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Abstract

There is an enormous amount of data on Southern Ocean (SO) zooplankton, mostly 
on their distribution with a minority addressing rate processes. This review aims to 
summarise these data and show where it resides, to assist SO food-web modellers or 
those with limited specialist knowledge of SO zooplankton. First, a brief overview is 
provided of the diversity and basic biology of SO zooplankton, with an emphasis on 
abundance, distribution and feeding. Second, advice is provided on the uses, strengths 
and limitations of zooplankton data as inputs to SO data compilations or food-web 
models. Copepods overall comprise >75% of the SO zooplankton biomass (excluding 
Euphausia superba). Total mesozooplankton biomass density differs little between the 
Antarctic sectors, but latitudinally it is maximal in the Polar Frontal Zone and declines to 
the north and south. Those compiling data on numerical density (no. m–2 or no. m–3) need 
to allow for differences in the extent of identification of early larval stages. Likewise, the 
time of year, depth of sampling and mesh size of sampler greatly influence the recorded 
abundance, since the populations can make seasonal vertical migrations and their pulsed 
reproduction causes great seasonal changes in size structure and abundance. Other issues 
are specific to polar environments, for example, lipid storage which leads to significantly 
different length-mass and mass-rate relationships than are reported in global literature 
compilations. Likewise, stenothermy (narrow temperature tolerance) means that fixed 
(Q10-type) temperature relationships based on global literature compilations must be 
applied with great caution in SO-specific studies. Protozoa/micrometazoa (<200 μm) are 
the main grazers in the SO, since mesozooplankton typically remove <30% of primary 
production. This emphasises the dominant role of microbial food chains involving small 
metazoans, relative to the classic short diatom-krill-whale type food chains. Even within 
regions of abundant krill, copepod production in summer roughly triples that of postlarval 
E. superba. This fact reflects a large flow of energy through multiple trophic levels, 
via copepods and their major invertebrate predators such as other predatory copepods, 
chaetognaths, small omnivorous euphausiids, amphipods up to myctophid fish and birds.
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Introduction
During the 80-year history of active research 

on Southern Ocean (SO) zooplankton, several 
thousand papers have been published in a wide 
variety of journals. The data behind these publica-
tions are mainly outside of central databases, being 
scattered widely in publications and logbooks and 
largely unsynthesised. Given the increasing efforts 
to compile zooplankton data for databases, meta-
analyses and models, there is a need to summarise 
the plethora of data, with their associated caveats, 
to a non-specialised user group. 

This review is aimed primarily at modellers, 
data compilers, or those outside SO- or zooplank-
ton research fields. First, the basic biology of the 
component taxa is summarised, with an emphasis 
on their diet and feeding. Second, the main fea-
tures of bulk zooplankton properties, the seasonal 
and circumpolar distribution of total biomass and 
numerical density are described. Third, insights are 
provided for modellers of caveats in data compi-
lations and in the functional rate processes avail-
able for SO zooplankton. The large bibliography 
includes key references from outside the Web of 
Knowledge search arena, and might be a useful 
starting point for literature searches. For more 
detailed reviews of ecology, life cycles and controls 
on distribution (including group-specific ecology 
and bipolar comparisons) the reader is referred to 
Conover and Huntley (1991), Smith and Schnack-
Schiel (1990), Atkinson (1998), Pakhomov et al. 
(2002a) and Hunt et al. (2008). 

The review is structured firstly around a brief 
introduction to the main epipelagic taxa that domi-
nate SO zooplankton. Euphausia superba has been 
reviewed recently (Siegel, 2005; Nicol, 2006; 
Atkinson et al., 2008) and is included here for com-
parison. The issue of sampling method is critical to 
solid and comparable data. The space-time distribu-
tion of total meso-and macrozooplankton biomass 
and abundance is then summarised. The last section 
summarises diet, feeding, key rate processes such 
as production and functional relationships to food 
and temperature. Functional relationships are in 
great demand by modellers but seldom produced 
by SO ecologists. It is therefore shown where these 
limited data lie and, where non-SO-specific data 
need to be used instead, and advice is provided on 
the use of globally derived relationships from the 
literature.

Overview of the major zooplankton groups
Zooplankton include a great diversity of plank-

tonic invertebrate metazoans of contrasting body 
form and life style. Common zooplankton in the 
SO range over four orders of magnitude in body 
size, from tiny (<100 μm) copepod nauplii to giant 
(well over 1 m) jellyfish or salp chains. Their gen-
eration times can range from a few days to several 
years (Figure 1). Typically, gelatinous or jelly-like 
organisms that filter or ambush prey tend to have 
more energy efficient lifestyles than rapidly mov-
ing crustaceans and consequently tend to have 
faster growth rates for a given size (Clarke and 
Peck, 1991). 

This review defines mesozooplankton (mainly 
copepods) as those caught with the 200 μm mesh 
ring net, Bongo net or Continuous Plankton 
Recorder (CPR) (270 μm mesh) and macrozoo-
plankton as the larger organisms (e.g. amphipods, 
small euphausiid species, salps, large chaetognaths, 
cnidarians etc.) that are more effectively sampled 
with commonly used 4 mm mesh trawls such as 
the 8 m2 rectangular midwater trawl (RMT 8). The 
main taxa are described below, particularly their 
feeding ecology and how they fit into the food web. 
The ‘big three’, namely copepods, euphausiids 
and salps, are addressed first, before summarising 
briefly the other taxa that are regionally important.

Copepods

As in other oceans, copepods dominate the total 
mesozooplankton across most of the SO in terms of 
biomass, abundance, grazing activity and second-
ary production. They typically comprise >75% of 
biomass and are only exceeded by E. superba or 
salps in some subregions in some years (Conover 
and Huntley, 1991; Voronina, 1998; Pakhomov et 
al., 2002a; Shreeve et al., 2005). Their great range 
in body length (100 μm to 10 mm) and feeding 
habits (on ~5 μm autotrophs up to other copepods 
several mm long) means that this single group con-
tributes to the food web in multiple ways.

Epipelagic copepods have a broadly similar 
body form and lifestyle, with a series of nauplii 
and copepodite stages usually feeding in the upper 
reaches of the water column in the productive sea-
son, followed by reproducing adults. Most studies 
address the species that are large and dominate 
biomass, namely Calanoides acutus, Rhincalanus 
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gigas, Calanus simillimus, C. propinquus and Met-
ridia gerlachei. Their life cycles involve reproduc-
tion and early larvae feeding in summer, with later 
lipid-rich stages less active, spending the winter 
in diapause, or at least with reduced activity, and 
often at depth (Andrews, 1966; Ommanney, 1936; 
Voronina, 1970). Later workers emphasised the 
considerable variability even within these few 
species (Atkinson, 1991; Schnack-Schiel et al., 
1991; Schnack-Schiel and Hagen, 1995; Ward et 
al., 1997) and that true winter diapause-at-depth 
was actually the exception, being probably per-
formed strictly only by C. acutus (Schnack-Schiel 
and Hagen, 1995; Atkinson, 1998; Pasternak and 
Schnack-Schiel, 2001). 

A global analysis of copepod diets showed that 
ciliates comprise on average ~30% of the ciliate 
plus phytoplankton diet component (Calbet and 
Saiz, 2005). This underlines the importance of 
alternative (non-diatom) energy pathways to cope-
pods. Much of the work on SO copepod feeding 

has been on the biomass dominants plus the impor-
tant small species Oithona similis. The general con-
sensus is that C. acutus and R. gigas are the most 
‘herbivorous’ species of this group (Hopkins and 
Torres, 1989; Atkinson et al., 1996a; Schmidt et al., 
2003). They are suspension feeders that ingest both 
motile and non-motile particles broadly accord-
ing to their abundance (Schnack, 1985; Atkinson 
et al., 1996a). Despite the very large and colonial 
diatoms that characterise SO blooms, these indeed 
appear to be ingestable by the copepods, although 
food size increases with copepod size (Atkinson, 
1994). Calanus simillimus, C. propinquus and 
M. gerlachei appear to be slightly more omnivo-
rous, possibly able to switch between suspen-
sion and raptorial feeding as does Acartia tonsa 
(Kiørboe et al., 1996). Consequently they ingest 
a higher proportion of motile prey (Hopkins and 
Torres, 1989; Atkinson, 1995; Burghart et al., 1999; 
Schmidt et al., 2003). Further along the spectrum 
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Figure 1:	 Schematic representation of the relationship between zooplankton 
size and growth rates. The solid bounded ellipse provides a 
representation of the organisms caught with a 200 μm mesh size 
Bongo or ring net (here defined as mesozooplankton). The broken 
ellipse represents those caught with an RMT8 net (here defined as 
macroplankton). The intercept represents the size of organisms 
typically caught by both nets but under-represented in both of their 
catches due to avoidance and net mesh selection. The gelatinous 
ambush or filter feeding members such as medusae, salps, small 
pteropods and appendicularians often have faster growth rates than 
crustaceans of similar size.
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is Paraeuchaeta antarctica, a cruising raptor and 
predator of other copepods (Yen, 1991; Øresland 
and Ward, 1993).

