the Antarctic toothfish (Dissostichus mawsoni) 

population in the Ross Sea region, and to infer 
potential bias of the current single-area stock 
assessment used for management purposes.

The Antarctic toothfish exploratory fishery in 
the Ross Sea region was initiated in 19971. The fish-
ery has operated during the summer months, and 
annual catches have averaged about 2 700 tonnes 
since 2003. The catch limits for Antarctic toothfish 
in the Ross Sea region have been based on the yield 
estimates from a single-area Bayesian sex- and 
age-structured statistical catch-at-age assessment 
model using CASAL software (Bull et al., 2012). 
Stock assessments for the Ross Sea region have 
been carried out since 2007, and most recently in 
2013 (Mormede et al., 2013a). The data within the 
assessment model include the total catch, catch-
at-age frequencies and annual tag-release and 
recapture data from the fishery tagging program. 
Estimates of stock status were mostly informed by 
the tag-release and tag-recapture data. 

An important assumption of the use of the tag-
release and recapture data is that the probability of 
recapturing a tagged fish is the same as that of an 
untagged fish, irrespective of the location at which 
tagged fish were released or the subsequent spatial 
distribution of fishing effort from which fish were 
scanned to detect recaptures. Conceptually this 
requires either homogenous mixing of tagged and 
untagged fish in the population, or that fishing effort 
patterns have been distributed such that removals 
were proportional to the underlying abundance of 
fish in each location. 

The area available for fishing in the Ross Sea 
region is constrained by areal closures (approxi-
mately 70% of the total region), local area catch-
limits, by-catch move-on rules and highly variable 
access to open areas due to sea-ice extent. Hence, 
in some years the fishing effort can be either con-
strained in space or distributed into less frequented 
areas. This spatial heterogeneity, combined with the 
relatively short average annual distances moved by 
Antarctic toothfish (median of about 20 km after a 
year at liberty, see Parker et al., 2013), suggests that 
the assumption of complete mixing of tagged and 
untagged fish in the fished population is likely to be 
violated at least in the short term. Such violations 

_______________________________________________________________________

1	 Note that the CCAMLR management season is from 1 December to 30 November. In this report, the term ‘year’ refers to the 
period in which most of the season occurs, e.g. the period 1 December 1996 to 30 November 1997 is labelled the 1997 year.
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may lead to bias in the stock assessment results 
(e.g. Hoenig et al., 1998; Pollock et al., 1991; 
Welsford and Ziegler, 2013). 

The aims of this paper were two-fold. The first 
was to develop spatially explicit operating models 
for Antarctic toothfish in the Ross Sea region 
based on the spatially explicit observational data 
available. This was then used to test a number of 
movement hypotheses parameterised by alternative 
spatially explicit environmental variables, such 
as distance to the Antarctic Circumpolar Current 
(ACC). Tag-release and tag-recapture data and 
observation data, such as age composition and 
reproductive state, were used to estimate parameter 
values for movement functions for three operating 
models that describe plausible spatial population 
distributions of Antarctic toothfish. 

Second, these models were used to evaluate 
potential bias in estimates of stock size from the 
current single-area Ross Sea assessment model 
(Mormede et al., 2014). Here, observations from 
the three spatial operating models were simulated 
and these data were then used as inputs into the 
single-area stock assessment model described by 
Mormede et al. (2014) to evaluate potential biases 
relative to the ‘known’ simulated population.

Methods

Three spatially explicit, age-based, single-sex 
operating models were developed using SPM. 
Although toothfish have slightly different bio-
logical characteristics by sex, these are expected 
to be small compared with the approximations in 
the estimation of spatial movement. Hence these 
models were single-sex in order to reduce com-
plexity, parameterisation requirements and model 
run times. The overall structure of the models fol-
lowed the life cycle of Antarctic toothfish initially 
described by Hanchet et al. (2008) and refined by 
Parker and Marriott (2012) and larval dispersion 
modelling (Dunn et al., 2012b). As explained 
below, the model captured the ontogenetic move-
ment whereby small fish (age 2) recruit to the Ross 
Sea shelf (shallower than 800 m depth). As they 
age and grow, they move across the Ross Sea shelf 
and onto the continental slope (into water deeper 
than 800 m) before maturing and migrating to the 
northern areas (seamounts, banks and ridges) to 
spawn. This was represented within the model using 
five reproductive categories: immature, mature, 
pre-spawning, spawning and post-spawning. 

N
 ro

w
s 

= 
14

N columns = 21

Figure 1: 	 Spatial grid representation of the Ross Sea region used for the spatial models 
(bounded region). Cells where fishing has occurred are shown in yellow. The 
CCAMLR small-scale research units (SSRUs) used for management are shown 
in blue and the 800 m depth contour in grey, which represents the border between 
the continental shelf and slope areas. 
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Spatial structure

The spatial structure of the models was repre-
sented by dividing the Ross Sea region into a rec-
tangular grid of 14 rows and 21 columns (Figure 1). 
Each cell was 24 336 km2 (i.e. equal-area squares 
with side lengths of 156 km), resulting in 189 cells 
(over ocean) where the population could poten-
tially be present, of which 65 have been fished on 
at least one occasion since the fishery began. Each 
cell represents the part of the overall population 
that occurs in that geographical area. The choice 
of scale was a trade-off between reproducing the 
required spatial complexity, the available data and 
the time the model took to run. For example, inves-
tigative models containing 60 cells were quick to 
run but could not capture the movement processes 
well, whilst models containing 1 650 cells captured 
the spatial heterogeneity better but were too slow 
(weeks to months) to be useful as a developmental 
tool.

Three models of the potential spatial distribu-
tion of the Ross Sea toothfish population were con-
sidered. The first model assumed it was restricted to 
those cells that have been fished and have recorded 
a catch of toothfish on at least one occasion his-
torically (65 cells – restricted model). The second 
model assumed that the population was restricted 
to those cells which comprised suitable tooth-
fish habitat (120 cells – semi-restricted model). 
Note that no observations of toothfish outside the 
area historically fished exist, therefore the semi-
restricted model assumes toothfish may exist in 
locations of suitable habitat where no observations 
exist. The third model assumed that the population 
could extend across the entire marine area within 
the Ross Sea region regardless of suitable habitat 
(189 cells – unrestricted model). For the purposes 
of this scenario, suitable habitat was defined as 
cells where at least 5% of the bottom depth strata 
was between 450 and 2 820 m based on GEBCO 
depth (see also Figure 2c). 

Population processes 

Within each spatial cell, the number of tooth-
fish in the population model aged 2 to 30 was 
recorded separately, with a plus group at age 30. 
Also recorded was the population at each repro-
ductive category (immature, mature, pre-spawn-
ing, spawning and post-spawning) separately for 
untagged and tagged fish. Splitting the population 

into reproductive categories was necessary in order 
to capture the differing movement behaviours of 
each category (Hanchet et al., 2008). The year was 
split into two half-year time steps, plus one instan-
taneous time step for aging and the movement of 
spawners back to the grounds occupied by mature 
fish (Table 1).

