INFORME DE LA VIGÉSIMO SÉPTIMA REUNIÓN
DEL COMITÉ CIENTÍFICO

HOBART, AUSTRALIA
27–31 OCTUBRE 2008

1ª Parte
Resumen

Este documento presenta el Acta aprobada de la Vigésimo séptima reunión del Comité Científico para la Conservación de los Recursos Vivos Marinos Antárticos, celebrada en Hobart (Australia), del 27 al 31 de octubre de 2008. En la 1ª Parte se incluyen los informes de las reuniones y de las actividades intersesionales de los órganos auxiliares del Comité Científico, incluidos los Grupos de Trabajo de Seguimiento y Ordenación del Ecosistema, de Evaluación de las Poblaciones de Peces, de la Mortalidad Incidental asociada con la Pesca, y de Estadística, Evaluación y Modelado. En la 2ª Parte se ha incluido el informe del Taller conjunto CCAMLR-IWC.
ÍNDICE

<table>
<thead>
<tr>
<th>Tema</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>APERTURA DE LA REUNIÓN</td>
<td>1</td>
</tr>
<tr>
<td>Aprobación de la agenda</td>
<td>2</td>
</tr>
<tr>
<td>Informe del Presidente</td>
<td>3</td>
</tr>
<tr>
<td>Reuniones de los grupos de trabajo y de otros grupos</td>
<td>3</td>
</tr>
<tr>
<td>del Comité Científico durante el período entre sesiones</td>
<td>3</td>
</tr>
<tr>
<td>Sistema de Observación Científica Internacional de la CCRVMA</td>
<td>4</td>
</tr>
<tr>
<td>Representación del Comité Científico en reuniones</td>
<td>4</td>
</tr>
<tr>
<td>de otras organizaciones internacionales</td>
<td>4</td>
</tr>
<tr>
<td>AVANCES EN ESTADÍSTICAS, ASESORAMIENTO,</td>
<td>4</td>
</tr>
<tr>
<td>MODELADO Y MÉTODOS DE PROSPECCIÓN</td>
<td></td>
</tr>
<tr>
<td>Asesoramiento de WG-SAM</td>
<td>4</td>
</tr>
<tr>
<td>SG-ASAM</td>
<td>7</td>
</tr>
<tr>
<td>Taller conjunto CCAMLR-IWC</td>
<td>8</td>
</tr>
<tr>
<td>SEGUIMIENTO Y ORDENACIÓN DEL ECOSISTEMA</td>
<td>10</td>
</tr>
<tr>
<td>Asesoramiento del WG-EMM</td>
<td>10</td>
</tr>
<tr>
<td>Etapa 1: Asignación del límite de captura precautorio de kril</td>
<td>10</td>
</tr>
<tr>
<td>por UOPE en las Subáreas 48.1 a la 48.3</td>
<td>10</td>
</tr>
<tr>
<td>Convalidación y acceso a los modelos utilizados</td>
<td>14</td>
</tr>
<tr>
<td>para la asignación por UOPE</td>
<td></td>
</tr>
<tr>
<td>Asignación después de finalizada la etapa 1</td>
<td>15</td>
</tr>
<tr>
<td>UOPE de la Subárea 48.4</td>
<td>16</td>
</tr>
<tr>
<td>Problemas que no caben dentro de la competencia del Comité Científico</td>
<td>16</td>
</tr>
<tr>
<td>Asesoramiento a la Comisión</td>
<td>17</td>
</tr>
<tr>
<td>Informe de WG-EMM-STAPP (Evaluación del estado</td>
<td>17</td>
</tr>
<tr>
<td>y las tendencias de las poblaciones de depredadores</td>
<td></td>
</tr>
<tr>
<td>Asesoramiento sobre las estimaciones de B_0 del kril</td>
<td>20</td>
</tr>
<tr>
<td>Efectos del cambio climático</td>
<td>20</td>
</tr>
<tr>
<td>Agenda revisada y plan de trabajo a largo plazo para el WG-EMM</td>
<td>20</td>
</tr>
<tr>
<td>Ordenación de áreas protegidas</td>
<td>22</td>
</tr>
<tr>
<td>Interacción entre WG-EMM y WG-FSA</td>
<td>23</td>
</tr>
<tr>
<td>ESPECIES EXPLOTADAS</td>
<td>25</td>
</tr>
<tr>
<td>Recurso kril</td>
<td>25</td>
</tr>
<tr>
<td>Temporada de pesca 2007/08</td>
<td>25</td>
</tr>
<tr>
<td>Notificaciones de pesca de kril para la temporada 2008/09</td>
<td>25</td>
</tr>
<tr>
<td>Tipos de artes de pesca</td>
<td>26</td>
</tr>
<tr>
<td>Estimación de la captura de kril</td>
<td>26</td>
</tr>
<tr>
<td>Captura secundaria de larvas de peces y peces juveniles</td>
<td>27</td>
</tr>
<tr>
<td>Notificaciones de pesquerías exploratorias de kril</td>
<td>27</td>
</tr>
<tr>
<td>Asesoramiento a la Comisión</td>
<td>28</td>
</tr>
<tr>
<td>Recurso peces</td>
<td>28</td>
</tr>
<tr>
<td>Información sobre pesquerías</td>
<td>28</td>
</tr>
<tr>
<td>Datos de captura, esfuerzo, talla y edad notificados a la CCRVMA</td>
<td>28</td>
</tr>
<tr>
<td>Datos de entrada para las evaluaciones del stock</td>
<td>29</td>
</tr>
<tr>
<td>Tema</td>
<td>Página</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>Campañas de investigación</td>
<td>29</td>
</tr>
<tr>
<td>Estudios de marcado</td>
<td>30</td>
</tr>
<tr>
<td>Asesoramiento de ordenación</td>
<td>31</td>
</tr>
<tr>
<td>Parámetros biológicos</td>
<td>31</td>
</tr>
<tr>
<td>Biología y ecología en general</td>
<td>31</td>
</tr>
<tr>
<td>Preparación y calendario de evaluaciones</td>
<td>32</td>
</tr>
<tr>
<td>Informe de WG-SAM</td>
<td>32</td>
</tr>
<tr>
<td>Examen de los documentos de trabajo con evaluaciones preliminares de stocks</td>
<td>32</td>
</tr>
<tr>
<td>Evaluaciones realizadas y calendario de evaluaciones</td>
<td>32</td>
</tr>
<tr>
<td>Evaluaciones y asesoramiento de ordenación</td>
<td>32</td>
</tr>
<tr>
<td>Dissostichus eleginoides en Georgia del Sur (Subárea 48.3)</td>
<td>32</td>
</tr>
<tr>
<td>Asesoramiento de ordenación</td>
<td>33</td>
</tr>
<tr>
<td>Dissostichus eleginoides en las Islas Kerguelén (División 58.5.1)</td>
<td>33</td>
</tr>
<tr>
<td>Asesoramiento de ordenación</td>
<td>33</td>
</tr>
<tr>
<td>Dissostichus eleginoides en Isla Heard (División 58.5.2)</td>
<td>34</td>
</tr>
<tr>
<td>Asesoramiento de ordenación</td>
<td>34</td>
</tr>
<tr>
<td>Dissostichus eleginoides en las Islas Crozet (Subárea 58.6)</td>
<td>34</td>
</tr>
<tr>
<td>Asesoramiento de ordenación</td>
<td>34</td>
</tr>
<tr>
<td>Dissostichus eleginoides en las Islas Príncipe Eduardo</td>
<td>35</td>
</tr>
<tr>
<td>(Subáreas 58.6 y 58.7)</td>
<td>35</td>
</tr>
<tr>
<td>Asesoramiento de ordenación de D. eleginoides dentro de la ZEE de las Islas Príncipe Eduardo y Marion (Subáreas 58.6 y 58.7)</td>
<td>35</td>
</tr>
<tr>
<td>Asesoramiento de ordenación de D. eleginoides fuera de la ZEE de las Islas Príncipe Eduardo (Subáreas 58.6 y 58.7 y División 58.4.4)</td>
<td>35</td>
</tr>
<tr>
<td>Champsocephalus gunnari en Georgia del Sur (Subárea 48.3)</td>
<td>36</td>
</tr>
<tr>
<td>Asesoramiento de ordenación</td>
<td>36</td>
</tr>
<tr>
<td>Champsocephalus gunnari en Isla Heard (División 58.5.2)</td>
<td>36</td>
</tr>
<tr>
<td>Asesoramiento de ordenación</td>
<td>37</td>
</tr>
<tr>
<td>Champsocephalus gunnari en Península Antártica e Islas Shetland del Sur (Subárea 48.1) e Islas Orcadas del Sur (Subárea 48.2)</td>
<td>37</td>
</tr>
<tr>
<td>Asesoramiento de ordenación</td>
<td>37</td>
</tr>
<tr>
<td>Islas Sándwich del Sur (Subárea 48.4)</td>
<td>37</td>
</tr>
<tr>
<td>Asesoramiento de ordenación</td>
<td>38</td>
</tr>
<tr>
<td>Pesquerías nuevas y exploratorias en 2007/08 y notificaciones para la temporada 2008/09</td>
<td>38</td>
</tr>
<tr>
<td>Notificación de pesquerías nuevas de centollas en las Subáreas 48.2 y 48.4</td>
<td>38</td>
</tr>
<tr>
<td>Subárea 48.2</td>
<td>39</td>
</tr>
<tr>
<td>Subárea 48.4</td>
<td>39</td>
</tr>
<tr>
<td>Progreso en las evaluaciones de pesquerías nuevas y exploratorias de austromerluza</td>
<td>40</td>
</tr>
<tr>
<td>Dissostichus spp. en la Subárea 48.6</td>
<td>42</td>
</tr>
<tr>
<td>Dissostichus spp. en la División 58.4.1</td>
<td>42</td>
</tr>
<tr>
<td>Dissostichus spp. en la División 58.4.2</td>
<td>43</td>
</tr>
<tr>
<td>Dissostichus spp. en la División 58.4.3a</td>
<td>44</td>
</tr>
<tr>
<td>Dissostichus spp. en la División 58.4.3b</td>
<td>45</td>
</tr>
<tr>
<td>Dissostichus spp. en las Subáreas 88.1 y 88.2</td>
<td>46</td>
</tr>
</tbody>
</table>
Planes de investigación y de recopilación de datos
para las pesquerías exploratorias de kril ... 48
Aspectos generales ... 48
Implementación de los planes .. 49
Recopilación y notificación de datos ... 51
Limitaciones a la captura ... 53
Propuesta para combinar las medidas de conservación
sobre pesquerías nuevas y exploratorias ... 53
Recursos calamar y centolla ... 55
Centollas (Paralomis spp.) en la Subárea 48.3 55
Asesoramiento de ordenación ... 55
Calamar (Martialia hyadesi) en la Subárea 48.3 55
Asesoramiento de ordenación ... 55
Captura secundaria de peces e invertebrados 55
Regla de traslado y límites de la captura secundaria de Macrourus
en las pesquerías nuevas y exploratorias ... 55
Año de la Raya ... 56
Guías de identificación de la captura secundaria de bentos 57
Actividades de pesca de fondo y EMV ... 57
Guías ... 58
Identificación de EMV ... 58
Medidas a tomar por los barcos de pesca que encuentran EMV 60
Asesoramiento sobre las tareas referidas en la Medida de Conservación 22-06 ... 60
Asesoramiento sobre la presentación de evaluaciones preliminares
y medidas de mitigación propuestas por los miembros 60
Asesoramiento sobre los procedimientos y normas
para evaluar los posibles efectos de las propuestas
y de las posibles medidas de mitigación ... 61
Huellas actual de las pesquerías de fondo ... 62
Estrategias de evaluación del riesgo .. 63
Medidas de mitigación ... 64
Asesoramiento en relación con la presencia de EMV 64
Asesoramiento sobre efectos conocidos y previstos 65
Asesoramiento sobre las prácticas
cuando se reconoce la presencia de un EMV 66
Identificación por un barco de un posible encuentro
durante las faenas de pesca ... 68
Requisitos de observación .. 69
Declaración de una Zona de Riesgo ... 70
Medidas de gestión .. 70
Revisión ... 71
General ... 71
Asesoramiento sobre otras medidas de mitigación 71
Asesoramiento sobre planes de investigación y recopilación de datos ... 71
Asesoramiento a la Comisión ... 72