Considerable work has now been done on the 
carbon budgets of these largest copepod species. 
In productive environments, daily expenditure for 
egg production of C. acutus, C. simillimus and 
C. propinquus is 1.6–4.5% (Lopez et al., 1993; 
Kosobokova, 1994; Ward and Shreeve, 1995) 
with 3.4–3.8% of their body C lost via respiration. 
This fits broadly with measured ingestion rates 
of 10–11% (Atkinson et al., 1996a). The larger 
R. gigas seems to be a less active, efficient species, 
with corresponding energy budget terms perhaps 
one-third to one-half of those above.

A change in the view of SO copepods in the last 
20 years has followed an increase in the use of fine-
mesh nets and in experimentation. Small copepods, 
such as O. similis, Ctenocalanus citer and Micro-
calanus pygmaeus, were realised to be both highly 
abundant and important in energy flow (Schnack 
et al., 1985; Schnack-Schiel and Mizdalski, 1994; 
Atkinson, 1996; Atkinson, 1998; Dubischar et al., 
2002; Ward and Hirst, 2007). Their life cycles and 
distributions do not follow the pattern of the bio-
mass dominants (Metz, 1996) and their role in the 
food web is still being discovered. Oithona similis 
can exploit protozoans and detrital food colonised 
by bacteria as well as large diatoms (Lonsdale et al., 
2000; Atkinson, 1996; Pond and Ward, 2011). Its 
feeding, growth and thus production may therefore 
be less seasonal than those of more herbivorous 
species (Fransz and Gonzalez, 1995). Ctenoca-
lanus citer has been proposed to exploit sea-ice and 
thus feed throughout the dark season (Pasternak 
and Schnack-Schiel, 2007). The ice-specialist 
copepods Stephos longipes and Paralabidocera 
antarctica have had their life cycles documented 
(Schnack-Schiel et al., 1995; Tanimura et al., 1996) 
but the extent to which C. propinquus and smaller 
copepods interact with sea-ice is still unclear. 

Nauplii and early copepodite (larval) stages are 
often hard to identify and experiment on, so most 
rate process work has focussed on CV and adult 
stages, as well as on the larger species. Because 
small organisms have higher feeding, respiration 
and growth rates on a mass-specific basis, simple 
scaling-up of the energy budget terms outlined 
above, to the whole copepod assemblage will 
lead to underestimates. For this reason, allometric 

considerations, as well as appropriate sampling 
gear, are needed to estimate the total contribution 
of the copepod group (see ‘Energy flows through 
zooplankton’ section).

Euphausiids

Euphausiids (often given the generic name 
‘krill’) are particularly important in the more pro-
ductive SO systems (e.g. Hunt et al., 2011; Brinton, 
1985; Parker et al., 2011). Because their postlarvae 
are larger than adult copepods, this group can pro-
vide a more direct link from primary production to 
vertebrates. Six species of euphausiid are numerous 
south of the Antarctic Polar Front (APF), all with 
circumpolar distributions and broadly overlapping 
ranges (Dilwyn-John, 1936; Baker, 1954; Gibbons 
et al., 1999). The largest, E. superba (often called 
‘Antarctic krill’ or simply ‘krill’) has the largest 
total biomass of this group and is a key Antarctic 
species, supporting a commercial fishery and a high 
biomass of specialist predators, including baleen 
whales, seals, penguins, flying seabirds and fish. 

Smaller krill species, such as E. frigida, Thy-
sanoessa macrura, T. vicina and E. triacantha 
are widespread and more evenly distributed than 
the swarming species E. superba (Nishikawa et 
al., 2009). Euphausia crystallorophias differs in 
having a neritic-based distribution, mainly around 
the Antarctic continent where it is an important 
component of the high-latitude shelf ecosystem 
(Pakhomov and Perissinotto, 1996a; Pakhomov et 
al., 1998). 

Most euphausiids have been found in greater 
abundance where temperature discontinuities 
arise, primarily at frontal zones of major water 
mass boundaries. Thus, E. frigida, T. macrura 
and E. superba have all been recorded as being 
more abundant at the Weddell-Scotia confluence 
frontal zone, and E. triacantha in the region of the 
APF, than further north or south. Such areas are 
thought to be of great significance for euphausiid 
recruitment (Brinton, 1985). Euphausia superba is 
unusual compared to the other species in having a 
distribution centred in the productive Atlantic sec-
tor (0–90°W; Marr, 1962), which holds ~75% of 
the total stock (Atkinson et al., 2008).

Despite the importance of E. superba, only the 
broadest features of its diet are known, and opin-
ions have changed over how carnivorously it feeds. 
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First it was simply classed as a herbivore (Marr, 
1962) but later studies increasingly emphasised 
the role of zooplankton, protozoans and marine 
snow in its diet (e.g. Price et al., 1988; Marchant 
et al., 1996; Perissinotto et al., 1997; Atkinson 
and Snÿder, 1997). This generated the hypothesis 
that the species ‘switched’ to copepods when phy-
toplankton food was in short supply (Atkinson et 
al., 1999), for example in winter (Huntley et al., 
1994a). However, subsequent quantitative volu-
metric gut content analyses, while upholding the 
role of protozoans as alternative food items, have 
found that copepods form only about 7% of the diet 
volume of post-larvae averaged across a range of 
habitats throughout the year (Schmidt et al., 2006, 
2011, 2012). This copepod ingestion coincided 
with feeding on benthically derived foods, such as 
phytodetritus and associated bacteria and benthic 
diatoms, and so they were possibly predated on 
during vertical migrations (Schmidt et al., 2011). 
However, studies contrast during the autumn/
winter period of low food, with some suggesting 
extensive omnivory of post-larvae (Atkinson et al., 
2002; Huntley et al., 1994a) or larvae (Wickham 
and Berninger, 2007; Meyer et al., 2009). Others 
emphasise greatly reduced food intake of post-
larvae (Quetin and Ross, 1991; Meyer et al., 2010) 
and use of large seasonal lipid stores (Hagen et al., 
2001).

The larvae and post-larvae of E. triacantha, 
Thysanoessa spp. and E. frigida are not ice-
associated, as compared with the larvae and often 
the juveniles of E. superba (Flores et al., 2011). 
These smaller euphausiids are also more omnivo-
rous than E. superba, based on stable isotope stud-
ies (Schmidt et al., 2003, 2004; Stowasser et al., 
2012). This result is also consistent with a series 
of comparative gut contents studies showing that 
metazoans often comprise >40% of Thysanoessa 
spp. diet (see Hopkins and Torres, 1989). 

Most SO euphausiids are long-lived, with 
E. superba having a life span of 5–7 years (Siegel, 
1987). Two years has been suggested for E. frigida 
(Brinton, 1985; Siegel, 1987; Ward et al., 1990), up 
to 3 years for E. triacantha (Baker, 1959; Siegel, 
1987), and up to 4–5 years for E. crystallorophias 
(Pakhomov and Perissinotto, 1996a). Most growth 
rate data have been assembled for E. superba, 
which grows at roughly 0.1 mm per day during 
the spring/summer, equivalent to an increase of 
roughly 1% of its body mass per day (Atkinson et 

al., 2006; Kawaguchi et al., 2006; Atkinson et al., 
2009). This would be consistent with a mean daily 
ration of roughly 5% (Pakhomov et al., 1997a) and 
a maximum of perhaps ~13% (Perissinotto et al., 
1997).

Salps

Salps are tunicates, a group of large macro-
plankton organisms, often termed ‘gelatinous’ due 
to their mainly transparent bodies, but which are 
actually formed of tunicin. Two species prevail in 
Antarctica: Salpa thompsoni and Ihlea racovitzai, 
the former being more numerous. Both have broad 
circumpolar distributions (Foxton, 1966; Foxton, 
1971; Atkinson et al., 2004; Casareto and Nemoto, 
1987), with I. racovitzai characteristic of higher 
latitudes. 

Salp life cycles are complex, involving an alter-
nation of generations between a solitary sexual 
form and an aggregate (chaining) form that grows 
by budding asexually (Foxton, 1966). Chains of the 
latter may reach over 1 m in length and contain sev-
eral hundred individuals. This contributes to explo-
sive population growth and regionally dense salp 
concentrations in some years. These ‘salp blooms’ 
have the potential to remove a large amount of 
the phytoplankton and possibly out-compete 
other grazers (Loeb et al., 1997; Dubischar and 
Bathmann, 1997; Pakhomov et al., 2002a).

Contrary to its impression of a rather helpless 
jelly floating in the currents, a salp can swim suf-
ficiently well to perform diel vertical migrations 
(DVMs) of >500 m each way per night (Perissinotto 
and Pakhomov, 1998a, 1998b; Nishikawa and 
Tsuda, 1991; Gili et al., 2006), as well as a seasonal 
vertical migration cycle akin to that of biomass-
dominant copepods (Foxton, 1966). However, 
unlike diapausing copepods, a recent study in the 
Lazarev Sea reported feeding year-round, albeit 
with gut pigment concentrations proportional to 
surface chl a concentrations (von Harbou et al., 
2011). 

In common with appendicularians, salps appear 
to be ‘efficient’ species, with low energetic costs 
and an effective mechanism for feeding unselec-
tively at low food concentrations. This is done 
by pumping water through an internal net filter, 
which achieves a very high ingestion rate (Pakho-
mov et al., 2002a, 2006; von-Harbou et al., 2011), 
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potentially removing a large percentage of the algal 
stock. The sinking rates of the salp faecal pellets 
(Pakhomov et al., 2006; Phillips et al., 2009) are 
generally faster than those of E. superba, and both 
groups have been assigned significant roles in ver-
tical biogeochemical fluxes (Fortier et al., 1994; 
Dubischar and Bathmann, 1997; Pakhomov et al., 
2002a; Schmidt et al., 2011; Atkinson et al., 2012). 

