(WG-FSA-87/8 Rev.1 and WG-FSA-87/15)

SIMULATION OF RECOVERY RATES OF FISH STOCKS IN THE SOUTH GEORGIA AND KERGUELEN ISLANDS AREAS

R.C. Hennemuth, K.D. Bisack and G. Duhamel (USA, France)

Abstract

The benefits of conservation measures are generally based on the rebuilding of the depleted stocks and improvement in yields. It is desirable that such measures be based on the expected rate of recovery relative to rates of fishing.

A simulation model based on a probabilistic recruitment function was developed to provide long-term projections of the magnitude and rate of recovery of important fish stocks. While annual recruitment is the primary factor affecting recovery, the age of first recruitment is also an important consideration.

The simulated yields correspond, on the average, with the past observations. The simulations may prove useful in comparing observed performance of regulations to the expected outcomes from the simulations.

Résumé

Les avantages des mesures de conservation sont généralement basés sur la reconstitution des stocks dépeuplés et l'amélioration des rendements. Il est souhaitable que de telles mesures soient basées sur le taux prévu de repeuplement par rapport aux taux d'exploitation.

Un modèle de simulation basé sur une fonction de recrutement probabiliste a été mis au point afin de fournir des projections à long terme sur la magnitude et le taux de repeuplement des stocks de poissons importants. Bien que le recrutement annuel soit le principal facteur affectant le repeuplement, l'âge au premier recrutement est aussi une considération importante.

Les rendements simulés correspondent dans l'ensemble aux observations antérieures. Les simulations peuvent s'avérer utiles si l'on compare la performance observée de la réglementation aux résultats prévus des simulations.

Resumen

Los beneficios de las medidas de conservación se basan generalmente en la reconstrucción de las reservas agotadas y el mejoramiento en los rendimientos. Es deseable que tales medidas estén basadas en la tasa esperada de recuperación relativa a las tasas de pesca.

Se desarrolló un modelo de simulación basado en una función probabilística de restablecimiento para proporcionar proyecciones a largo plazo de la magnitud y tasa de recuperación de importantes reservas de peces. Mientras que el restablecimiento anual es el principal de los factores que afectan la recuperación, la edad de primer restablecimiento es también una consideración importante.

Los rendimientos simulados guardan correspondencia, en el promedio, con las observaciones pasadas. Las simulaciones pueden resultar útiles para comparar el desempeño observado de los reglamentos con los resultados esperados de las simulaciones.

Резюме

Польза мер по сохранению заключается в основном в восстановлении истощенных запасов и увеличении вылова. Желательно, чтобы эти меры основывались на ожидаемых величинах темпов восстановления по отношению к интенсивности промысла.

С целью получения долгосрочных прогнозов относительно уровня И темпа восстановления важных рыбных запасов была разработана модель, имитационная основанная на вероятностной функции пополнения. В то время, ежегодное пополнение является основным как фактором, влияющим на процесс восстановления, также очень важно учитывать и возраст при первом вхождении в облавливаемый запас.

Полученные С помощью имитационной модели величины уловов в среднем соответствуют сделанным рансе наблюдениям. Эти имитационные модели могут оказаться полезными при сравнении наблюдаемых результатов применения мер C ожидаемыми результатами, полученными с помощью имитационных моделей.

SIMULATION OF RECOVERY RATES OF FISH STOCKS IN THE SOUTH GEORGIA AND KERGUELEN ISLANDS AREAS

I. INTRODUCTION

The Fish Stock Assessment Working Group concluded from analysis completed at its 1986 meeting that the stocks at South Georgia Island (Subarea 48.3) and Kerguelen Island (Subarea 58.5) have been depleted by heavy fishing (Report of the Fifth Meeting of the Scientific Committee, 1986). <u>N. rossii</u> was deemed severely depleted, and the Commission agreed that only small, unavoidable by-catches should be taken. The group also estimated that the stock could be expected to increase at an approximate rate of 30% per year with no fishing on it. <u>C. gunnari</u> and <u>N. gibberifrons</u> around South Georgia Island were also deemed to have been reduced to low enough stock sizes to cause concern.

The Scientific Committee recommended that the Commission take steps to ensure recovery of the fish stocks. Several options for action with respect to <u>C. gunnari</u> and <u>N. gibberifrons</u> were put forward which included a range from no fishing to limiting catch to the 85-86 season level. None of the options proved acceptable.

This paper presents projections of the stocks and catch over the next 20 years for the major species of concern at different fishing mortalities. These projections provide estimates of the expected annual rate of change of the stock sizes and yield.

Recruitment of new cohorts to the stock is the most important factor determining the rate of recovery of the stocks. The 1986 Fish Stock Working Group analysis provided some estimates of the sizes of past recruiting year classes. The time series for estimates is rather short, and the data upon which they were based rather poor. The effect of factors such as stock size and environment on the size of recruiting year classes is not known. The simulations provide a measure against which the actual results of any recovery program can be compared.

II. METHODS

Because of the state of available data, we have taken a data-based modeling approach. Annual recruitment is estimated from a probablistic model. This is used in a simulation model which is otherwise deterministic. The projections, in effect, represent samples from some rather large universe of possibilities from which expected rates of recovery and measures of variability are obtained.

In the model for projecting future fish stock size, natural mortality and growth parameters may be assumed to not change much over time, at least relative to the effects of recruitment. With these fixed parameters, the recruitment and structure, stock size and yield for the next year are calculated using the Murphy catch equation. The size of the recruiting year class affects the future stock size far more than the growth and mortality factors, except for fishing.

1. Recruitment Function

The approach used in this paper is to fit a mixture of lognormal distributions by a modified kernel method to recruitment data and to use this distribution to generate observations for recruitment. The nonparametric method employed is a variation of the kernel technique. The distribution to be estimated is approximated by a mixture of lognormal distributions. There is one lognormal (known as a <u>Kernel</u>) for each available observation. Each kernel is "centred" so that its geometric mean is located at the corresponding observation. The logarithmic standard deviation of the various kernels is known as the <u>bandwidth</u>. The bandwidth was taken to be proportional to the geometric mean; i.e., the coefficient of variation was constant.

The central theme in application of kernel methodology is determination of suitable bandwidth. Overly small bandwidths yield estimated pdf's whose graphs have a rough, jagged appearance. Excessively large bandwidths smooth the probability mass over a wide interval, losing most of the local features of the data. There is extensive literature on kernel methods (Wertz and Schneider, 1979) and we will not here dwell upon the technical aspects except to point out that bandwidth determination was done through cross-validation.

A universal recruitment model was fitted to pooled data consisting of recruitment series for 18 fish stocks from various parts of the world (Hennemuth et al., 1982). The pooled data were scaled to normalize magnitudes which varied among species, and combined into a single large data set consisting of 325 observations. The histogram of the combined data set is shown in Figure 1. Superimposed is the fitted kernel estimate. The kernel fit, while generally acceptable, does exhibit a leftward bias for small year classes. We have been able to remove most of this bias by using variable bandwidths. As noted, recruitment data for the South Georgia and Kerguelen Islands area stocks are limited and could not be used for direct fitting.

In order to use this method of generating recruitment for the present study, the recruitment curve was adjusted to the arithmetic mean of the size of recruiting year classes of the South Georgia stocks. Figure 2 displays some of the frequency distributions of the size of annual recruitment generated for the various simulation runs.

2. Age of First Recruitment

The age of first recruitment to the fishery stock was determined by analyzing the instantaneous fishing mortality rates from the VPA for each year. The mortality rates of each age within a year were scaled from the age of maximum mortality rate within that year to the lowest age of fish caught. The estimated fishing mortality at age was rather variable from year to year. The age of first recruitment was chosen based on the most

- 233 -

consistent significant catches of the younger age groups. The age of first recruitment generally corresponds to 10% of full F. Table 1 displays the initial age and average size in numbers of recruitment for each species. The arithmetic mean of the size of the recruit was used to adjust the scale of the generalized recruitment function. The arithmetic mean of all years was used as the average of the size of the recruiting age groups. The age of first recruitment derived from the VPA data was also used for the survey analysis of one year's data.

3. Simulation Model

The simulation model calculates, using the Murphy catch equation, a time-series of catch and remaining stock sizes given various levels of fishing and natural mortality, initial stock size, and recruitment. Recruitment was generated by the kernel method described in the preceding paragraphs. The starting parameters used in this analysis are displayed in the data section.

The output of the model includes stock size (numbers) and biomass, catch numbers, and weight; averages and standard errors are also produced for each of the 20-year runs. For each set of parameters, ten simulation runs were made. The average of the ten runs for each year was also calculated to show major trends. This average is not, however, a valid measure of the expected yearly simulated values.

III. DATA

1. South Georgia

The VPA's used by the CCAMLR Fish Working Group (see Working Group Report, SC-CAMLR-V/4), which included fisheries for <u>N. rossii</u>, <u>N. gibberifrons</u>, and <u>C. gunnari</u> in South Georgia Island waters, were used as one data base for age composition, recruitment, fishing and natural mortality rates, initial stock size, and biomass. A second estimate of initial stock size, biomass, and age composition was based on 1987 US/Polish research vessel survey data, where biomass estimates were based on swept-area calculations (Gabriel, 1987, SC-CAMLR-VI/BG/12, Rev.1).