The population was initialised at an equilibrium 
state, by first applying recruitment, spawning, mat-
uration, natural mortality and ageing processes for 
a 100 year period. In this phase, movement was not 
permitted. In the second initialisation phase, for a 
further 101 years, movement processes were added 
to the population processes. Splitting the initialisa-
tion process into two phases, with the first phase 
limited to population processes and the second 
phase introducing movement, improved minimi-
sation time. Convergence to an equilibrium was 
tested with the test statistic Δ, defined as the sum of 
absolute differences as a proportion of total abun-
dance between successive years, i.e.

2, 3, 2,ijkl ijkl ijkl
ijkl ijkl

a a aD= -å å
 
,
 

where a2 is the value of cell (i,j) for category k at 
age l at the end of the 100th year of the second 
initialisation phase, and a3 the respective value at 
the end of the 101st year. (Note that perfect con-
vergence would result in Δ = 0.) Following initiali-
sation, the spatial model was run for a period of 
17 model years, from 1995 to 2011. Fishing mortal-
ity (from 1998) and tagging processes (from 2001) 
consistent with historically reported catches and 
tagging rates in the history of the Ross Sea fish-
ery were applied in addition to the population and 
movement processes that were applied during the 
second initialisation phase.

The number of recruits in the first year was 
parameterised by R0. Fish recruited at age 2 to the 
immature category were assumed to be uniformly 
distributed in those cells with a depth of less than 
800 m (throughout the Ross Sea shelf). For the 
purposes of these scenarios, the number of recruits 
in the initial year of the model was assumed fixed 
and set at the value estimated by the 2011 stock 
assessment of Antarctic toothfish, i.e. R0 = 1.02 × 
106 (Mormede et al., 2014). The stock–recruit rela-
tionship was assumed to follow a Beverton-Holt 
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relationship with steepness h = 0.75, as was 
assumed in the stock assessment (Mormede et al., 
2014), to allow comparisons among models. 

Natural mortality (M) was applied as an instan-
taneous rate and was assumed to be 0.13 y–1 based 
on the analysis of fishery age-frequency data using 
several methods (Chapman and Robson, 1960; 
Hoenig, 1983; Punt et al., 2005), and adopted 
by CCAMLR for use in the stock assessment 
(WG-FSA-SAM, 2006). Natural mortality was 
applied as two mortality processes of 0.065 y–1 
with fishing mortality applied in-between. Fishing 
mortality was assigned to each spatial cell in each 
year based on the number of toothfish reported in 
each year from fisheries data for the years 1998–
2011. The maximum exploitation rate was assumed 
to be Umax = 0.9, so that spatial model estimates 
that resulted in cell abundance values that did not 
allow the known catch to be taken would not be 
permitted. 

Category transitions that moved fish between 
immature, mature, pre-spawning, spawning and 
post-spawning categories were applied to allow 
the different movement behaviours of ontogenetic 
movements and of fish migrating to and from 
spawning areas. In this model, five category transi-
tions were defined. These were:

Immature → mature: transition rate of imma-
ture to mature fish, defined as an age-based logistic 
ogive, with parameters estimated by the model. The 
maturation ogive was parameterised by the param-
eters a50 and ato95, and represented the proportion 
in each age class that mature at each age class. 

Mature → pre-spawning: transition rate of 
mature fish to pre-spawning fish. Defined as a 
constant rate pspawn, estimated in the model (i.e. 
pspawn of the fish categorised as mature become pre-
spawners). This parameter allowed us to mimic the 
potential for skip-spawning of mature fish, by not 
forcing 100% of mature fish to spawn in each year 
(Parker and Grimes, 2010).

Table 1:  Timing of the population processes and associated modelling parameters (processes in italics are
transition processes, and parameters with * are estimated in the model). The number of parameters
estimated includes the α parameter where applicable. 

Time-
step

Processes
(in order of occurrence) 

Details of modelling process Number of 
parameters 
estimated 

Summer Recruitment 
Immature → mature
Mature → pre-spawning
Natural mortality 
Fishing mortality 

Un-tagged → tagged

To age 2+ 
Age-based logistic ogive* 
Constant rate* 
Half applied in this time-step 
Catches, fishing selectivity* (logistic), 
catchability* (constant) 
Numbers, tagging selectivity* (double normal) 

-
2
1
-

2 + 1 

3
Winter Natural mortality 

Movement of immature 

Movement of mature 

Movement of pre-spawners 

Pre-spawning → spawning 
Spawning 

Half applied in this time-step 
Function of distance* (exponential), depth* 
(double-normal) 
Function of distance* (exponential), depth* 
(double-normal), habitat* (linear), and hills* 
(categorical)
Function of distance* (double-normal), 
temperature* (double-normal), hills* (categorical) 
Fixed rate of 1 
-

-
1 + 4 

1 + 4 + 2 + 2 

4 + 4 + 2 

-
-

Spring Spawning → post-spawning 
Movement of post-spawners 

Post-spawning → mature 
Ageing of all categories 

Constant rate* 
Distance (pre-spawners function), depth and 
habitat (mature functions) 
Fixed rate of 1 
All age by one year (30+ remain 30+) 

1
-

-
-

Total 16 processes  34 
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Pre-spawning → spawning: transition of all 
pre-spawning fish to spawning fish. Defined as a 
rate of 1 (fixed), so that all fish that are denoted as 
pre-spawning are assumed to spawn. This allows 
the model to distinguish between pre-spawning fish 
which can move and spawning fish which do not 
move.

Spawning → post-spawning: transition rate of 
spawning fish to post-spawning fish. Defined as 
a rate pmature, estimated in the model (i.e. pmature 
spawning fish were assumed to return to a post-
spawning (non-spawning) state). This allows for 
the migration of spawners back to mature (feeding) 
areas, and allows the potential for fish to spawn 
more than one year in a row (i.e. those fish that 
do not undergo the transition in a particular year) 
when pmature < 1.

Post-spawning → mature: transition of all 
post-spawning fish to mature fish. Defined as a rate 
of 1 (fixed), so that all fish that are denoted as post-
spawning revert to mature fish which can then tran-
sition to pre-spawning again in a future time step.

Un-tagged → tagged: transition of a specified 
annual number of fish to a tagged state. Defined as 
a transition of an annually specified number of fish, 
and set equal to the number of fish tagged each year 
per individual cell based on tag-release data. Age 
and reproductive category structure was applied by 
assuming that fish tagged in each cell were distrib-
uted across ages and categories proportional to the 
number in each age and category of untagged fish 
in each cell, after applying double-normal fishery 
selectivity (estimated). According to CCAMLR 
rules, fish are tagged in proportion to the full size 
distribution of the catch. Note that initial tag mor-
tality, annual tag-shedding and tag-related growth 
retardation assumed to occur in the full assessment 
models were ignored, although these could be 
included as required for specific simulation experi-
ments. 