The undoubted regional importance of salps 
in the food web has led to an increase in stud-
ies of their distribution and biology in the last 
few decades (Chiba et al., 1998; Perissinotto and 
Pakhomov, 1998a, 1998b; Pakhomov et al., 2011). 
A series of ‘salp years’ has been described in recent 
decades (e.g. Chiba et al., 1998; Huntley et al., 
1989; Nishikawa et al., 1995; Ward et al., 2012) 
coinciding with an increase in their abundance in 
high Antarctic latitudes last century (Loeb et al., 
1997; Pakhomov et al., 2002a; Atkinson et al., 
2004). 

Studies are slowly starting to determine how 
salps fit into the food web. Rather than being 
an ‘ecological dead end’ with few predators, 
Pakhomov et al. (2002a) showed that a variety of 
species (mainly across amphipods, midwater fish 
and seabirds) feed on salps. Almost certainly the 
dietary role of such soft-bodied items has been 
under-represented due to the much greater ease 
in identifying crustaceans in predator diets. Other 
studies (Huntley et al., 1989; Donnelley et al., 
1994; Dubischar et al., 2006, 2011) have examined 
the biometry and elemental composition of salps, 
and these, coupled to growing datasets for example 
on feeding rate in relation to body size, has led to a 
much better appreciation of salp biology.

Themisto gaudichaudii

This predatory amphipod is an important macro-
plankter of low Antarctic latitudes (Mackintosh, 
1934, 1937; Labat et al., 2005; Mackey et al., 2012). 
It is especially numerous over productive shelves 
surrounding islands in the Antarctic Zone/Polar 
Frontal Zones such as South Georgia and Marion, 
Heard and Kerguelen Islands, where it can remove 
a significant fraction of zooplankton production 
(Pakhomov and Perissinotto, 1996b; Froneman et 
al., 2000b). In turn, its large maximum size of over 
25 mm makes it important prey for some mycto
phid (Shreeve et al., 2009) and flying seabird spe-
cies (Ridoux, 1994; Croxall et al., 1999; Bocher et 

al., 2001). In years of low E. superba availability at 
South Georgia, they can act as an alternative prey 
for macaroni penguins (Waluda et al., 2010).

Themisto gaudichaudii is a highly adapted 
predator, with large compound eyes and grasping 
mouthparts. They occur in dense swarms in sur-
face waters and appear to feed opportunistically 
on whatever zooplankton is available. Their aver-
age daily C rations are ~6–7%, similar to those of 
krill (Pakhomov and Perissinotto, 1996b), making 
T. gaudichaudii one of the main predators of cope-
pods in the productive island ecosystems where 
they are abundant. Interestingly, stable isotopic 
analyses place adults of this species at a similar 
level to mainly herbivorous copepods (Wada et al., 
1987; Gurney et al., 2001; Stowasser et al., 2012). 
This is clearly not true and is an example of the 
utility of using multiple feeding methods to arrive 
at consensus over diet (Schmidt et al., 2004, 2006).

The population dynamics, growth rates and 
energy budget of T. gaudichaudii are still not well 
known. Spawning is in spring/summer (Barnard, 
1932; Kane, 1966; Labat et al., 2005; Watts and 
Tarling, 2012), perhaps allowing small juvenile 
stages to utilise food associated with the seasonal 
phytoplankton bloom. The number of generations 
per year appears flexible, being one at Kergue-
len (Labat et al., 2002) and one to two (Watts and 
Tarling, 2012) at South Georgia. Growth rates are 
high (0.07–0.1 mm d–1), commensurate with the 
substantial ingestion rate. This, combined with a 
biomass reaching 50 mg dry mass m–3 in the pro-
ductive shelf waters of Kerguelen and South Geor-
gia (Ward et al., 1995; Labat et al., 2005) mean an 
annual production of 3.6 mg C m–3 y–1 estimated 
for South Georgia (Watts and Tarling, 2012).

Pteropods

Pteropods are gastropod molluscs with an 
entirely pelagic lifecycle. Broadly, SO pteropods 
fall into two orders (van der Spoel et al., 1999); 
the Thecosomata (shelled pteropods: Limacina 
helicina antarctica, L. retroversa australis, Clio 
pyramidata and C. piatkowskii) and Gymnosomata 
(naked pteropods Clione limacina antarctica and 
Spongiobranchaea australis). 

The role of pteropods in SO ecosystems has 
been emphasised by recent predictions that, due 
to acidification resulting from a business-as-usual 
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approach to CO2 emissions (IS92a), SO surface 
waters may begin to become uninhabitable for 
aragonite shelled thecosome pteropods by 2050 
(Orr et al., 2005). However, it must be stressed 
here that, despite some suggestions to the contrary 
within the ocean acidification literature, pteropods 
account for far lower biomass and energy flow than 
SO copepods, euphausiids or salps.

A recent review of SO pteropods (Hunt et al., 
2008) provides a more comprehensive appraisal of 
the taxonomy, ecology and role of SO pteropods, 
concluding that they are, on occasion, significant 
components of some of its sub-systems. The two 
Limacina species are most abundant, with autumn 
densities of L. retroversa australis of 60 ind. m–3, 
~11% of total mesozooplankton densities at the 
sub-Antarctic Prince Edward Islands. South of the 
APF, L. helicina antarctica predominates, reaching 
~20% of abundance and ~11% of mesozooplankton 
biomass at South Georgia (Atkinson et al., 1996a; 
Pakhomov et al., 1997b) and up to 63% of total 
mesozooplankton abundance at a coastal site in the 
Ross Sea (Foster, 1989; Knox et al., 1996). Macro
zooplanktonic pteropods comprise mainly Clio 
species, adult L. helicina antarctica and Clione 
antarctica. Combined pteropods contributed <5% 
to total zooplankton in the Lazarev Sea, but 15% 
(max = 93%) to macrozooplankton in the East Ant-
arctic (Hunt et al., 2008). 

Trophically, gymnosomes are specialist preda-
tors on thecosomes, while thecosomes are con-
sidered predominantly herbivorous, capturing 
food with a mucous web. The ingestion rates of 
L. r. australis are high (Bernard and Froneman, 
2005; Bernard, 2006), and those of L. h. antarctica 
and C. pyramidata can account for >40% of com-
munity grazing impact (Pakhomov and Froneman, 
2004b). Carnivory occurs in thecosomes, appear-
ing to increase with the size of the specimen, and 
may play a role in winter survival. As well as being 
major consumers of phytoplankton when they are 
abundant, they can also be important in the diet of 
carnivorous zooplankton, benthic invertebrates and 
fish (Hunt et al., 2008).

Life histories of SO pteropods are limited to 
a single study for L. r. australis (Bernard, 2006) 
making population studies a priority area for future 
research on this group. Pteropods play a significant 
role in biogeochemical cycling, through the pro-
duction of fast sinking faecal pellets and mucous 

flocs, and rapid sinking of dead animals ballasted 
by their aragonite shells (Howard et al., 2011). 

Appendicularians

Appendicularians, also known as larvaceans, 
are planktonic tunicates that are widespread in the 
world oceans. Their body is divided into a trunk 
(usually <3mm long) and a muscular tail that is 
several times longer than the trunk. They are filter 
feeders, using a secreted mucous structure known 
as a ‘house’ to extract particles from the water. The 
house completely encloses the animal, and water 
is pumped through it by the tail. Appendicularians 
have high grazing rates (e.g. Deibel, 1988, 1998) 
and are able to retain particles of <0.2 µm. This 
fraction includes pico- and nanoplankton, bacteria 
and colloidal dissolved organic carbon (DOC) so 
they are capable of partially bypassing the micro
bial food chain (e.g. Deibel and Powell, 1987; Bedo 
et al., 1993). 

Appendicularians are inconsistently reported 
in the Antarctic literature, probably due partly to 
net mesh selectivity and under-counting of their 
fragmented remains by inexperienced analysts. 
However, densities over 300 ind. m–3 have been 
reported in the seasonal ice zone of East Antarctica 
(Hunt and Hosie, 2006a; Tsujimoto et al., 2007). 

Appendicularian growth rates are very high and 
strongly related to temperature (e.g. Deibel, 1998; 
Hopcroft et al., 1998a; Sato et al., 2001). Further, 
their houses are discarded and renewed regularly 
(Fenaux, 1985). As some of the filtered particles 
remain trapped in the discarded house (Alldredge, 
1976; Bedo et al., 1993) they contribute to marine 
snow and carbon export (e.g. Fortier et al., 1994). 
Appendicularians can also be important in the diet 
of pelagic animals, including copepods, chaetog-
naths, medusae, ctenophores, and larval and adult 
fish (e.g. Alldredge and Madin, 1982; Ohtsuka and 
Onbé, 1989; Fortier et al., 1994). This plankton 
group, like pteropods, may therefore have a region-
ally significant role in the SO.