Estimates of initial stock composition (numbers at age) were calculated by averaging years 1983 and 1984 for all three species in the VPA's. SURVAN, a groundfish survey analysis program, processed the 1987 research vessel survey data into biomass estimates and population estimates by length. K.-H. Kock's age/length table for N. rossii from South Georgia in January/February, 1985 (SC-CAMLR-IV/BG/12) was applied to convert the research vessel survey length data to population estimates by age. Split-year Polish age/length tables from fishery catch samples were available for N. gibberifrons : 76/77, 77/78, 78/79, 80/81, 81/82; and C. gunnari : 76/77, 77/78, 78/79, 80/81, 81/82 and 83/84. The annual age/length keys for each of the two species were combined and normal curves of ages were fit within each length interval to obtain estimates of population numbers at age. A von Bertalanffy age/length equation was used when the age/length keys did not cover the range of lengths. The parameter estimates for von Bertalanffy's equation came from the BIOMASS Scientific Series No. 6, 1985, by K.-H. Kock, G. Duhamel, and J.-C. Hureau.

The terminal-year fishing mortality coefficients in the VPA's were used for the fully recruited age groups. A vector of partial fishing mortality rates was developed from a multiplicative analysis of variance model (1n F = 1n age + 1n year) incorporating year and age effects which was fit to a matrix of log F's from the 1980–1984 VPA's. The retransformed vectors of age-specific coefficients were used as the partial recruitment vector. The coefficient of determination (\mathbb{R}^2) for the models for <u>N. rossii</u>, <u>N. gibberifrons</u>, and <u>C. gunnari</u> was 0.897 and 0.599, and 0.740, respectively.

Table 2 displays the final format of the data.

2. Kerguelen

The VPA's estimated by Duhamel (1987, PhD. unpublished), for <u>N. rossii</u> and <u>N. squamifrons</u> fisheries on the Kerguelen Island shelf, were used to obtain the parameters for simulation (Table 3).

Estimates of initial stock composition (numbers at age) were calculated averaging years 1982 and 1983 for <u>N. rossii</u>, and 1985 and 1986 for <u>N. squamifrons</u> in the VPA's. The coefficient for determination (R^2) for the models for <u>N. rossii</u> and <u>N. squamifrons</u> was 0.878 and 0.496, respectively.

IV. RESULTS

Graphs of the ten stock size projections and the mean for the various species and fishing mortalities are presented in Figures 3 to 18 for South Georgia stocks and 19 to 22 for Kerguelen stocks. The averages of the ten 20-year projections for the stock size and catch in numbers and weight are given in Table 4 (South Georgia) and Table 5 (Kerguelen). It may be useful to reiterate here that the higher F is the terminal F value used in last year's VPA's, and the lower is half that excepting <u>N. rossii</u> at South Georgia where the highest F of 0.5 is taken from Saila et al. (MS) (see SC-CAMLR-VI/3) analysis. The SURVAN projections are in units relating to the Polish research vessel catchability factor which is obviously less than that of the commercial vessels. One can compare only the relative rates of change.

1. Stock Recovery Rates

1.1 N. rossii

1.1.1 South Georgia

For the VPA-based projections at F = 0.089, the stock size increases steadily to its peak at about 2.5 times

the starting value in seven years; it doubles in five years. For F = 0.177, the stock size increases to its peak again at about 2.5 times the starting point in about 12 years; doubling in about seven years. For F = 0.55, the stock does not exhibit any trend of recovery.

With the survey data, the stock declines by a third or more for all F values in from six to eight years, after which it stabilizes at the lower size.

A 1.1.2 (Kerquelen V and dischard Herre har sharp berran d

The VPA-based projections indicate that at F = 0.38 the stock increases by a factor of 2 in about five years; however, the recovery is only 1.7 times the initial size with F = 0.76.

1.2 N. gibberifrons (South Georgia)

The VPA-based projections indicate that at F = 0.071 the stock increases to about 2.8 times the initial size in ten years; it doubles in about five years. At F = 0.142, the stock peaks at about 2.5 times the initial size in 15 years and doubles in 11 years. For the survey data base, the stock increases slowly by about 50% over the 20 years at F = 0.071. For F = 0.142, the stock does not change significantly.

1.3 C. gunnari (South Georgia)

The projections for this stock do not indicate any recovery at any of the fishing mortality coefficients for either of the data sets. The mortalities are higher than those applied to other species, as is the magnitude of stock size (note the different ordinal scale on the plots).

1.4 N. squamifrons (Kerguelen)

At F = 0.36, the stock almost doubles in five years and increases slowly but continuously over the 20 years. For the VPA-based projection at F = 0.72, the stock size increases to about 2.3 times the initial value in five years.

2. Biomass and Yield Changes

The projections of stock biomass and yield for the same data sets used to describe stock size trends are portrayed in Figures 23-29 (South Georgia) and 30-31 (Kerguelen); the data are contained in Tables 4 and 5.

2.1 South Georgia

2.1.1 N. rossii

The trends in stock biomass are, of course, similar to those of stock numbers, but the biomass doubles in less time than it takes for the numbers of fish to do so. This results from the increasing numbers of older fish compared to the initial age composition. For the VPA data set at F = 0.55, the catch peaks in about five to nine years at a level double the initial yields; thereafter it declines slowly. At F = 0.177, the yield rises slowly, peaking in 15 years at about 5 times the initial yield. At F = 0.089, the yield peaks at ten years at 6 times the initial yield.

The survey data set indicates continuously declining yields at F = 0.55, while at the lower fishing mortalities the yield increases slightly at first, but does not change significantly over the projection period.

2.1.2 N. gibberifrons

As with <u>N. rossii</u>, the trends in stock biomass have a pattern similar to that of stock numbers but with the biomass doubling in less time.

The yields increase steadily to about 4 times the initial yield at the end of the 20-year simulation, doubling in four years for both mortalities.

For the SURVAN data set, the yields do not change.

2.1.3 C. gunnari

Projections from the VPA data set indicate immediate drop in yields at both fishing mortality levels, followed by increases in the 4-10-year period and further decreases thereafter. Projections from the survey data base illustrate highly variable changes in yield, but no long-term trend at F = 3.5; a short-term increase by 2X in six years, decreasing thereafter at F = 1.75; a doubling in yield in 11 years at F = 0.875.

2.2 Kerguelen

2.2.1 N. rossii

The trends in stock biomass show a similar pattern to the stock numbers. For the VPA data set at F = 0.76, the yield peaks in six years at double the initial level; thereafter, it declines slowly. At F = 0.38, the catch peaks in ten years at about 4.2 times the initial yield and is followed by a small decline.

2.2.2 N. squamifrons

The trends in stock biomass again show a similar pattern to the stock numbers. The yields increase by a factor of 4 for F = 0.72 and by 6 for F = 0.36 at the end of the 20 years simulated.

3. Summary of Trends

3.1 South Georgia

The entries in Table 6 summarize the points of reference for the various projections. In general, for <u>N. rossii</u> and <u>N. gibberifrons</u>, the stock size recoveries were larger for the lower F's used, and indicated recovery to over double the initial size in from 8 to 15 years. Recovery of stock biomass was relatively larger and faster. The survey-data-based projections indicated recovery only for <u>C. gunnari</u> at lower F's. <u>N. gibberifrons</u> indicated no significant changes, while <u>N. rossii</u> yields and population decreased at high F and did not recover at lower F's. The differences are likely due to the fact that only the one year's point was available for determinig recruitment year-class size in the survey catchability units. The accuracy is unknown. This applies as well to the numbers at age for the initial population, but this is of less concern since the simulation will tend to equilibrate after a few years.

The situation for <u>C. gunnari</u> is obviously different. The stock does not recover but rather declines, except for the lowest mortality in the SURVAN data set. The relatively high fishing mortality is likely responsible. Another factor is that the full mortality is applied from the age of recruitment, which corresponds to the pattern observed in the data. Perhaps a marginally significant increase in yield would occur at F =0.875.

3.2 Kerguelen

The entries in Table 7 summarize the points of reference for various projections. In the Kerguelen area, the stock size recoveries are larger for the lower F's. At F = 0.38, the stock size for <u>N. rossii</u> doubles in five years. Note that for <u>N. squamifrons</u>, the higher F doubles in four years and the lower F in ten years. However, the stock population over 20 years remains relatively low and constant. If the maximum increase factor for the high F is compared with the low F, there is a relatively smaller change in stock size, but a significantly larger change in the yield. The larger change in yield would be due to the shift in the age composition.

V. DISCUSSIONS AND CONCLUSIONS

The results have defined, under the constraints of the fishing mortality rates applied, the probable recovery rates of the stocks. It has been demonstrated for the simulations based on the VPA data set for <u>N. rossii</u>, <u>N. gibberifrons</u>, and <u>N. squamifrons</u>, that recovery within a reasonable time period might indeed be expected. For <u>C. gunnari</u>, this is not the case. With the initial stock size and age composition taken from the 1987 US/Polish research cruise data, the stock simulations indicated less and slower recovery; some declined.