The fishing selectivity was defined as an age-
based logistic ogive for the entire fishery, with 
parameters estimated by the model. It was param-
eterised by the parameters a50 and ato95, and rep-
resented the proportion in each age class that was 
available to the fishing gear in each year. This 
option was preferred to a double-normal curve 
where cryptic biomass is allowed, since it was 
assumed that the model captures the entire spatial 

distribution of the stock and therefore cryptic bio-
mass is explicitly taken into account spatially. No 
separation was made between autolines and Span-
ish-line systems, even though their selectivities are 
slightly different, in order to limit the numbers of 
parameters estimated and reduce data fragmenta-
tion.

The timing of the population processes and asso-
ciated modelling parameters are given in Table 1.

Movement processes

The movement processes were assumed to 
occur simultaneously over all cells (synchronous 
updating) and were implemented as habitat-based 
preference functions. These were based on environ-
mental attributes for each spatial cell. A number of 
potential environmental habitat layers were tested 
to check their suitability in explaining fish distribu-
tion, such as distance from the ACC or current flow 
(e.g. Mormede et al., 2012), but were later super-
seded with better-fitting environmental variables. 
The environmental habitat layers which resulted in 
the best-fitting models are shown in Figure 2. They 
were as follows: 

•	 median depth, based on the median depth of 
each cell as calculated from GEBCO one min-
ute grid (BODC, 2010) (shallow regions) and 
Smith and Sandwell (1997) (deeper regions) 
bathymetric data sets, while ignoring any areas 
above sea level

•	 temperature at 500 m depth from the World 
Ocean Atlas, 2009 (Locarnini et al., 2010)

•	 proportion of potential habitat in each cell 
defined as the proportion of cell area between 
450 and 2 870 m based on GEBCO depth. The 
upper limit (2 870 m) was the 95th percentile 
of GEBCO depth in the locations where fishing 
has occurred

•	 a binary variable defining whether a cell 
included hills or not, derived from GEBCO 
depth. A cell was defined as having hill habi-
tat if more than 75% of seabed area was deeper 
than 2 000 m and at least 5% of the area in the 
cell was shallower than 2 800 m
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•	 the distance between cells, calculated as the 
Euclidean distance (in kilometres) between the 
centres of each cell.

The amount of movement between any two 
cells was then assumed to be equal to the scaled 
weighted product of all preference functions, with 
weights α (essentially acting as a variable that 
allows modification of the relative importance of 
each individual preference function). Some values 
of α were fixed at 1 to avoid over-parameterisation 
of the model. The functions used in the final model 
are detailed in Table 1, along with the number 
of parameters estimated for each function and 
the order of the population processes. Further 
details on the preference movement process and 
equations used in SPM are given in Appendix 1. 
Other options for the habitat preference functions 
were investigated using different combinations of 
preference function shapes (e.g. double normal vs. 
exponential or logistic) and other environmental 
variables (e.g. distance from the Antarctic Circum-
polar Current) in alternative models. The model 
structure presented here represented the model that 

when fitted had the lowest objective function value, 
after taking into account the number of parameters 
in each model. 

Observations

No research survey data on abundance are avail-
able for Antarctic toothfish in the Ross Sea region 
to inform spatial distribution or relative abundance. 
However, as a CCAMLR exploratory fishery, 
it has comprehensive data collection protocols 
and all vessels have scientific observer coverage 
by both the Flag State as well as an international 
CCAMLR observer (Conservation Measure 24-01, 
paragraph 3(c), see CCAMLR, 2013). These data 
were used to derive six sets of spatially explicit 
fisheries-based observations for each spatial cell 
where fishing occurred in each year. The number of 
measurements used for the spatial model are sum-
marised in Table 2, and the observations detailed 
below. 

•	 total catch of Antarctic toothfish (weight of fish 
per cell and year as for all other data)

(a) Depth (m) (b) Temperature at 500 m depth (degC) 

(c) Suitable habitat (proportion of the area) (d) Hills (light blue areas) 

(a) Depth (m) (b) Temperature at 500 m depth (°C)(a) Depth (m) (b) Temperature at 500 m depth (degC) 

(c) Suitable habitat (proportion of the area) (d) Hills (light blue areas) 

(c) Suitable habitat (proportion of the area) (d) Hills (light blue areas)

Figure 2: 	 Environmental habitat layers used in the optimised spatial models.
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•	 catch per unit effort (CPUE), calculated as the 
unstandardised catch of Antarctic toothfish in 
kg per 1  000 hooks from autolines and Span-
ish longlines (but excluding trotlines that form a 
small proportion of total sets and have different 
CPUE characteristics from autolines or Spanish 
longlines)

•	 scaled proportions-at-age of the commercial 
catch, derived using the scaled length frequen-
cies for the catch from each spatial cell, and mul-
tiplied by an annual (unsexed) age–length key 
from the aged otoliths collected by observers

•	 scaled proportions mature (defined as having 
a gonadosomatic index (GSI) greater than 1%) 
and scaled proportions spawning (defined as 
having a GSI greater than 2.5%), estimated 
from the scientific observer biological sampling 
and multiplied by the age–length key described 
above. The choice of 1% for mature and 2.5% 
for spawning was based on an analysis by Parker 
and Marriott (2012)

•	 proportions-at-age of tagged and released fish, 
estimated from the length frequency of the 
released tagged fish, multiplied by the age–
length key described above

•	 proportions-at-age of fish recaptured with a 
tag, estimated from the length frequency of the 
tagged recaptured fish, multiplied by the age–
length key described above, as used in the stock 
assessment (Mormede et al., 2014) and ignoring 
within-season recaptures. 

Estimation of operating model parameters

Movement, selectivity and maturity parameters 
for the operating model were estimated by fitting to 
fishery observations. 

Proportions-at-age data from the commercial 
catch, by spatial cell and year, were fitted to the 
modelled proportions-at-age composition using a 
multinomial likelihood (Bull et al., 2012). Effective 
sample sizes for the proportions-at-age data were 
estimated using the methods described by Francis 

Table 2: Total annual catch (tonnes), and the number of observations
(raw, unscaled) of the catch-at-age proportions, proportions 
mature (or spawning), tag-release, and tag-recapture data, for
the years 1998–2011. 

Year Catch 
(tonnes) 

Number of observations used to derive input data 
Catch-
at-age 

Proportions 
mature or 
spawning 

Tag-release Tag-recapture 

1998 36 1 743 - - - 
1999 296 6 939 - - - 
2000 752 14 081 - - - 
2001 592 14 087 - 259 - 
2002 1 355 16 612 831 684 1 
2003 1 769 26 482 6 796 570 6 
2004 2 178 47 855 5 695 1 268 7 
2005 3 210 56 523 12 728 2 321 24 
2006 2 967 33 965 8 043 2 710 41 
2007 3 079 40 295 16 773 2 028 87 
2008 2 250 29 038 15 352 1 857 128 
2009 2 450 25 725 9 202 1 990 49 
2010 2 872 29 668 15 876 2 873 182 
2011 2 931 * * * * 

*  Age-based data for 2011 were not included in the model as ageing 
data was not available for the 2011 season when the data sets were 
constructed. 
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(2011a, 2011b). Proportions-by-category obser-
vations were used for the proportions mature and 
the proportions spawning observations. The likeli-
hood for these observations was implemented as 
a binomial likelihood. The tagged proportions-at-
age data were fitted with the tag-release selectivity 
(assumed constant over all cells and years) using 
a multinomial likelihood. Effective sample sizes 
for tag releases were assumed to be equal to the 
observed numbers of tagged fish released in each 
cell. The numbers of tagged fish recaptured at-age 
data were fitted using a binomial likelihood. Effec-
tive sample sizes for tag recaptures were assumed 
to be equal to the observed numbers of fish scanned 
at each age in each cell. 