MORTALIDAD INCIDENTAL ... 80
Mortalidad incidental de aves y mamíferos marinos
en pesquerías dentro del Área de la Convención en 2007/08 80

(iii)
Examen de los planes de acción para eliminar la mortalidad de aves marinas 81
Plan de acción de Francia para reducir/eliminar la mortalidad de aves marinas en la Subárea 58.6 y División 58.5.1 81
Mortalidad incidental de aves marinas durante la pesca realizada fuera del Área de la Convención .. 82
Mortalidad incidental de aves marinas durante la pesca no reglamentada en el Área de la Convención .. 82
Investigación de medidas de mitigación y experiencias conexas 83
Recopilación de datos de observación .. 84
Estudios del estado y la distribución de aves y mamíferos marinos 86
Evaluación del riesgo en las subáreas y divisiones de la CCRVMA 86
Mortalidad incidental de aves marinas relacionada con pesquerías nuevas y exploratorias ... 87
Iniciativas internacionales y nacionales pertinentes a la mortalidad incidental de aves marinas relacionada con la pesca de palangre 87
Desechos marinos y su efecto en las aves y mamíferos marinos en el Área de la Convención ... 88
Interacción con otros grupos de trabajo del Comité Científico 89
Racionalización de la labor del Comité Científico .. 90
Asuntos varios ... 90
Asesoramiento a la Comisión ... 90
Asesoramiento general .. 92
Asesoramiento específico ... 92

SISTEMA DE OBSERVACIÓN CIENTÍFICA INTERNACIONAL DE LA CCRVMA ... 92
Grupo especial TASO .. 93
Asesoramiento del WG-FSA .. 94
Asesoramiento de WG-IMAF ... 94
Asesoramiento de WG-EMM .. 94

ORDENACIÓN DE PESQUERÍAS Y CONSERVACIÓN EN CONDICIONES DE INCERTIDUMBRE ... 97
Estimación de la captura de la pesca INDNR ... 97
Cambio climático ... 98
Planes de ordenación de pesquerías .. 100

EXENCIÓN POR INVESTIGACIÓN CIENTÍFICA .. 100
Notificaciones de campañas de investigación con barcos de pesca comercial 100
Estudios de investigación patrocinados por la CCRVMA 101
Notificación de campañas de investigación realizadas con barcos de investigación científica ... 103

COOPERACIÓN CON OTRAS ORGANIZACIONES .. 103
Cooperación con el Sistema del Tratado Antártico 103
CPA .. 103
SCAR ... 106
SCAR-MarBIN .. 107
Informes de observadores de organizaciones internacionales 108
ASOC ... 108

(iv)
Informe de representantes de la CCRVMA en reuniones de otras organizaciones internacionales

INFORME DEL COMITÉ DE EVALUACIÓN DEL FUNCIONAMIENTO DE LA CCRVMA

Comentarios generales
Recomendaciones del Comité de Evaluación relativas al Comité Científico

PRESUPUESTO DE 2009 Y PREVISIÓN DEL PRESUPUESTO DE 2010

ASESORAMIENTO A SCIC Y SCAF

Medidas de mitigación para evitar la mortalidad incidental de aves y mamíferos marinos
Programa científico de marcado
Discrepancia entre la notificación de la captura en escala fina y los registros del SDC
Notificaciones de la pesca de fondo de conformidad con la Medida de Conservación 22-06
Pesquerías INDNR con redes de enmalle
Procedimiento de verificación de la calidad de los datos

ACTIVIDADES APOYADAS POR LA SECRETARÍA

Administración de Datos
Datos STATLANT
Datos de captura y esfuerzo
Metadatos
Proyecto D4Science
Normas de acceso y utilización de los datos de la CCRVMA
Publicaciones
CCAMLR Science

ACTIVIDADES DEL COMITÉ CIENTÍFICO

Coordinación de la labor del Comité Científico y de sus grupos de trabajo
Actividades durante el período entre sesiones en 2008/09
Proyectos del CCAMLR-API
Invitación de observadores a la próxima reunión
Invitación de expertos a las reuniones de los grupos de trabajo
Próxima reunión

