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Abstract

An estimation strategy for natural mortality, M, using multiple cohorts and multiple years 
of catch-at-age and aged mark-recapture data was tested using simulation. Alternative 
fishing selectivity functions of age of dome-shaped versus sigmoidally shaped were 
applied. Two alternative estimation models were developed both using a Poisson 
likelihood for annual number of recaptures-at-age and model the population numbers-
at-age by annual difference equations obtained by integrating an ordinary differential 
equation (ODE) for within-year population dynamics. The ‘fully parametric’ BODE 
model is based on the Baranov ODE while the ‘semi-parametric’ constant catch ODE 
(CCODE) model uses a new total mortality ODE with constant within-year catch per 
unit time and does not estimate annual fishing mortality rates (i.e. the F’s) or fishing 
selectivity function parameters. It removes the actual, considered known, catch-at-age 
numbers directly from the population. Estimation for the BODE model requires an extra 
component to the log-likelihood which defines the process error in predicted catch-at-age 
numbers. 

Simulations assumed 1 000 releases per year over 12 years with recruitment average of 
2 million with annual coefficient of variation (CV) of 0.3 and annual catch of 500 000. 
Simulations which passed catch-at-age numbers to the estimation algorithm after 
perturbation by observational error were also carried out for each model in order to 
investigate the effect on estimation of M. Simulations carried out without observational 
error showed that when all parameters were jointly estimated and selectivity was dome-
shaped, estimation of M was unreliable for both models but more so for the BODE model. 
The reason for this is explained by the confounding of selectivity parameter estimates 
with that for M. In contrast, when sigmoidally shaped selectivity was simulated, and the 
functional form of selectivity was correctly specified in the BODE model, both models 
gave close to unbiased and reasonably precise (CVs of 0.07 to 0.14) estimates of M, 
but the BODE model estimate was substantially more precise. However, when a minor 
misspecification of the functional form of selectivity was fitted by the BODE model, 
in comparison the CCODE model gave superior accuracy. When realistic observational 
error in catch-at-age numbers was included in simulations and combined with the 
sigmoidally shaped selectivity function, the bias and imprecision in estimates of M 
increased by no more than 2% for the CCODE model with no increase detectable for the 
BODE model. With these caveats, both models can be used to estimate this notoriously 
difficult parameter with the profile likelihood a useful indicator of the degree of success 
of estimation, even if some bias remains.
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introduction
The annual natural mortality rate, M, is a very 

influential parameter for estimating the produc-
tivity of a stock when considered in combination 
with annual number of recruits, growth rate in 
body size and the age-at-maturity ogive. Hence, 
obtaining as accurate an estimate of M as possi-
ble, along with estimates of its uncertainty bounds, 
is a key objective for assessments of stock status. 
For age-structured integrated assessments for the 
Patagonian toothfish (Dissostichus eleginoides) 
(Hillary et al., 2006; Candy and Constable, 2008) 
a pre-specified value of M has been applied when 
estimating other model parameters and then calcu-
lating allowable catch under the set of decision rules 
applied in these CCAMLR fisheries (Constable and 
de la Mare, 1996). 

Although natural mortality is likely to vary 
between age class and sex and vary both tempo-
rally and spatially, it is extremely difficult to suc-
cessfully model this level of complexity. Typically, 
M is assumed a single constant for the stock. Since, 
unlike fishing mortality, natural mortality is unob-
served and is a result of a complex array of factors, 
an estimate of M can only be inferred from esti-
mated changes in population numbers-at-age after 
accounting for age- and year-specific fishing mor-
tality. Quinn and Deriso (1999, page 360) note that 
although age-based (such as the above integrated 
assessments), length-based and delay-difference 
population models have naturally mortality 
explicitly embedded with them, the estimation of 
M (even as a single constant) using these models 
is usually not successful because the objective 
function typically does not vary much with M. A 
number of methods of estimating M for commer-
cially fished stocks with associated single datasets 
or combinations of datasets have been proposed, 
such as the method of Leigh et al. (2006) that uses 
multi-year tagging studies providing exact times 
of release and recapture or the method of Wang et 
al. (2009) that uses annual catch-at-age numbers 
combined with catch-per-unit-effort data and the 
‘extended survivors’ method of Shepherd (1999). 
Leigh et al. (2006) use data for a single cohort and 
do not employ catch-at-age numbers, while Wang 
et al. (2009) do not employ aged mark-recapture 
data for parameter estimation. The two alterna-
tive population models and their corresponding 
estimation methods proposed here both rely on 
annual numbers in the catch and annual numbers 
of releases and recaptures for multiple cohorts and 

multiple years of fishing with each dataset disag-
gregated to age class. The motivation for this study 
was the need for a reliable estimate of M for the 
Heard and McDonald Islands (Division 58.5.2) 
Patagonian toothfish fishery, and a concerted effort 
to age historical collections of otoliths in recent 
years had allowed such datasets to be constructed 
as described in Candy et al. (2011). This study 
describes these proposed models and their estima-
tion, and investigates their utility for estimating M, 
via simulation, in order to better inform their appli-
cation to the above fishery as described in Candy 
et al. (2011).

Both population models require input of cohort-
specific recruitment by combining the mean (i.e. the 
expected value across years) recruitment of age-1 
fish, defining the parameter K0, with year-class 
strength (YCS) parameters. Both then model the 
age-structured population for each fishing year by 
‘tracking’ all cohorts in the population over time. 
The initial age structure at the first year of fishing 
and for subsequent years is obtained by combin-
ing values of fishing and natural mortality with val-
ues of cohort-specific recruitment. This requires 
the annual recursive use of difference equations 
for population numbers-at-age obtained by inte-
grating a first-order ordinary differential equation 
(ODE) for within-year population dynamics. The 
difference in the population models derives from 
differences in their ODE. The model based on the 
Baranov (Baranov, 1918; Quinn and Deriso, 1999) 
ODE (BODE model) is based on fishing mortal-
ity expressed as a rate per unit of the population 
and therefore requires estimates of annual fish-
ing mortality rates (F’s) combined with estimates 
of the parameters of a fishing selectivity function. 
The form of this function is assumed to be known 
and the same function and parameter values are 
assumed to apply across fishing years. The popu-
lation model based on a new total mortality equa-
tion (constant catch ODE (CCODE) model) uses an 
ODE with constant within-year catch per unit time 
for each age class, and as a result allows catch to be 
removed directly from the population. 

The corresponding estimation models to the 
BODE and CCODE population models fit the num-
ber of recaptures by age class using a Poisson like-
lihood and use maximum likelihood estimation. 
However, the BODE model requires an extra com-
ponent to the likelihood that compares actual and 
estimated catch-at-age numbers. 
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The BODE model is similar to the model of 
Polacheck et al. (2006) with the main differences 
being (i) the estimation of a fishing selectivity func-
tion, whereas Polacheck et al. model fishing mor-
tality rates for all combinations of fishing year and 
age class so that their model of numbers caught is 
‘saturated’ with parameters, (ii) the assumption of 
a lognormal distribution for catch-at-age numbers 
compared to the normal (i.e. Gaussian) assumption 
used by Polacheck et al. (2006), and (iii) a funda-
mental difference in the definition of the likelihood 
for the number of recaptures-at-age. 

The CCODE model does not require estima-
tion of annual fishing mortality rates. Instead, 
para meters are estimated exclusively from the 
recapture-at-age numbers conditional on release-
at-age numbers and estimation of fishing selectiv-
ity as a function of age is not required. Therefore, 
the CCODE model can be considered a ‘semi-
parametric’ model relative to the ‘fully parametric’ 
BODE model.

The properties of the maximum likelihood esti-
mates (MLEs) for the BODE and CCODE models 
were studied using simulation with the simulation 
model applied corresponding to underlying popu-
lation dynamic equations for each of these models.

In practice, catch-at-age numbers are estimated, 
typically, using a census of total catch weight, a 
weight versus length regression, a random sample 
of measured lengths, a sub-sample of these which 
are aged, and the application of age–length keys 
(Quinn and Deriso, 1999). The effects of the result-
ant observational (i.e. estimation) errors in catch-
at-age numbers on the bias and precision of the 
estimate of M were investigated for a subset of 
the simulations by incorporating realistic levels of 
observational error in the data used for estimation 
for each of the models. This approach can be used 
to carry out a bias adjustment to estimates of M if 
the bias is of practical significance.

modelling population dynamics using  
total mortality and catch equations

In order to estimate M from aged mark-recapture 
data, it is necessary (as shown in the next section) 
to model the dynamics of the population both prior 
to and during fishing years. The dynamics before 
fishing are required because the age-structure first 
encountered by the fishery is a result of the previous 

history of recruitments (assumed here of age-1 
recruits) combined with the effect of the assumed 
constant M in the absence of fishing. For a single 
cohort the numbers-at-age, Na, can be obtained by 
integrating the following simple first-order ODE 
over time, t', within the fishing year defined from 
year t to t +1 (considering for the moment only a 
single fishing year and assuming each age class is 
fully selected by the fishery) 

( ) ( )( ),
,

δ δ¢ ¢¢
¢= - -

¢
t tt a

t a
dN

F M N
dt   (1)

where F(δt') and M(δt') are the constant unit-time, δt', 
instantaneous fishing mortality and natural mortal-
ity rates respectively. Equation (1) is the Baranov 
(1918) ODE and when integrated from time t to 
t +1 where there are δt' 

–1 time units for each time 
unit on the t time scale (e.g. t may have units of 
years and t' units of days so that δt' = 1/365) in this 
interval, gives
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where ( ) /δ δ
¢ ¢= tF F t  and ( ) /δ δ

¢ ¢= tM M t . 