For all spatial models, process errors (uncer-
tainty added to the observations prior to fitting them 
in the model) were assumed at an effective sample 
size of 30 for catch-at-age observations, maturity 
and spawning observations, and tag release and 
recapture observations; with a CV of 0.3 for CPUE 
observations. Due to the complexity of the model, 
the choice of these parameters was difficult and 
was based on other stock assessments. These errors 
were assumed when fitting to the spatial data.

Penalties imposed on the spatial models were 
(i) catch-constraint penalties, and (ii) tag-release 
event constraint penalties. Both of these were 
imposed to constrain the model from returning 
parameter estimates where the population biomass 
in any cell was such that the catch from any cell 
from an individual year would exceed the maxi-
mum exploitation rate (defined as Umax = 0.9), or 
where there were insufficient fish in a cell to tag for 
the tag-release events. 

Plausible model parameters were estimated 
using maximum posterior density (MPD) estimates 
with the finite numerical differences algorithm (see 
Dunn et al., 2012a, for details). The MPD estimates 
were evaluated by minimising the total objective 
function. The objective function was the sum of the 
negative log-likelihoods from the data, negative-
log priors and penalties that constrain the param-
eterisations. This resulted in three plausible oper-
ating models (see ‘Spatial structure’) which could 
then be used to run simulations.

Simulations

The three operating models (with fixed param-
eters and movement assumptions) as fitted above 
were then used to generate simulated observations. 
These generated the observations that might have 
been gathered if the operating model were a true 
representation of the fish population and movement 
patterns. Annual catch-at-age, tag-release and tag-
recapture observations were simulated from the 
locations where the historical fishery had fished in 
proportion to effort, and then these observations 
were aggregated over shelf, slope and north areas 
separately. In all cases, the biomass in the popula-
tion was assumed known, defined by the number 
of initial recruits R0 = 1.02 × 106 individuals (as 
above). 

Each observation was simulated assuming 
the error distribution used to fit the data, i.e. tag-
recapture data were simulated using a binomial 
likelihood at age; catch-at-age data were simu-
lated using a multinomial likelihood. However, the 
error values for each observation were assumed to 
be similar to that of the single-area stock assess-
ment (see Mormede et al., 2014), with catch-at-age 
process error of 150 (effective sample size) and 
tag-recapture dispersion of 1.2. The values of the 
process error and tag dispersion had been estimated 
in the stock assessment model using the method of 
Francis (2011a, 2011b). 

Evaluation of bias in the stock assessment model

Simulated observations from the spatial models 
(see above) were used in a single stock assessment 
model to investigate potential bias such as potential 
incomplete mixing, and its effect on stock status 
estimated by the single stock assessment model. 
The stock assessment model (hereafter referred to 
as assessment model to separate it from the operat-
ing model) was a modified version of that used for 
the assessment of toothfish in the Ross Sea region 
in 2011 (see Mormede et al., 2014) for full details of 
that model). The assessment model used the same 
population parameters as in the operating model. It 
was a single-sex, single-area, age-structured, three-
fishery population model, with a known catch his-
tory, tag releases and observations of catch at age 
and tag recaptures. The parameters estimated by 
the assessment model were initial biomass and the 
fishing selectivities for the shelf, slope and north 
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areas. Again, as in the spatial operating model, tag 
shedding, tag loss, tag growth loss and tag mortal-
ity were not considered.

For each of the three operating models, 100 sets 
of simulated observations, aggregated over the spa-
tial domain, were randomly generated and passed 
as observations to the assessment model run in 
CASAL (Bull et al., 2012). Then, for each set, 
initial biomass and the selectivities were estimated 
in an MPD run. The values of the estimated initial 
biomass (parameterised as initial recruitment, R0) 
from the MPD runs with the simulated observations 
were compared to that used in the operating model 
(R0 = 1.02 × 106). Two measures were used for this 
comparison, the percent bias (%bias) defined as

( )100ˆ%bias θ θ
θ

= -  

and the relative root mean squared error (%RMSE) 
defined as

( )2ˆ
100%RMSE

i
i

n

θ θ

θ

-

=
å

 
. 

Results and discussion

Development of operating models

All three models provided similar fish distribu-
tions across the area at the SSRU level (Table 3), 
although differences among models were present 
at the cell level (Figure 3). Very low densities of 
fish were predicted in areas not previously fished. 
The differences between the abundance and bio-
mass figures show the progression of the smaller 
and more numerous fish on the shelf to larger fish 
and less numerous fish on the slope and even larger 
fish but less numerous fish in the north. Therefore, 
abundance showed a decreasing gradient from 
south to north whilst biomass showed the highest 
values on the slope. These biomass and abundance 
plots should be regarded as relative population dis-
tribution plots because in this model structure the 
initial recruitment R0 is fixed at the value estimated 
by the single-area model, which is likely biased 
low (see below). This pattern is also reflected in the 
mean weight of fish per SSRU (Table 3), increasing 
from the shelf to the slope area and highest in the 
north (SSRUs 881A–C).

Table 3:  Relative abundance of toothfish by SSRU in 1995, in numbers and biomass, as a percentage of the
entire population, for the three operating models. Also shown is the mean weight per individual fish 
by SSRU in kg. Note that SSRUs 882A and 882B are split at 67°S into north and south areas as 
habitats are different north and south of this latitude and comparable with the regional splits within
the Ross Sea. ‘Other’ represents population in adjacent areas. 

SSRU Unrestricted model Semi-restricted model Restricted model 
Numbers Biomass Mean 