Carnivorous macroplankton

The diverse macroplankton comprise, in addi-
tion to euphausiids, salps, amphipods and large 
pteropods, an array of other, mainly carnivorous 
organisms, including siphonophores, mudusae, 
polychaetes and chaetognaths. Fish larvae are 
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also important inshore predators (North and Ward, 
1990). These macroplankters are diverse but com-
prise some important taxa such as chaetognaths 
and siphonophores (Pakhomov et al., 1999; Hunt 
et al., 2011). The pioneering studies on these were 
done during the Discovery Expeditions (David, 
1955) and since then several studies on their biol-
ogy have appeared (e.g. Hagen, 1985; Pakhomov 
et al., 1999; Froneman et al., 1998, 2002; Kruse et 
al., 2010a, 2010b). 

Estimating zooplankton abundance  
and biomass

Nets are still the most commonly used zoo-
plankton sampler, but no single net type or mesh 
size is suitable to capture the full size spectrum 
of metazoan plankton (Fraser, 1968; Voronina et 
al., 1994). Voronina et al. (1994) concluded that 
only a combination of water bottles, plankton nets 
and trawls are able to cover the entire metazoan 
plankton community. The factors influencing net 
performance include avoidance behaviour, clog-
ging of meshes by particulates and mesh selectivity 
(i.e. escape of animals through the meshes).

Net mesh selectivity

A mesh size of 75% of the width of the smallest 
animal retains ~95% of individuals of that width 
(Vannucci, 1968; Nichols and Thompson, 1991). 
Gallienne and Robins (2001) estimated the percent-
age retention of abundance, biomass and production 
of Atlantic plankton according to mesh size, using 
equation (4) of Nichols and Thompson (1991). 
From their data (Figure 2a) 50 μm mesh nets are 
clearly needed to retain the entire metazoan assem-
blage. In Figure 2(b), SO abundance data have 
been added and it was found that the basic trend 
is similar. Overall, a standard WP-2 net equipped 
with a 200 μm net (UNESCO, 1968; Sameoto et 
al., 2000) retains ~10% of mesozooplankton abun-
dance, ~70% of total biomass and may miss ~50% 
of total production (see also Hopcroft et al., 1998b).  

Macroplankton trawls such as the RMT8 also 
suffer from net mesh selectivity (Beaumont and 
Hosie, 1997). For example, Siegel (1986) compared 
krill abundances/length frequencies from 4.5 mm 
mesh RMT8 and 330 μm mesh RMT1 towed just 
above it. The RMT8 retained 63% of E. superba of 
20 mm length, with 100% efficiency only achieved 

when the krill were ≥ 25 mm. The same would 
clearly apply to small macroplankton that can also 
avoid small mesozooplankton nets. So even though 
small euphausiids might be counted ‘twice’ in 
meso- and macroplankton nets (Figure 1), they are 
underestimated by both methods.

Clogging of mesozooplankton nets will also 
influence net catches, by reducing the effective 
mesh aperture and thus the volume of water pass-
ing through it. Clogging is greater when using fine 
meshed nets and in productive waters. Clogging 
with dense phytoplankton can make sorting of 
samples difficult and make it virtually impossible 
to obtain accurate estimations of phytoplankton or 
zooplankton biomass.

Net avoidance 

For larger macroplankton and especially 
E. superba, net avoidance is a problem. This is 
particularly serious with nets of small diameter that 
are towed slowly, such as vertical hauls with Bongo 
or ring nets. Based on samples collected from the 
upper 20 m of the water column with a vertically 
hauled 0.45 m diameter NORPAC net and a CPR 
(mouth size of 12.7 × 12.7 mm), Hunt and Hosie 
(2003) showed that the CPR undersampled large 
fast moving crustaceans during the day relative to 
the NORPAC net. 

Variable resolution of abundant larval stages

Depending on the requirements and expertise 
of the analyst, the degree of identification of early 
larval stages varies greatly. Reports of zooplank-
ton in the literature or in databases might include 
numerical densities (no. ind. m–2) but often without 
indicating which larval stages these include. This 
problem is especially serious when attempting 
to interpret ‘mined’ or retrieved data from global 
databases, old reports or sampling sheets. It could 
make comparisons between workers almost mean-
ingless unless both the sampling method and the 
level of taxonomic resolution were very specifi-
cally defined. 

Zooplankton, numbers, biomass  
and converting between them 

There is current interest in large-scale or cir-
cumpolar meta analyses (e.g. www.iced.ac.uk) 
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which often requires the merging of dispersed 
datasets collected with different methods. This 
requires care since conversion factors, sometimes 
even obtained outside the SO, may need to be used. 
A more general overview on biomass conversion 
factors is presented in Postel et al. (2000), with a 
summary of conversions for modellers provided by 
Frangoulis et al. (2010).

A variety of methods have been used to estimate 
zooplankton biomass (Table 1). Early workers 
often used simple displacement volumes, wet 
masses or settled volumes. However, these could 

lead to an imprecise estimate of the energy content 
of that biomass because of the different proportions 
of water, for example between jellies and crusta-
ceans. Therefore, dry masses have been derived 
more frequently, being nowadays the most frequent 
currency of mesozooplankton biomass. Wet masses 
are however more commonly used for E. superba 
biomass, especially from acoustic methods.

Table 2 shows some of the diversity of SO-
specific conversions. Care is needed in using exter-
nally derived conversion factors because polar zoo-
plankton are not comparable to ‘global’ zooplankton 
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Figure 2a. Data taken from Gallienne and Robins (2001) to show estimated percentage retention of 
zooplankton abundance, biomass and production across a range of net mesh sizes. These data are from the 
Atlantic (50oN to 50oS). 
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Figure 2b. Abundance data taken from Figure 2a with the addition of Antarctic data from 200, 100 and 
53 μm nets in a south-north transect across the Scotia Sea (Ward et al. in press b). Data from Hopkins 
(1971) were obtained using nets of 330, 202 and 76 μm in the Polar Frontal Zone. 
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Figure 2:	 (a) Data taken from Gallienne and Robins (2001) to show estimated 
percentage retention of zooplankton abundance, biomass and 
production across a range of net mesh sizes. These data are from the 
Atlantic (50°N to 50°S). (b) Abundance data taken from Figure 2(a) 
with the addition of Antarctic data from 200, 100 and 53 μm nets 
in a south–north transect across the Scotia Sea (Ward et al., 2012). 
Data from Hopkins (1971) were obtained using nets of 330, 202 and 
76 μm in the Polar Frontal Zone.
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due to their increased but highly seasonal degree 
of lipid storage (Hagen and Schnack-Schiel, 1996; 
Hagen et al., 2001). This leads to radically differing 
body compositions throughout the year. Storage 
lipids do not contain N and are C rich, being built 
up among the biomass-dominant large copepods as 
a storage depot for winter. This means a dramatic 
change in lipid content, from ~10% of dry mass at 
the end of winter to ~50% at the end of summer 
(Hagen and Schnack-Schiel, 1996; Hagen et al., 
2001), and has a large influence on the C content of 
an equivalent mass of zooplankton. 

Zooplankton distribution
Data sources 

A large amount of data on SO zooplankton either 
precede, or are not captured by Web of Knowledge 
searches, so this section, together with the bibliog-
raphy and appendices, provides some clues to data 
sources. The Discovery Investigations in the 1920s 

and 1930s laid the groundwork for understanding 
of SO zooplankton distributions. They confirmed 
the circumpolar distributions of most species (Bak-
er, 1954), defined the broad zonations and seasonal 
distributions of species assemblages (Mackintosh, 
1934, 1937) and then focused on the life cycles 
and distributions of major species. These included 
copepods (Andrews, 1966; Ommanney, 1936), 
salps (Foxton, 1956), chaetognaths (David, 1955), 
amphipods (Kane, 1966) and euphausiids (Baker, 
1959; Marr, 1962).

Subsequently, Soviet and Japanese investiga-
tions continued these large-scale surveys, often 
outside the Atlantic sector. These provide valu-
able documentation of large-scale distributions 
(e.g. Voronina and Naumov, 1968; Chiba et al., 
2001) and further comparative work on the life 
cycles of the biomass-dominant copepod species: 
C. acutus, R. gigas, C. propinquus and C. similli-
mus (Voronina, 1970, 1972). Unfortunately some of 
these datasets are inaccessible and have not yet had 

Table 1: Some examples of the methods used to determine zooplankton biomass in the Southern Ocean.
Numerous variants to the ones shown exist. 

Unit Author Method used 

Volume Foxton (1956) Measurement of formalin-preserved catches in settling 
chamber, having excluded large, rare organisms 

Labat et al. (2002) Volume determined by optical plankton counter and 
compared with direct dry-mass determinations from nets in 
the same study 

Wet mass Fukuchi et al. (1985) Direct wet-mass determinations of fresh aliquots of samples 
El Sayed and Taguchi 
(1981) 

Direct wet-mass determinations of fresh aliquots of samples 

Ashjian et al. (2004) Silhouette photography, converted to wet mass using non-
regional-specific regressions and compared with 
displacement volume from the same sample set, also 
converted to wet mass 

Dry mass Alcaraz et al. (1998) Direct weighing of whole dried sample aliquot from frozen 
material 

Froneman et al. (1997) Direct weighing of whole dried sample aliquot from 
formalin-preserved material, no correction for tissue loss due 
to formalin preservation 

Sertorio et al. (2000) Direct weighing of whole dried sample aliquot from frozen 
material, values increased by 30% to allow for tissue loss due 
to formalin preservation 

Ward and Shreeve (1999) Direct weighing of selected groups, plus length-mass 
regressions for remaining (often smaller) zooplankton 
derived for same geographic region. 