ELECCIÓN DEL PRESIDENTE Y VICEPRESIDENTE DEL COMITÉ CIENTÍFICO

ASUNTOS VARIOS

Racionalización de las contraseñas para acceder al sitio web de la CCRVMA
Aumento de la capacidad
<table>
<thead>
<tr>
<th>Ámbito</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Año del Granadero</td>
<td>129</td>
</tr>
<tr>
<td>Año de los EMV</td>
<td>129</td>
</tr>
<tr>
<td>Informes de las actividades de los miembros</td>
<td>129</td>
</tr>
<tr>
<td>APROBACIÓN DEL INFORME</td>
<td>129</td>
</tr>
<tr>
<td>CLAUSURA DE LA REUNIÓN</td>
<td>129</td>
</tr>
<tr>
<td>REFERENCIAS</td>
<td>130</td>
</tr>
<tr>
<td>Tablas</td>
<td>131</td>
</tr>
<tr>
<td>Figuras</td>
<td>138</td>
</tr>
<tr>
<td>Anexo 1: Lista de participantes</td>
<td>141</td>
</tr>
<tr>
<td>Anexo 2: Lista de documentos</td>
<td>163</td>
</tr>
<tr>
<td>Anexo 3: Agenda de la 27ª reunión del Comité Científico</td>
<td>177</td>
</tr>
<tr>
<td>Anexo 4: Informe del Grupo de Trabajo de Seguimiento y Ordenación del Ecosistema</td>
<td>181</td>
</tr>
<tr>
<td>Anexo 5: Informe del Grupo de Trabajo de Evaluación de las Poblaciones de Peces</td>
<td>325</td>
</tr>
<tr>
<td>Anexo 6: Informe del Grupo especial de trabajo sobre la mortalidad incidental relacionada con la pesca</td>
<td>489</td>
</tr>
<tr>
<td>Anexo 7: Informe del Grupo de trabajo de estadística, evaluación y modelado</td>
<td>573</td>
</tr>
<tr>
<td>Anexo 8: Cometido (Subgrupo de trabajo sobre prospecciones acústicas y métodos de análisis (SG-ASAM))</td>
<td>633</td>
</tr>
<tr>
<td>Anexo 9: Debate del Comité Científico sobre la cobertura de observación en la pesquería de kril</td>
<td>637</td>
</tr>
<tr>
<td>Anexo 10: Tareas específicas identificadas por el Comité Científico para el periodo entre sesiones 2008/09</td>
<td>649</td>
</tr>
<tr>
<td>Anexo 11: Glosario de siglas y abreviaciones utilizadas en los informes del Comité Científico de la CCRVMA</td>
<td>657</td>
</tr>
</tbody>
</table>

El siguiente anexo se publica por separado:

| Anexo 12: Informe del Taller conjunto CCAMLR-IWC | |

(vi)
INFORME DE LA VIGÉSIMO SÉPTIMA REUNIÓN
DEL COMITÉ CIENTÍFICO
(Hobart, Australia, 27 al 31 de octubre de 2008)

APERTURA DE LA REUNIÓN

1.1 El Comité Científico para la Conservación de los Recursos Vivos Marinos Antárticos se reunió del 27 al 31 de octubre de 2008 en la sede de la CCRVMA en Hobart, Tasmania (Australia). La reunión fue presidida por el Dr. K. Sullivan (Nueva Zelandia), Vicepresidente del Comité Científico.

1.2 El Presidente dio la bienvenida a los representantes de los siguientes miembros: Alemania, Argentina, Australia, Bélgica, Brasil, Comunidad Europea, Chile, España, Estados Unidos de América, Federación Rusa, Francia, India, Italia, Japón, Namibia, Noruega, Nueva Zelanda, Polonia, Reino Unido de Gran Bretaña e Irlanda del Norte, República de Corea, República Popular China (de aquí en adelante referida como China), Sudáfrica, Suecia, Ucrania y Uruguay.

1.3 El presidente de la reunión dio también la bienvenida a los observadores de Bulgaria, los Países Bajos, Perú y Vanuatu (Estados adherentes), y las Islas Marshall (Parte no contratante), y a los observadores de ACAP, ASOC, CPA, COLTO, UICN, IWC, SCAR, SEAFO y WCPFC, y les alentó a participar en la reunión en la medida de lo posible.

1.4 El Comité Científico observó un momento de silencio en memoria de la Prof. Edith Fanta, Presidenta del Comité Científico de 2005 a 2007, fallecida en mayo de 2008. La Prof. Fanta será recordada siempre por su dedicación a la conservación y ordenación de los recursos marinos antárticos basada en principios científicos, y por el esmero y la consideración con que presidió con tanto éxito el Comité Científico. Fue también representante de Brasil en SCAR, y participó activamente en el Grupo Científico Permanente de Ciencias Biológicas del SCAR, y los programas Evolución en la Antártida y Evolución y Biodiversidad del Programa Antártico de este órgano. La Prof. Fanta fue muy querida, y será recordada por su benevolencia, entusiasmo y ternura. El Comité Científico siente profundamente esta dolorosa pérdida, y espera que, a través de los estudios iniciados por ella y de los estudiantes de los cuales fue mentora, su legado perdure.

1.5 La lista de participantes figura en el anexo 1 y la lista de documentos considerados durante la reunión, en el anexo 2.

1.6 Los siguientes relatores se hicieron cargo de la elaboración del informe del Comité Científico:

• Dr. A. Constable (Australia) – Progreso en materia de estadística, evaluación, modelación y métodos de prospección (Asesoramiento del WG-SAM) y pesca de fondo en áreas de aguas de altura;

1 Se remite a los lectores al artículo publicado en su memoria en la revista CCAMLR Science, 2008, Vol. 15.
- Dr. G. Watters (EEUU) – Progreso en materia de estadística, evaluación, modelación y métodos de prospección (Asesoramiento del WG-SAM) e interacción entre el WG-FSA y el WG-EMM;

- Dr. K.-H. Kock (Alemania) – Progreso en materia de estadística, evaluación, modelación y métodos de prospección (Asesoramiento del Taller conjunto CCAMLR-IWC);

- Dres. P. Trathan (RU) y C. Southwell (Australia) – Seguimiento y ordenación del ecosistema (Asesoramiento del WG-EMM);

- Dres. S. Grant (RU) y P. Penhale (EEUU) – Gestión de áreas protegidas;

- Dr. S. Nicol (Australia) – Recurso kril;

- Dres. G. Parkes y R. Mitchell (RU) – Recurso peces;

- Dr. S. Hanchet (Nueva Zelandia) – Pesquerías nuevas y exploratorias, y recursos calamar y centolla;

- Dres. R. Mitchell (RU) y D. Welsford (Australia) – Captura secundaria de peces e invertebrados;

- Sra. K. Rivera (EEUU) y Sr. N Smith (Nueva Zelandia) – Mortalidad incidental;

- Prof. C. Moreno (Chile) y Dr. D. Welsford (Australia) – Sistema de Observación Científica Internacional de la CCRVMA;

- Dr. D. Agnew (RU) – Ordenación en condiciones de incertidumbre acerca del tamaño del stock y del rendimiento sostenible;

- Dr. K. Sullivan (Nueva Zelandia) – Exención por investigación científica;

- Prof. B. Fernholm (Suecia) – Cooperación con otras organizaciones;

- Dr. R. Holt (EEUU) – Evaluación del funcionamiento de la CCRVMA;

- Dres. D. Ramm (Administración de Datos) y K. Reid (Funcionario Científico) – asuntos restantes.

Aprobación de la agenda

1.7 La agenda provisional había sido distribuida a los miembros antes de la reunión (SC-CAMLR-XXVII/1) y fue aprobada sin cambios (anexo 3).
Informe del Presidente

Reuniones de los grupos de trabajo y de otros grupos del Comité Científico durante el período entre sesiones

1.8 Las siguientes reuniones tuvieron lugar en 2008:

i) El Taller de Prospecciones de Depredadores se llevó a cabo del 16 al 20 de junio de 2008 en la sede de la CCRVMA, en Hobart, Australia, y fue coordinado por el Dr. Southwell. Contó con la participación de 11 representantes de tres países miembros, una experta invitada (Dra. R. Fewster de Nueva Zelanda) y dos expertos de SCAR (Sra. D. Patterson-Fraser y Dr. B. Raymond).

ii) En julio y agosto de 2008 se llevaron a cabo tres reuniones en San Petersburgo, Rusia:

- La segunda reunión de WG-SAM se realizó del 14 al 22 de julio, y fue coordinada por el Dr. Constable. Asistieron 33 participantes de 10 países miembros.

- La primera reunión del grupo especial TASO se realizó los días 19 y 20 de julio. Los coordinadores de la misma fueron el Sr. C. Heinecken (Sudáfrica) y el Dr. Welsford, y contó con la participación de 20 representantes de nueve países miembros.