The major factors affecting the results are the recruitment and fishing--both the level of F and the age at which it is applied.

1. Recruitment

The probability density function used, and the random year-by-year selection from it, assume that the past average recruitment will continue, and that the frequency distribution of various sizes of the recruiting year class follow the "universal" set of data. In the simulation, stock size is not a directly dependent variable, but the historical set of observations from which the pdf is derived would implicitly account for the influence of the various factors. Use of the usual stock and recruitment relations, however, would not much affect the results of the relative recovery rate.

2. Fishing Mortality

The F applied to the terminal year of the VPA's (1985) was derived from the Federal Republic of Germany's 1985 survey results for the South Georgia stocks. The VPA indicated considerably higher F's in previous years. Higher fishing mortality rates would certainly reduce the amount and rate of recovery illustrated in the analysis. This is demonstrated for <u>N. rossii</u> if the higher 1986 mortality rate in Saila et al. is applied. Another aspect of fishing mortality is the distribution over the young ages. This is demonstrated in the simulations for <u>C. gunnari</u>, where the full F was applied to the recruiting year class. The stock declined and both the stock size (and biomass) and yield illustrated large changes from year to year; they were highly dependent on the size of the annually recruiting year class. Past data indicate that for some years the other stocks also had high mortalities on younger age classes.

The lack of data about the Kerguelen stocks before the establishment of an Exclusive Economic Zone (1978) must be pointed out, but from the beginning of exploitation (1970) to this date, high levels of catch were reported and, hence, probably also mortality. The current fishing rates have been reduced following the conservation measures (lower F level or F = 0) and now the rate of recovery must be close to the simulation model results.

3. Yields

The magnitude and pattern could change markedly from those simulated, depending on the pattern of fishing. It may be noted that the fluctuating yields of <u>C. gunnari</u> simulated here tend to be similar to past observations.

The application of a constant F and partial recruitment over the years in the simulations is not what has been observed in the past fisheries. Also observed is that fishing mortality is increased on large recruiting year classes. The yield and population is most likely higher in the simulations than in practice, because a constant F is the more optimal method for longer-term yields.

The magnitudes of average annual yields from the simulations (VPA-based) compared to the reported catches are given in Table 8.

The close correspondence of average simulated yield to average observed catch cannot be used simplistically to validate the simulations, nor to judge the correct magnitude of F. Because the simulations were based on the VPA's which are calculated from fishery data, the average reported catches are not independent of the simulated yields. However, it does provide an indication that if the input parameters are suitably scaled to the commercial fishing practices, the recruitment model and the simulations provide results which can be used to judge probable future realizations.

The simulated yields point out the important result that the yield per unit F is higher, particularly for <u>C. gunnari</u>, for the lower fishing rates.

LITERATURE CITED

WERTZ, W. and B. SCHNEIDER. 1979. Statistical density estimation. Int. Statist. Rev., 47:155-175.

HENNEMUTH, R.C., J.E. PALMER and B.E. BROWN. A statistical description of recruitment in eighteen selected fish stocks. J. Northwest Atl. Fish. Sci., 1:101-111.

		Age	Sout A <u>Rec</u> VPA	h Georgia verage ruitment Survey	Age —	Kerguelen Average Recruitment VPA
Ν.	rossii	4	4.152	0.151	5	1.725
Ν.	squamifrons				7	1.189
N.	gibberifrons	8	15.132	3.322		
C.	gunnari	3	228.540	260.218		

Table 1. Initial age and numbers in millions of individual recruits

Age	Initial Stock Size (millions) VPA SURVAN	F Vector	Biomass (kg)
	<u>N. rossii</u>		
4 5 6 7 8 9 10 11 12+	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3036 0.5228 0.6501 0.9664 1.0000 1.0000 1.0000 1.0000 1.0000	$\begin{array}{c} 0.735 \\ 1.526 \\ 2.382 \\ 3.090 \\ 3.808 \\ 4.430 \\ 5.013 \\ 5.586 \\ 6.077 \end{array}$
	N. gibberifron	<u>S</u>	
8 9 10 11 12 13 14 15 16 17 18 19+	9.220 3.603 4.102 3.598 2.391 2.939 1.651 2.070 1.006 1.361 0.877 0.769 0.304 0.409 0.000 0.214 0.000 0.093 0.000 0.037 0.012 0.022	0.4496 0.5807 0.6695 0.8597 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	$\begin{array}{c} 0.331 \\ 0.433 \\ 0.522 \\ 0.578 \\ 0.659 \\ 0.708 \\ 0.708 \\ 0.784 \\ 0.877 \\ 0.923 \\ 0.999 \\ 1.079 \\ 1.124 \end{array}$
	C. gunnari		
3 4 5 6 7 8 9 10+	$\begin{array}{ccccccc} 60.985 & 20.844 \\ 35.113 & 7.196 \\ 8.853 & 2.432 \\ 2.918 & 1.152 \\ 0.836 & 0.745 \\ 0.418 & 0.282 \\ 0.626 & 0.191 \end{array}$	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	$\begin{array}{c} 0.132 \\ 0.256 \\ 0.359 \\ 0.435 \\ 0.480 \\ 0.534 \\ 0.582 \\ 0.665 \end{array}$

Table 2. Parameters used for simulation model (South Georgia)

Age	Initial Stock Size (millions)	F Vector	Biomass (kg)
		· · · · · · · · · · · · · · · · · · ·	
	N. rossii (Kergu	elen)	
5	-	0.1978	0.988
6	0.959	0.3662	1.490
7	0.483	1.0000	2.058
8	0.172	1.0000	2.672
9	0.121	1.0000	3.319
10	0.103	1.0000	3.975
11	0.051	1.0000	4.632
12	0.038	1.0000	5.271
13+	0.028	1.0000	5.897
		-)	
	N. squamifrons (Kerc	juelen)	
7	-	0.0979	0.245
8	0.640	0.2278	0.349
9	0.420	0.3061	0.457
10	0.241	0.3210	0.549
11	0.118	0.4674	0.707
12	0.043	0.6418	0.846
13	0.012	1.0000	0.991
14+	0.001	1.0000	1.142

Table 3. Parameters used for simulation model (Kerguelen)

Year	Stock Weight	Catçh Weight	Stock (No's)	Catch (No's)			
N. rossii VPA F = 0.177							
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1995 1995 1998 1999 2000 2001 2002 2003 2004	18.935 24.454 34.053 42.097 48.721 55.269 59.713 64.645 67.412 69.213 71.749 73.570 76.771 81.222 80.340 80.181 74.125 75.144 73.373 74.520	2.006 3.122 4.293 5.497 6.558 7.513 8.295 8.699 9.223 9.468 10.103 10.228 10.381 11.151 11.248 11.451 11.425 10.669 10.603 10.395 10.228	11.441 13.346 15.532 18.590 18.741 21.162 21.869 25.625 24.601 25.111 25.581 26.417 30.624 28.672 26.452 26.452 26.452 26.452 26.671 25.678 24.555 27.455	0.990 1.319 1.624 1.968 2.146 2.367 2.542 2.746 2.859 2.859 3.040 3.055 3.288 3.380 3.259 3.312 3.004 2.991 2.949 3.027			
AVE	63.380	8.570	23.110	2.640			
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1995 1995 1997 1998 1997 2000 2001 2002 2003 2004 AVE	N. 18.930 28.540 38.203 49.001 60.182 70.416 79.099 84.242 86.570 86.570 86.589 85.008 86.274 80.869 79.120 79.855 75.118 73.395 74.454 71.571 75.960 69.170	rossii VPA F = 1.041 1.737 2.544 3.414 4.326 5.126 5.838 6.279 6.485 6.560 6.511 6.626 5.964 5.959 5.556 5.579 5.666 5.411 5.636 5.130	0.089 11.433 14.871 14.552 20.325 23.028 24.443 27.372 27.913 27.245 27.554 25.554 25.554 25.561 25.842 23.865 22.618 24.119 22.508 25.292 23.260	0.511 0.742 0.937 1.163 1.375 1.514 1.685 1.772 1.775 1.775 1.773 1.702 1.612 1.589 1.612 1.589 1.617 1.530 1.519 1.548 1.477 1.546 1.460			

Table 4. Average of the Ten 20-Year Projections for Stock Size in Numbers (X 10^{-6}) and Weight (X 10^{-3})

Table 4 (continued)