Hopkins (1987) Use purely of length mass regressions derived from the same 
geographic region 

Ash-free dry mass Fransz and Gonzalez 
(1997) 

Measurement on whole frozen aliquots 

Carbon mass Cabal et al. (2002) Direct CHN analysis of frozen catch aliquots 



181

An overview of Southern Ocean zooplankton data

Table 2: Examples of inter-conversion factors between total body length (BL, mm), dry mass (DM, mg), wet
(fresh) mass (WM, mg) and Carbon mass (CM, mg) derived specifically for Southern Ocean taxa.
Note that this list is not exhaustive and original publications should be consulted for further details,
provisos and information. The values here are reflective of the time of capture and may not represent a 
seasonal mean value. For information on seasonal change in Euphausia superba see Siegel (1992) and
large copepod composition see Hagen and Schnack-Schiel (1996). Some of these references also 
report proximate N- and energy-based composition. 

Units Factor used Taxon Notes Reference 

BL: DM DM = 0.0026e1.3608BL Copepods Early copepodites Mizdalski 
(1988) 

DM = 0.0822e0.4079BL Copepods Late stage copepodites/adults Mizdalski 
(1988) 

DM = 0.002BL2.804 Amphipods Themisto gaudichaudii in 
summer 

Pakhomov and 
Perissinotto
(1996b) 

DM = 0.04BL2.39 Euphausiids  Euphausiid larvae Siegel (1987) 
DM = 6.45785  10–5L3.89 E. superba  Post-larvae (mixed 

sex/maturity stage in summer) 
Atkinson et al. 
(2006) 

DM = 0.0598BL2.204 Salpa thompsoni Length is oral-atrial length Huntley et al. 
(1989) 

BL:WM WW = 3.85  10–3L3.20 E. superba Overall summer value for all 
sex/maturity stages  

Morris et al. 
(1988) 

WM:DM WM = 8DM mesozooplankton Copepod dominated 
assemblage 

Hagen (1988) 

WM = 5DM zooplankton Euphausiid-dominated 
assemblage 

Hagen (1988) 

WM = 6.25DM mesozooplankton This conversion used in 
Rujakov (1996) 

Vinogradov 
and Shuskina 
(1985) 

WM = 4.23(DM–0.004) E. superba Overall summer value for all 
sex/maturity stages  

Morris et al. 
(1988) 

WM = 6.15DM Large copepods Mean for 3 species derived 
from this reference 

Mizdalski
(1988) 

WM = 15.9DM Salpa thompsoni Average of summer, autumn 
and winter 

Dubischar et al. 
(2011) 

WM = 23.7(DM–0.113) Salpa thompsoni Summer/autumn data Huntley et al. 
(1989) 

CM:DM CM = 0.44DM Copepods Mean of two large species Ikeda and 
Mitchel (1982) 

CM = 0.44DM Copepods Spring/summer average Schnack (1985) 
CM = 0.27DM Chaetognaths Autumn/winter average Donnelly et al. 

(1994) 
CM = 0.50DM E. superba Mixed sexes/stages Färber-Lorda et 

al. (2009) 
CM = 0.42DM E. superba Mixed sexes/stages Atkinson et al. 

(2012) 
CM = 0.15DM Salpa thompsoni Summer/autumn/winter 

average 
Dubischar et al. 
(2011) 

CM = 0.0369DM + 0.0655 Salpa thompsoni Summer/autumn data Huntley et al. 
(1989) 

CM =0.074DM Salps Autumn/winter average Donnelly et al. 
(1994) 
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the impact that they deserve. A variety of efforts are 
currently under way to retrieve these data and make 
them more widely accessible.

In the last few decades, national sampling pro-
grams have become more regional, often focusing 
on sectors of national interest or near national bases. 
This has led to rapid advances in the understanding 
of specific systems (e.g. reviews by Hosie, 1994; 
Schnack-Schiel and Mujica, 1994; Ducklow et al., 
2007; Atkinson et al., 2001; Murphy et al., 2007; 
Pakhomov and Froneman, 1999a). However, it has 
also led to some over-generalisation, particularly in 
the krill literature. Recent initiatives have attempted 
to broaden the geographical extent of sampling, for 
example the BROKE and BROKE-WEST studies 
(Hosie et al., 2000; Swadling et al., 2010) or the 
SO-CPR Survey (Hosie et al., 2003; McLeod et 
al., 2010; Pinkerton et al., 2010a). An alternative 
approach is the meta-analysis of compiled histori-
cal data (e.g. Rudjakov, 1996; Atkinson et al., 2004, 
2008) or circumpolar syntheses using satellite data 
(e.g. Constable et al., 2003; Grant et al., 2006).

Most SO zooplankton abundance and biomass 
data are not in any central database, but reside 
within the individual publications, logsheets or 
electronic databases of the individual institutes. 
However, some global- and SO-scale initiatives 
are starting to ‘mine’ or compile data from multiple 
sources. Examples are www.scarmarbin.be, www.
nodc.noaa.gov, www.st.nmfs.noaa.gov/plankton, 
www.iced.ac.uk/science/krillbase.htm. The SO-
CPR Survey provides a database of approximately 
30 000 CPR samples for about 240 taxa over about 
70% of the SO using a consistent methodology 
(McLeod et al., 2010, http://data.aad.gov.au/aadc/
cpr/). Using data taken from any such central data-
base needs great care to ensure that any regional 
and temporal differences reflect real variability 
rather than differences in method or time of year 
of sampling. 

Large-scale distribution

Appendices 1 and 2 include studies across a 
variety of regions and productivity regimes. These 
specific studies support the main trends in biomass 
and abundance revealed by larger-scale surveys. 
Thus most species have circumpolar distributions 
and total biomass is surprisingly similar between 
sectors (Foxton, 1956) in contrast to E. superba. 
The main trends are latitudinal, with an increase 

in diversity, abundance and biomass from high 
latitudes towards the APF area, where total abun-
dances and biomasses are often maximal (Foxton, 
1956; Rudjakov, 1996; Fransz and Gonzalez, 
1997; Atkinson and Sinclair, 2000; Pakhomov and 
McQuaid, 1996; Pakhomov et al., 2000; Woodd-
Walker et al., 2002; Pollard et al., 2002). This trend 
is strongest in the small species such as O. similis 
(Atkinson, 1998; Pinkerton et al., 2010a). 

These large-scale latitudinal distributions of 
zooplankton have often been related to water tem-
perature (Hosie, 1994; Chiba et al., 2001; Ward et 
al., 2012; Mackey et al., 2012). The various spe-
cies thus have a series of broad, albeit overlapping 
biogeographic distributions. However, the APF 
does not appear to mark a strong biogeographic 
separation between ‘sub-Antarctic’ and ‘Antarctic’ 
assemblages (Pakhomov et al., 2000; Atkinson 
and Sinclair, 2000; Froneman et al., 2000a; Hunt 
and Hosie, 2005, 2006a, 2006b). Within the Ant-
arctic Zone of the SO, a biogeographic transition 
lies roughly at the latitudes of Southern Antarctic 
Circumpolar Current Front (SACCF) and the 
northernmost limit of influence by sea-ice (Grant et 
al., 2006; Ward et al., 2012).

Within this broad pattern, certain iron-fertilised 
areas have unusually high biomass. These include 
the low latitude, broad island shelves of South 
Georgia (Ward et al., 1995; Atkinson et al., 1996a, 
2001) and the Kerguelen archipelago/plateau 
(Razouls et al., 1998; Carlotti et al., 2008). By con-
trast, smaller volcanic seamounts such as Crozet, 
Marion and Prince Edward Islands have elevated 
phytoplankton concentrations, but very little shelf 
area and a more flow-through system (Perissinotto, 
1989; Pollard et al., 2007). While this may not 
allow time for zooplankton biomass to build up, 
it provides a ‘life support system’ for the island-
based predators (Froneman and Pakhomov, 1998; 
Pakhomov and Froneman, 1999a; Perissinotto and 
McQuaid, 1992).

In contrast to South Georgia and Kerguelen, low 
mesozooplankton biomass is the rule near some 
well-studied productive shelves to the south. Good 
examples are the Antarctic Peninsula (Mackintosh, 
1937; Hernández-Léon et al., 2000; Ward et al., 
2004) and parts of the Ross Sea (Foster, 1987; 
Biggs, 1982). The low biomass in these highly 
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productive, retentive regions is surprising and the 
reasons remain unclear (Tagliablue and Arrigo, 
2003).