- La decimocuarta reunión de WG-EMM fue efectuada del 23 de julio al 1 de agosto. Fue coordinada por el Dr. Watters y contó con la participación de 35 representantes de 10 países miembros. La discusión del tema central “Evaluación del riesgo de la etapa 1 de la subdivisión del límite de captura precautorio entre las unidades de ordenación en pequeña escala del Área 48” fue dirigida por el Dr. Trathan. La discusión del tema central “Avance de medidas espaciales con el objeto de facilitar la conservación de la biodiversidad marina” fue dirigida por la Dra. Penhale.

iii) El Taller conjunto CCAMLR-IWC sobre la revisión de los datos de entrada de los modelos de ecosistemas marinos antárticos se realizó en la sede de la CCRVMA en Hobart, Australia, del 11 al 15 de agosto de 2008. El taller fue coordinado por el Dr. Constable, del Comité Científico de la CCRVMA, y la Dra. N. Gales, del Comité Científico de la IWC. Asistieron al taller 45 expertos invitados y representantes en total.

iv) La reunión de WG-FSA se celebró del 13 al 24 de octubre en Hobart, antes de la reunión del Comité Científico, y fue coordinada por el Dr. C. Jones (EEUU).

v) El grupo especial WG-IMAF realizó su reunión del 13 al 17 de octubre, precedida por un taller de un día celebrado el 10 de octubre para considerar el programa de trabajo del grupo a futuro. Tanto el taller como la reunión de WG-IMAF fueron coordinados por la Sra. Rivera y el Sr. N. Smith.
Sistema de Observación Científica Internacional de la CCRVMA

1.9 Se asignaron observadores científicos de conformidad con el Sistema de Observación Científica Internacional de la CCRVMA, en todos los barcos de pesca de peces que operaron en el Área de la Convención, y en algunos barcos de pesca de kril durante 2007/08. Durante esta temporada a la fecha, los observadores científicos han participado en 60 campañas: 52 en barcos de pesca dirigida a la austromerluza o al draco rayado, y ocho en barcos de pesca de kril (*Euphausia superba*).

1.10 Los países miembros de la CCRVMA participaron en 12 pesquerías reguladas por las medidas de conservación en vigor, y otras tres pesquerías reglamentadas se realizaron en las ZEE nacionales dentro del Área de la Convención en la temporada 2007/08 (tabla 1).

Representación del Comité Científico en reuniones de otras organizaciones internacionales

1.11 El Comité Científico estuvo representado en varias reuniones de otras organizaciones internacionales durante el periodo entre sesiones. Los informes de los observadores en estas reuniones se consideran bajo el punto 9 de la agenda.

AVANCES EN ESTADÍSTICA, EVALUACIONES, MODELADO Y MÉTODOS DE PROSPECCIÓN

Asesoramiento de WG-SAM

2.1 El Dr. Constable presentó el informe del WG-SAM (anexo 7), señalando que la mayor parte del mismo fue remitida a la consideración del WG-EMM y del WG-FSA. Señalaron a la atención del Comité Científico los siguientes puntos para su consideración:

i) Tomando nota de las nuevas estimaciones de las áreas de lecho marino en la Subárea 48.3, la solicitud a los miembros de que consideren la compilación de datos bathimétricos para actualizar las cartas bathimétricas de otras áreas para las que existen datos más recientes obtenidos con ecosondas de haces múltiples o de un solo haz, y en las que se realizan prospecciones de arrastre (anexo 7, párrafo 2.10).

ii) Tomando nota del anexo 7, párrafo 3.21, WG-FSA había proporcionado guías específicas sobre la información que se tendría que poner a la disposición de WG-SAM para revisar adecuadamente el método TISVPA propuesto para la evaluación de la austromerluza en el Mar de Ross (SC-CAMLR-XXVI, anexo 5, párrafo 4.27):

a) Compilar un documento completo detallando el método y su aplicación, a partir de los trabajos existentes, para ser presentado al WG-SAM con consideraciones adicionales sobre su implementación como se describe en los siguientes puntos;
b) obtener datos simulados (teóricos) para una variedad de situaciones hipotéticas de la relación pesquería-stock que luego deberán ser analizados con CASAL y TISVPA para comparar el rendimiento de los dos métodos utilizando datos de características conocidas del stock y de la pesquería;

c) presentar detalles matemáticos y estadísticos de la generación de datos de entrada para el TISVPA a partir de los conjuntos de datos disponibles utilizados en CASAL, incluido cualquier agrupamiento de los datos, tanto en el espacio como en el tiempo;

d) proporcionar una descripción de los métodos para derivar los índices de la CPUE, incluidos los detalles de su normalización, para tomar en cuenta diferencias y variabilidad entre barcos, épocas del año, situación de los caladeros pesca, etc.;

e) describir el tratamiento de la incertidumbre, tanto en las evaluaciones como en la estimación del rendimiento.

WG-SAM reconoció (anexo 7, párrafo 3.22 de su informe) que esto no se había realizado, y que, en ausencia de los autores, no pudo completar la evaluación del método TISVPA. WG-SAM reiteró su asesoramiento del año pasado y recomendó que los autores llevaran a cabo el programa de trabajo para la evaluación del modelo descrito por WG-FSA (anexo 7, párrafo 3.25).

iii) WG-SAM examinó los métodos para evaluar la calidad de los datos de la pesquería exploratoria de austromerluza en el Mar de Ross (anexo 7, párrafos 3.26 al 3.29). WG-SAM indicó que la metodología tendría otros usos aparte de la selección de datos para la evaluación de poblaciones (anexo 7, párrafo 3.30), entre los que se incluye el uso de datos de la pesquería por otros grupos de trabajo (por ejemplo el WG-EMM), y en la gestión de las funciones y capacitación de observadores. El grupo de trabajo también consideró que un sistema centralizado para que la Secretaría evalúe la calidad de los datos podría servir para informarse rápidamente acerca de la calidad de los datos de campañas individuales, y simplificar la tarea de determinar la calidad de los datos para otros grupos de trabajo. WG-SAM recomendó que el grupo especial TASO considerara los asuntos planteados en esta discusión.

iv) WG-SAM consideró la utilidad del límite de 10 toneladas aplicado a la pesca de Dissostichus spp. con fines de investigación (anexo 7, párrafos 4.5 al 4.9) y concluyó que la interpretación de los datos provenientes de la pesca de investigación con un límite de 10 toneladas realizada por barcos nuevos en áreas nuevas puede ser difícil, pero los datos de los barcos con varios años de experiencia y que notifican datos detallados y de muy buena calidad de áreas conocidas (evaluadas) pueden interpretarse con más facilidad (anexo 7, párrafo 4.9).

v) WG-SAM proporcionó asesoramiento sobre las situaciones en que las prácticas de pesca podían cambiar y cómo se deberían enfrentar éstas para asegurar que los datos puedan ser utilizados en las evaluaciones (anexo 7, párrafo 4.12).
vi) WG-SAM hizo recomendaciones sobre los puntos que deben ser considerados cuando se utilizan árboles de regresión reforzados (BRT) en el trabajo de biorregionalización y alentó a los autores del enfoque a continuar refinándolo, sugiriendo que esto podría ser facilitado a través de un grupo de trabajo por correspondencia con la participación de expertos en estadística familiarizados con los BRT (anexo 7, párrafos 4.13 al 4.19).

vii) WG-SAM examinó el nuevo instrumento de evaluación, SeaBird, desarrollado en Nueva Zelandia para estimar la abundancia de aves marinas (anexo 7, párrafos 4.21 al 4.24), y consideró que representaba una valiosa contribución a la labor de SC-CAMLR.

viii) WG-SAM examinó también el instrumento de evaluación y modelado desarrollado en Nueva Zelandia para estimar parámetros en un modelo de población estructurado y espacialmente explícito (anexo 7, párrafos 4.13 al 4.19). Se alegró por la creación de esta nueva herramienta de evaluación e hizo recomendaciones para refinarla con el fin de facilitar su labor.

ix) WG-SAM indicó asimismo que en el desarrollo del modelo de población espacialmente explícito se utilizaron varios métodos para su convalidación, entre ellos procedimientos para realizar pruebas por unidades. Se considera que esto es muy útil en términos del desarrollo de otros modelos a ser utilizados por la CCRVMA (anexo 7, párrafos 5.1 al 5.6).