weight 
Numbers Biomass Mean 

weight 
Numbers Biomass Mean 

weight 

881A 4.7 9.6 27.0 3.4 8.8 34.6 1.4 3.4 32.7 
881B 2.1 4.9 30.0 1.8 4.4 31.5 3.2 7.8 32.0 
881C 4.0 9.5 31.3 3.5 7.9 29.5 5.4 12.5 30.8 
881D 5.9 4.2 9.4 2.1 4.3 27.4 0.0 0.0 - 
881E 4.2 6.5 20.3 3.6 7.0 25.4 3.8 7.1 25.1 
881F 2.6 3.1 15.6 2.8 3.9 18.4 3.1 4.8 20.4 
881G 5.6 9.1 21.4 6.4 9.8 20.2 8.4 13.8 21.8 
881H 4.9 3.2 8.7 6.9 4.6 8.9 8.2 6.5 10.4 
881I 5.9 7.3 16.5 5.5 6.0 14.4 7.0 8.3 15.6 
881J 7.9 3.5 5.8 11.3 5.5 6.5 12.4 6.8 7.2 
881K 10.3 7.5 9.5 13.5 9.6 9.4 15.6 11.6 9.8 
881L 9.6 4.1 5.7 8.6 4.4 6.8 9.7 5.3 7.2 
881M 8.7 3.7 5.7 11.6 5.3 6.1 12.4 6.3 6.8 
882A North 0.9 2.5 38.5 0.8 2.0 35.0 0.0 0.0 - 
882A South 14.5 13.7 12.6 11.0 9.7 11.6 7.1 5.0 9.2 
882B North 0.4 1.2 40.1 0.4 1.2 38.2 0.0 0.0 - 
882B South 5.8 5.9 13.6 4.8 3.5 9.8 2.2 0.8 5.0 
Other 1.8 0.3 2.3 2.0 2.2 13.8 - - - 
Total 100.0 100.0  100.0 100.0  100.0 100.0  
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The relative distribution of the population 
by SSRU is summarised in Table 3. The models 
broadly distributed relative biomasses and abun-
dances in a similar fashion in areas open to fish-
ing, with the spreading of fish to additional areas in 
the unrestricted model. The unrestricted and semi-
restricted spatial models predict that 48–51% of the 
population by biomass is outside the SSRUs that 
are currently open, whereas the restricted model 

predicts only 30% of the population outside the 
SSRUs that are currently open. SSRUs currently 
open are SSRUs 881 B, C, G, H, I, J, K, L. 

In these models, immature, mature and pre-
spawning fish have individual preference functions 
for specific environmental habitat layers, although 
not all are a function of the same layers (see 
Table 1). The functional forms of these preference 

(a) Numbers – restricted model (b) Biomass – restricted model 

(c) Numbers – semi-restricted model (d) Biomass – semi-restricted model 

(e) Numbers – unrestricted model (f) Biomass – unrestricted model 

(a) Numbers – restricted model (b) Biomass – restricted model(a) Numbers – restricted model (b) Biomass – restricted model 

(c) Numbers – semi-restricted model (d) Biomass – semi-restricted model 

(e) Numbers – unrestricted model (f) Biomass – unrestricted model 

(c) Numbers – semi-restricted model(c) Numbers – semi-restricted model (d) Biomass – semi-restricted model

(a) Numbers – restricted model (b) Biomass – restricted model 

(c) Numbers – semi-restricted model (d) Biomass – semi-restricted model 

(e) Numbers – unrestricted model (f) Biomass – unrestricted model 

(e) Numbers – unrestricted model (f) Biomass – unrestricted model

Figure 3: 	 Distribution of the toothfish population as estimated by the restricted, semi-restricted 
and unrestricted spatial models, in numbers (left) or biomass (right). Scale is not 
shown as relative to total population, it is linear but different for each panel, light 
blue being zero and dark blue the highest value in the model. Dotted line shows the 
arbitrary split between the north and south areas of SSRUs 882A–B. The 800 m 
depth contour is shown in grey; it represents the limit between continental shelf and 
slope areas. Hatched SSRUs are currently closed to Olympic fishing.
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functions were similar between the three spatial 
models, and all preference functions in the semi-
restricted model are shown (Figure 4). 

The spatial models show plausible toothfish 
population distribution and movements throughout 
the Ross Sea region: the spatial distributions of the 
immature, mature and spawning fish resulting from 
the spatial models broadly reflect the observed 
distribution patterns of these categories, with im-
mature fish on the shelf, some mature fish on parts 
of the slope and some spawning fish in parts of the 
north. Individual movement preference functions 
are more difficult to interpret, as the actual move-
ment will be a combination of multiple preference 
functions as well as dependent on the size of the 
cells at which the model is run. For example, move-
ment functions show that 50% of immature fish 
might move over 100 km in a single year when the 
median movement of tagged and recaptured fish is 
about 30 km in a year (Parker et al., 2013). The 
discrepancy arises because fish in this model can 

only move in increments of 156 km (the size of 
each cell) and that the actual movement of fish in 
each cell will be the combination of all preference 
functions.

The maturity and fishing selectivity ogives were 
similar for all three spatial models (Figure 5). The 
maturity ogive presents a similar 50th percentile 
maturity as female toothfish, but a much flatter curve 
than expected (95th percentile over 30 instead of 
24 years). However, fixing the maturity ogive at the 
values used in the 2011 stock assessment (13 and 
19.4 for 50th and 95th percentiles for males and 
females combined, see Parker and Marriott, 2012) 
resulted in a much worse fit of the spatial model 
to the maturity-at-age observations. Moreover, the 
maturity ogive of the spatial model represents the 
maturity of the entire population, including those in 
the north, when the maturity ogive used in the stock 
assessment was derived from fish on the slope only.
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Figure 4: 	 Estimated preference functions driving fish movements in the semi-restricted spatial 
model. Vertical lines in the distance preference functions indicate the width of individual 
model cells (156 km). Distance is expressed in km, depth in m, habitat in proportion 
suitable habitat and temperature in degrees centigrade.
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The optimised movement functions suggested 
that for all three spatial models about 50–53% of 
mature fish on the slope migrate to the north to 
spawn in any one year, and about 16–18% of the 
spawning fish in the north return to the slope in any 
one year. This could suggest that fish might skip 
spawning once every five years on average. A sen-
sitivity analysis was carried out on the proportion 
of fish going to spawn, by fixing that parameter 
at a range of values and re-optimising the spatial 
model. Results showed that this parameter is poorly 
estimated, with the extreme of all fish migrating to 
spawn each year only providing a slightly poorer 
fit (about 200 points in the objective function) and 
values between 30% and 60% being almost equally 
probable (details available in Mormede et al., 
2013b).

Model fits were similar for all three models. 
Fits to the data were adequate, although there was 
some indications of poor fit to the plus group of 
the proportions-at-age in the catch data, with the 
spatial models predicting more fish in the plus 
group than was observed. This may be a conse-
quence of an underestimate of natural mortality 
(i.e. if the assumed value for M was lower than the 
true value), a declining right-hand limb selectiv-
ity in the fishery (the selectivity was assumed to 
be flat-topped in these spatial models), the need 
for further age classes (e.g. to age 50), or a spatial 
process whereby older fish are spatially distributed 
based on an environmental preference that was not 
modelled in the spatial models. 

The proportion-mature-at-age fits also showed 
some structure in the residual patterns, with the 
spatial model predicting less fish mature for both 
young and old fish. This might suggest that the 
choice of a logistic maturity curve may be inade-
quate (and hence an asymmetric domed ogive may 
offer some improvements), or that a GSI threshold 

based on fish sampled in summer, and uniformly in 
all locations, is not an appropriate index of maturity 
at the level of the Ross Sea region. 