Seasonal reproductive cycles of mesozooplankton

With the exception of inshore waters (e.g. 
Chojnacki and Wegleńska, 1984; Fukuchi et al., 
1985; Razouls et al., 1998), seasonal time series are 
sparse in the SO. Authors have instead compiled 
data from multiple cruises at different times of 
year, albeit in different years (e.g. Schnack-Schiel 
and Hagen, 1995; Hagen and Schnack-Schiel, 
1996; Fransz and Gonzalez, 1995; Atkinson et al., 
1997; Ward et al., 1997). These have shown that 
reproduction coincides roughly with the spring/
summer bloom. Given the high mortality of lar-
vae, this produces a sharp summer increase in total 
zooplankton abundance (Atkinson, 1991; Hunt 
and Hosie, 2006a, 2006b), with abundances often 
increasing ~10-fold. Not all species reproduce so 
synchronously; O. similis reproduces year-round, 
leading to only a three-fold seasonal difference in 
its abundance (Fransz and Gonzalez, 1995; Metz, 
1996). 

Given the large summer increase in meso-
zooplankton abundance, perhaps surprisingly their 
total biomass changes little throughout the year. 
Winter biomass within the top 1  000 m layer is 
~80% of that in summer (Foxton, 1956; Hopkins, 
1971; Atkinson and Peck, 1988). This reflects the 
life cycle of the biomass-dominant copepods. Their 
overwintered copepodites are much larger than the 
growing summer larvae, so larger individual size in 
winter compensates for greatly reduced abundance.

Seasonal vertical migration

Several of the biomass-dominant zooplankton, 
including the large copepods, chaetognaths and 
salps, undergo a seasonal vertical migration. In 
autumn the population descends from the top 200 
m layer to overwinter at depth, returning to sur-
face layers in spring (Mackintosh, 1937; Foxton, 
1956, 1966; Andrews, 1966; Marrari et al., 2011). 
Thus about 50% of the total (0–1  000 m) meso-
zooplankton biomass is above 250 m in the months 
November–March, decreasing to 20% in the mid-
winter months of July–August (Figure 3a). The 
corresponding figures for the top 100 m layer, as 
proportions of the top 1  000 m layer in summer 
and winter are one-third and one-tenth respectively 

(Figure 3b). This seasonal change (which differs 
in timing according to latitude (Figure 3)) must 
be allowed for when interpreting regional changes 
based on epipelagic net samples (Voronina, 1970; 
Ward et al., 2006a).

Diel vertical migration (DVM)

The DVM of zooplankton, generally towards 
the surface at night, is also found in the SO 
(e.g. Hardy and Gunther, 1935; Perissinotto and 
McQuaid, 1992; Atkinson et al., 1992a, 1992b; 
Ward et al., 1995). Some taxa show much stronger 
DVM than that of the biomass-dominants. These 
include the copepod family Metridiidae (Lopez and 
Huntley, 1995; Atkinson et al., 1996b), E. superba 
larvae (Marr, 1962), salps (Nishikawa and Tsuda, 
1991) and E. triacantha (Piatkowski et al., 1994; 
Pakhomov, 1995). Adults of E. superba have also 
been found to regularly migrate right down to the 
seabed to feed, although whether this is a diel 
behaviour is still unclear (Schmidt et al., 2011).

Generally, nets that sample the top 200  m 
should encompass most of the diel ranges of meso-
zooplankton that dominate biomass (although not 
for some macrozooplankters such as E. triacantha, 
salps and E. superba). However, some of the popu-
lation may be missed during shallower daytime 
hauls, due to a combination of DVM and daytime 
avoidance. The DVM cycle is often linked to a diel 
feeding cycle, which is important to monitor over a 
full diel cycle to estimate grazing impact.

Decadal and longer-term changes in abundance

Several standardised SO monitoring surveys 
in the Atlantic sector are now ~20 years in length, 
enabling decadal and sub-decadal trends in zoo-
plankton, including E. superba, to be determined 
(Ross et al., 2008; Loeb et al., 2010; Murphy et al., 
2007). Likewise, the broader-scale SO-CPR Survey 
commenced in January 1991 (Hosie et al., 2003) 
and has passed the 20-year milestone. The Japanese 
National Institute of Polar Research (NIPR) com-
menced a standardised monitoring program in 1972 
south of Australia using the NORPAC net (Hosie, 
2004; Takahashi et al., 2008) and like the CPR 
survey it still continues. Twenty years is slightly 
too short to gain convincing evidence for long-
term trends or ‘regime shifts’, since such signals 
may be confused with decadal- or intra-decadal 
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variability such as El-Niño-Southern Oscillation 
(ENSO) events (Loeb et al., 2010; Murphy et al., 
2007).

For this reason there have been several attempts 
to splice datasets spanning longer periods of time 
to determine whether major changes have occurred 
since the Discovery sampling era of the 1920s 
and 1930s. Evidence for long-term changes in 

copepods is equivocal (Kawamura, 1986; Ward et 
al., 2008). However, there is some evidence that 
salps have expanded into high latitudes of Antarc-
tica (Pakhomov et al., 2002a; Atkinson et al., 2004) 
and that E. superba recruitment and numerical den-
sity decreased within the southwest Atlantic sector 
during the last two decades of last century (Loeb 
et al., 1997; Atkinson et al., 2004; Trivelpiece et 
al., 2011). Several factors may have caused this, 
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Figure 3:	 (a) Percentages of the total (0–1  000 m layer) mesozooplankton 
biomass located within the top 250 m layer. Foxton’s (1956) data 
(recalculated from his Table 3) are based on 2  185 samples from 
366 circumpolar stations. Hopkins’ (1971) data are based on 
375 samples from about 90 stations in the SE Pacific, extracted from 
his Figure 3. His designation of the intermediate zone comprises 
surface water temperatures of 2°-4°C. (b) Percentages of the total 
(0–1 000 m layer) mesozooplankton biomass located within the top 
100 m layer, based on the data in Table 3 of Foxton (1956).
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including a large-scale reduction in sea-ice in the 
middle decades of last century (de la Mare, 1997; 
Cotté and Guinet, 2007), a wide-scale increase 
in water temperature (Gille, 2002; Meredith and 
King, 2005; Whitehouse et al., 2008) and possible 
changes in higher or lower levels within the food 
web (Montes-Hugo et al., 2009). 

The SO-CPR Survey has already identified two 
major changes in zooplankton composition in east-
ern Antarctic waters. The first was in the sea-ice zone 
(SIZ) around year 2000 when smaller zooplankton 
became more dominant instead of Antarctic krill 
(Hosie and Raymond, unpublished data). The sec-
ond change occurred in 2004/05 north of the SIZ 
when pelagic foraminiferans exceeded 50%, and at 
times 80%, of the numerical abundance instead of 
the 8% long-term average, replacing Oithona as the 
dominant species (Takahashi et al., 2010a). Such 
changes in food size and type could have a major 
impact on the survival of higher predators. 

Conclusions: compiling comparable  
zooplankton data

Because the abundance (no. m–2 or no. m–3) of 
zooplankton yielded by nets is highly sensitive to 
the sampling and analysis method, and to the depth 

and time of year of sampling, compilations of such 
data can be hard to interpret. The same also applies 
to biomass density (g dry mass m–2), but the poten-
tial errors are not nearly as severe as for abundance 
comparisons (Figure 2a), and some major issues, 
such as the time of year of sampling (Figure 3), can 
even be broadly adjusted for. 

The most widely used large sampler is the 
RMT8, making it one choice for regional-based 
comparisons of biomass of macrozooplankton. 
For mesozooplankton, the mostly commonly-used 
net is a ring net or Bongo, usually of diameter 
0.5–0.75 m with around 200 μm mesh size. These 
are typically towed from 200 m to the surface, so 
this sampling method forms a pragmatic starting 
point for mesozooplankton comparisons. The SO-
CPR Survey offers a very large dataset over much 
of the Southern Ocean using a consistent methodol-
ogy. In Table 3, four important groups of meso- and 
macroplankton whose biomass density is routinely 
quantified by the variety of surveys around the SO 
are suggested. These could be described loosely as 
‘functional groups’ and which could form the basis 
of some wider-scale zooplankton meta analyses or 
broad-scale modelling inputs.

Table 3: Very simple and pragmatic division of krill and zooplankton into four functional groups. This division
is based on biomass not numerical density, since biomass is far less sensitive to slight differences in 
sampler or regional and seasonal changes in sampling. The four groups are selected also because data
on each are available from different surveys by various nations throughout Antarctica, allowing the 
construction of large datasets and meta-analyses. The grouping however very broadly preserves 
functional group attributes, so may be tractable as inputs to certain food-web modelling approaches. 

Functional group Composition Composition and ecological function 

Mesozooplankton  Biomass density from 200 μm Bongo or 
ring net-type nets, excluding post-larval 
E. superba and salps 

Comprising mainly the biomass-
dominant copepods and other mainly 
suspension-feeding taxa 

Salps Biomass density of salps Filter-feeding taxon with unique 
biology, often enumerated separately in 
catches 

Euphausia superba 
post-larvae 

Biomass density of post-larvae of 
E. superba 

Another species with unique biology, 
often enumerated from acoustics or 
surveys with large nets 

Remaining 
macroplankton 

Biomass density of remaining 
macroplankton (amphipods, chaetognaths, 
adults of small euphausiids, large 
pteropods, large predatory polychaetes, 
cnidarians plus the largest copepods such 
as Euchaeta antarctica) 

Mainly carnivorous taxa retained on the 
4 mm meshes typifying an RMT8 net 
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Buitenhuis et al. (2006) incorporated mesozoo-
plankton into a biogeochemical model of the world 
ocean, and found that a major requirement for 
improved models was better data on food selectiv-
ity. A key input to mass balance food-web models 
such as Ecopath is the percentage contribution 
(in units of mass or energy) of the various food 
items to the taxon’s total food intake throughout 
the year, averaged across the area of the model 
(Cornejo-Donos and Antezana, 2008; Pinkerton et 
al., 2010b). Given the difficulty of year-round sam-
pling, measuring diet and feeding rate and the fact 
that functional groups can contain multiple species 
and maturity stages, solid estimates hard to deliver, 
even for well-known species.