x) WG-SAM consideró que sería útil contar con algún tipo de procedimiento para la gestión de las distintas versiones de los modelos (véanse los detalles en el párrafo 5.31 de anexo 7).

xi) WG-SAM presentó una revisión preliminar de un modelo empírico de evaluación del ecosistema. Señaló que era un enfoque novedoso de evaluación del ecosistema que incorpora la utilización de prospecciones de kril en pequeña escala, datos del CEMP y datos medio ambientales en las evaluaciones del ecosistema (anexo 7, párrafos 5.32 al 5.34). Apoyó la continuación del desarrollo de este modelo y proporcionó recomendaciones para ello.

xii) WG-SAM examinó los modelos a ser utilizados en la evaluación de la etapa 1 de subdivisión de la captura de kril en el Área 48 (anexo 7, párrafos 6.1 al 6.45). Convino en adoptar un marco para el desarrollo de procedimientos de ordenación (anexo 7, párrafos 6.20 y 6.21) con el fin de facilitar la labor de SC-CAMLR. WG-SAM proporcionó asesoramiento sobre los índices de rendimiento (anexo 7, párrafos 6.26 al 6.30) y resúmenes del riesgo (anexo 7, párrafos 6.31 al 6.44). Asimismo, señaló que los modelos actuales proporcionan una base para la evaluación de procedimientos de ordenación de kril en las etapas subsiguientes de la labor de asignación de la captura por UOPE (anexo 7, párrafo 6.45). Todas estas recomendaciones fueron remitidas a WG-EMM.

xiii) WG-SAM consideró que se deberá implementar un sistema de control de revisiones en la labor de SC-CAMLR (anexo 7, párrafos 7.1 al 7.4).
xiv) WG-SAM destacó su futura labor en los párrafos 8.1 al 8.6 de su informe (anexo 7).

xv) WG-SAM incluyó su asesoramiento a los grupos de trabajo y al Comité Científico en los párrafos 9.1 al 9.9 de su informe (anexo 7). El asesoramiento principal presentado al Comité Científico para su consideración está contenido en el párrafo 9.9 del anexo 7.

2.2 El Dr. Constable agradeció las contribuciones de los miembros en la reunión de WG-SAM, y acotó que la diversidad de los participantes había permitido un gran avance en el desarrollo y revisión de nuevos métodos. El Dr. Constable agradeció también al Dr. Jones por su ayuda en la coordinación de algunos aspectos de la reunión, observando que esto le permitió participar en las discusiones.

2.3 El Comité Científico aprobó el informe de WG-SAM (anexo 7) y su programa de trabajo para el futuro, indicando que el programa para el año próximo será determinado por los coordinadores de los grupos de trabajo y el Presidente del Comité Científico.

2.4 El Comité Científico convino en que:

 i) se perfeccionen e implementen las metodologías para evaluar la calidad de los datos (anexo 7, párrafo 9.9(i));

 ii) se continúe el desarrollo y refinamiento de los modelos que puedan ser utilizados para entender la dinámica del ecosistema y las consecuencias de los enfoques de ordenación para los recursos antárticos (anexo 7, párrafo 9.9(ii));

 iii) se implementen en su labor sistemas de control de las revisiones (versiones) para manejar las múltiples revisiones del código de programación, los documentos y los archivos de datos en una base de datos central (anexo 7, párrafo 9.9(iii));

 iv) se adopte y se utilice en la labor del SC-CAMLR una terminología común con otros foros en lo que se refiere a los procedimientos de evaluación (anexo 7, párrafos 9.9(iv)).

SG-ASAM

2.5 El Comité Científico tomó nota de las discusiones sostenidas durante las reuniones de WG-EMM y WG-FSA con respecto a la próxima reunión de SG-ASAM durante el periodo entre sesiones, y a las recomendaciones relacionadas con las materias que deberán ser tratadas durante la reunión (anexo 4, párrafos 5.114 al 5.116; anexo 5, párrafos 3.26, 13.20 y apéndice O, párrafo 7).

2.6 El Comité Científico estuvo de acuerdo en que SG-ASAM celebrara su cuarta reunión en 2009. El mandato para esta reunión, proporcionado en el anexo 8, incluye puntos generales del mandato de la tercera reunión de SG-ASAM realizada en 2007 (SC-CAMLR-XXVI, anexo 8, apéndice A) y una serie de tareas específicas surgidas como resultado de algunos puntos planteados durante las reuniones de WG-EMM y de WG-FSA.
2.7 El Comité Científico tomó nota del elevado número de puntos que deberán ser tratados por SG-ASAM y la necesidad de priorizar las tareas del subgrupo. El Comité Científico identificó los puntos (ii), (iii) y (iv) en la lista de tareas del anexo 8, como los de mayor prioridad para el trabajo del Comité Científico. El punto (iv) del anexo 8 debería incluir un análisis de los datos acústicos de los barcos que participaron en las pesquerías exploratorias.

2.8 El Comité Científico estuvo de acuerdo en que la cuarta reunión de SG-ASAM fuera celebrada en una fecha y lugar próximos a la reunión de ICES WG-FAST que se llevará a cabo del 18 al 22 de mayo de 2009 en Ancona, Italia, para aumentar las oportunidades de participación de expertos pertinentes de los miembros y de expertos invitados. El Comité Científico aceptó agradecido la oferta del Dr. M. Vacchi (Italia) de celebrar la reunión en mayo de 2009 en la Universidad de Ancona, Italia.

2.9 Se informó al Comité Científico que los Dres. J. Watkins (RU) y R. O’Driscoll (Nueva Zelandia) habían aceptado hacerse cargo de la coordinación de la reunión. Existe una asignación para invitar a dos expertos a la reunión, que serán identificados por los coordinadores y otros participantes antes de la reunión.

Taller conjunto CCAMLR-IWC

2.10 El taller conjunto CCAMLR-IWC se celebró en la sede de la CCRVMA en Hobart, Australia, del 11 al 15 de agosto de 2008, con el fin de examinar los datos a ser incorporados en modelos de los ecosistemas marinos antárticos. El taller fue coordinado por los Dres. Constable (SC-CAMLR) y Gales (SC-IWC).

2.11 Los resultados del taller se describen en detalle en el anexo 12. El resumen ejecutivo (SC-CAMLR-XXVII/14) sirvió de base para la presentación de los resultados del taller por el Dr. Constable y para las deliberaciones del Comité Científico.

2.12 Se formaron 14 grupos de expertos (coordinadores entre paréntesis), a los cuales se les encargó la tarea de completar la revisión de documentos sobre temas relacionados con el Océano Austral, a saber:

- ballenas dentadas (Sr. R. Leaper)
- ballenas de barbas (Dr. A. Zerbini)
- focas del campo de hielo (Dr. C. Southwell)
- lobo fino antártico (Dr. K. Reid)
- aves marinas (Dr. B. Weinecke)
- peces (Dr. K.-H. Kock)
- calamar (Prof. P. Rodhouse)
- kril (Dr. S. Nicol)
- producción primaria (Dr. P. Strutton)
- zooplancton (Dr. A. Atkinson)
- hielo marino (Dr. R. Massom)
- procesos oceánicos (Prof. E. Hofmann)
- explotación (Dr. S. Kawaguchi)
- pingüinos (Dr. P. Trathan).
2.13 El grado de detalle de los informes entregados por los grupos de expertos del taller varió bastante. La mayoría de ellos estaban casi completos en lo que se refiere a la información sobre la distribución y la abundancia de los principales taxones, mientras que otros aún necesitaban de bastante trabajo adicional para finalizarlos en el primer semestre de 2009, en particular los referentes a las aves marinas.

2.14 El Dr. Holt felicitó a los organizadores del taller por sus resultados, en especial por haber conseguido juntar a los científicos de la IWC y de la CCRVMA en una reunión.

2.15 Se encargó al grupo mixto de dirección del taller la tarea de desarrollar un plan para avanzar en la compilación y síntesis de los datos y en la finalización de los trabajos de revisión de los grupos de expertos (SC-CAMLR-XXVII/14, párrafo 44), incluida una mayor participación en los distintos grupos de expertos. Si bien el comité mixto de dirección aún no ha finalizado esta planificación, el Comité Científico estuvo de acuerdo en que la labor debería ser llevada a cabo para reunir todos los informes de los grupos de expertos en una publicación conjunta y compilar los datos en una base de metadatos. Alentó a los coordinadores de los grupos de expertos a comunicarse con los miembros de su respectivo Comité Científico para identificar la manera de finalizar este trabajo.