Using the annual time scale and equation (2) 
gives the usual annual Baranov population dynamic 
equation which, when combined with a catch equa-
tion (Baranov, 1918; see also Quinn and Deriso, 
1999), given that annual fishing mortality, F, is 
allowed to vary by year of fishing and across age 
classes by combining F with a fishing selectivity 
function, Sa, gives (see Branch, 2009a, 2009b):

( )1, 1 , exp+ + = - -t a t a a tN N S F M  (3)

( ){ }, , 1 exp= - - -
+

a t
t a t a a t

a t

S FC N S F M
M S F  (4)

where Nt,a is the number in the population for a 
given year t and age a and Ct,a is the number in the 
catch for that given fishing year and age.

The total mortality equation, or numbers-at-age 
difference equation, is therefore given by

( ){ }, 1, 1 , 1 exp+ +- = - - -t a t a t a a tN N N S F M . (5)
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Equations (4) and (5) are denoted the BODE 
model since they are derived from the Baranov 
ODE.

Note that it is usual to assume that both the form 
and parameter values for the function for Sa do not 
vary across fishing years. For years prior to fish-
ing, the value of Ft is simply set to zero. The scaled 
selectivity function, ¢aS , with Figure 1 giving exam-
ples of dome-shaped and sigmoidally shaped func-
tions combined with a lower threshold at age 3, is 
usually specified so that for one or more ages it has 
a maximum of 1. However, in the above equation 
it is appropriate to define 

1
/

=
¢ ¢= å A

a a aa
S AS S , 

where there are A age-classes considered for the 
population (i.e. so that Sa has a mean of 1), rather 
than as ¢=a aS S  (see Appendix 1). To estimate Ft 
from equation (4) using known numbers caught 
in each age class, assuming M and Sa are fixed, 
requires a recursive numerical solution since an 
exact algebraic solution is not available.

An alternative to the Baranov catch equations 
is proposed here and is denoted the CCODE model 
since its ODE incorporates constant absolute fish-
ing mortality by age class per unit time. It is derived 
as follows:

Let this first-order ODE be given by

( ) ( ),
,

t tt a
at a

dN
M N c

dt
δ δ¢ ¢¢

¢=- -
¢  (6)

where ( )t
ac δ ¢  is the unit-time catch of age class a 

which is assumed constant within year t with the 
corresponding total catch for year t in age class a 
given by ( )

, /δ δ
¢ ¢= t

t a aC c t . If the time unit is a day 
then 1/δt' is 365 if the full year is fished. The inte-
gral of the above ODE between time t and t +1 is 
given by
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The population numbers-at-age difference equa-
tion is therefore given by
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Using equation (8) as the difference equa-
tion for updating the cohort size at year t has the 
advantage that there is no need for a catch equation 
since Ct,a, the absolute fishing mortality in equa-
tion (8), is taken as a known constant. Therefore 
there is no need to estimate a fishing mortality 
rate, which must be defined given Sa with respect 
to the unknown Nt,a. Note that if the fishing period 
is defined to not be the whole year but the latter q 
fraction of the year, then this two-period equation 
can be defined as
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where ( ) ( ) /δ δ¢ ¢
=q t tc c q. Combining these equations 

by substituting for Nt+(1–q),a in the second gives
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 (10)

where M' = qM. So the form of the equation is 
the same for a partially fished year, however, the 
fractional reduction in M must be applied in the 
adjustment to the catch-at-age numbers given the 
fractional reduction from a full year to the length of 
the fishing season.

Both the BODE and CCODE are idealised 
models, however, given that the F’s are small, the 
BODE model can be made to give a daily catch that 
does not vary much from the constant catch, ( )t

ac δ ¢ , 
in a given year. This can be achieved by appropri-
ately scaling F(δt') given Nt,a and Sa given that the 
annual catch, equation (4), is well approximated by 
SaFtNt,a (Appendix 1). So although the daily catch 
can be made similar for the two ODEs, the crucial 
difference is that they lead to very different forms 
and parameterisations for the total mortality equa-
tion as seen by comparing equations (4) and (5) 
with equation (8).

To generalise the above models to a multi-cohort 
setting, the simple time notation, t, needs to be 
replaced by a year, y, notation including pre-fishing 
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and fishing years. In order to apply equations (3) 
and (4) recursively from the start of fishing at year 
y = t0, then the starting numbers-at-age for the pop-
ulation { }0 0 0,1 ,,...,=t t t AN N N  must be estimated. 
Note that given fish caught in year y = t of age a, 
then the year they were age-1 and recruited to the 
population can be determined as t – a + 1. The start-
ing population, 

0tN , can be estimated if an estimate 
of mean age-1 recruitment, K0, is available, com-
bined with an estimate of the series of YCS, Γ

pfy , 
for the pre-fishery (pf) years combined with the first 
year of the fishery where { }0 01,...,= - +pfy t A t . 
Since recruitment to age-class 1 obviously con-
tinues once fishing begins, then additional YCS 
estimates, Γ

fy  need to be estimated for fishing 
years { }0 01,..., 1= + + -f fy t t n  where nf is the 
total number of fishing years. To assist in obtain-
ing an average close to 1 for the combined set of 
YCS estimates, { },Γ Γ Γ= pf f , for the (A + nf – 1) 
cohorts { },¢ = pf fy y y , a penalty function is added 
to the log-likelihood as described later. Since Ky' = 
K0Γy' this ensures that average annual recruitment 
of age-1 fish for these years is close to K0. This 
assumes that fishing mortality is not high enough 
to affect recruitment. If this is not the case, then a 
stock-recruitment relationship (Quinn and Deriso, 
1999) should be employed to model this effect on 
Ky' which then requires extra parameters to be esti-
mated. This extra complication is not considered 
further, and in practice for a stock for which the 
spawning stock is not seriously depleted by fish-
ing, the inclusion of a stock-recruitment relation-
ship does not affect model outputs to any practi-
cally significant degree. Therefore, to reconstruct 
the age-structured population for each fishing year, 
the BODE model requires simultaneous estimates 
of M, the nf F-parameters, K0, the parameters of the 
selectivity function, and the A + nf – 1 YCS para-
meters.

Basing estimation of M on equation (7), the 
CCODE model has the advantage that such estima-
tion only requires simultaneous estimates of M, K0, 
and the A + nf – 1 YCS parameters.

modelling number of aged recaptures
Development of within-year dynamic equa-

tions for the release/recapture process could follow 
along the lines of the process models for popula-
tion and catch numbers-at-age (i.e. equations (3) 
to (10)). However, the process is made difficult by 

the requirement that releases should have adequate 
time to mix with the untagged population in order 
that sampling the population by commercial fish-
ing to estimate the proportion of tagged fish at lib-
erty (referred for the remainder as the ‘tagged pro-
portion’) can be used to obtain unbiased estimates 
of the population size for each age class and year 
of fishing. Allowing an adequate time for mixing 
is more important for species that are largely sed-
entary, such as Patagonian toothfish. Therefore, 
approximate annual difference equations are used 
to model numbers of releases and recapture num-
bers by age class and year of fishing. Even though 
the simulation model and estimation procedure 
assume instantaneous and complete mixing of 
tagged fished with the untagged population, the 
difference equations can still be validly applied 
by modifying the number of releases and recap-
tures when this assumption is relaxed as described 
below. This requires a fixed minimum period to be 
specified from time of release to recapture in order 
to allow mixing to be sufficient that recapture rates 
are not significantly exaggerated by the fact that 
fishing is not a spatially random process.

The likelihood is developed first for the num-
ber of recaptures. Representing end of each year 
by { }0 01,...,= + + fy t t n , the response random 
variable is defined as the number of recaptures of 

,iy aR  in ith year of fishing years y and recapture 
age a. The ,iy aR  can be disaggregated according 
to the contribution of each year of release so that 

, , ,1=
=åi v i

i
y a y y av

R r  where , ,v iy y ar  is the number 
of recaptures of fish released in year yν (for ν ≤ i) 
that are recaptured in year yi when they are age a 
in year yi. The total number of age a fish caught in 
year yi given by ,iy aC  is considered known with-
out error and is used to determine the conditional 
distribution of ,iy aR . The number of tagged fish 
available to be caught in year yi is given by ,iy aG . 
However, ,iy aG  is the sum of previous fishing years’ 
releases that are still at liberty (i.e. have not died 
due to natural or fishing mortality up to year yi) so 
this number by age class is not known exactly and 
in fact depends on the parameter M. The definition 
of expected number of recaptures-at-age and ,iy aG  
used discrete annualised values. The calculation of 

,iy aG  is given in Appendix 2. 