N. rossii SURVAN F = 0.177

Year	Stock Weight	Catch Weight	Stock	Catch
1987 1988 1989 1990 1991 1992 1993 1993 1994 1995 1995 1995 1995 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006	$\begin{array}{c} 7.56\\ 8.28\\ 8.50\\ 8.22\\ 7.59\\ 6.65\\ 5.34\\ 3.75\\ 2.34\\ 2.35\\ 2.28\\ 2.22\\ 2.34\\ 2.35\\ 2.28\\ 2.32\\ 2.34\\ 2.41\\ 2.42\\ 2.37\\ 2.42\\ 2.50\\ 2.49\end{array}$.96 1.16 1.29 1.26 1.16 1.02 .81 .55 .33 .33 .33 .33 .32 .31 .32 .32 .34 .34 .34 .34 .35	3.08 2.80 2.54 2.18 1.91 1.59 1.29 1.05 .80 .79 .80 .81 .87 .85 .82 .82 .82 .84 .86 .92 .85	.35 .36 .36 .31 .27 .22 .18 .13 .09 .09 .09 .09 .09 .09 .09 .10 .10 .10 .10 .10 .10
AVE	4.22	.61	1.33	.17
1987 1988 1989 1990 1991 1992 1993 1994 1995 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 AVE	7.58 8.79 9.55 9.68 9.73 9.08 7.65 5.32 2.95 2.95 3.05 3.06 2.99 2.94 2.99 2.94 2.99 3.11 3.16 3.14 3.13 5.20	N. . 50 . 65 . 77 . 80 . 79 . 73 . 61 . 42 . 22 . 23 . 23 . 23 . 23 . 23 . 23 . 22 . 22 . 22 . 23 . 24 . 24 . 24 . 40	rossii SURVA 3.10 2.87 2.68 2.50 2.34 2.10 1.80 1.35 .93 .93 .93 .94 .93 .92 1.02 1.02 1.02 1.01 1.02 .98 .94 .97	N F = 0.089 .18 .20 .21 .19 .17 .15 .13 .09 .06 .06 .06 .06 .06 .06 .06 .06

and the second second

Table 4 (continued)

N. rossii VPA F = 0.55 1985 18.856 5.472 11.336 2.745 1986 26.184 7.401 17.758 3.963 1987 30.838 9.321 16.803 4.381 1988 33.217 10.475 16.459 4.422 1989 33.894 11.416 16.400 4.576 1991 34.029 11.119 16.684 4.473 1992 33.533 11.336 18.325 4.731 1994 32.387 10.945 14.535 4.077 1995 29.177 10.187 12.725 3.744 1996 22.656 9.391 14.484 3.686 1997 28.126 9.254 13.461 3.686 1998 27.530 8.977 12.595 3.502 2000 26.038 8.494 12.816 3.445 2001 26.038 8.494 12.816 3.445 2002 26.918 8.662 13.729 3.582 2004 32.566 10.043 17.973	Year	Stock Weight	Catch Weight	Stock (No's)	Catch (No's)			
1985 18.856 5.472 11.336 2.745 1986 26.184 7.401 17.758 3.943 1987 30.838 9.321 16.803 4.381 1988 33.217 10.475 16.459 4.422 1989 33.894 11.416 16.400 4.576 1970 33.024 11.148 16.468 4.474 1992 35.353 11.336 18.325 4.731 1993 34.201 11.418 15.242 4.410 1994 32.387 10.945 14.535 4.077 1995 29.177 10.187 12.725 3.744 1996 28.656 9.391 14.484 3.730 1997 28.126 9.2591 3.464 3.463 1997 26.038 8.494 12.895 3.502 2000 26.331 8.645 13.033 3.466 2001 26.038 8.494 12.816 3.446 2002 26.918 8.642 13.729 3.582 2004 <td colspan="8">N. rossii VPA $F = 0.55$</td>	N. rossii VPA $F = 0.55$							
N. rossii SURVAN F = 0.55 19877.562.573.08.9619886.252.312.13.7419894.771.881.51.5519703.371.331.01.3619912.38.91.72.2419721.75.65.62.1919731.36.47.56.1619741.10.37.48.131975.96.31.47.131976.94.31.44.121978.89.30.40.111979.82.28.35.102000.78.26.38.102001.75.25.40.102003.82.26.42.112004.84.27.42.112005.85.27.42.112006.89.29.47.12AVE1.94.69.76.23	1985 1984 1987 1988 1989 1990 1991 1992 1993 1994 1995 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 AVE	18.858 26.184 30.838 33.217 33.894 33.904 34.029 35.353 34.201 32.387 29.177 28.656 28.126 27.530 26.704 26.331 26.038 26.918 29.244 32.566 29.710	5.472 7.401 9.321 10.475 11.416 11.168 11.119 11.336 11.418 10.945 10.187 9.391 9.254 8.987 8.987 8.987 8.979 8.645 8.494 8.662 9.176 10.043 9.600	11.336 17.758 16.803 16.459 16.400 16.484 16.488 18.325 15.242 14.535 12.725 14.484 13.461 12.991 12.595 13.033 12.816 13.729 16.152 17.973 15.010	2.745 3.963 4.381 4.422 4.576 4.475 4.475 4.474 4.731 4.410 4.097 3.744 3.730 3.686 3.529 3.502 3.466 3.445 3.582 4.035 4.506 3.980			
1787 7.56 2.57 3.08 .96 1788 6.25 2.31 2.13 .74 1789 4.77 1.88 1.51 .55 1790 3.37 1.33 1.01 .36 1791 2.38 .91 .72 .24 1792 1.75 .65 .62 .19 1793 1.36 .47 .56 .16 1794 1.10 .37 .48 .13 1995 .96 .31 .47 .13 1995 .96 .32 .47 .13 1995 .96 .31 .47 .13 1997 .94 .31 .44 .12 1998 .89 .30 .40 .11 1997 .94 .31 .44 .12 1998 .89 .20 .38 .10 2000 .78 .26 .38 .10 2001 .78 .25 .40 .10 2003 .82 .26 </td <td></td> <td>N. ros</td> <td>sii SURVAN F</td> <td>= 0.55</td> <td>• •</td>		N. ros	sii SURVAN F	= 0.55	• •			
	1987 1988 1989 1990 1991 1992 1993 1994 1995 1994 1995 1996 1997 1998 1999 2000 2001 2001 2002 2003 2004 2005 2006 AVE	7.56 6.25 4.77 3.39 2.38 1.75 1.36 1.10 .96 .94 .94 .94 .82 .78 .78 .78 .78 .82 .82 .84 .85 .89 1.94	2.57 2.31 1.88 1.33 .91 .45 .47 .37 .31 .32 .31 .30 .28 .26 .25 .26 .25 .26 .27 .27 .29 .69	- 5.55 3.08 2.13 1.51 1.01 .72 .62 .56 .48 .47 .47 .44 .40 .35 .38 .40 .39 .42 .42 .42 .42 .42 .42 .47 .42 .42 .42 .42 .42 .42 .42 .42	.96 .74 .55 .36 .24 .19 .16 .13 .13 .13 .13 .13 .12 .11 .10 .10 .10 .10 .11 .11 .11 .12 .23			

Table 4	(continued)	
---------	-------------	--

Ŷ	'ear	Stock Weight	Catch Weight	Stock (No's)	Catch (No's)
		N. gibberif	Frons VPA F =	0.142	
	985 987 987 989 999 999 999 999 999 999 999	17,174 21,613 25,930 30,901 33,582 35,877 38,629 42,955 46,307 48,705 49,209 50,043 49,611 50,822 54,902 55,450 55,450	1,418 1,908 2,421 3,037 3,493 3,804 4,141 4,544 4,872 5,181 5,378 5,500 5,427 5,519 5,790 5,909 4,100	40.381 46.180 52.258 60.974 61.779 63.821 67.991 76.376 81.429 83.243 80.894 82.831 83.242 85.244 96.273 94.855 95.166	3.078 3.831 4.580 5.564 6.002 6.302 6.302 6.302 7.834 7.834 8.149 8.214 8.398 8.381 8.497 9.195 9.301 9.351
222	2002	55,146 53,200 51,814	6.136 6.044 5.839	88.785 83.521 83.075	9,251 8,893 8,663
	AVE	43.430	4.620	75.420	7.380
		N. gibberifr	ons VPA F = ().071	
	1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1994 1995 1998 1999 2000 2001 2002 2003 2004 AVE	15.462 20.984 27.036 33.705 40.309 43.829 47.727 51.993 54.968 59.540 63.316 64.760 64.440 64.600 64.770 63.308 62.102 63.148 63.700 64.991 51.730	0.674 0.958 1.297 1.699 2.111 2.417 2.708 2.999 3.205 3.429 3.649 3.649 3.743 3.735 3.743 3.785 3.789 3.718 3.455 3.718 3.455 3.718 3.748 3.748 3.748 3.762	35.211 44.784 55.052 66.247 75.969 76.385 80.267 85.626 87.174 94.869 99.761 100.560 100.259 99.347 100.325 97.342 95.011 95.686 97.148 101.551 84.430	1.416 1.905 2.457 3.092 3.679 3.951 4.253 4.579 4.723 5.012 5.274 5.360 5.405 5.429 5.317 5.203 5.251 5.277 5.380 4.420
		91.100	2.940	31.100	

Table 4 (continued)