2.16 Se determinó que la finalización de las revisiones de los expertos era la tarea principal que deberá ser realizada después del taller. El plazo de presentación de los informes de los distintos grupos de expertos se cumple a fines de junio de 2009, aunque no se ha decidido aún el formato de la publicación.

2.17 Australia seguirá siendo depositaria de la base de metadatos y ayudará en la incorporación de metadatos. Sin embargo, no existen recursos para seguir desarrollando la interfase del usuario de la base de datos. Esto deberá ser considerado por el Comité Científico en el futuro.

2.18 El Comité Científico indicó que los costes del taller se habían mantenido dentro del presupuesto, pero observó que se necesitan fondos para lo siguiente (párrafo 11.3):

i) traducción y publicación del informe
ii) publicación de los informes de los grupos de expertos.

2.19 El Comité Científico se alegró especialmente por las estimaciones de la distribución y abundancia de las focas del campo de hielo proporcionadas por el programa APIS de SCAR, reconociendo que se trataba de un programa de trabajo de gran alcance y de difícil ejecución y muy importante para la labor de la CCRVMA. El taller se benefició notablemente de los resultados del programa APIS. El Comité Científico alentó a SCAR a encontrar maneras de realizar los análisis finales de los datos de la abundancia proporcionados por el programa APIS, que todavía están pendientes.

2.20 El Comité Científico agradeció a los coordinadores del taller, al grupo mixto de dirección, a los coordinadores de los grupos de expertos, a los participantes de los grupos de expertos y a los participantes del taller por su avance en la compilación de metadatos importantes para el modelado en la CCRVMA y en la IWC. Expresó su satisfacción por los resultados logrados por el taller en relación con su cometido, señalando que era importante reconocer que este era el inicio de un proceso de largo alcance y no un resultado concluyente. Alentó al grupo mixto de dirección a que completara la publicación de los documentos de
trabajo y la compilación de la base de metadatos, y considerará la labor que podría ser realizada conjuntamente en el futuro por SC-CAMLR y SC-IWC, señalando que ésta se podría centrar en la sinergia de los dos comités en lo que se refiere al modelado del ecosistema.

SEGUIMIENTO Y ORDENACIÓN DEL ECOSISTEMA

Asesoramiento del WG-EMM

3.1 El Comité Científico consideró el asesoramiento del WG-EMM en relación con la subdivisión por etapas del límite de captura precautorio entre las UOPE del Área 48, de acuerdo con los siguientes encabezamientos:

i) Etapa 1 de asignación del límite de captura precautorio del kril entre las UOPE de las Subáreas 48.1 a la 48.3;

ii) Convalidación y acceso a los modelos utilizados en la asignación por UOPE;

iii) Asignación posterior a la Etapa 1;

iv) UOPE de la Subárea 48.4;

v) Inquietudes fuera de la competencia del Comité Científico.

3.2 El Comité Científico pidió al Dr. Watters, en su calidad de coordinador del WG-EMM, que agradeciera en su nombre a los miembros del WG-EMM por el trabajo desarrollado para subdividir el límite de captura precautorio de kril en el Área 48 por etapas. El Comité Científico reiteró su compromiso hacia el desarrollo de esta labor y manifestó que aguardaba con interés el próximo asesoramiento sobre este tema en 2009.

Etapa 1: Asignación del límite de captura precautorio de kril por UOPE en las Subáreas 48.1 a la 48.3

3.3 El Comité Científico señaló que para poder estimar la asignación por UOPE en la Etapa 1, se requeriría la ejecución de varias tareas (anexo 4, párrafo 2.31).

i) Utilización de los mejores datos disponibles para determinar la proporción a ser asignada a cada una de las UOPE para:

a) la Opción 2: estimaciones del requerimiento alimentario de los depredadores en cada una de las UOPE a partir de los datos disponibles de la abundancia y de las tasas de consumo de los depredadores;

b) la Opción 3: estimaciones de la proporción de kril en cada una de las UOPE derivadas de la prospección CCAMLR-2000;

c) la Opción 4: diferencia entre las estimaciones de la biomasa instantánea de kril y el requerimiento alimentario de los depredadores.
ii) Evaluación del riesgo relativo de las distintas opciones mediante los modelos disponibles (FOOSA, SMOM, EPOC). Las evaluaciones de riesgo se basaron en factores de multiplicación del rendimiento de manera proporcional desde cero, pasando por el nivel de activación actual, hasta el límite de captura precautorio × 1.25.

iii) Cálculo de las asignaciones por UOPE utilizando las proporciones determinadas en (i) supra, multiplicadas por el factor de rendimiento determinado en (ii) supra y multiplicado por el rendimiento derivado del modelo GYM.

3.4 El Comité Científico reconoció que se había logrado avanzar considerablemente en la evaluación del riesgo relativo de las distintas propuestas para la asignación de la captura, y señaló que el WG-EMM consideraba ahora que esto era suficiente para la segunda tarea de la Etapa 1 de asignación por UOPE (párrafo 3(ii)) (anexo 4, párrafo 2.101).

3.5 El Comité Científico observó que WG-EMM había informado (anexo 4, párrafo 2.95) que las conclusiones generales de la evaluación del riesgo eran:

i) Los resultados de la opción 4 son mucho peores que los resultados de las opciones 2 y 3 en lo que respecta a todos los indicadores del rendimiento (pesquería, depredadores y kril);

ii) Las opciones 2 y 3 tienen resultados igualmente satisfactorios bajo varias condiciones, atribuyéndose las diferencias observadas en los resultados de las opciones 2 y 3 a las diferencias en las estructuras de los modelos;

iii) Para las opciones 2 y 3, el riesgo de un efecto perjudicial en los depredadores fue insignificante cuando se multiplicó el rendimiento por un factor de 0.15 (la tasa de explotación que concuerda con el nivel crítico de activación);

iv) Para las opciones 2 y 3, el riesgo de un efecto perjudicial en los depredadores aumentó cuando el rendimiento se multiplicó por factores de 0.25 a 0.5; los pingüinos y los peces fueron los componentes más afectados; los pinnípedos en menor grado, y las ballenas no fueron afectadas;

v) La evaluación de las opciones 2 y 3 con los modelos disponibles incluyeron una asignación de 70% (opción 2) y otra de 62% (opción 3) de la captura total a las UOPE pelágicas, donde el rendimiento de la pesca disminuirá significativamente.

3.6 El Comité Científico señaló que el WG-EMM había informado que la evaluación del riesgo se había basado en resultados que:

i) pronosticaban que la pesquería de kril (anexo 4, párrafos 2.70 al 2.74) –

a) podría ser forzada a alterar su comportamiento en áreas pelágicas donde la biomasa total de kril es relativamente alta pero la densidad promedio es relativamente baja;
b) posiblemente no será capaz de extraer el límite de captura asignado en algunas UOPE debido a la naturaleza de la competencia que se supone existe entre la pesquería y los depredadores de kril;

c) podría prohibirse en algunas UOPE porque el modelo simula la estimación de la biomasa de kril o el requerimiento alimentario de los depredadores como si fuese el proceso real (pero puede dar resultados que son diferentes a lo que sucede en realidad);

ii) posiblemente están sesgados negativamente y por lo tanto pueden llevar a una recomendación sobre la asignación por UOPE que no es lo suficientemente precautoria, como era la intención, en cuyo caso la evaluación del riesgo debe ser considerada como una indicación del riesgo mínimo para el ecosistema en relación con una tasa dada de explotación (anexo 4, párrafos 2.54 y 2.55);

iii) fueron condicionados en un calendario de eventos que especifica un cambio abrupto de la abundancia de kril de magnitud incierta, y que no describe la dinámica de las poblaciones de peces cuyo rol en el ecosistema representa una importante fuente de incertidumbre (anexo 4, párrafos 2.76 al 2.83);

iv) fueron inicializados extrapolando los resultados de la prospección CCAMLR-2000 (anexo 4, párrafos 2.84 y 2.85).

3.7 El Comité Científico también señaló que la evaluación del riesgo contenía un alto grado de incertidumbre (anexo 4, párrafos 2.54 y 2.102).

3.8 El Comité Científico tomó nota del asesoramiento del WG-EMM de que:

i) si las asignaciones correspondientes a las opciones 2 a 4 fueran aplicadas a la pesquería actual, la captura actual en varias UOPE sería limitada aún cuando la captura anual total representa sólo un 17% del nivel de activación (anexo 4, párrafo 2.92);

ii) las decisiones relacionadas con el nivel de activación actual le corresponden a la Comisión (anexo 4, párrafo 2.93).