The most likely spatial model is the one that 
restricts toothfish distribution to depths which are 
known to provide suitable toothfish habitat, based 
on both the total objective function of each model, 
and the predicted location of toothfish biomass. 
The total objective function of the semi-restricted 
model was about 17  800 points, compared with 
about 24  800 points for both the restricted and 
unrestricted models. Moreover, as the models uti-
lise fishery-dependent data only and have no infor-
mation about the distribution of toothfish in areas 
where no fishing has occurred, the unrestricted 
spatial model could estimate fish movements into 
cells outside of the fished area, including those 
with implausible depths for toothfish. Despite this 
limitation, the semi-restricted and the unrestricted 
spatial models still showed similar patterns of 
toothfish distribution. This is in large part because 
the unrestricted spatial model estimated only low 
densities of fish occurring at depths beyond those 
known to provide suitable toothfish habitat. There-
fore, even the unrestricted spatial model presents 
a plausible extreme distribution of toothfish in the 
Ross Sea region, with movement preference func-
tions restricting fish to areas of plausible habitat.

Evaluation of bias in the assessment model

The unrestricted operating model estimated 
values of initial recruitment (and hence biomass) 
that were biased low by 43%; the restricted oper-
ating model estimated values of initial recruit-
ment that were biased low by 17%; and the semi-
restricted operating model estimated values of 
initial recruitment that were biased low by 32% 
(Table 4). This suggests that if the underlying spa-
tial distribution of the population and movement 
functions for toothfish were as described by the 
operating models, then the assessment model was a 
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Figure 5: 	 Maturity ogive (left) and fishing selectivity (right) estimated by the semi-restricted spatial 
model. Dashed lines indicate the 50th and 95th percentiles.
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conservative estimator of the true state, especially 
when estimating biomass over the entire Ross Sea 
region. The RMSE values were generally similar to 
the bias values, showing little change in dispersion 
between operating and assessment models, with a 
slight increase in dispersion in the restricted oper-
ating model. However, only 100 simulations were 
used (due to the complexity and time required) and 
estimates of intervals may be uncertain.

Bias in the operating models is likely to reflect 
the mismatch in underlying distributions of tag 
releases and subsequent fishing effort, along with 
limited toothfish mixing between areas. The extent 
of the negative bias will depend on the proportion 
of fish in the unfished area and movement rates 
between fished and unfished areas. Current spatial 
operating models suggest that there is likely to be a 
substantial toothfish biomass in the Ross Sea region 
outside the current fishing footprint. Therefore, the 
single-area stock assessment model currently used 
for setting catch limits in the region is likely to 
be biased low, adding a conservative buffer to the 
management process in place. 

Conclusions
In this paper, estimated movement preference 

functions were applied to three spatial popula-
tion models of toothfish in the Ross Sea region. 
These models were then used to evaluate potential 
assessment biases arising from fish movements or 
from spatially heterogeneous patterns of fishing 
effort and/or tag releases. Underlying assumptions 
regarding fish movement and mixing of tags are an 
important drivers of the current single-area assess-
ment of Antarctic toothfish in the Ross Sea. 

Results show an ontogenetic movement of fish 
from the slope to the north, with smaller fish dis-
tributed on the shelf, larger fish on the slope and 
spawning fish on the northern hills. The preference 
functions suggest relative short distances moved 

by immature and mature fish, whilst spawning fish 
moved larger distances. We applied simulated data 
from the spatial models to a single stock assess-
ment model. The spatial operating models present-
ed suggest that the single-area stock assessment of 
Antarctic toothfish in the Ross Sea is likely to be 
biased low by up to 43%. This shows that the spa-
tial dynamics can be important for understanding 
bias in the assessment of stocks.

The spatial operating models presented here 
only include one set of plausible models for tooth-
fish in the Ross Sea region. Further investigations 
in model structure could include alternative fishing 
ogives and mortality rates, defining an alternative 
index of maturity, use of a two-sex model and test-
ing different movement scenarios. Further data 
collection would be useful to inform the param-
eterisation of future models, such as spatially rep-
resentative gonad weight measurements, surveying 
likely spawning grounds during winter and obtain-
ing fishery or survey data from areas not fished, or 
only lightly fished, to date.

While further analyses should be carried out and 
alternative movement hypotheses should be tested, 
simulation experiments using spatially explicit 
models can provide a useful tool to evaluate the 
direction and likely magnitude of potential bias and 
uncertainty in the understanding of area-aggregated 
stock assessments in general. If shown to be good 
representations of key population dynamics, they 
can also be useful to investigate the likely conse-
quences for stock assessments of alternate manage-
ment strategies, including changes in fishing effort 
distribution or tagging schemes. Such models can 
also be used to investigate the potential effects of 
alternative hypotheses of life history, for example 
maturity, on the resulting distribution of the stock. 

The modelling framework applied, with the use 
of preference functions to parameterise fish move-
ments between large numbers of areas, has allowed 

Table 4:  Estimated R0, %bias and %RMSE for the three operating models. 

Operating model ‘True’ R0 Mean R0 (90% credible intervals) Estimated values 
bias% RMSE% 

Unrestricted model 1.02  106 587 100 (488 300–738 900) –43% 43% 
Semi-restricted model 1.02  106 696 300 (563 600–890 000) –32% 33% 
Restricted model 1.02  106 843 500 (672 100–1 105 200) –17% 22% 
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the development of relatively complex spatial fish 
population models while avoiding the estimation of 
large numbers of parameters. In this instance, up 
to 189 areas were modelled using 24 movement 
parameters, but the model could be expanded to a 
larger number of cells using the same number of 
movement parameters if required to better capture 
any heterogeneity of the fishery. As a comparison, 
Taylor et al. (2011) modelled Atlantic bluefin tuna 
using up to 66 individual areas, and required either 
66 movement parameters when modelled using 
an advection-diffusion process or 132 parameters 
when they estimated movement between all areas 
individually. 

While the development and parameterisation of 
spatial models can be difficult, they do provide a 
method for developing operating models for evalu-
ating assessment bias from spatial assumptions and 
their subsequent impact on management advice 
(Cope and Punt, 2011). Further, such approaches 
may also be useful for evaluating the impact of spa-
tial management plans on fisheries or assessments. 
The further development of spatially explicit fish-
eries models will enable better management advice 
for stock assessment either directly or through 
their use as operating models in management strat-
egy evaluation (MSE) (e.g. Butterworth, 2007; 
Constable et al., 2000; de Oliveira et al., 2008).

Acknowledgments

The authors would like to thank the scientific 
observers and fishers who collected the data used 
for this analysis. We would also like to thank the 
members of the New Zealand Antarctic Fisher-
ies Stock Assessment Working Group for helpful 
discussions and input into this paper. We thank 
the CCAMLR Secretariat for providing the data 
extracts and assisting in the interpretation of the 
data. This project was funded by the New Zealand 
Ministry for Primary Industries under project 
ANT2012/0, the Ministry of Business, Innovation 
and Employment (Project C01X1001, Protecting 
Ross Sea Ecosystems) and the National Institute 
of Water and Atmospheric Research Ltd. (NIWA) 
under the Fisheries Centre Research Programmes 1 
and 3.

References
Ball, I. and A.T. Williamson. 2003. Fish Heaven 

User’s Manual. Australian Antarctic Division. 
Kingston, Australia: 107 pp.