If the unknown total number of fish in the popu-
lation at age a (including both tagged and untagged 
fish) is ,iy aN  then the hypergeometric likelihood 
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for the observed recaptures, considering that ,iy aR  
has a hypergeometric distribution for each separate 
year and age class conditional on ,iy aG  and ,iy aN , 
is given by

1
, , , ,

,
, , , ,

-æ öæ öæ ö-÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç= ÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç-÷ ÷ ÷ç ç çè øè øè ø
Õ i i i i

i
i i i i

y a y a y a y a
R y a

y a y a y a y a

G N G N
L

R C R C . (11)

The above likelihood can be reasonably 
approximated by a binomial distribution in terms 
of expected value and second central moment 
for ,iy aR , since both distributions have the same 
expected value and if ,iy aC  is small relative to ,iy aN  
then both have approximately the same variance. 
Therefore, using the approximation of a binomial 
with expected tagged proportion given by ,τ

iy a 
where

1
, , ,τ -=

i i iy a y a y aG N  (12)

the binomial likelihood is given by

( ) , ,,,
, ,,

,
1τ τ

-æ ö÷ç ÷ç= -÷ç ÷ç ÷çè ø
Õ

R y a y ay a i iii

i ii
i

C Ry a
R y a y ay a

y a

C
L

R . (13)

Further simplification of the binomial likeli-
hood to a Poisson likelihood is justified since the 
expected tagged proportion is typically very small, 
which gives 

( )( ) ,

, , , ,,
,

1 exp
!

y ai

i i i ii
i

R
R

y a y a y a y ay a
y a

L

C C
R

τ τ

=

-Õ . (14)

Note that the expected Poisson number of 
recaptures-at-age in year yi can be expressed 
equivalently as either , ,r ry a y aG P , where 

1
, , ,

-=
i i iy a y a y aP C N , or as given in equation (14) by 

, ,τ
i iy a y aC . The Poisson variance for ,iy aR  is given 

by its expected value, , ,τ
i iy a y aC , however, the vari-

ance for ,iy aR  conditional on ,iy aC  as a binomial is 
slightly less since it scales the Poisson variance by 
( ),1 τ-

iy a . Since ( ),1 τ-
iy a  is typically very close 

to 1, then these two variances are approximately 
the same.

The kernel of the –2 log-likelihood correspond-
ing to equation (14) is given by

( )

( ){ }, , , , ,,

2ln

2 ln
i i i i ii

R

y a y a y a y a y ay a

L

R C Cτ τ

- =

- -å . (15)

In simulation studies this last form of the like-
lihood for number of recaptures was found to 
result in successful maximum likelihood estima-
tion. Due to the instability of the binomial likeli-
hood when values of ,τ

iy a were vanishingly small 
for age classes with zero or very small values of 
selectivity, Sa, the Poisson –2 ln(LR) given by equa-
tion (15) was preferred. Note that zero observed 
recaptures combined with very low expected recap-
tures due to unpopulated young (<4 years) and old 
(>25 years) age classes in the catch due to zero or 
very low selectivity in these age classes (Figure 1), 
contribute a negligible amount to –2 ln(LR) in equa-
tion (15) and therefore make an insignificant con-
tribution to estimation.

Since ,iy aN  is unknown, its value is required to 
be estimated using the model parameters of M, K0, 
and { },Γ Γ Γ= pf f  and, additionally for the BODE 
model, the nf F-parameters, and the parameters of 
the selectivity function. For the following, ,iy aN  is 
the number of fish in the population at the end of 
fishing year yi in age class a. 

Appendix 3 gives the calculation of ,iy aN  for 
each of the BODE and CCODE models.

modelling catch-at-age numbers

The catch-at-age number for the BODE model 
is estimated as

( ){ }, ,

ˆ ˆˆ ˆˆ ˆ ˆ1 expˆ ˆ ˆ= - - -
+i i

a
y a y a a i

a

S FC N S F M
S F M  (16)

noting that this estimate requires estimates of M, 
the selectivity parameters required to give ˆ

aS , and 
the F’s estimated from the previous iteration of the 
maximum likelihood fitting algorithm.

The likelihood component for the catch-at-age 
numbers for the BODE model is assumed that for a 
lognormal distribution for ,iy aC  as follows
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( )
( )

2
, 2

, 2
,

ln1 exp 0.5 /
ˆln2

i

i
i

C

y a
Cy a

y aC

L

C

C
σ

πσ

=

é ùì üï ïê úï ïï ïê ú- í ýê úï ï-ê úï ïï ïî þê úë û

Õ
. (17)

Therefore the additional parameter σC is the 
coefficient of variation (CV) of ,iy aC  about its 
prediction and is required to be estimated by the 
BODE model. If ,iy aC  is not subject to observa-
tional error, then there is only one error involved 
in equation (17) and that is process error given 
by ( ) ( ), , ,

ˆln lnε º -
i i iy a y a y aC C . If catch-at-age 

numbers are subject to observational error with 
the true catch given by ,iy aC  and the observed 
catch by ,



iy aC , then observational error is given 
by ( ) ( ), , ,ln lnξ º -

i i iy a y a y aC C . It is not possi-
ble to model the ,ξ

iy a  without constructing a com-
prehensive ‘error budget’ by modelling all data 
inputs and calibration errors involved in construct-
ing ,



iy aC  which would require much more compli-
cated likelihoods than equations (15) and (17). A 
less rigorous but much simpler approach, that can 
also be applied to the CCODE model, is to model 
the effect of a simplified observational error pro-
cess on estimates of M by effectively simulating the 

,ξ
iy a  to obtain ,



iy aC  and then use these numbers to 
replace ,iy aC  in the estimation algorithms. This is 
the approach adopted for both BODE and CCODE 
models as described later. 

Note that for the CCODE model there is no cor-
responding likelihood component for catch-at-age 
numbers since the actual catch-at-age numbers are 
used to calculate ,iy aN  (Appendix 3). Therefore, 
the annual fishing mortality rates and the fishing 
selectivity-at-age given by Sa are not part of the 
CCODE model parameterisation.

Estimation methods
The parameters of each model were fitted by 

minimising the –2 log-likelihood (L) using the 
nlminb function in the R-package (R Development 
Core Team, 2006), where this requires mini-
mising L (= –2 ln LR) for the CCODE model and 

( )2 ln lné ù=- +ë ûR CL L L  for the BODE model with 

respect to the parameter set for each model. The R0 
parameter was estimated on the log scale. A penalty 
function to help assist in achieving an average of 
the estimated YCS parameters that is close to 1, 
given by ( ){ }2ˆ10000 1Γ -mean  was added to the 
above –2 log-likelihood.

When all model parameters were simultaneously 
estimated, point estimates for M were obtained 
both by joint minimisation of L giving MLEs and 
for comparison by profiling across a grid of values 
for M while estimating all other model parameters 
simultaneously to give the profile maximum likeli-
hood estimate (PMLE) of M. These two methods 
are equivalent in well-behaved maximum likeli-
hood estimation (McCullagh and Nelder, 1989), 
in the sense that minimisation of L should not get 
‘trapped’ in potential local minima when simulta-
neous estimation of all parameters is carried out. 
The profiling method can protect against finding 
local minima and further allows approximate 95% 
confidence bounds for M to be easily obtained for 
the CCODE model.

The upper and lower bounds for parameters 
used in the nlminb function are given later. The 
starting value for M passed to nlminb when it was 
the only parameter estimated (i.e. all other para-
meters defined for the respective BODE or CCODE 
models were set at their nominal simulation values) 
was randomly chosen at a point between the 
bounds. When all parameters were estimated, the 
starting values for these were obtained as random 
values independently chosen between their respec-
tive bounds except for the YCS parameters which 
were set to start at 1.0. When M was profiled while 
jointly estimating the remaining parameters, the 
above applied but obviously the initial value of M 
was retained at the incremental value on the grid 
chosen for the profiling. 

the simulation model
The simulation models for each of the BODE 

and CCODE models are each described for a series 
of 12 fishing years starting in calendar year 2010, 
with this number of fishing years chosen to reflect 
the length of time commercial fishing has been car-
ried out in Division 58.5.2. Given ages up to 35 
were simulated, this gave year classes or cohorts (c) 
of 1 to 46 corresponding to calendar years of 1975 
to 2020 for which YCS was estimated.
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First a population age structure was generated 
by calculating the probability density for each of 
1 001 values of age, a', taken uniformly between 
age 0 and age 35 (i.e. consecutive age values 
35/1 001 years apart) using the exponential density 
function ( ) ( )Pr ¢-¢ ¢= = = MaAge a Q a Me . The raw 
density values, Q(a'), were scaled by dividing by their 
sum to give ( ) ( ) ( )1001

1
/

=
¢ ¢ ¢ ¢= åi i ii

Q a Q a Q a . Using 
the 35 integer age classes given by ( ] ( ]{ }0,1 ,..., 34,35 , 
denoting the vector a as the upper limit of each class, 
the class membership of each of the 1 001 ages was 
determined and used to determine class probabil-
ities. This numerical integration method of deter-
mining the age structure was used in preference to 
the method that uses the simple analytical integral 
since the former allows more accurate calculation 
of class probabilities when fishing selectivity is 
incorporated as described next.