Year	Stock Weight	Catch Weight	Stock	Catch
	N. gibberi	frons SURVAN	F = 0.142	
1987	9.83	1.01	18.30	1.75
1989	11.36	1.23	19.84	1.98
1990	11.63	1.28	19.40	1.99
1991	11.58	1.30	18.51	1.94
1992	11.86	1.33	17.13	1.97
1994	11.86	1.31	19.03	1.93
1995	11.58	1.28	18.51	1.89
1996	11.26	1.25	18.10	1.85
1997	10.62	1.19	16.82 16.97	1.73
1999	10.38	1.15	16.87	1.72
2000	10.54	1.14	17.63	1.74
2001	10.54	1.14	17.69	1.75
2002	10.87	1.1/	18.38 19 37	1.81
2003	11.33	1.24	21.11	2.02
2005	12.17	1.29	20.98	2.05
2006	12.40	1.33	21.11	2.09
AVE	11.24	1.22	18.80	1.89
	N. gibber	ifrons SURVAN	F = 0.071	
1987	9,99	.52	18.77	.91
1988	11.73	.63	21.49	1.07
1989	12.34	.71	20.38	1.14
1991	13.36	.81	20.21	1.15
1992	14.24	.85	21.83	1.20
1993	15.32	.88	24.17	1.26
1994	13.42	.87	20.40 22.14	1.20
1776	14.47	.87	21.38	1.20
1997	13.80	.83	20.44	1.15
1998	13.30	.79	19.80	1.10
1999	13.49	.78	21.04	1.12
2001	14.24	.80	23.27	1.19
2002	15.52	.87	25.68	1.30
2003	15.96	.91	25.41	1.33
2004 2005	15.96	.92	26.11	1.39
2006	16.77	.96	27.31	1.44
AVE	14.16	.82	22.52	1.20

Table 4 (continue	(b)
-------------------	-----

Year	Stock	Catch	Stock	Catch
	Weight	Weight	(No's)	(No's)
	C. gu	unneri VPA F =	3.50	
1985	63.974	60.159	332.466	312.642
1986	23.855	22.433	169.194	159.105
1987	21.781	20.482	160.517	150.946
1988	30.620	28.794	227.841	214.255
1989	33.554	31.553	248.388	233.577
1990	38.627	36.324	286.269	269.199
1991	27.488	25.849	200.916	188.936
1992	40.957	38.515	305.074	286.883
1993	32.151	30.234	235.800	221.739
1994	48.264	45.386	359.549	338.109
1995	29.094	27.359	211.253	198.656
1995	40.695	38.268	302.790	284.735
1995	21.303	20.033	153.665	144.502
1998	30.969	29.123	230.588	216.839
1999	32.756	30.803	242.277	227.830
2000	19.392	18.235	140.696	132.306
2001	32.989	31.022	246.247	231.564
2002	35.396	33.285	261.890	246.274
2003	27.711	26.058	203.218	191.101
2004	39.052	36.723	290.595	273.268
AVF	33.530	31.530	140.460	226.120
· · · • •				

C. gunneri VPA F = 1.75

1985	61,785	48,866	315.884	249.832
1986	50,357	39,827	317,556	251.155
1987	38,416	30,384	237,343	187.714
1988	48,015	37,975	322.742	255,256
1989	64.018	50,632	433,245	342,653
1990	52.485	41.511	328,525	259,829
1991	62,267	49,247	415.551	328,659
1992	64.380	50.913	420.677	332,712
1993	49,896	39,463	308,802	244.231
1994	56,795	44.919	376+959	298,136
1995	31,391	24+827	176,700	139.752
1996	31,758	25,117	207.375	164.012
1997	31,839	25.181	207.129	163,819
1998	46,686	36+924	319,490	252.684
1999	57.766	45.687	387.180	306.220
2000	43.099	34.087	264.218	208.969
2001	56,082	44,355	378,849	299.631
2002	43.013	34.019	265.390	209.897
2003	33.798	26.731	210.090	166.160
2004	36.546	28.904	240.772	190.426
AVE	48.020	37.980	306.720	242.590

Year	Stock Weight	Catch Weight	Stock	Catch
	C. g	unnari SURVA	N F = 3.5	
1987 1988 1989 1990 1991 1992 1993 1994 1995 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005	52.92 58.26 42.99 43.46 30.01 25.15 44.15 28.98 28.87 34.95 40.45 30.12 75.40 43.62 32.15 36.31 53.07 61.10 43.05	$\begin{array}{r} 49.77\\ 54.78\\ 40.43\\ 40.87\\ 28.22\\ 23.65\\ 41.52\\ 27.25\\ 27.15\\ 32.87\\ 38.04\\ 28.33\\ 70.90\\ 41.02\\ 30.24\\ 34.15\\ 49.90\\ 57.45\\ 40.49\end{array}$	356.34 431.47 314.66 321.09 219.07 184.84 329.70 211.13 213.26 259.32 299.80 220.53 565.47 316.12 235.34 269.01 395.15 452.79 314.58	335.09 405.74 295.89 301.95 206.01 173.82 310.04 198.54 200.54 243.86 281.92 207.38 531.75 297.27 221.31 252.97 371.59 425.79 295.82
2006 AVE	36.52	34.34	268.51	252.50
	C. gu	unnari SURVAN	↓F = 1.75	
1987 1988 1989 1990 1991 1992 1993 1993 1994 1995 1995 1997 1998 1997 2000 2001 2002 2003 2004 2005 2006	$\begin{array}{c} 40.21\\ 38.56\\ 48.10\\ 70.33\\ 60.19\\ 73.30\\ 62.72\\ 49.47\\ 46.64\\ 40.39\\ 49.24\\ 52.90\\ 48.33\\ 46.38\\ 31.03\\ 35.57\\ 42.34\\ 61.37\\ 55.90\\ 39.36\end{array}$	31.80 30.50 38.04 55.62 47.61 57.97 49.61 39.13 36.88 31.95 38.95 41.84 38.22 36.68 24.54 28.13 33.48 48.54 44.21 31.13	$\begin{array}{c} 260.06\\ 249.15\\ 323.05\\ 480.95\\ 380.01\\ 470.79\\ 396.21\\ 307.61\\ 307.61\\ 307.61\\ 307.40\\ 256.02\\ 329.81\\ 347.70\\ 309.20\\ 299.57\\ 185.28\\ 236.47\\ 282.45\\ 419.31\\ 357.19\\ 238.20\\ \end{array}$	205.48 197.06 255.50 380.55 388.14 313.36 243.29 237.63 202.48 260.84 275.00 244.55 236.93 146.54 187.02 223.39 331.63 282.50 188.39
AVE	49.62	39.24	322.47	255.04

Table 4 (continued)

Year	Stock Weight	Catch Weight	Stock	Catch					
C. gunnari VPA F = 0.875									
1985	69.54	38.50	374.60	207.41					
1986	66.57	36.86	330.57	183.03					
1987	63.27	35.03	313.54	173.60					
1988	64.18	35.53	328.69	181.99					
1989	65.86	36.47	338.89	187.64					
1990	59.99	33.21	289,82	160.47					
1991	58.01	32.12	290.63	160.92					
1992	62.67	34.70	330.40	182.94					
1993	57.55	31.86	279.20	154.59					
1994	66.59	36.87	361.41	200.10					
1995	82.80	43.83	460.10	204.78					
1996	78.04	40.21	302.30 740 17	211.72					
177/	/서·소/ 기간 간도	41.12	371 08	205.00					
1999	76.83	42.54	399.35	221.11					
2000	76.81	42.53	389.75	215.80					
2001	70.35	38.95	341.13	188.88					
2002	72.60	40,20	375.39	207.85					
2003	71.67	39.68	361.92	200.39					
2004	87.57	48.49	484.68	268.36					
AVE	69.93	38.72	358.59	198.54					
	C gun	nani SUDVAN	F = 0.975						
	C. gun	HATT SURVAN	1 - 0.875						
1987	50.61	28.02	338.82	187.60					
1988	79.98	44,28	475.56	263.31					
1989	80,07	44.33	402.47	222.84					
1990	86.85	48.09	457.53	203.33					
1991	94.42	52.28	497.99	270.70 254 55					
1992	92.41	$\frac{1}{21.10}$	463:30	229.90					
1993	83.20	47.21	397.73	217.45					
1994	/∀.8∡ 70 70	44.17 44.18	406.31	224.97					
1995	77.77 70 AA	43.98	403.01	223.14					
1775	70.41	39.09	336.67	186,41					
1777	112,48	62.28	677.18	374.94					
1000	108.83	60.26	538.82	298.34					
2000	88.71	49.12	400.09	221.52					
2001	76.00	42.08	357.03	197.68					
2002	76.84	42.55	395.07	218.75					
2003	73.63	40.77	366.12	202.71					
2004	61.03	33.79	278.89	154.42					
2005	64.60	35.77	338.64	183.58					
2006	64.99	22.20	U. LCC						
AVE	80.32	44.47	413.65	229.03					

Table 5. Average of the Ten 20-Year Projections for Stock Size in Numbers (x 10-6) and Weight (x 10-3)