Bentley, N., C.R. Davies, S.E. McNeill and N.M. 
Davies. 2004a. A framework for evaluating 
spatial closures as a fisheries management tool. 
New Zealand Fisheries Assessment Report, 
2004/25: 25 pp.

Bentley, N., N.M. Davies and S.E. McNeill. 2004b. 
A spatially explicit model of the snapper (Pagrus 
auratus) fishery in SNA1. New Zealand Fisher-
ies Assessment Report, 2004/26: 64 pp.

BODC. 2010. The Gebco_08 Grid, version 
20091120: www.gebco.net/data_and_prod-
ucts/gridded_bathymetry_data/documents/
gebco_08documentation.pdf.

Bull, B. R.I.C.C. Francis, A. Dunn, A. McKenzie, 
D.J. Gilbert, M.H. Smith, R. Bian and D. Fu. 
2012. CASAL (C++ algorithmic stock assess-
ment laboratory): CASAL user manual v2.30-
2012/03/21. NIWA Technical Report, 135: 
280 pp.

Butterworth, D.S. 2007. Why a management proce-
dure approach? Some positives and negatives. 
ICES J. Mar. Sci., 64 (4): 613–617.

CCAMLR. 2013. Schedule of Conservation Meas-
ures in Force, 2013/14. CCAMLR, Hobart, 
Australia: 238 pp.

Chapman, D.G. and D.S. Robson. 1960. The 
analysis of a catch curve. Biometrics, 16 (3): 
354–368.

Cheung, W.W.L. V.W.Y. Lam and D. Pauly. 2008. 
Dynamic bioclimate envelope model to pre-
dict climate-induced changes in distributions 
of marine fishes and invertebrates. In: Cheung, 
W.W.L., V.W.Y. Lam and D. Pauly (Eds). Mod-
elling present and climate-shifted distribution 
of marine fishes and invertebates. Fisheries 
Centre Research Reports, 16 (3): 5–50.

Constable, A.J., W.K. de la Mare, D.J. Agnew, 
I. Everson and D. Miller. 2000. Managing fisher-
ies to conserve the Antarctic marine ecosystem: 
practical implementation of the Convention 



Mormede et al.

34

on the Conservation of Antarctic Marine Liv-
ing Resources (CCAMLR). ICES J. Mar. Sci., 
57 (3): 778–791.

Cope, J.M. and A.E. Punt. 2011. Reconciling stock 
assessment and management scales under con-
ditions of spatially varying catch histories. Fish. 
Res., 107 (1–3): 22–38.

de Oliveira, J.A.A., L.T. Kell, A.E. Punt, B.A. Roel 
and D.S. Butterworth. 2008. Managing with-
out best predictions: the Management Strategy 
Evaluation framework. In: Payne, A., J. Cotter 
and T. Potter (Eds). Advances in Fisheries 
Science 50 Years on from Beverton and Holt. 
Blackwell Publishing, Oxford: 104–134.

Dunn, A. and S. Rasmussen. 2008. Development 
of a spatially explicit age-structured statistical 
catch-at-age population dynamics model for 
modelling movement of Antarctic toothfish 
in the Ross Sea. Document WG-SAM-08/14. 
CCAMLR, Hobart, Australia: 31 pp.

Dunn, A., S. Rasmussen and S. Mormede. 2012a. 
Spatial population model user manual, SPM 
v1.1-2012-09-06 (rev 4806). Document 
WG-FSA-12/46. CCAMLR, Hobart, Australia: 
164 pp.

Dunn, A., G. Rickard, S.M. Hanchet and S. Parker. 
2012b. Models of larval dispersion of Antarctic 
toothfish (Dissostichus mawsoni). Document 
WG-FSA-12/48. CCAMLR, Hobart, Australia.

Fournier, D.A., H.J. Skaug, J. Ancheta, J. Ianelli, 
A. Magnusson, M.N. Maunder, A. Nielsen and 
J.R. Sibert. 2012. AD Model Builder: using 
automatic differentiation for statistical infer-
ence of highly parameterized complex non
linear models. Optim. Method. Softw., 27 (2): 
233–249.

Francis, R.I.C.C. 2011a. Corrigendum: Data 
weighting in statistical fisheries stock assess-
ment models. Can. J. Fish. Aquat. Sci., 68: 
2228.

Francis, R.I.C.C. 2011b. Data weighting in statisti-
cal fisheries stock assessment models. Can. J. 
Fish. Aquat. Sci., 68: 1124–1138.

Goethel, D.R., T.J. Quinn II and S.X. Cadrin. 
2011. Incorporating spatial structure in stock 

assessment: movement modeling in marine fish 
population dynamics. Rev. Fish. Sci., 19 (2): 
119–136.

Goethel, D.R., C.M. Legault and S.X. Cadrin. 
2014. Demonstration of a spatially explicit, tag-
integrated stock assessment model with appli-
cation to three interconnected stocks of yellow-
tail flounder off of New England. ICES J. Mar. 
Sci., doi: 10.1093/icesjms/fsu014.

Hanchet, S.M., G.J. Rickard, J.M. Fenaughty, 
A. Dunn and M.J. Williams. 2008. A hypo-
thetical life cycle for Antarctic toothfish (Dis-
sostichus mawsoni) in the Ross Sea region. 
CCAMLR Science, 15: 35–53.

Hoenig, J.M. 1983. Empirical use of longevity 
data to estimate mortality rates. Fish. Bull., 81: 
899–903.

Hoenig, J.M., N.J. Barrowman, K.H. Pollock, E.N. 
Brooks, W.S. Hearn and T. Polacheck. 1998. 
Models for tagging data that allow for incom-
plete mixing of newly tagged animals. Can. J. 
Fish. Aquat. Sci., 55 (6): 1477–1483.

Locarnini, R.A., A.V. Mishonov, J.I. Antonov, 
T.P. Boyer, H.E. Garcia, O.K. Baranova, M.M. 
Zweng and D.R. Johnson. 2010. Temperature. 
In: Wolrd Ocean Atlas 2009, Vol 1. Levitus, S. 
(Ed.). U.S. Government Printing Office, Wash-
ington, D.C., NOAA Atlas NESDIS 68: 184 pp.

Methot, R.D. and C.R. Wetzel. 2013. Stock synthe-
sis: a biological and statistical framework for 
fish stock assessment and fishery management. 
Fish. Res., 142: 86–99.

Mormede, S., A. Dunn, S. Parker and S.M. 
Hanchet. 2012. Further development of coarse- 
and medium-scale spatially explicit popula-
tion dynamics operating models for Antarctic 
toothfish in the Ross Sea region. Document 
WG-FSA-12/44. CCAMLR, Hobart, Australia: 
45 pp.

Mormede, S., A. Dunn and S.M. Hanchet. 2013a. 
Assessment models for Antarctic toothfish 
(Dissostichus mawsoni) in the Ross Sea for 
the years 1997–98 to 2012–13. Document 
WG-FSA-13/51. CCAMLR, Hobart, Australia: 
36 pp.