Since non-trivial fishing selectivity was 
imposed, Q'(a) was then multiplied by ¢aS  to give 
Q"(a) where ¢aS  was determined from the ‘double-
normal’ (DN) (i.e. dome-shaped) selectivity func-
tion combined with zero selectivity for ages of a0 
and less. This gives

( )

( )

2

2

/
0

/

0

2 ;

2 ;
0 ;

L

U

a
a

a

S a a

a
a a

λ σ

λ σ

λ

λ

é ù- -ë û

é ù- -ë û

¢ = < £

= >
= £  (18)

where λ is a cut-point parameter corresponding to 
the age at which ¢aS  is 1, and σL and σU are para-
meters denoting the standard deviations of the 
scaled normal density functions specifying the 
lower and upper arms of the function respectively. 
For the base-line simulations and dome-shaped 
selectivity (equation 18), the parameters a0, λ, σL 
and σU were set to 3, 5, 2 and 8 respectively. 

For sigmoidally shaped (see below) selectivity, 
¢aS  was determined from the ‘lower-normal’ (LN) 

selectivity function combined with zero selectivity 
for ages of a0 and lower by simply modifying equa-
tion (18) to give

( ) 2/
0

0

2 ;
1 ;
0 ; .

La
aS a a

a
a a

λ σ λ

λ

é ù- -ë û¢ = < £

= >
= £  (19)

For the base-line simulations and sigmoidally 
shaped selectivity in equation (19), the parameters 
a0, λ and σL were set to 3, 8 and 5 respectively. 
Note that equation (19) demonstrates a classical 
sigmoidal shape if λ is sufficiently large relative to 
a0 and σL is sufficiently small relative to λ – a0.

The integer-age population class probabili-
ties were obtained by accumulating the sum of the 
Q"(a) using their integer-age class membership to 
give Qa where a = 1,…,35. 

Figure 1 shows the values of ¢aS  obtained from 
each of equations (18) and (19) using the corre-
sponding parameter values given above. 

The second step of the simulation involved 
generating number of releases-at-age from simu-
lated sampling of the population age structure. For 
each of the 12 years in a simulation run, release-
at-age frequencies were generated for a sample of 
100 hauls where across hauls the expected num-
ber of fish released was 10 giving 1 000 releases 
across age classes per year. For each haul the num-
bers per age class were drawn from the Dirichlet-
multinomial distribution as described in Candy 
(2008), with proportions in age classes obtained 
from the selectivity function. The over-dispersion 
parameter φ was set to 1.1. The numbers of releases 
were aggregated across hauls to give ,iy aV . The 
numbers of recaptures per release year, recap-
ture year and age class, , ,v iy y ar , were drawn from a 
binomial distribution (see Appendix 4) with bino-
mial sample size, , ,v iy y ag , equal to the number of 
tagged fish at liberty from release year, yν, and age 
class, a, in the current fishing (i.e. recapture) year, 
yi, where , , ,£

=åi v iv i
y a y y ay y

G g , and probability, 
,iy aP , defined earlier.

Population numbers-at-age, ,iy aN , for the BODE 
model were obtained using equation (A3.1) while 
for the CCODE model the ,iy aN  were obtained 
using equation (A3.2). For the case of catch-at-
age numbers assumed to be known without obser-
vational error, the simulated numbers were used 
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directly in estimation for both CCODE and BODE 
models. The total numbers of catch-at-age for each 
year were 500 000 for the CCODE model with 
these numbers disaggregated to age classes using 
the selectivity function to give the ,iy aC . The catch-
at-age numbers for the BODE model simulations 
were obtained using equation (4).

Observational error in catch-at-age numbers

To investigate the effect of observational error 
on estimation of M, after the simulated data were 
obtained and before the ,iy aC  were passed to the 
estimation algorithms that maximise the likeli-
hood, the ,iy aC  were perturbed with observational 
error to obtain ,



iy aC . This perturbation was carried 
out in three stages. Firstly, the total catch numbers 
per year were drawn from a lognormal distribution 
with CV of either 0.1 or 0.2 with expected value the 
sum of the simulated values; ,å iy aa

C . Secondly, 
the perturbed proportion in each age class for each 
year were obtained from separate multinomial dis-
tributions for each year with expected proportions 
given by , ,/åi iy a y aa

C C  and ‘effective’ multi-
nomial sample size of either 1 000 or 1 500. Note 
that the lower the effective sample size (ESS) the 
greater the degree to which the proportions are per-
turbed. These ESSs were realistic values for a catch 
of 500 000 fish per year obtained by comparison 
to the average ESS of approximately 2 500 for the 
approximately 1 million fish taken per year in the 
main trawl fishery in Division 58.5.2 as given by 
Candy and Welsford (2009) with the method of 
calculating the ESS for catch-at-age frequencies 
given in Candy (2009). The total of ESSs for years 
1998 to 2008 calculated for this fishery was 27 785 
(Table A1.5 of Candy and Welsford, 2009). Finally, 
perturbed numbers of catch-at-age, ,



iy aC , were 
obtained by multiplying the random lognormal 
value of total catch number by the above perturbed 
proportions. Figure 2 gives an example using a 
simulation of exact, ,iy aC , and corresponding per-
turbed, ,



iy aC , numbers of catch-at-age when the CV 
was set to 0.2 and the ESS set to 1 000 using the 
CCODE model and LN selectivity (equation 19). 
Ignoring any zero values in ,iy aC , the difference in 
the log of perturbed and log of exact catch-at-age 
numbers defines the observational error, ,ξ

iy a. As a 

control (i.e. very close to zero observational error) 
a CV of 0.01 combined with an ESS of 20 000 was 
also applied.

Nominal parameter values

For all baseline simulations, annual recruitment 
was varied for each run of the simulation model as 
a lognormal variate about a mean of 2 million with 
CV (cR) of 0.3 and with an initialisation period of 
35 years. 

For the BODE model all F’s were set to 0.03 
while for the CCODE model total catch numbers 
were set for each fishing year to 500 000. 

The parameters and their bounds were M (0.05, 
0.3), K0 (1.0 x 106, 3.0 × 106), Γ (i.e. YCS para-
meters) (0.1, 3.0), F’s (0.01, 0.1) and σC (0.2, 2.0). 
For selectivity function (18) the parameter ranges 
were λ (4, 8), σL (1, 8) and σU (4, 16). For selec-
tivity function (19) the parameter ranges were λ (6, 
12) and σL (3, 12). Note that the a0 parameter was 
not estimated but assumed known for the fit of the 
BODE model.

For the simulation model, tag mortality rate, tag 
loss rate, detection rate, and q were assumed to be 
0.0, 0.0, 1.0 and 1.0 respectively. 

Each estimation model (BODE or CCODE) 
was fitted to its corresponding simulation model 
as described above. The simulation models were 
coded in the R-package. Except where noted other-
wise, the simulations were carried out without the 
incorporation of observational error in catch-at-age 
numbers used in estimation.

results
Table 1 gives summary statistics for estimates 

of M from 500 simulation runs using selectivity 
function (equation 18) for each nominal value of M 
of 0.10, 0.13, and 0.16 when estimation of M was 
carried out with all other model parameters fixed at 
their known simulated values (i.e. ‘Fix non_M’).

Figures 3 to 6 show results of estimation for one 
run of the base-line simulation model for selectiv-
ity function (equation 18) using the BODE model 
with a nominal value of M of 0.13. Figure 3 shows 
the profile –2 log-likelihood (L) for M along with 
the loess smoothed curve (R-function loess) 
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fitted to the values of L. The PMLE of M obtained 
by taking the minimum of the fitted loess curve 
from Figure 3 is close to 0.1. However, the MLE 
of M obtained by jointly estimating all parameters 
was 0.224 with value of L of –18 301. Figures 4 
to 6 show some important aspects of the fit using 
the jointly estimated MLEs. Figure 4 shows the 
observed and expected number of recaptures across 
years and age classes, showing the 1:1 line along 
with a Poisson regression fitted as a generalised lin-
ear model (GLM) (McCullagh and Nelder, 1989) 
through the origin. Note that this fitted GLM has 
nothing to do with the estimation of M and simply 
compares the 1:1 line to a line of best fit. Figure 5 
shows simulated and estimated YCS parameters. 
The average of the YCS parameter estimates over 
all year classes shown in Figure 9 was 1.0145. 
Figure 6 shows the actual and estimated total catch 
numbers (i.e. summed across age classes) for each 
fishing year. The estimate of K0 was 3 093 133 for 
a nominal simulated value of 2 118 444. The corre-
sponding estimates of the F’s were 0.0426, 0.0424, 
0.0429, 0.0440, 0.0432, 0.0433, 0.04239, 0.0410, 
0.04172, 0.0401, 0.0395 and 0.0395 while the esti-
mates of parameters (λ, σL, σU, σC) were 5.91, 5.08, 
10.86 and 0.309 respectively. Therefore, the nomi-
nal values of (λ, σU) of 5 and 8 were recovered quite 
well, however, σL, R0 and the F’s were substantially 
over-estimated with nominal values of 2, 2 million 
and 0.03, while Figure 6 shows that the estimated 
total catch numbers deviated systematically from 
the actual values. The profile –2 log-likelihood 
graph (Figure 3) indicates that estimation suffers 

from a degree of instability. In a well-defined max-
imum likelihood estimation problem such a curve 
is usually much smoother (as seen below for the 
CCODE model) without the high degree of oscil-
lation of values of L about the smooth (loess) fitted 
curve. Furthermore, it should achieve a PMLE of M 
(i.e. the value that minimises L) close to the MLE 
with a similar value of L in each case. 