Year	Stock Weight	Catch Weight	Stock	Catch
	N. rossii,	Kerguelen	F = 0.76	
1984 1985 1986 1987 1988 1989 1990 1990 1997 1993 1994 1995 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003	5.79 6.25 7.96 9.74 10.57 10.54 10.27 9.26 8.89 8.10 8.45 8.30 8.18 8.71 8.83 9.17 9.24 9.21	2.04 2.17 2.48 2.76 3.25 3.72 4.18 3.98 3.64 3.56 3.11 3.15 3.04 3.23 3.08 3.13 3.25 3.47 3.53	3.47 3.86 4.43 5.03 6.40 6.47 5.98 5.92 5.03 4.97 4.48 5.05 4.82 4.77 4.78 5.31 5.19 5.43 5.43 5.23	.96 1.09 1.27 1.42 1.73 1.91 2.03 1.88 1.67 1.64 1.42 1.51 1.46 1.55 1.47 1.54 1.59 1.69 1.69
AVE	8.65	3.21	5.11	1.56
	N. rossii,	Kerguelen	F = 0.38	
1984 1985 1986 1987 1988 1989 1989 1990 1991 1992 1993 1994 1995 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003	5.84 7.13 8.97 10.92 12.55 14.22 15.91 16.52 18.65 18.15 17.88 16.72 15.79 15.27 14.70 14.49 14.62 14.57 14.81 15.26	1.18 1.54 2.02 2.41 2.94 3.44 3.80 4.15 4.53 4.52 4.97 4.43 4.15 3.97 3.77 3.47 3.47 3.59 3.75 3.89	3.52 4.08 5.15 6.47 7.36 8.14 7.82 9.59 8.24 7.71 7.12 6.73 6.52 6.70 6.81 7.14 6.87 7.23	.54 .71 .93 1.08 1.28 1.45 1.56 1.65 1.83 1.74 1.88 1.57 1.46 1.42 1.37 1.37 1.38 1.42 1.45 1.50
AVE	14.15	3.52	6.81	1.38

Table 5 (continued)

Year	Stock Weight	Catch Weight	Stock	Catch
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1997 2000 2001 2002 2001 2002 2003 2004 2005 2006	.84 1.18 1.44 1.77 2.06 2.25 2.31 2.28 2.29 2.35 2.28 2.27 2.28 2.35 2.35 2.35 2.35 2.35 2.35 2.46 2.41 2.49 2.48	.15 .21 .29 .36 .44 .51 .55 .59 .60 .60 .60 .55 .57 .57 .57 .61 .60 .60 .60 .60 .60 .60	2.15 3.05 3.46 4.20 4.80 4.87 4.75 4.43 4.95 4.59 4.75 4.59 4.75 4.88 4.95 4.88 4.91 4.67 5.23 4.96 5.15 5.16	. 33 . 44 . 57 . 69 . 81 . 90 . 93 . 93 . 93 . 93 . 93 . 94 . 95 . 91 . 95 . 97 . 96 . 97 . 99 1.01 1.00
AVE	2.13	.51	4.51	.85
1987 1988 1989 1990 1991 1992 1993 1994 1995 1994 1995 1994 1995 1995 1996 1997 1998 1997 2000 2001 2002 2003 2004 2005 2006 AVE	1.03 1.41 1.80 2.15 2.50 2.78 2.90 2.96 2.90 3.16 3.17 3.15 3.13 3.51 3.58 3.77 3.84 3.68 3.83 2.91	.09 .14 .21 .27 .35 .42 .48 .49 .46 .47 .49 .46 .47 .50 .50 .50 .50 .54 .57 .51 .59 .55 .62 .44	2.90 3.50 4.02 4.47 5.24 5.28 5.28 5.25 5.26 6.29 5.90 5.72 5.62 6.82 6.72 7.23 7.20 6.74 5.55	. 20 . 29 . 38 . 46 . 55 . 62 . 67 . 65 . 64 . 70 . 73 . 72 . 70 . 77 . 82 . 87 . 85 . 82 . 87 . 85

· · · · · · · · · · · · · · · · ·			St	ock Size			/ield	·
Species	Data S	Set F	1	2	3	1	2	3
N. rossii	VPA O.	.55	1.6	7	-	2.1	4	4
	0.	.177	2.7	12	7	5.8	15	2
	0.	.089	2.4	7	4	6.4	11	4
	SUR O.	.55	**			**	a tao tao =	
	0.	.177	**			*		
	0.	.089	**			*		
N gibberifrons	νρα ο	142	2.4	14	8	4.3	16	3
R. grober mons	0.	.071	2.9	11	4	5.6	11	3
	SUR O.	.142	*			*		
	0.	.071	1.5	20+	-	*		
C. gunnari	VPA 3.	.5	**			**		
-	1.	.75	*			*		
	0.	.875	*			*		
	SUR 3.	.5	*			*		
	1.	.75	*			2	11	11
	0.	.875	*			2	11	11

Table 6. Summary of standard reference points for projections (South Georgia stocks)

Maximum increase factor 1

2 Time to reach maximum--years 3 Time to reach 2X increase--years * No increase ** Actual decrease

			Sto	ock S	ize	Yield			
Species	Data	Set F	1	2	3	1	2	3	
N. rossii	VPA	0.76	1.7	6	*	2.1	6	*	
		0.38	2.7	8	5	4.2	10	3	
N. squamifrons	VPA	0.72	2.3	9	4	4.0	8	3	
		0.36	2.5	16	10	6.8	16	2	

Table 7. Summary of standard reference points for projections (Kerguelen)

1 Maximum increase factor

Time to reach maximum--years
 Time to reach 2X increase--years
 No increase

Table 8. Comparison of simulated and past reported yields.

Stock		F	Average Simulated Yield	Years	Average Reported Catch
N. rossii	S. Georgia	0.550 0.177 0.089	9.6 8.6 5.1	72 - 85 76-85	4.3 5.7
	Kerguelen	0.770 0.380	3.2 3.5	80-86	0.9
N. gibberifrons		0.142 0.071	4.6	76-85	4.7
N. squamifrons		0.720 0.380	0.5 0.4	79-86	5.3
C. gunnari		3.500 1.750 0.875	31.5 38.0 38.7	72 - 85 76-85	30.2 41.9

Figure 2. Randomly generated recruitment frequencies (no's fish x 10⁻⁶).

Figure 3. Simulations of stock size (millions of fish) of <u>N. rossii</u>, South Georgia subarea, F=0.55, based on VPA.

- 261

Figure 4. Simulations of stock size (millions of fish) of <u>N. rossii</u> South Georgia subarea, F=0.177, based on VPA.

Figure 5. Simulations of stock size (millions of fish) of <u>N. rossii</u> South Georgia subarea, F=0.089, based on VPA.

- 263 -

South Georgia subarea, F=0.55, based on SURVAN.

- 264 -

r 265 -

Figure 9. Simulations of stock size (millions of fish) of $\underline{N.$ gibberifrons, South Georgia subarea, F=0.142, based on VPA.

- 267 -

Figure 10. Simulations of stock size (millions of fish) of <u>N. gibberifrons</u>, South Georgia subarea, F=0.071, based on VPA.

- 269 -

Figure 13. Simulations of stock size (millions of fish) of <u>C. gunnari</u>, South Georgia subarea, F=3.5, based on VPA.

- 271

272 -

Figure 15. Simulations of stock size (millions of fish) of <u>C. gunnari</u>, South Georgia subarea F=0.875. based on VPA.

- 273 -

South Georgia subarea, F=1.75, based SURVAN.

Figure 18. Simulations of stock size (millions of fish) of <u>C. gunnari</u>, South Georgia subarea, F=0.875, based on SURVAN.

- 277

Kerguelen Island Shelf, F=0.72, based on VPA.

- 279 -

Figure 23. Simulations of weight of stock and catch for <u>N.rossii</u>, South Georgia subarea, F=0.55, based on VPA.

- 281 -

Figure 24. Simulations of weight of stock and catch for <u>N. rossii</u>, South Georgia subarea, based on VPA.

- 283 -

Figure 26. Simulations of weight of stock and catch for <u>N. gibberifrons</u>, South Georgia subarea, based on VPA.

- 285 -

Т

н

-289-

WG-FSA-87/8 Rev.1 and WG-FSA-87/15

Légendes des tableaux

- Tableau 1 Age initial et effectifs en millions de recrues individuelles.
- Tableau 2Paramètres utilisés pour le modèle de simulation (Géorgie
du Sud).
- Tableau 3Paramètres utilisés pour le modèle de simulation
(Kerguelen).
- Tableau 4 Moyenne des dix projections sur 20 ans concernant la taille du stock en nombre d'individus $(x \ 10^{-6})$ et en poids $(x \ 10^{-3})$.
- Tableau 5 Moyenne des dix projections sur 20 ans concernant la taille du stock en nombre d'individus (x 10^{-6}) et en poids (x 10^{-3}).
- Tableau 6Récapitulatif des points de référence standard pour les
projections (stocks de la Géorgie du Sud).
- Tableau 7Récapitulatif des points de référence standard pour les
projections (Kerguelen).
- Tableau 8Comparaison des rendements simulés et des rendements
déclarés au cours des années passées.

Légendes des figures

- Figure l Fonction de densité universelle de probabilité de recrutement utilisée dans la simulation.
- Figure 2 Fréquences de recrutement générées au hasard (nombre de poissons x 10^{-6}).
- Figure 3 Simulations de la taille du stock (millions de poissons) de <u>N. rossii</u>, sous-zone de la Géorgie du Sud, F=0,55, basées sur la VPA.
- Figure 4 Simulations de la taille du stock (millions de poissons) de <u>N. rossii</u>, sous-zone de la Géorgie du Sud, F=0,177, basées sur la VPA.
- Figure 5 Simulations de la taille du stock (millions de poissons) de <u>N. rossii</u>, sous-zone de la Géorgie du Sud, F=0,089, basées sur la VPA.
- Figure 6 Simulations de la taille du stock (millions de poissons) de <u>N. rossii</u>, sous-zone de la Géorgie du Sud, F=0,55, basées sur SURVAN.