A good example of a careful seasonal compara-
tive study on the complete pelagic food web is the 
work by Hopkins et al. (1993a, 1993b). He found 
profound seasonal and regional changes in diet, the 
fact that comparatively few species in the food web 
were mainly herbivorous, and that a complex net-
work of trophic linkages exists (Hopkins, 1985b, 
1987; Hopkins and Torres, 1989; Hopkins et al., 
1993a, 1993b). These studies were based entirely 
on the numerical incidence of food items in the 
stomach rather than on a mass or volumetric basis, 
so would not amenable as direct inputs to an Eco-
path model, for example. As the authors stress, the 
results are susceptible to variable size, digestion 
speed and ease of identification of the food items. 

The small body sizes of zooplankton, patchy 
distribution of predators and prey, and variable 
turbulence still hamper any approach to study diet 
and feeding rate (Table 4). Each provides dif-
ferent information: gut contents indicate what a 
zooplankter has just eaten, incubations show what 
it is willing to eat and at what rates, gut fluores-
cence quantifies the herbivorous component, while 
biomarkers indicate what it assimilated over the 
last weeks to months. No one approach is entirely 
satisfactory, but since they are independent, have 
their specific strengths and weaknesses, and inte-
grate over different time periods, the most powerful 
approach is to use multiple methods (Båmstedt et 
al., 2000; Schmidt et al., 2006).

Table 5 compiles these different types of 
approaches for SO zooplankton. The main study 

species are E. superba and copepods and the com-
monest methods are feeding incubations, gut con-
tents analysis and the gut fluorescence technique. 
Molecular approaches are still in need of some 
development before they can provide quantita-
tive analysis of relative ingestion rates across the 
dietary spectrum (Martin et al., 2006). 

Impact on prey populations

The most common measurement of grazing 
impact has been the percentage of primary pro-
duction removed per day by zooplankton groups 
(Table 6). Obtaining a solid estimate of this is dif-
ficult, and some of the studies have been excluded 
from Table 6 where key variables have not been 
measured, such as gut passage time, diel periodic-
ity or primary production. Several issues may mean 
that metazoan grazing impact is underestimated in 
Table 6. First, most studies only encompass the 
organisms caught by 200 μm Bongo-type nets 
(the typical sampler used for these studies) and 
the important smaller fraction and the larger mac-
rozooplankters (e.g. salps, E. superba and other 
euphausiids) are often under-represented. Second 
‘bottle effects’ may lead to underestimates of graz-
ing rates on phytoplankton from bottle incubations 
(Båmstedt et al., 2000; Nejstgaard et al., 2001) and 
conversely ‘pigment destruction’ yielding over-
estimates of phytoplankton ingestion where gut 
pigment destruction was erroneously corrected for 
(Durbin and Campbell, 2007).

Notwithstanding these issues, the general 
consensus from Table 6 is that mesozooplankton 
grazing generally removes <30% of primary 
production. Exceptions exist, for example when 
salps or E. superba are abundant (Dubischar 
and Bathmann, 1997; Pakhomov et al., 1997a; 
Perissinotto et al., 1997; Perissinotto and Pakhomov, 
1998a). The generally low grazing impact of meso-
macrozooplankton fits well with global literature 
compilation of mesozooplankton (mean 23% of 
primary production removed per day; Calbet, 
2001). Calbet and Landry (2004) found that instead 
microzooplankton were the main grazers, based 
on a global literature compilation. This also held 
for polar waters, where on average they removed 
~ 60–70% of primary production. In non-bloom 
conditions of the SO, copepods may instead act as 
a ‘top predator’ of protozoans (Atkinson, 1996), 
controlling their populations.
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In common with other oceanic regions, small 
grazers with high basal metabolic rates are trophi-
cally important in the SO (Schnack et al., 1985; 
Metz, 1996; Atkinson, 1994, 1996). These studies 
show that metazoan grazing is seriously under-
estimated if grazing is just based on the fraction 
retained on 200 μm mesh nets. However, this does 
not draw into question the above-mentioned divi-
sion between micro- and mesozooplankton impact. 
Microzooplankton grazing is measured in dilution 
experiments typically with 200 μm pre-screening 
to exclude mesozooplankton. The microzooplank-
ton component included in dilution experiments 
thus includes micro-metazoa as well as protozoans.

Predation and mortality losses

There are two sorts of studies that have estimat-
ed predation and mortality loss terms. First, there 
are estimates of grazing impact on zooplankton by 
large copepods (e.g. Øresland, 1990; Øresland and 
Ward, 1993), chaetognaths (e.g. Froneman et al., 
1998), amphipods (e.g. Pakhomov and Perissinotto, 
1996b), E. superba (Price et al., 1988; Atkinson 
and Snÿder, 1997) and myctophid fish (Pakhomov 
et al., 1996; Shreeve et al., 2009). Second, there 
are estimates of mortality losses of copepods from 
population dynamics of single species (Huntley 
et al., 1994b; Ward et al., 1997; Atkinson et al., 
1997; Tarling et al., 2004; Hirst and Ward, 2008) or 
assemblages from direct time-series observations 
(Zhou et al., 2004). SO studies are not yet suffi-
ciently advanced to partition mortality, for example 
into predation, death through injury, starvation, 
pathogens, etc. A global synthesis of copepod mor-
tality has inferred that predation accounts for about 
75% of overall mortality (Hirst and Kiørboe, 2002).

Predation mortality is not just from pelagic 
predators. Euphausia superba have been found 
to interact regularly with the seafloor to feed 
(Ligowski, 2000; Schmidt et al., 2011) and they 
can form a substantial part of the diet of some ben-
thic predators (references in Schmidt et al., 2011). 
Both underwater photographs and benthic samples 
show this also to be the case for E. crystallorophias 
(author’s unpublished data). For those biomass-
dominant copepods with seasonal migration cycles, 
their autumn descent in shelf waters would bring 
increased predation from the rich predatory and 
suspension-feeding fauna inhabiting shelf sedi-
ments (Dearborn et al., 1986; Dahm, 1996; see 
Schnack-Schiel and Isla, 2005 for review). The 

extensive DVM cycle of salps as well as their sea-
sonal die-off were also found to bring them into 
contact with benthic predators, and contribute both 
to salp mortality and to bentho-pelagic coupling 
(Gili et al., 2006).

During the summer season, however, it is likely 
that pelagic invertebrates are the main source of 
copepod mortality. This means that energy chan-
nelled through copepods and then through the 
macroplanktonic carnivores tends to go through 
more trophic steps to vertebrate predators than 
those going directly through E. superba (Figure 4). 

Krill–salp–copepod interactions

Given the prominent role of krill, salps and 
copepods, there is a surprising degree of uncer-
tainty about competitive and predator-prey rela-
tionships between them. Krill have been shown 
to be able to eat both copepods (e.g. Price et al., 
1988; Atkinson et al., 2002; Schmidt et al., 2011) 
and salps (e.g Kawaguchi and Takahashi, 1996), 
but the importance of copepods in their diets have 
since been questioned (Schmidt et al., 2006, 2012). 
Likewise, a degree of interaction (possibly com-
petitive) has been suggested to occur between krill 
and salps (Loeb et al., 1997) and between krill and 
copepods (Atkinson et al., 1999). 

However, it is surprisingly hard to demonstrate 
that one species is out-competing another in the 
pelagic realm, and both the krill-copepod and 
krill-salp competition hypotheses have since been 
questioned (Kawaguchi et al., 1998; Pakhomov 
et al., 2002a; Shreeve et al., 2002; Pakhomov, 
2004). In the Prydz Bay region, for example, there 
is a substantial spatial separation in salp and krill 
distributions (Hosie, 1994), although this may not 
always be the case in the Atlantic sector. Clearly 
these are central issues to resolve through fine-scale 
distribution and feeding studies, as for instance 
krill functioning as a phytoplankton feeder or as a 
predator on copepods or salps have fundamentally 
different roles within the food web.

‘Alternative’ energy pathways  
through zooplankton

Several local and large-scale comparisons have 
been made of the overall SO production by cope-
pods, E. superba and salps (Conover and Huntley, 
1991; Voronina, 1998; Pakhomov et al., 2002a; 
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Shreeve et al., 2005). Importantly, these calcula-
tions are all based on the summer period and they 
do not include production by larval E. superba. 
Both adults and larvae of this species are able 
to feed and grow through large parts of the year, 
unlike the biomass-dominant copepods which may 
be only active for three to four months. Notwith-
standing these important issues and the fact that 
a whole diverse taxon is being compared with a 
single species, post-larval E. superba production 
in summer has been found to be ~ 30% of that of 
copepods (Shreeve et al., 2005). 