Figures 7 to 9 show the corresponding results for 
a single base-line simulation of the CCODE model 
(M = 0.13) for selectivity function (equation 18) 
and corresponding estimation to that of Figures 3 
to 5. Figure 7 shows a PMLE of M of close to 0.146 
while the MLE was 0.135 with a similar minimum 
of L of –18 797. The estimate of K0 corresponding 
to the PMLE of M was 2 488 608, whereas the sim-
ulated value was 2 185 693. There was a very high 
positive correlation between profiled values of M 
and the corresponding estimates of K0 of 0.99. Note 
that the profile is much smoother than that obtained 
for the BODE model and simulation. The dashed 
line in Figure 7 represents an approximate 95% 
confidence bounds around the PMLE of M giving 
bounds of (0.130, 0.164) which represents, in per-
centage terms, bounds of (–10.96, 12.33). These 
bounds were obtained by comparing the increase in 
L either side of the PMLE and comparing this to the 
95% chi-square single degree of freedom deviate 
multiplied by an over-dispersion parameter. There 
was no evidence of over-dispersion (see below), so 
the over-dispersion parameter was set to 1.

Table 1: Comparison of accuracy of BODE and CCODE models/estimation methods for runs of the
corresponding simulation models with double-normal (DN) (dome-shaped) selectivity and M the 
only estimated parameter. 

Estimation 
model 

Nominal
M

Annual 
number 
releases

Statistics for 500 MLEs of M
Mean CVa 5–95% range 

in %errorb
Mean bias 

(%)c
RMSE
(%)d

BODE
Fix non_Me

0.10 1000 0.0939 0.0232 –6.92, –5.54 –6.07 6.50 
0.13 1000 0.1248 0.0261 –4.35, –3.46 –4.00 4.78 
0.16 1000 0.1558 0.0051 –2.90, –2.33 –2.60 2.65 

CCODE
Fix non_Me

0.10 1000 0.0974 0.0512 –8.45, 2.86 –2.65 5.77 
0.13 1000 0.1301 0.0307 –3.24, 3.37 0.10 3.07 
0.16 1000 0.1631 0.0245 –0.79, 4.62 1.92 3.11 

a Coefficient of variation 
b %error = 100
c Mean of %error 
d %RMSE (root mean square error) = 100 
e Estimate only M while setting other parameters to known simulation values. 

( )ˆ /M M M-

( )2 2% / 100 CVbias +
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Figure 8 shows the observed and expected num-
bers of recaptures across years and age classes, 
including the 1:1 line and the Poisson regression 
fitted as a GLM through the origin. Figure 9 shows 
the simulated and estimated YCS parameters. The 
average of the YCS parameter estimates over all 
year classes shown in Figure 9 was 1.0028. Note 
that in Figure 9, when accurate estimates of the 
simulated YCS parameter for given years cannot 
be obtained (e.g. there are too few fish captured 
and retained, and/or captured, released and recap-
tured in older age classes to give information on the 
earliest years of the series), then the estimates are 
shrunk towards their expected value of 1. The pen-
alty function encourages this desirable behaviour, 
but even when the penalty function was excluded, 
this behaviour of estimated YCS parameters was 
retained.

Figure 10 shows the estimated linear regres-
sion between residual variance and mean expected 
number of recaptures for binned values using 
bin classes for expected number of recaptures of 
5 units between 0 and 30 with upper bins of 30–40 
and >40. The residual variance was calculated as 
the variance of observed minus expected number 
of recaptures for values in the each bin (recaptures 
shown in Figure 8). A gamma GLM with identity 
link weighted by the number of residuals in each 
bin minus 1 was fitted through the origin, and the 
slope of the regression gives an estimate of the 
over-dispersion parameter. The variance and cor-
responding mean for the 0–5 bin were excluded 
from the regression to eliminate the effect on the 
regression of excess zero observed recaptures com-
bined with very low expected recaptures in this 
class due to unpopulated young (<4 years) and 
older (>25 years) age classes resulting from the 
zero or very low selectivity in these age classes 
(Figure 1). A comparison of the 1:1 line (solid line) 
in Figure 10, which represents Poisson variation, 
compared to the regression line indicates under-
dispersion relative to that expected for a Poisson 
with given expected number of recaptures. A minor 
degree of under-dispersion would be expected 
since the number of recaptures-at-age was simu-
lated as ( ), ,,

i iy a y aB G P  and therefore has a variance 
equivalent to a Poisson variance scaled by the fac-
tor ( ),1-

iy aP  where ,iy aP  for fully selected age 
classes could be as high as 0.06. 

Table 2 shows summary results of estimates of M 
for 500 simulation runs for DN selectivity function 

(equation 18) of each of the BODE and CCODE 
models and nominal M of 0.13. The results in 
Table 2 were obtained when (a) all parameters were 
estimated simultaneously, (b) the K0 para meter was 
fixed at its simulated value (which takes a random 
value for each simulation run that is lognormally 
distributed about a mean of 2 million with CV 0.3) 
for the CCODE model, (c) for the BODE model, 
all other parameters except those of the selectivity 
function were estimated, so that the λ, σL and σU 
parameters were fixed at their nominal simulation 
values, and (d) all parameters estimated simultane-
ously for the BODE model but with the LN selec-
tivity function (equation 19) fitted, representing a 
severely misspecified selectivity function.

Table 3 shows summary results of estimates of 
M for 500 simulation runs for LN selectivity func-
tion (equation 19) used for each of the BODE and 
CCODE models and nominal values of M of 0.10, 
0.13 and 0.16. The results in Table 3 were obtained 
when all parameters were estimated simultane-
ously. Table 3 also shows the results for 500 simu-
lation runs when the BODE model was fitted using 
a minor misspecification of the LN selectivity func-
tion. This misspecification involved simulating 
with equation (19) with a0 set to 3 years, as in the 
base-line simulations, but fitting the BODE model 
with a0 set to zero. This in effect extends the lower 
tail of the LN to age 1, giving higher selectivity 
for ages 1 to 3 than that simulated with the magni-
tude of this increase dependent on the estimates of 
λ and σL.

Table 4 shows summary results of estimates of 
M for 500 simulation runs for LN selectivity func-
tion (equation 19) used for each of the BODE and 
CCODE models and nominal value of M of 0.13 
for a range of levels of observational error incor-
porated in the catch-at-age numbers used in maxi-
mum likelihood estimation. Table 4 also gives cor-
responding estimates of σC for the BODE model.

Figure 11 shows the simulated and estimated 
YCS parameters for a single simulation run and 
estimation for the CCODE model incorporating the 
LN selectivity function (equation 19) in the simu-
lation model.

discussion 
Table 1 shows that for the most difficult scenario 

for successful estimation of M of dome-shaped 
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Table 3: Comparison of accuracy of BODE and CCODE models/estimation for lower-normal (LN) 
selectivity. 

Model Nominal
M 

aS ¢  Statistics for 500 MLEs of M MLE of 
K0 

mean 
bias (%)c 

Mean CVa 5–95% range 
in %errorb 

Mean 
bias (%)c 

RMSE 
(%)d 

BODE 0.10 LNf 0.0950 0.0855 –17.82, 8.95 –5.00 9.91 0.51 
BODE 0.10 LNg 0.0884 0.1501 –35.41, 12.34 –11.58 18.96 –7.30 
CCODE 0.10 LN 0.0993 0.1485 –27.64, 20.58 –0.73 14.87 15.76 
BODE 0.13 LNf 0.1266 0.0709 –12.06, 7.97 –2.64 7.57 –0.67 
BODE 0.13 LNg 0.1167 0.1082 –26.26, 5.94 –10.25 14.91 –10.55 
CCODE 0.13 LN 0.1250 0.1379 –30.41, 13.30 –3.85 14.32 13.24 
BODE 0.16 LNf 0.1542 0.0725 –12.76, 8.29 –1.75 7.46 –0.13 
BODE 0.16 LNg 0.1399 0.1024 –28.60, 0.85 –12.54 16.19 –14.86 
CCODE 0.16 LN 0.1621 0.0958 –13.68, 12.95 1.31 9.67 22.51 
a Coefficient of variation 
b %error = 100 ( )ˆ /M M M-
c Mean of %error 
d %RMSE (root mean square error) = 100 2 2(% / 100)bias CV+  
f Lower-normal selectivity equation (18) simulated and correctly specified for the fit of the BODE model. 
g Minor misspecification of fitted selectivity function. Simulation used LN selectivity (equation 18) a0 ≡ 3 but BODE 

model fitted assuming a0 ≡ 0. 
 

( )2 2% / 100 CVbias +

( )ˆ /M M M-

Table 1: Comparison of accuracy of BODE and CCODE models/estimation methods for runs of the 
corresponding simulation models with double-normal (DN) (dome-shaped) selectivity and M the 
only estimated parameter.