3.9 El Comité Científico indicó que la distribución espacial actual de las capturas refleja más rigurosamente aquella que se da bajo la opción 1, la distribución histórica de la pesca. El Comité Científico indicó que el WG-EMM no había podido brindar asesoramiento explícito sobre el riesgo asociado con las distribuciones de la captura de acuerdo con la opción 1, que podría aplicarse cuando la captura total se acerca al nivel crítico de activación. No obstante, el Comité Científico indicó que el asesoramiento previo (SC-CAMLR-XXV, párrafo 3.11) había sugerido que las asignaciones basadas en la distribución histórica de la pesca tendrían un efecto negativo mucho mayor en el ecosistema que las otras opciones (anexo 4, párrafo 2.99).

3.10 El Dr. V. Bizikov (Rusia) indicó que el trabajo de simulación finalizado durante la reunión del WG-EMM de este año representaba un importante avance. No obstante, indicó que los resultados deberían ser considerados como provisionales y no como resultados finales. Explicó que el trabajo era sumamente promisorio, pero se debía dedicar más esfuerzo en dos áreas que eran muy inciertas:
i) El calendario numérico utilizado para la simulación no incluye peces. Se sabe que los peces tienen mucha importancia en el ecosistema marino y éste es un aspecto de considerable incertidumbre.

ii) La prospección CCAMLR-2000 cubrió un 50% aproximadamente de la extensión geográfica combinada de las Subáreas 48.1, 48.2, 48.3 y 48.4. En el ejercicio de modelado del WG-EMM los resultados de la prospección sinóptica CCAMLR-2000 fueron ajustados a escala para cubrir toda el área combinada. No obstante, dado que no es probable que se encuentre kril en toda la extensión de estas áreas combinadas, esto conlleva cierta incertidumbre.

3.11 El Dr. L. Pshenichnov (Ucrania) señaló el progreso logrado recientemente en la evaluación de los depredadores de kril (anexo 4, párrafos 5.1 al 5.40). Tomando en cuenta que el coordinador del WG-EMM mencionó varias veces en su informe la palabra “riesgo”, el Dr. Pshenichnov pensó que sería importante resumir los datos disponibles sobre la concentración espacial de los depredadores de kril en áreas costeras para cada UOPE, para su uso en los modelos y/o en la implementación de medidas preliminares en el futuro a fin de proteger a los depredadores del efecto directo de la pesca de kril.

3.12 El Sr. H. Matsushima (Japón) indicó que aún había varios problemas con la formulación actual de los modelos. El Dr. H.-C. Shin (República de Corea) también indicó que el sistema de modelado desarrollado aparentemente no simula correctamente la pesquería de kril actual y sus efectos mínimos, pesquera que ha estado operando de manera estable por mucho más de una década sin haberse detectado mayores problemas. Indicó que esto se contradice con la expectativa razonable y puso en duda cómo se podría mejorar el modelo.

3.13 El Dr. Shin consideró que las estimaciones utilizadas en los modelos contenían un alto nivel de incertidumbre, y si se subestimaban para el kril y se sobreestimaban para los depredadores, no era de extrañar que se hubieran obtenido resultados similares con las opciones 2 y 3, más bien, eran de esperar. Esto le hacía dudar acerca de la magnitud de los riesgos asociados con las opciones 2 y 3 y, por ende, de su utilidad.

3.14 En respuesta a la preocupación expresada por algunos miembros, el Dr. Constable, coordinador de WG-SAM, subrayó que todos los modelos son aproximaciones de la realidad y todos conllevan incertidumbres. Recordó al Comité Científico que WG-SAM había examinado rigurosamente los tres modelos (FOOSA, SMOM y EPOC) y había considerado que los modelos tomaban en cuenta de manera adecuada la incertidumbre en relación con el asesoramiento para la etapa 1.

3.15 En calidad de coordinador de WG-SAM, el Dr. Constable indicó además que el asesoramiento de WG-EMM era bien fundado e incluía varias salvedades, y que en su opinión era el mejor asesoramiento que se podía proporcionar dados los datos y los recursos disponibles. El Dr. Constable indicó también que el proceso de revisión se había efectuado de acuerdo con las expectativas del Comité Científico.

3.16 El Comité Científico recordó que la Comisión había aprobado su asesoramiento de años anteriores, de realizar una subdivisión por etapas del límite de captura precautorio de kril entre las UOPE del Área 48 (CCAMLR-XXVI, párrafo 4.18), y que la subdivisión inicial (etapa 1) debiera basarse en una de las opciones propuestas: la opción 2 (que toma en cuenta la distribución espacial del consumo de los depredadores), la opción 3 (basada en la
distribución espacial de la biomasa de kril) y la opción 4 (que considera la distribución espacial de la biomasa de kril menos el consumo de los depredadores) (CCAMLR-XXVI, párrafo 4.18).

3.17 El Comité Científico indicó también que la Comisión esperaba que se le proporcionara el asesoramiento sobre la etapa 1 en 2008 (CCAMLR-XXVI, párrafo 4.19). El Comité Científico observó que WG-EMM había informado que los resultados de la opción 4 son mucho peores que los de las opciones 2 y 3 en relación a todos los índices de rendimiento (pesquería, depredadores, y kril); y que las opciones 2 y 3 dan resultados igualmente satisfactorios bajo cierto número de condiciones, debiéndose las diferencias observadas entre los resultados de ambas a las diferentes estructuras de los modelos utilizados.

3.18 El Dr. Constable indicó que el asesoramiento de WG-EMM (anexo 4, párrafo 2.90) indica que si no se elige una de las opciones para la asignación de la captura de kril por UOPE, el ecosistema sufriría las consecuencias. Le recordó al Comité Científico que si la CCRVMA no sigue el asesoramiento de WG-EMM, se estaría de hecho aceptando la estrategia de asignación de la opción 1, y ya se había demostrado que ésta (SC-CAMLR-XXV, párrafo 3.11) era potencialmente perjudicial para el ecosistema. El Dr. Agnew comentó que si la CCRVMA no sigue el asesoramiento de WG-EMM, sería esencial realizar una evaluación del riesgo de la opción 1, similar a las evaluaciones exhaustivas efectuadas para las opciones 2, 3 y 4.

3.19 Luego de discutir detalladamente el asesoramiento de WG-EMM (párrafos 3.3 al 3.9) y la preocupación expresada en relación con el mismo (párrafos 3.10 al 3.18), el Comité Científico no pudo alcanzar un consenso al respecto.

3.20 Si bien la mayoría de los miembros apoyaron el asesoramiento de WG-EMM, el Sr. Matsushima y el Dr. Shin consideraron que sigue existiendo una incertidumbre considerable en el análisis del riesgo de la etapa 1.

3.21 El Comité Científico señaló la naturaleza genérica de la preocupación expresada por el Sr. Matsushima y el Dr. Shin, y les pidió que entregaran más detalles explícitos sobre sus objeciones en las próximas reuniones de WG-SAM y WG-EMM.

Convalidación y acceso a los modelos utilizados para la asignación por UOPE

3.22 El Dr. Bizikov observó que los modelos utilizados para formular asesoramiento en la etapa 1 eran extremadamente complejos ya que trataban de representar procesos ecológicos muy complicados. En consecuencia, consideraba que era esencial que la comunidad de la CCRVMA tuviera la oportunidad de examinar los modelos en detalle y familiarizarse con los códigos pertinentes.

3.23 El Dr. Holt recordó al Comité Científico que los modelos habían sido examinados rigurosamente por muchos años y que habían sido modificados anualmente para tomar en cuenta diversas inquietudes planteadas por el WG-EMM. El Dr. Holt recordó asimismo a los presentes que ningún modelo era capaz de representar a la perfección el funcionamiento de un ecosistema, y que todos los modelos contenían salvedades y suposiciones. Señaló que el asesoramiento de WG-EMM presenta varias de estas suposiciones y salvedades de manera
muy explícita, pero que sin embargo este grupo de trabajo había concluido que los modelos eran adecuados para proporcionar asesoramiento en la etapa 1. El Dr. Holt también indicó al Comité Científico que el código del modelo FOOSA hacía tiempo que estaba a disposición de los interesados a través de la Secretaría.