35

Spatially explicit population dynamics operating models for D. mawsoni

Mormede, S., A. Dunn, S.J. Parker and S.M. 
Hanchet. 2013b. Further development of a spa-
tially explicit population dynamics operating 
model for Antarctic toothfish in the Ross Sea 
region. Document WG-SAM-13/35. CCAMLR, 
Hobart, Australia: 21 pp.

Mormede, S., A. Dunn and S.M. Hanchet. 2014. A 
stock assessment model of Antarctic toothfish 
Dissostichus mawsoni) in the Ross Sea region 
incorporating multi-year mark-recapture data. 
CCAMLR Science, 21: xx-xx.

Parker, S. and P.J. Grimes. 2010. Length- and 
age-at-spawning of Antarctic toothfish (Dis-
sostichus mawsoni) in the Ross Sea, Antarctica. 
CCAMLR Science, 17: 53–73.

Parker, S.J. and P. Marriott. 2012. Indexing matu-
ration of Antarctic toothfish (Dissostichus 
mawsoni) in the Ross Sea region. Document 
WG-FSA-12/40. CCAMLR, Hobart, Australia: 
21 pp.

Parker, S.J., A. Dunn, S. Mormede and S.M. 
Hanchet. 2013. Descriptive analysis of the tooth-
fish (Dissostichus spp.) tagging programme in 
Subareas 88.1 and 88.2 for the years 2000–01 
to 2012–13. Document WG-FSA-13/49. 
CCAMLR, Hobart, Australia: 35 pp.

Pollock, K.H., J.M. Hoenig and C.M. Jones. 1991. 
Surveys for biological analysis: estimation of 
fishing and natural mortality when a tagging 
study is combined with a creel survey or port 
sampling. Am. Fish. S. S., 12: 423–434.

Punt, A.E. and T.I. Walker. 1998. Stock assessment 
and risk analysis for the school shark (Galeorhi-
nus galeus) off southern Australia. Mar. Freshw. 
Res., 49 (7): 719–731.

Punt, A.E., D.C. Smith and M.T. Koopman. 2005. 
Using information for ‘data-rich’ species to 
inform assessments of ‘data-poor’ species 

through Bayesian stock assessment methods. 
Final Report to Fisheries Research and Devel-
opment Corporation. Project No. 2002/094. 
Primary Industries Research Victoria, Queen-
scliff: 243 pp.

Quinn, T.J. II and R.B. Deriso. 1999. Quantita-
tive fish dynamics. Oxford University Press, 
Oxford: 542 pp.

Sibert, J.R., J. Hampton, D.A. Fournier and P.J. 
Bills. 1999. An advection–diffusion–reaction 
model for the estimation of fish movement 
parameters from tagging data, with application 
to skipjack tuna (Katsuwonus pelamis). Can. J. 
Fish. Aquat. Sci., 56 (6): 925–938.

Smith, W.H.F. and D.T. Sandwell. 1997. Global 
seafloor topography from satellite altimetry and 
ship depth soundings. Science, 277: 1957–1962.

Taylor, N.G., M.K. McAllister, G.L. Lawson, 
T. Carruthers and B.A. Block. 2011. Atlan-
tic Bluefin Tuna: a novel multistock spatial 
model for assessing population biomass. PLoS 
ONE, 62 (12): e27693. doi: 10.1371/journal.
pone.0027693.

Welsford, D.C. and P.E. Ziegler. 2013. Factors that 
may influence the accuracy of abundance esti-
mates from CCAMLR tag-recapture programs 
for Dissostichus spp. and best practice for 
addressing bias. CCAMLR Science, 20: 63–72.

WG-FSA-SAM. 2006. Report of the WG-FSA 
Subgroup on Assessment Methods (Walvis 
Bay, Namibia, 10 to 14 July 2006). Document 
WG-FSA-06/6. CCAMLR, Hobart, Australia: 
66 pp.

Ying, Y., Y. Chen, L. Lin and T. Gao. 2011. Risks 
of ignoring fish population spatial structure in 
fisheries management. Can. J. Fish. Aquat. Sci., 
68 (12): 2101–2120.



Mormede et al.

36

Appendix 1

Description of the preference movement process 
(Excerpts from the SPM manual, Dunn et al., 2012a)

SPM implements three types of movement:

1. 	A migration movement rate of cohorts between any two locations, and is roughly analogous to move-
ments between areas as implemented in other population models, such as CASAL (Bull et al., 2012).

2. 	Adjacent cell movement, parameterised by some function of an underlying layer – equivalent to, for 
example, movement processes implemented in Fish Heaven (Ball and Williamson, 2003).

3. 	Movement parameterised as a probability density function. Here, the key underlying idea is that the 
spatial distribution of cohorts at any point in time and at any location can be represented as a density 
function based on attributes of that location, local abundance, and/or distance from their previous loca-
tion (Bentley et al., 2004a, 2004b).

Preference movements allows movement from any cell a to cell b and is implemented as a function of 
the product of up to n independent preference functions. We define the probability of moving from any cell 
a to any cell b as a function of the relative preference for that cell. Here, we use the term preference function 
(Bentley et al., 2004a 2004b) to describe the movement probability distributions.

We assume that the population and spatial extent are defined, and that there is a preference function 
that is a function of some (typically estimable) parameters and a spatially explicit set of known attributes. 
The preference function movement process allows the number of parameters describing movement to be 
reduced, and results in a movement process that is some function of some underlying property of each loca-
tion for a given category of fish. For example, if we assume that movement between areas was a function of 
the Euclidean distance between areas, we could model movement between any two areas as a linear decay 
or exponential decay function. Alternately, if distribution and density were correlated with bathymetric 
depth for a marine organism, we might model the movement and distribution as a function of depth.

Movement in SPM can be defined as a probability distribution based on an underlying preference func-
tion. Here, we define the preference for a cell x as the preference function ( )( ),x xf P xθ , where θ(x) are the 
parameters for fx. So, given a set of n attributes for cell x, we can define a preference function for each, 
and hence we define the aggregated or total preference function for any cell x as the weighted product of 
individual preference functions,

( )( ) ( )( ) ( )( )1 2
1 1 1 2 2 2, , , n

x n n nP f P x f P x f P xα α α
θ θ θ= ´ ´ ´  

where αi is an arbitrary weighting factor for attribute i. In order to avoid over-parameterisation, it is recom-
mended that at least one αi be fixed to the value of one.

Then we define the probability of moving from cell a to any cell b (where b is defined as the set of all 
possible cells, including a),

( ) a

i
i b

P
p a b

P
Î"

® =
å

 
.
 

Note that there are three forms of preference function: 

1. 	Those that are a function of some underlying attribute of a cell, as defined by some spatially explicit 
layer L.
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2. 	Those that are a function of the abundance (perhaps with a selectivity and for a subset of all categories) 
of each cell.

3. 	Those that are a function of the distance between the sink and the source cells.

Preference functions of the first type are determined only by the parameters of the preference function 
and some underlying, fixed, attribute. Preference functions of the others are dynamic, i.e. they depend on 
the relative locations of the cells or on the density of a cell at a particular point in time.