Estimation
model

Nominal
M

Annual
number
releases

Statistics for 500 MLEs of M
Mean CVa 5–95% range

in %errorb
Mean bias

(%)c
RMSE
(%)d

BODE
Fix non_Me

0.10 1000 0.0939 0.0232 –6.92, –5.54 –6.07 6.50
0.13 1000 0.1248 0.0261 –4.35, –3.46 –4.00 4.78
0.16 1000 0.1558 0.0051 –2.90, –2.33 –2.60 2.65

CCODE
Fix non_Me

0.10 1000 0.0974 0.0512 –8.45, 2.86 –2.65 5.77
0.13 1000 0.1301 0.0307 –3.24, 3.37 0.10 3.07
0.16 1000 0.1631 0.0245 –0.79, 4.62 1.92 3.11

a Coefficient of variation
b %error = 100
c Mean of %error
d %RMSE (root mean square error) = 100
e Estimate only M while setting other parameters to known simulation values.

 ˆ /M M M

 2 2% / 100 CVbias   2 2% / 100 CVbias 

 2 2% / 100 CVbias 

 2 2% / 100 CVbias 

Table 2: Comparison of accuracy of BODE and CCODE models/estimation methods estimating combinations 
of all parameters for double-normal (DN) selectivity and nominal M of 0.13.

Model Fixeda

parameter
aS  Statistics for 500 MLEs of M MLE of

K0
mean

bias (%)d

Mean CVb 5–95% range
in %errorc

Mean
bias (%)d

RMSE
(%)e

CCODE K0 DNf 0.1316 0.0871 –14.24, 14.14 1.25 8.80 na
BODE λ, σL, σU DNf 0.1228 0.0837 –16.23, 5.91 –5.51 10.02 5.77
BODE None DNf 0.1601 0.2858 –42.07, 53.85 23.13 36.77 13.75
BODE None DNh 0.1889 0.0978 17.33, 53.84 45.30 46.34 11.90
CCODE None DNf 0.1548 0.1005 0.09, 35.65 19.08 21.56 25.56
a Parameters set to known simulation values
b Coefficient of variation
c %error = 100  ˆ /M M M
d Mean of %error
e %RMSE (root mean square error) = 100 2 2(% / 100) CVbias 
f Double normal, equation (18) 
h Fitted selectivity function severely misspecified. Simulation used DN selectivity (equation 18) with BODE model 

fitted assuming lower-normal (LN) selectivity (equation 19).

( )ˆ /M M M-

( )2 2% / 100 CVbias +
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selectivity, both BODE and CCODE models give 
accurate estimates of M when this was the only 
parameter estimated. The estimates of M for the 
BODE model were more precise than those of the 
CCODE model but had a greater bias. Overall, the 
accuracy as measured by the percent root mean 
square error (%RMSE, Table 1) was similar for the 
two models ranging from 3% to 7%. 

To investigate the estimation of M when all 
parameters were simultaneously estimated, ini-
tially a single simulation run for each model with 
nominal M of 0.13 and DN selectivity (equa-
tion 18) was studied in detail. Both joint MLE and 
PMLE were obtained. The profile maximum likeli-
hood approach ensures that the full range of M is 
investigated and that this is desirable for achieving 
a global minimum for L. The values of L when M 
was profiled were much better behaved (i.e. smooth 
and quadratic in shape) for the CCODE model 
(Figure 7) than the BODE model (Figure 3). The 
nominal value of M is at the lower end of the 95% 
confidence bound shown in Figure 7. The profile 
likelihood is therefore a useful indicator of the 
degree of success of estimation even if some bias 
remains. 

The results in Table 2 for 500 simulation runs 
and a single nominal value of M of 0.13 for the 
BODE model, when DN selectivity (equation 18) 
was simulated and correctly specified in the estima-
tion algorithm, show that if the selectivity function 
parameters are fixed at their simulated values, then 
approximately unbiased and reasonably precise 
estimates of M were achieved. However, when all 
parameters were simultaneously estimated, there 
was substantial positive bias and poor precision 
for the estimates of M. This became more extreme 
when the functional form of selectivity was mis-
specified by simulating with selectivity function 
(equation 18) but replacing this selectivity function 
with function (equation 19) in the estimation.

Similarly, for the CCODE model, when K0 was 
fixed at its nominal simulated value and all other 
parameters estimated (i.e. M and the YCS para-
meters) the CCODE model/estimation gave close 
to unbiased and reasonably precise estimates of M. 
However, when all parameters, including K0, were 
estimated the bias was also positive and substantial 
although improved compared to the BODE model 

in terms of both bias and precision. There was a 
corresponding substantial positive bias in the joint 
estimate of K0. 

Table 3 shows results for nominal values of M 
of 0.10, 0.13 and 0.16 when LN selectivity (equa-
tion 19) was simulated. Both BODE and CCODE 
models gave close to unbiased and reasonably pre-
cise (CVs of 0.07 to 0.14) estimates of M for all 
three nominal values of M when all parameters for 
each model were simultaneously estimated. The 
precision of the BODE model was substantially 
better than the CCODE model when the selectiv-
ity function was correctly specified. However, for 
all three nominal values of M when the minor mis-
specification of the selectivity function was applied, 
the precision was only slightly better than that of 
the CCODE model while the bias was considera-
bly greater, which, in combination, gave a slightly 
better %RMSE for the CCODE model estimates.

Table 4 shows results for a nominal value of 
M of 0.13 when LN selectivity (equation 19) was 
simulated and catch-at-age numbers were per-
turbed to account for observational error. For com-
parison, the corresponding results obtained when 
zero observational error was assumed have been 
reproduced from Table 3. It can be seen that for 
the BODE model, accounting for variations due to 
sampling 500 simulation runs, there is no detect-
able additional bias or imprecision in estimates of 
M across the range of values of CV and ESS. Note 
that the estimate of process error variance, 2σ

C
, in 

equation (17) has ‘absorbed’ the additional vari-
ance associated with observational error. The esti-
mates of σC in Table 4 demonstrate this with the 
reduction in ESS more influential than the increase 
in CV on the additional variance absorbed by the 
estimate of σC. This follows since annual estimates 
of F can largely absorb annual variation in total 
catch numbers arising from any CV imposed as a 
component of observational error. 

For the CCODE model, the additional bias and 
imprecision due to observational error is detecta-
ble but still represents a relatively minor increase, 
with the maximum value of the increase of close to 
2% when the CVs in Table 4 are expressed as per-
centages. The median of the estimates of M (not 
given in Table 4) was much closer to the nominal 
value of 0.13 than the mean with the difference 
due to the greater degree of negative skew of esti-
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mates compared to the BODE model as seen in the 
5% and 95% quantiles for percent error shown in 
Table 4. 

Figure 11 shows that YCS parameter estimates 
account for more of the variation in the years well 
before the start of the fishery in 2010 when LN 
selectivity is simulated than the corresponding esti-
mates for the DN selectivity function, since this 
last selectivity function only obtains a very small 
amount of information about these cohorts due 
to the very few fish above age 20 that are caught 
(Figure 1).

Polacheck et al. (2006) investigate the issue of 
estimation of M using catch-at-age and aged recap-
ture data using a similar approach to that of the 
BODE model. Instead of the lognormal likelihood 
for the catch-at-age numbers they use a Gaussian 
log-likelihood which, for a given fishing year, is 
given by

( ) ( ) ( )( )221
2 2

1log log σ
σ

ì üï ïï ï= - + -í ýï ïï ïî þ
åC i i i

ii
L C E C

 
where the i subscript refers to the age class. 
However, they found that they could not estimate 

2σi  even if a common-across-ages value, 2 2σ σºi , 
was assumed and in their application they fixed the 
coefficient of variation CV = σi/E(Ci) to 0.3. Using 
a CV in this way makes the above component of 
the log-likelihood more similar to that correspond-
ing to equation (17). The difficulty in estimating 
σ2 is related to the way they ‘saturated’ the model 
for catch numbers-at-age by fishing year with fish-
ing mortality rate parameters. Assuming constant 
fishing selectivity allowed the corresponding CV 
here (i.e. σC) to be successfully estimated by the 
BODE model, as shown in the example simula-
tion/estimation presented where the estimate was 
0.309. Additionally, the simulations incorporat-
ing observational error showed how this para meter 
‘absorbs’ this additional error to that of process 
error (Table 4). 

The BODE model requires a number of strong 
assumptions, in particular, that numbers caught-
at-age can be adequately modelled using the 
F-parameter estimates and the selectivity function 
which in this last case is assumed to maintain the 
same functional form and parameter values across 
fishing years. The benefit of this approach is that, 
if these assumptions are satisfied and any variation 

across years in the selectivity parameters is ran-
dom, then to the degree that such random varia-
tion is small, information in the numbers caught-at-
age on YCS parameter values can be exploited by 
this approach. This explains why the BODE model 
gave superior precision to the CCODE model when 
sigmoidally shaped (LN) selectivity was simulated. 
However, this advantage over the CCODE model 
was only realised when the form of selectivity was 
known and correctly specified in the BODE model 
fitting algorithm (Table 3).

Basing estimation of M on equation (7) (or (8)), 
the CCODE model has the advantage that such 
estimation only requires simultaneous estimates 
of M, K0 and the A + nf – 1 YCS parameters. It 
follows that, since the numbers caught-at-age are 
known and treated as known in the CCODE model, 
there is no need to have competing components in 
the log-likelihood, one for the catch data and one 
for numbers of recaptures, and avoids the resultant 
difficulty of correctly weighting each component. 
This allows profile likelihood confidence intervals 
for M to be easily constructed. The disadvantage 
of the CCODE model is that the estimate of M is 
highly positively correlated with the estimate of K0, 
which, like selectivity, is another quantity that is 
difficult to independently estimate.