Figure	9	Simulations de la taille du stock (millions de poissons) de <u>N. gibberifrons</u> , sous-zone de la Géorgie du Sud, F=0,142, basées sur la VPA.	
Figure	10	Simulations de la taille du stock (millions de poissons) de <u>N. gibberifrons</u> , sous-zone de la Géorgie du Sud, $F=0,071$, basées sur la VPA.	
Figure	11	Simulations de la taille du stock (millions de poissons) de <u>N. qibberifrons</u> , sous-zone de la Géorgie du Sud, $F=0,142$, basées sur SURVAN.	
Figure	12	Simulations de la taille du stock (millions de poissons) de <u>N. gibberifrons</u> , sous-zone de la Géorgie du Sud, F=0,071, basées sur SURVAN.	
Figure	13	Simulations de la taille du stock (millions de poissons) de <u>C. qunnari</u> , sous-zone de la Géorgie du Sud, F=3,5, basées sur la VPA.	
Figure	14	Simulations de la taille du stock (millions de poissons) de <u>C. gunnari</u> , sous-zone de la Géorgie du Sud, F=1,75, basées sur la VPA.	
Figure	15	Simulations de la taille du stock (millions de poissons) de <u>C. gunnari</u> , sous-zone de la Géorgie du Sud, F=0,875, basées sur la VPA.	
Figure	16	Simulations de la taille du stock (millions de poissons) de <u>C. gunnari</u> , sous-zone de la Géorgie du Sud, F=3,5, basées sur SURVAN.	
Figure	17	Simulations de la taille du stock (millions de poissons) de <u>C. gunnari</u> , sous-zone de la Géorgie du Sud, F=1,75, basées sur SURVAN.	
Figure	18	Simulations de la taille du stock (millions de poissons) de <u>C. gunnari</u> , sous-zone de la Géorgie du Sud, F=0,875, basées sur SURVAN.	
Figure	19	Simulations de la taille du stock (millions de poissons) de <u>N. rossii</u> , plateau des Iles Kerguelen, F=0,76, basées sur la VPA.	
Figure	20	Simulations de la taille du stock (millions de poissons) de <u>N. rossii</u> , plateau des Iles Kerguelen, F=0,38, basées sur la VPA.	
Figure	21	Simulations de la taille du stock (millions de poissons) de <u>N. squamifrons</u> , plateau des Iles Kerguelen, F=0,72, basées sur la VPA.	
·			

- Figure 7 Simulations de la taille du stock (millions de poissons) de N. rossii, sous-zone de la Géorgie du Sud, F=0,177, basées sur SURVAN.
- Simulations de la taille du stock (millions de poissons) de <u>N. rossii</u>, sous-zone de la Géorgie du Sud, F=0,089, basées Figure 8 sur SURVAN.
- F
- F
- F
- F
- F
- Fi

- Figure 23 Simulations du poids du stock et de la prise pour <u>N. rossii</u>, sous-zone de la Géorgie du Sud, F=0,55, basées sur la VPA.
- Figure 24 Simulations du poids du stock et de la prise pour <u>N. rossii</u>, sous-zone de la Géorgie du Sud, basées sur la VPA.
- Figure 25 Simulations du poids du stock et de la prise pour <u>N. rossii</u>, sous-zone de la Géorgie du Sud, basées sur SURVAN.
- Figure 26 Simulations du poids du stock et de la prise pour <u>Notothenia gibberifrons</u>, sous-zone de la Géorgie du Sud, basées sur la VPA.
- Figure 27 Simulations du poids du stock et de la prise pour <u>N. gibberifrons</u>, sous-zone de la Géorgie du Sud, basées sur SURVAN.
- Figure 28 Simulations du poids du stock et de la prise pour <u>C. gunnari</u>, sous-zone de la Géorgie du Sud, basées sur la VPA.
- Figure 29 Simulations du poids du stock et de la prise pour <u>C. qunnari</u>, sous-zone de la Géorgie du Sud, basées sur SURVAN.
- Figure 30 Simulations du poids du stock et de la prise pour <u>N. rossii</u>, plateau des Iles Kerguelen, basées sur la VPA.
- Figure 31 Simulations du poids du stock et de la prise pour <u>N. squamifrons</u>, plateau des Iles Kerguelen, basées sur la VPA.

Encabezamientos de las Tablas

- Tabla lEdad inicial y cantidades en millones de restablecimientosindividuales.
- Tabla 2Parámetros utilizados en el modelo de simulación (Georgia
del Sur).
- Tabla 3Parámetros utilizados en el modelo de simulación
(Kerguelén).
- Tabla 4Promedio de las diez proyecciones a 20 años para el tamaño
de la población en números $(x \ 10^{-6})$ y peso $(x \ 10^{-3})$.
- Tabla 5Promedio de las diez proyecciones a 20 años para el tamaño
de la población en números $(x \ 10^{-6})$ y peso $(x \ 10^{-3})$.
- Tabla 6Resumen de los puntos de referencia estándar para las
proyecciones (reservas de Georgia del Sur).

Tabla 7	Resumen de los puntos de referencia estándar par	a las
	proyecciones (Kerguelén).	

Tabla 8 Comparación de los rendimientos simulados con los presentados en años anteriores.

<u>Leyendas de las Figuras</u>

- Figura l Función de densidad de probabilidad de restablecimiento universal utilizada en la simulación.
- Figura 2 Frecuencias de restablecimiento generadas aleatoriamente $(N^{\circ} \text{ de peces x } 10^{-6}).$
- Figura 3 Simulaciones del tamaño de la reserva (millones de peces) de <u>N. rossii</u>, subárea de Georgia del Sur, F=0.55, basadas en el análisis de la población virtual (VPA).
- Figura 4 Simulaciones del tamaño de la reserva (millones de peces) de <u>N. rossii</u>, subárea de Georgia del Sur, F=0.177, basadas en el análisis de la población virtual (VPA).
- Figura 5 Simulaciones del tamaño de la reserva (millones de peces) de <u>N. rossii</u>, subárea de Georgia del Sur, F=0.089, basadas en el análisis de la población virtual (VPA).
- Figura 6 Simulaciones del tamaño de la reserva (millones de peces) de <u>N. rossii</u>, subárea de Georgia del Sur, F=0.55, basadas en la SURVAN.
- Figura 7 Simulaciones del tamaño de la reserva (millones de peces) de <u>N. rossii</u>, subárea de Georgia del Sur, F=0.177, basadas en la SURVAN.
- Figura 8 Simulaciones del tamaño de la reserva (millones de peces) de <u>N. rossii</u>, subárea de Georgia del Sur, F=0.089, basadas en la SURVAN.
- Figura 9 Simulaciones del tamaño de la reserva (millones de peces) de <u>N. gibberifrons</u>, subárea de Georgia del Sur, F=0.142, basadas en el análisis de la población virtual (VPA).
- Figura 10 Simulaciones del tamaño de la reserva (millones de peces) de <u>N. gibberifrons</u>, subárea de Georgia del Sur, F=0.071, basadas en el análisis de la población virtual (VPA).
- Figura ll Simulaciones del tamaño de la reserva (millones de peces) de <u>N. gibberifrons</u>, subárea de Georgia del Sur, F=0.142, basadas en la SURVAN.
- Figura 12 Simulaciones del tamaño de la reserva (millones de peces) de <u>N. gibberifrons</u>, subárea de Georgia del Sur, F=0.071, basadas en la SURVAN.
- Figura 13 Simulaciones del tamaño de la reserva (millones de peces) de <u>C. gunnari</u>, subárea de Georgia del Sur, F=3.5, basadas en el análisis de la población virtual (VPA).