Smetacek et al. (2004) recently highlighted the 
contrast in food chain types between subsystems 
of the SO. Put simplistically and in very general 
terms, krill inhabit phytoplankton-rich areas char-
acterised by ‘the food chain of the giants’, namely 
very large diatoms→krill→whales (Figure 4). This 
is the often-quoted food chain involving large spe-
cies, only two trophic steps and massive size ratios 

between grazer and food. This type of food chain 
is the textbook example of an efficient food chain, 
because it has only two transfers of energy and thus 
a minimum of energy loss along the route from pri-
mary producer to top predator. While this krill food 
chain is often criticised as an oversimplification, 
the large stock of krill-specialist predators testifies 
to efficient energy transfer in krill-rich systems.

Other types of food chains have been described 
in the much larger, iron-stressed ‘High Nitrate 
Low Chlorophyll’ areas of the SO, often at lower 
latitudes (Figure 4). These, very broadly, comprise 
the small copepods or ephemeral salp blooms and 
regenerating communities dominated by the micro-
bial food chains. Figure 4 shows just three examples 
of a wide range of food chain types, but we stress 
that the real-world situation is more complex, with 
a range of longer, microbial food webs operating 
alongside shorter salp and krill food webs. 

Figure 4:	 Examples of radically different food-chain 
lengths found most typically in (a) most of the SO, 
especially its northern reaches, (b) moderately 
productive regions, and (c) more productive 
regions, but north of the continental shelf of high 
Antarctica. HNF – heterotrophic nanoflagellates, 
ANF – autotrophic nanoflagellates. ‘Small 
protozoans’ include 10–20 μm ciliates and 
flagellates. Shaded boxes represent mid trophic 
levels connecting microplankton to vertebrates.
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While this food web complexity is widely 
known, a common misconception is that diatom 
blooms are ephemeral events, superimposed against 
a fairly constant ‘background’ energy flow through 
the microbial food web. This is not the case (Barber 
and Hiscock, 2006) and SO studies show that pro-
tozoans increase sharply in numbers within blooms 
(Leakey et al., 1994), remaining an important food 
supplement to copepods and krill (Atkinson et al., 
1996a; Schmidt et al., 2006). 

Allometric relationships

Body size has long been recognised as an 
important determinant of critical rate processes of 
organisms, and has been used in a variety of ways 
to determine feeding relationships (e.g. Jennings et 
al., 2002). In common with the general relationship 
between generation time and body size (Figure 1), 
stable isotope analysis shows a significant positive 
relationship between trophic level and organism 
size (Stowasser et al., 2012). Salpa thompsoni and 
the large medusa Stygiomedusa gigantea (as well 
as E. superba) were outliers from this relation-
ship, having much lower trophic levels that would 
have been predicted from size (Stowasser et al., 
2012). Being able to eat food much smaller than 
themselves helps to make salps and E. superba key 
players in SO biogeochemical cycles (Fortier et al., 
1994).

Numerous compilations of literature data now 
quantify rate processes of zooplankton in relation to 
body mass (e.g. Peters and Downing, 1984; Hansen 
et al., 1997; Huntley and Lopez, 1992; Kiørboe and 
Sabatini, 1995; Hirst et al., 1998; Ikeda et al., 2001; 
Hirst and Kiørboe, 2002; Hirst and Bunker, 2003; 
Bunker and Hirst, 2004). These are very useful as 
they provide a very rough indication of what the 
expected range of rate processes might be for a 
grazer of any given size.

However, such data compilations are often used 
for purposes other than what they were intended 
for. The important point about many of these rela-
tionships is that they are based on compilations 
over many ecological systems, often based on late-
stage larvae or adults, with measurements typically 
made at roughly the ambient water temperature 
from which the animal was collected. Such global 
relationships are poor for addressing specific 
questions, for example concerning a species at the 
northern limit of its range in a warm summer, an 

assemblage dominated by early larvae or one enter-
ing the diapause season. Some examples of such 
limitations are provided below.

A typical finding of global data compilations 
is that the mass-specific rates decrease sharply 
with increasing body size, such that the slope, b, 
of the log-log regression between animal size and 
its vital rate is close to 0.75, in accordance with 
theoretical considerations. While the use of such 
values is tempting, studies in specific systems have 
shown substantial variation about the global mean 
body mass scaling coefficient. One such example is 
the SO, where b-values for feeding and excretion 
appear to be much lower within specific copepod 
assemblages; nearer 0.6 than 0.75 (Atkinson and 
Shreeve, 1995; Atkinson, 1996; Atkinson and 
Whitehouse, 2001). The reason appears to reflect 
the storage of lipids, a prevalent feature of high-
latitude systems. The larger larvae (particularly of 
the larger species) have an increasingly large frac-
tion of their body mass being non-metabolically 
active tissue. When the allometry is based on N 
mass (reflective of metabolically active tissue, 
since fat does not contain N), then the scaling coef-
ficient is closer to the value of 0.75 more commonly 
observed (Atkinson and Whitehouse, 2001). This is 
one example where using global relationships does 
not work for specific polar ecosystems.

Rate processes in relation to temperature and food

Surprisingly few SO studies have examined how 
feeding, respiration or growth rates of zooplankton 
or E. superba relate to food or temperature (Quetin 
and Ross, 1989; Schnack-Schiel et al., 1991; Calbet 
and Irigoien, 1997; Ward and Shreeve, 1998; Ross 
et al., 1998, 2000; Shreeve et al., 2002; Atkinson et 
al., 2006; Tarling et al., 2006; Meyer et al., 2009; 
Brown et al., 2010). Using global-scale literature 
compilations instead may sometimes be the only 
option, but two major problems must be stressed 
with this approach. First, the predictive power of 
the relationships is often weak, as evidenced by 
the orders of magnitude of scatter about the regres-
sion lines (e.g. Peters and Downing, 1984; Hirst 
and Bunker, 2003). This is not a criticism of the 
approach or the models, but it highlights the fact 
that ecosystems are variable and that adapting a 
global model to a specific ecosystem may not be 
appropriate.



Atkinson et al.

194

The second issue concerns scale of measure-
ments. Taking temperature effects on growth rate 
as an example, the copepods were incubated at tem-
peratures approximating those in situ, so they were 
presumably adapted to those temperatures, ranging 
from polar to tropical. Rate processes derived in 
this way show a temperature dependency such that 
each 10°C temperature rise results in a doubling 
to tripling of the rate (i.e. a Q10 value of 2–3). 
These relationships were designed for large-scale 
(e.g. equator versus pole) comparisons, but fixed 
Q10 values are often used erroneously to describe 
the temperature response of a particular species. 

In contrast, each component species has a 
dome-shaped temperature relationship. Above their 
optimal temperatures for growth, respiration costs 
increase to the point when anaerobic metabolism 
may be required (Pörtner and Farrell, 2008). In polar 
environments the ectotherms are characteristically 
stenothermic, with a narrow window of tempera-
ture tolerance. Consequently, loss of aerobic scope 
has been found at temperatures above as little as 
2°C (Peck et al., 2004). For post-larval E. superba 
the temperature optimum for growth was found to 
be 0.5–1°C, with the scope for growth severely cur-
tailed when temperatures exceeded 3°C (Atkinson 
et al., 2006). The growth of E. superba based on 
their food, body, length, temperature and time of 
year can be predicted to an some extent (Ross et 
al., 2000; Kawaguchi et al., 2006; Atkinson et 
al., 2006; Tarling et al., 2006) and such empirical 
models have been used to predict their response 
to climatic change scenarios (Wiedenmann et al., 
2008). More work on temperature responses of 
other polar ectotherms is needed, because the global 
literature syntheses were not designed to examine 
the effects of temperature change on specific spe-
cies or ecosystems.

Using so-called ‘constant’ terms in the energy 
budget for inter-conversions

Trophic models often need to budget energy or 
C between ingestion, growth, respiration or excre-
tion and assimilation. For E. superba, T. gaudichau-
dii, S. thompsoni and large copepods and possibly 
O. similis, there is now some information on parts 
of the energy budget. For others, fixed conversion 
values are often used to roughly estimate one term 
in the energy budget from another. 

One such conversion is the gross growth 
efficiency, defined as growth divided by inges-
tion within the same time period, in C or N units. 
Based on a literature compilation, Straile (1997) 
found values for copepods typically of 20–30%, 
but this disguises great variability in the individual 
component data. While this reflects the difficulty in 
measuring each of its two components, it also prob-
ably reflects great variability in food quantity and 
quality which dictate how much of the absorbed 
food can be allocated to growth.

An analogous situation applies to absorption 
(assimilation) efficiency (AE). Models often treat 
AE as a fixed value, typically around 60–80%. 
However, just like every term in the energy budget 
it is a variable, depending both on the nutrient 
(Mayor et al., 2011) and the feeding rate (Thor 
and Wendt, 2010). High feeding rates depress AE, 
due to the process of ‘superfluous feeding’ which, 
contrary to its wasteful-sounding name, maximises 
absolute rates of nutrient absorption. This process 
has been found for E. superba, whose AE varies 
between specific fatty acids and leads to pellets 
varying 30-fold in their C and N content, as a pro-
portion of pellet dry mass (Atkinson et al., 2012). 
Likewise, great variability has been found in AEs 
of SO copepods (Schnack, 1985), and this variabil-
ity needs to be incorporated into the energy budget 
using equations such as those presented in Thor 
and Wendt (2010).
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