A general conclusion is therefore that the ‘fully 
parametric’ BODE model gives improved preci-
sion compared to the ‘semi-parametric’ CCODE 
model but performance quickly degrades when the 
selectivity function is misspecified. Since fishing 
selectivity is defined with reference to the unknown 
age structure in the population, yet is at the same 
time used to estimate this age structure, it is a dif-
ficult quantity to specify and validate as a function 
of age. The results in Table 3 showed that, when 
a minor misspecification of the functional form of 
selectivity was fitted using the BODE model, the 
above advantage over the CCODE model disap-
peared. Therefore, an advantage of the CCODE 
model is that it is robust to the unknown form of 
the selectivity function as long as the older aged 
fish are well selected (i.e. both models performed 
poorly when this was not the case). 

Both models performed poorly when older age 
classes were not well selected, as quantified using 
the DN selectivity function (equation 18) and the 
relatively small value of σU (i.e. the older age classes 
have selectivity closer to 1 as σU is increased). For 
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such domed-shaped selectivity the inability for the 
gear to catch older (and therefore larger) fish sug-
gests that they are not available to be caught by 
the gear which could be explained by these fish 
having emigrated from the study area (i.e. fishing 
ground). When the degree of this unavailability or 
‘emigration’ was pre-specified by fixing the selec-
tivity function parameters for the BODE model, or 
the K0 parameter for the CCODE model, at their 
simulated values, estimation of M was reasonably 
accurate (Table 2). However, the property of both 
models to substantially over-estimate M when this 
type of selectivity was simulated, and all para-
meters simultaneously estimated, suggests that a 
lack of fish caught in older age classes was attrib-
uted by the estimation to higher natural mortal-
ity and less to what was actually simulated, which 
was a ‘cryptic biomass’ of older fish. This indicates 
that in the case of dome-shaped selectivity and the 
BODE model that selectivity parameter estimates 
are confounded with the estimate for M. For the 
CCODE model this confounding is between the 
estimates of K0 and M. 

In contrast, when sigmoidally shaped selectiv-
ity in the form of equation (18) was simulated, this 
problem did not occur and both models recovered 
the simulated value of M reasonably accurately, 
with small bias and quite high precision, with CVs 
ranging between 0.07 and 0.14 (Tables 3 and 4).

As noted earlier, the CCODE model does not 
account for the fact that in practice catch-at-age 
numbers are not known exactly. On the other hand, 
the BODE model assumes the estimation errors are 
purely ‘process’ errors (i.e. model lack-of-fit), how-
ever, these errors will be ‘polluted’ with observa-
tional error (Table 4). Therefore, the BODE model/
estimation as described does not allow a rigorous 
decomposition of the total variance into the appro-
priate contributions from the different sources of 
error. However, given a sufficiently large sample 
of random lengths and individual weights, com-
bined with a sufficiently large sub-sample of aged 
fish, the simulations that included realistic levels 
of observational error indicated that the bias and 
imprecision in estimates of M attributable to obser-
vational error in catch-at-age numbers (Table 4) is 
not a significant issue relative to other sources of 
uncertainty, such as the form of selectivity func-
tion.

The values of ESS for catch-at-age proportions 
studied of 1 000 and 1 500 fish may seem large, 
however, a number of factors make these numbers 
realistic for the target fishery described in Candy 
et al. (2011). Table 1 in Candy et al. (2011) doc-
uments that over 11 years in this fishery some 
158 616 fish were measured for length and 4 447 
of these were aged. Further, using the method of 
Candy (2009), Candy and Welsford (2009) esti-
mate the total of ESS over years 1998 to 2008 for 
this fishery at 27 785 (Table A1.5 of Candy and 
Welsford, 2009). Note also that the calculation of 
ESS has not been reduced by the effect of pro-
cess error (Candy, 2008). This is because there is 
no process error involved in determining observa-
tional error variance for the catch-at-age numbers 
since it is calculated before any model of these 
numbers is fitted. To see this, note that if all fish 
in the catch were counted and correctly aged there 
would be zero observational error irrespective of 
model-based process error. Also, the combined 
effect on observational error of both the ESS and 
the CV that was placed on total catch numbers per 
year of 0.1 and 0.2 (assuming a lognormal distribu-
tion) should be considered. These values of CV are 
at the larger end of the scale, considering how total 
catch numbers per year are calculated (i.e. a census 
of catch weights, a large sample of lengths to deter-
mine mean length per cruise, and a typically very 
precise relationship between individual fish weight 
and length). Figure 2 shows that considerable vari-
ation in perturbed catch-at-age numbers (i.e. with 
observational error) about assumed-known catch-
at-age numbers has been generated. Typically, the 
random length-frequency samples are large while 
the sub-sample sizes of aged fish are much smaller. 
The annual ESS for the catch-at-age proportions 
sits somewhere between the size of the ESS for 
the length samples and the size of the aged sam-
ple, given that age–length keys are applied. The 
stronger the relationship between length and age, 
the closer the catch-at-age ESS will be to that of the 
length-frequency ESS. 

Even though the issue of such observational 
error should not be exaggerated, the BODE model 
showed less effect of these errors on M-estimation 
when these errors were modelled in this simpli-
fied approach. To generalise the BODE model 
to directly incorporate all the abovementioned 
sources of data and their sampling and/or measure-
ment errors, is a much more complex proposition 
than that considered here. If sample sizes are not 
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adequate to allow these errors to be ignored, then 
a simulation-based bias adjustment as described 
above is a simple, but numerically intensive, solu-
tion (Carroll et al., 1995; see also Candy, 2002).

As mentioned in the Introduction, the assump-
tion of a constant M across all age classes, as 
applied in the simulation studies, is unrealistic. 
However, as discussed earlier, the –2 log-likeli-
hood (equation 16) concentrates most of the infor-
mation on M from the well-populated age classes, 
in terms of catch, release and recapture numbers. 
Therefore, although a constant M is assumed, it is 
the value most applicable to these well-populated 
age classes. As a result, the potential for under-
estimation of M for the youngest age classes that 
are not vulnerable to fishing would lead to some 
bias in estimates of population size. However, if 
there are few such age classes before they become 
vulnerable to fishing, the size of this effect should 
be relatively minor.

In addition to the above caveats, in practice, 
only the length of released fish that are not recap-
tured can be measured. So although the simulation 
study assumed numbers-at-age that were released 
were known without error, in practice these num-
bers must also be estimated using age–length keys. 
Other complexities in applying these models in 
practice include the difficulty in accounting for tag-
induced mortality, tag loss rates (mentioned previ-
ously), tag reporting rates, and the potentially sub-
stantial effect of IUU catch. Candy et al. (2011) 
applied the estimation methods developed in this 
study to actual data from the main trawl ground for 
the Heard and McDonald Islands Patagonian tooth-
fish fishery (Candy and Constable, 2008) for fish-
ing years 1998 to 2008. 
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Figure 1: Double-normal (DN) (solid line) and lower-normal (LN) 
(dashed-line) selectivity functions, ¢aS , with a lower 
threshold of age 3 above which selectivity is greater than 
zero. Curves correspond to parameter values used in base-
line simulations. 
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Figure 2: Example of simulated numbers of catch-at-age for each fishing year (line) and 
corresponding numbers perturbed by observational error (points) with CV of 0.2 and 
effective sample size (ESS) of 1 000 using the CCODE model and lower-normal (LN) 
selectivity (equation 19).
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Figure 3: Profile –2 log-likelihood for M for an individual base-line 
simulation (M = 0.13) with double-normal (DN) selectivity 
(equation 18) for the BODE model showing the loess smoothed 
curve (R-function loess) fitted to the values of L.
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Figure 4: Observed and expected (i.e. estimated) number of recaptures 
across years and age classes for an individual base-line 
simulation (M = 0.13) with double-normal (DN) selectivity 
(equation 18) for the BODE model at the maximum likelihood 
estimate (MLE) of 0.224. The 1:1 line (solid line) and fitted 
GLM regression line (dashed line) are shown.
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Figure 5: Estimated year-class strength (YCS) with year classes shown as 
calendar years for an individual base-line simulation (M = 0.13) 
with double-normal (DN) selectivity (equation 18) for the BODE 
model at the maximum likelihood estimate (MLE) estimate of 0.224 
showing simulated values (circles, solid line) and estimated values 
(dashed line).
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Figure 6: Actual (circles, solid line) and estimated (triangles, dashed 
line) total catch number for an individual base-line simulation 
(M = 0.13) with double-normal (DN) selectivity (equation 18) 
for the BODE model at the maximum likelihood estimate 
(MLE) of 0.224. 
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Figure 7: Profile –2 log-likelihood for M for an individual base-line 
simulation (M = 0.13) with double-normal (DN) selectivity 
(equation 18) for the CCODE model showing the loess smoothed 
curve (R-function loess) fitted to the values of L. The dashed 
line delineates the approximate 95% confidence limit of the 
maximum likelihood estimate (MLE) of M assuming Poisson 
dispersion.
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Figure 8: Observed and expected (i.e. estimated) number of recaptures 
across years and age classes for an individual base-line 
simulation (M = 0.13) with double-normal (DN) selectivity 
(equation 18) for the CCODE model at the maximum 
likelihood estimate (MLE) of 0.135. The 1:1 line (solid line) 
and fitted GLM regression line (dashed line) are shown.
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Figure 9: Estimated year-class strength (YCS) with year classes shown as 
calendar years for an individual base-line simulation (M = 0.13) with 
double-normal (DN) selectivity (equation 18) for the CCODE model at 
the maximum likelihood estimate (MLE) of 0.135 showing simulated 
values (circles, solid line) and estimated values (dashed line).
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Figure 10: Estimated linear regression (dashed line) between residual 
variance and mean expected number of recaptures for binned 
values (points) showing 1:1 line (solid line) for an individual 
base-line simulation (M = 0.13) with double-normal (DN) 
selectivity (equation 18) for the CCODE model at the maximum 
likelihood estimate (MLE) of 0.135. The 1:1 line represents 
Poisson variation.
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Figure 11: Estimated year-class strength (YCS) for an individual simulation 
(M = 0.13) with lower-normal (LN) selectivity (equation 19) for the 
CCODE model showing simulated values (circles, solid line) and 
estimated values (dashed line).
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Appendix 1