- Figura 14 Simulaciones del tamaño de la reserva (millones de peces) de <u>C. gunnari</u>, subárea de Georgia del Sur, F=1.75, basadas en el análisis de la población (VPA).
- Figura 15 Simulaciones del tamaño de la reserva (millones de peces) de <u>C. gunnari</u>, subárea de Georgia del Sur, F=0.875, basadas en el análisis de la población virtual (VPA).
- Figura 16 Simulaciones del tamaño de la reserva (millones de peces) de <u>C. gunnari</u>, subárea de Georgia del Sur, F=3.5, basadas en la SURVAN.
- Figura 17 Simulaciones del tamaño de la reserva (millones de peces) de <u>C. qunnari</u>, subárea de Georgia del Sur, F=1.75, basadas en la SURVAN.
- Figura 18 Simulaciones del tamaño de la reserva (millones de peces) de <u>C. gunnari</u>, subárea de Georgia del Sur, F=0.875, basadas en la SURVAN.
- Figura 19 Simulaciones del tamaño de la reserva (millones de peces) de <u>N. rossii</u>, Plataforma de la Isla Kerguelén, F=0.76, basadas en el análisis de la población virtual (VPA).
- Figura 20 Simulaciones del tamaño de la reserva (millones de peces) de <u>N. rossii</u>, Plataforma de la Isla Kerguelén, F=0.38, basadas en el análisis de la población virtual (VPA).
- Figura 21 Simulaciones del tamaño de la reserva (millones de peces) de <u>N. squamifrons</u>, Plataforma de la Isla Kerguelén, F=0.72, basadas en el análisis de la población virtual (VPA).
- Figura 22 Simulaciones del tamaño de la reserva (millones de peces) de <u>N. squamifrons</u>, Plataforma de la Isla Kerguelén, F=0.36, basadas en el análisis de la población virtual (VPA).
- Figura 23 Simulaciones del peso de la reserva y de la captura para <u>N. rossii</u>, subárea de Georgia del Sur, F=0.55, basadas en el análisis de la población virtual (VPA).
- Figura 24 Simulaciones del peso de la reserva y de la captura para <u>N. rossii</u>, subárea de Georgia del Sur, basadas en el análisis de la población virtual (VPA).
- Figura 25 Simulaciones del peso de la reserva y de la captura para N. rossii, subárea de Georgia del Sur, basadas en la SURVAN.
- Figura 26 Simulaciones del peso de la reserva y de la captura para <u>Notothenia gibberifrons</u>, subárea de Georgia del Sur, basadas en el análisis de la población virtual (VPA).
- Figura 27 Simulaciones del peso de la reserva y de la captura para <u>N. gibberifrons</u>, subárea de Georgia del Sur, basadas en la SURVAN.
- Figura 28 Simulaciones del peso de la reserva y de la captura para <u>C. gunnari</u>, subárea de Georgia del Sur, basadas en el análisis de la población virtual (VPA).

- Figura 29 Simulaciones del peso de la reserva y de la captura para <u>C. gunnari</u>, subárea de Georgia del Sur, basadas en la SURVAN.
- Figura 30 Simulaciones del peso de la reserva y de la captura para <u>N. rossii</u>, Plataforma de la Isla Kerguelén, basadas en el análisis de la población virtual(VPA).
- Figura 31 Simulaciones del peso de la reserva y de la captura para <u>N. squamifrons</u>, Plataforma de la Isla Kerguelén, basadas en el análisis de la población virtual (VPA).

Заголовки к таблицам

- Таблица 1 Начальный возраст и количество (в миллионах штук) особей пополнения.
- Таблица 2 Параметры, использованные при построении имитационной модели (Южная Георгия).
- Таблица 3 Параметры, использованные при построении имитационной модели (Кергелен).
- Таблица 4 Средние величины десяти 20-летних прогнозов для размеров запасов по количеству (x10 9 и весу (x10-3).
- Таблица 5 Средние величины десяти 20-летних прогнозов для размеров запасов по количеству (x10 9 и весу (x10-3).
- Таблица 6 Сводная таблица стандартных исходных пунктов для прогнозов (запасы района Южной Георгии).
- Таблица 7 Сводная таблица стандартных исходных пунктов для прогнозов (запасы Кергелена).
- Таблица 8 Сравнение полученных имитационным моделированием данных по величине уловов с фактическими величинами уловов в прошлом.

Подписи к рисункам

Рисунок 1. Универсальная плотность распределения вероятностей для пополнения, используемая в имитационных моделях.

- Рисунок 2 Выборочно образованные графики частоты пополнения (кол-во рыб x 10⁻⁶).
- Рисунок 3 Полученные с помощью имитационного моделирования величины объема запаса (в миллионах особей) для <u>N. rossii</u>, подрайон Южной Георгии, F = 0,55, расчет основан на VPA.
- Рисунок 4 Полученные с помощью имитационного моделирования величины объема запаса (в миллионах особей) для <u>N. rossii</u>, подрайон Южной Георгии, F = 0,177, расчет основан на VPA.
- Рисунок 5 Полученные с помощью имитационного моделирования величины объема запаса (в миллионах особей) для <u>N. rossii</u>, подрайон Южной Георгии, F = 0,089, расчет основан на VPA.
- Рисунок 6 Полученные с помощью имитационного моделирования величины объема запаса (в миллионах особей) для <u>N. rossii</u>, подрайон Южной Георгии, F = 0,55, расчет основан на survan.
- Рисунок 7 Полученные с помощью имитационного моделирования величины объема запаса (в миллионах особей) для <u>N. rossii</u>, подрайон Южной Георгии, F = 0,177, расчет основан на SURVAN.
- Рисунок 8 Полученные с помощью имитационного моделирования величины объема запаса (в миллионах особей) для <u>N. rossii</u>, подрайон Южной Георгии, F = 0,089, расчет основан на SURVAN.
- Рисунок 9 Полученные с помощью имитационного моделирования величины объема запаса (в миллионах особей) для <u>N. gibberifrons</u>, подрайон Южной Георгии, F = 0,142, расчет основан на VPA.
- Рисунок 10 Полученные с помощью имитационного моделирования величины объема запаса (в миллионах особей) для <u>N. gibberifrons</u>, подрайон Южной Георгии, F = 0,071, расчет основан на VPA.
- Рисунок 11 Полученные с помощью имитационного моделирования величины объема запаса (в миллионах особей) для <u>N. qibberifrons</u>, подрайон Южной Георгии, F = 0,142, расчет основан на SURVAN.
- Рисунок 12 Полученные с помощью имитационного моделирования величины объема запаса (в миллионах особей) для <u>N. qibberifrons</u>, подрайон Южной Георгии, F = 0,071, расчет основан на SURVAN.
- Рисунок 13 Полученные с помощью имитационного моделирования величины объема запаса (в миллионах особей) для <u>C. qunnari</u>, подрайон Южной Георгии, F = 3,5, расчет основан на VPA.

- Рисунок 14 Полученные с помощью имитационного моделирования величины объема запаса (в миллионах особей) для <u>C. qunnari</u>, подрайон Южной Георгии, F = 1,75, расчет основан на VPA.
- Рисунок 15 Полученные с помощью имитационного моделирования величины объема запаса (в миллионах особей) для <u>C. qunnari</u>, подрайон Южной Георгии, F = 0,875, расчет основан на VPA.
- Рисунок 16 Полученные с помощью имитационного моделирования величины объема запаса (в миллионах особей) для <u>C. qunnari</u>, подрайон Южной Георгии, F = 3,5, расчет основан на SURVAN.
- Рисунок 17 Полученные с помощью имитационного моделирования величины объема запаса (в миллионах особей) для <u>с. qunnari</u>, подрайон Южной Георгии, F = 1,75, расчет основан на SURVAN.
- Рисунок 18 Полученные с помощью имитационного моделирования величины объема запаса (в миллионах особей) для <u>с. qunnari</u>, подрайон Южной Георгии, F = 0,875, расчет основан на SURVAN.
- Рисунок 19 Полученные с помощью имитационного моделирования величины объема запаса (в миллионах особей) для <u>N. rossii</u>, шельф острова Кергелен, F = 0,76, расчет основан на VPA.
- Рисунок 20 Полученные с помощью имитационного моделирования величины объема запаса (в миллионах особей) для <u>N. rossii</u>, шельф острова Кергелен, F = 0,38, расчет основан на VPA.
- Рисунок 21 Полученные с помощью имитационного моделирования величины объема запаса (в миллионах особей) для <u>N. squamifrons</u>, шельф острова Кергелен, F = 0,72, расчет основан на VPA.
- Рисунок 22 Полученные с помощью имитационного моделирования величины объема запаса (в миллионах особей) для <u>N. squamifrons</u>, шельф острова Кергелен, F = 0,36, расчет основан на VPA.
- Рисунок 23 Полученные с помощью имитационного моделирования величины для веса запаса и для улова <u>N. rossii</u>, подрайон Южной Георгии, F = 0,55, расчет основан на VPA.
- Рисунок 24 Полученные с помощью имитационного моделирования величины для веса запаса и для улова <u>N. rossii</u>, подрайон Южной Георгии, расчет основан на VPA.
- Рисунок 25 Полученные с помощью имитационного моделирования величины для веса запаса и для улова <u>N. rossii</u>, подрайон Южной Георгии, расчет основан на SURVAN.

Рисунок 27 Полученные с помощью имитационного моделирования величины для веса запаса и для улова <u>N.</u> <u>qibberifrons</u>, подрайон Южной Георгии, расчет основан на SURVAN.

Рисунок 28 Полученные с помощью имитационного моделирования величины для веса запаса и для улова <u>C. qunnari</u>, подрайон Южной Георгии, расчет основан на VPA.

Рисунок 29 Полученные с помощью имитационного моделирования величины для веса запаса и для улова <u>C. gunnari</u>, подрайон Южной Георгии, расчет основан на SURVAN.

Рисунок 30 Полученные с помощью имитационного моделирования величины для веса запаса и для улова <u>N. rossii</u>, шельф острова Кергелен, расчет основан на VPA.

Рисунок 31 Полученные с помощью имитационного моделирования величины для веса запаса и для улова <u>N.</u> squamifrons, шельф острова Кергелен, расчет основан на VPA.