sCaling thE sElECtivity funCtion

It is appropriate to define 
1

/
=

¢ ¢= å A
a a aa

S AS S , where there are A age-classes considered for the popu-

lation so that Sa has a mean of 1 rather than a maximum of 1, with the latter case given by ¢=a aS S . This 

is because Ft is applied to the total population and not to the vulnerable population given by ,¢å a t aa
S N . 

That a mean of Sa of 1 is a more sensible constraint than max(Sa) = 1, can be seen by considering the 

approximation of ( ){ }1 exp- - -
+

a t
a t

a t

S F S F M
M S F

 by SaFt. This approximation is good for SaFt ranging 

from 0.0 to 0.05, for example for M = 0.14 and SaFt = 0.05 then ( ){ }1 exp- - -
+

a t
a t

a t

S F S F M
M S F

 is given 

by 0.046 while for SaFt = 0.01 the corresponding value is 0.0093. Therefore the catch can be approximated 

by SaFtNt,a and therefore if max(Sa) is 1 so that ¢=a aS S  and , ,¢=å åt a t a t aa a
C F S N  then Ft is the fishing 

mortality rate relative to the fraction (≤1) of the population vulnerable to fishing mortality which is not how 

Ft is defined in equations (1) and (4). Note that scaling the Sa so that their mean is 1 has the effect that Sa 

will depend on the maximum number of age classes considered. Therefore, for the upper age classes that 

are sparsely populated, the point at which a maximum age, A, is chosen for input to the model may seem 

unnecessarily arbitrary. However, when the Ft’s are estimated they will subsume any small differences in 

scaling due to different choices of A within a reasonable range (i.e. the range of A should cover all age 

classes expected to be present in the population). Given this caveat, the estimated catch will be unaffected 

by the value used for A.
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Appendix 2

CalCulation of numBEr of fish availaBlE for rECapturE

The calculation of ,iy aG  is given as follows:

( ) ( ){ }1

, ,

, , , ,1

, 1

exp , 2,...,
-=

= =

= - - - =å
i i

i v v i

y a y a

i
y a y a y y a i v fv

G V i

G V r M y y i n  (A2.1)

where ,iy aV  is the number of releases of aged a fish in fishing year yi. In order for equation (A2.1) to give a 
sensible results, the , ,v iy y ar  must be set to zero for the nonsensical values in the case of ν > i. This is required 
to define 

1, ,-v iy y ar  when ν = i in equation (A2.1) in order for this equation to be expressed as simply as 
given above. Only recaptures in the previous year are removed from ,iy aV  in equation (A2.1). However, fish 
released in year yi are considered available for recapture in the same year. This assumes instantaneous and 
complete mixing of tagged fish with the untagged fish population. In practice, to allow time for adequate 
mixing, the number of releases by age class which are recaptured within a fixed time interval, which is 
preset as the minimum required to allow such mixing, should be removed from ,iy aV  and , ,v iy y ar  before ,iy aR  
and ,iy aG  are calculated. For example, Candy et al. (2011) apply a fixed time interval of 60 days. Note also 
in equation (A2.1) that natural mortality is applied only to the component of released fish that have not 
been recaptured by year yi (i.e. 

1, , ,-
-

v v iy a y y aV r ) and that the subscripted age a for ,iy aG  and 
1, ,-v iy y ar  refers 

to the age-at-recapture while for ,iy aV  it refers to the age of release. These are necessary logical constraints 
for constructing ,iy aG . 

The above value of ,iy aG  given by equation (A2.1) assumes zero tagging-induced mortality, zero tag-
loss rate and 100% detection of tags within catches. Equation (A2.1) needs to be modified if any of these 
assumptions are unrealistic. If a single dart tag is used, equation (A2.1) is easily modified by replacing M 
by M + T where T is the annual tag-loss rate. However, double-tagging is more complex to take into account 
(see, e.g., Appendix D of Leigh et al., 2006 or Appendix 1 of Candy and Constable, 2008).
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Appendix 3

CalCulation of numBEr of fish at agE By fishing yEar in thE population

For the BODE model, given K0 and the combined set of YCS parameters, { },Γ Γ Γ= pf f  with YCS 
years of { },¢ = pf fy y y  and fishing years ( )1, fy y  where y1 is the first year of fishing then ,iy aN  is obtained 
by summing over cohorts, indexed by c with corresponding year class ¢cy  ( i.e. were recruited at age-1 in 
year ¢cy ), that are present in fishing year ( )1,=i f i

y y y  to give

( ) ( ){ }1
, 01 1

1 exp 1 ; 1,...,Γ δ
+ -

¢= =
¢= Î + - - - - =å åi c

a i i
y a i c a h fyc h

N K y y a S F M a i n  (A3.1)

where ( ).δ  is the Dirac delta function which takes the value 1 if the argument is true and zero otherwise. 
Equation (A3.1) can be expressed as a difference equation but since a product of exponentials can be 
expressed as the exponential of the sum of arguments, the ,iy aN  can be projected forward to any future fish-
ing year in a single step. It can be seen from equation (A3.1) that a decrease in the estimates of both the F’s 
and M can be compensated for by a decrease in the estimate of K0 or, alternatively, a general increase in the 
estimate of Sa (via the estimates of the parameters of the selectivity function) and vice versa.

For the CCODE model the numbers remaining in each cohort, c, where c = 1,…,A + nf – 1, in each fish-
ing year, ,¢iy cN , where these cohorts can logically be present, must be calculated and then converted to the 
numbers-at-age in each fishing year, ,iy aN . Therefore, for fishing year and cohort combinations and corre-
sponding age of cohort, firstly for the year when a given cohort is first fished ,¢iy cN  is given by

( ){ } ( ){ }
( ) ( )

, 0 ,exp 1 1 exp /

1,..., ; ,..., 1 ; 1 ;

Γ ¢¢ ¢ ¢= - - - - -

¢ ¢= = + - = - + ³
i icy c y ay

f i c i c

N K M a C M M

i n c i A i a y y y y  (A3.2a)

while for fishing year and cohort combinations where the cohort is fished in subsequent years

( ) ( ){ }
( )

, 1, ,exp 1 exp /

2,..., ; ,..., 1 ; ; .
-¢ ¢ ¢ ¢= - - - -

¢ ¢= = + - = - + ³
i i iy c y c y a

f i c i c

N N M C M M

i n c i A i a y y i y y  (A3.2b)

Then converting to number of individuals in the population in fishing year yi and age a gives

( )
, ,

1,..., ; ,..., 1 ; ; .

¢=

¢ ¢= = + - = - + ³
i iy a y c

f i c i c

N N

i n c i A i a y y i y y  (A3.2c)
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Appendix 4

simulating thE numBEr of rECapturEs

The random variable with sample realisation , ,v iy y ar  is assumed to be distributed as binomial 
( ), , ,,

v i iy y a y aB g P  and correspondingly the random variable with sample realisation ,iy aR  is assumed to be 
distributed as binomial ( ), ,,

i iy a y aB G P . This last binomial is not the same as that described earlier in the 
main text, ( ), ,,τ

i iy a y aB C , as an approximation to the hypergeometric distribution since ( ), ,,τ
i iy a y aB C  can-

not be obtained as the sum across release years of the independent binomials given by ( ), , ,,τ¢
i v iy a y y aB C , 

where , , , , ,/τ¢ =
v i v i iy y a y y a y ag N . This is because the , ,τ¢

v iy y a take different values across release years and 
therefore the convolution of the , ,v iy y ar  is not the binomial ( ), ,,τ

i iy a y aB C . These binomials have the same 
expected value but slightly different variances with ( ), ,,

i iy a y aB G P  having a lower variance since, although 
( ),1 τ-

iy a  and ( ),1-
iy aP  are both close to 1, the former is closer. In either case these binomials are approxi-

mations to the theoretically ideal distribution, have the same expected value, and similar variance.