3.24 El Dr. Constable señaló que todos los modelos de las pesquerías estaban haciéndose cada vez más complicados. Como coordinador de WG-SAM, pidió asesoramiento al Comité Científico sobre lo que se tendría que hacer para ganar la confianza del público en general (sin experiencia en el modelado) y para convencerle. El Comité Científico reconoció que esto representaba un grave motivo de preocupación para la CCRVMA y para la comunidad pesquera en general.

3.25 Actualmente se están desarrollando tres modelos para proporcionar asesoramiento sobre la asignación de la captura por UOPE en el Área 48. Sin embargo, excepto por los autores de los modelos, pocas personas que participan en la labor del Comité Científico o del WG-EMM están lo suficientemente familiarizadas con el complejo funcionamiento de los mismos, incluida la preparación de los datos de entrada, la parametrización, las estimaciones realizadas y el análisis de los resultados. El Comité Científico indicó que WG-EMM había recomendado que:

i) los modelos empleados para hacer recomendaciones deberán estar lo suficientemente desarrollados para ser utilizados por otros usuarios aparte de los modeladores. Esto permitirá la participación más amplia de los miembros, cuando fuese requerida, en el desarrollo, convalidación y revisión de las evaluaciones relacionadas con la asignación por UOPE;

ii) la participación de los miembros en la labor de evaluación es muy conveniente, y se recomendó que:
 a) se entregue suficiente información junto con el modelo para instruir a otros acerca de su uso;
 b) se proporcione el software, ejemplos de archivos de entrada y casos de prueba a la Secretaría para hacerlos disponibles a los miembros.

3.26 El Comité Científico indicó que todos los modelos empleados en la ordenación de kril eran complejos y que su implementación efectiva requiere de un enfoque crítico e independiente. Reconoció que esto se lograría a través del examen continuo de WG-SAM, de conformidad con los procedimientos descritos en SC-CAMLR-XXVI, anexo 7, párrafo 6.3. Por lo tanto, el Comité Científico acordó que WG-SAM debía continuar examinando la implementación metodológica de los modelos empleados en la asignación por UOPE.

Asignación después de finalizada la etapa 1

3.27 El Comité Científico señaló que:

i) el desarrollo de modelos para proporcionar asesoramiento en la etapa 1 de la asignación por UOPE había sido técnicamente difícil, y que el desarrollo de los modelos necesarios para proporcionar asesoramiento en las etapas subsiguientes
también lo sería, y quizás aún más. Por lo tanto, en relación con las asignaciones posteriores a la etapa 1, el Comité Científico reconoció que se tendría que asignar suficiente tiempo para que los modelos fuesen estructurados correctamente (anexo 4, párrafo 2.100);

ii) en las etapas subsiguientes se tendrían que considerar una gama de suposiciones relativas al cambio climático, como parte de una evaluación del riesgo más amplia y a más largo plazo (anexo 4, párrafo 2.30).

UOPE de la Subárea 48.4

3.28 El Comité Científico indicó que WG-EMM había examinado la información sobre los depredadores con colonias terrestres que podría ser utilizada para la correcta subdivisión de la Subárea 48.4 por UOPE (anexo 4, párrafo 7.5). El Comité Científico aprobó la propuesta de dividir la Subárea 48.4 en una UOPE costera y otra pelágica (figura 1), señalando que este enfoque era congruente con el enfoque empleado para separar las UOPE pelágicas de las costeras en las Subáreas 48.1, 48.2 y 48.3.

3.29 El Comité Científico reconoció que los análisis futuros de la densidad de la alimentación y de la composición de especies que podrían indicar la necesidad de una subdivisión adicional de la UOPE en una UOPE del norte (que contenga las seis islas más al norte) y otra UOPE del sur (con las islas restantes) cuando se disponga de más información.

Problemas que no caben dentro de la competencia del Comité Científico

3.30 El Dr. Agnew indicó que el asesoramiento de WG-EMM incluía varias salvedades y que éstas podían clasificarse en dos categorías. Primero están aquellas salvedades que reflejan aspectos científicos, como los descritos en los párrafos 3.6(ii), (iii) y (iv); y segundo, las salvedades que reflejan aspectos relacionados con el comportamiento de la pesquería de kril y que por lo tanto son de mayor pertinencia para la Comisión, e incluyen los aspectos descritos en los párrafos 3.6(i) y 3.8.

3.31 El Sr. Matsushima expresó que el nivel actual de explotación de kril era aproximadamente de 100 000 toneladas y que esto no estaba afectando al ecosistema. Añadió que por lo tanto no era necesario aún distribuir el límite de captura precautorio entre las áreas, y que preferiría esperar que se finalizara el desarrollo de los modelos EPOC y SMOM para que se pudiera compararlos con el modelo FOOSA. El Sr. Matsushima señaló que el nivel crítico de activación actual de 620 000 toneladas era por ahora una medida de gestión adecuada.

3.32 El Dr. Agnew señaló la posibilidad, inferida del párrafo 9, de que el nivel de activación actual podría no ser tan precautorio como se supuso anteriormente si la distribución de capturas continúa de acuerdo con la tendencia histórica, y recordó al Comité Científico las deliberaciones de WG-EMM sobre este tema (anexo 4, párrafo 2.90).

3.33 El Dr. Nicol le recordó al Comité Científico que el nivel de activación actual de 620 000 toneladas era la suma de las capturas comerciales anuales más altas de cada una de
las subáreas del Área 48. Jamás en la historia de la pesquería de kril se ha extraído una captura tan alta como 620 000 toneladas. El Dr. Nicol le recordó al Comité Científico que el proceso de subdivisión tenía como objetivo asegurar que una captura tal no fuera extraída de un área limitada.

3.34 El Comité Científico indicó que estos temas caían más bien dentro de la competencia de la Comisión, y por lo tanto acordó informar a la Comisión en relación con este tema.

Asesoramiento a la Comisión

3.35 El Comité Científico informó a la Comisión que:

i) se mantiene firme en su determinación de continuar con la labor de subdivisión por etapas del límite de captura precautorio de kril entre las UOPE del Área 48 (párrafo 3.2);

ii) había recibido asesoramiento detallado del WG-EMM sobre la evaluación de riesgo para la etapa 1 (párrafos 3.3 al 3.9), y que se ha logrado progresar significativamente en la evaluación de riesgo de las distintas propuestas de asignación. Sin embargo, el Comité Científico no había logrado un consenso con respecto a este asesoramiento (párrafos 3.19 y 3.20) y sería necesario seguir trabajando para poder calcular las asignaciones por UOPE (párrafos 3.3 y 3.4);

iii) la subdivisión del límite de captura precautorio de kril entre las UOPE del Área 48 afectaría el comportamiento de la pesquería de kril en las condiciones estudiadas por WG-EMM (párrafos 3.6(i), 3.8 y 3.30). Esto se podría acentuar a medida que aumentaran las capturas a un nivel tal que fuese imposible extraer el límite de captura total de los caladeros de pesca actuales.

3.36 El Comité Científico estimó necesario señalar a la atención de la Comisión que algunos miembros consideraban que aún no era necesario repartir el límite de captura precautorio entre áreas y que el nivel actual de activación de 620 000 toneladas era por ahora una medida de gestión adecuada (párrafo 3.31), mientras que la mayoría de los miembros consideraban que el nivel actual de activación de 620 000 toneladas podía no ser tan precautorio como se había supuesto en un principio (párrafos 3.32 y 3.33; anexo 4, párrafo 2.90).

3.37 El Comité Científico pidió que la Comisión apoyara la subdivisión propuesta de la Subárea 48.4, en una UOPE costera y otra pelágica (párrafos 3.28 y 3.29).

Informe de WG-EMM-STAPP (Evaluación del estado y las tendencias de las poblaciones de depredadores)

3.38 El taller de prospecciones de depredadores se llevó a cabo del 16 al 20 de junio de 2008 en la sede de la CCRVMA, en Hobart, Australia, y su informe figura en WG-EMM-08/8. El taller fue coordinado por el Dr. Southwell. El taller contó con la participación de dos
expertos de SCAR (Sra. Patterson-Fraser y Dr. Raymond) y un experto independiente invitado especialmente (Dra. Fewster). El informe del taller preparado por la Dra. Fewster fue examinado en el anexo 4, párrafo 5.1.

3.39 El taller proporcionó las siguientes recomendaciones e información (anexo 4, párrafo 5.7) en distintas escalas temporales:

i) Plazo inmediato –

a) las prospecciones realizadas recientemente en el Área 48 han mejorado enormemente el conocimiento sobre la abundancia de la foca cangrejera, la producción de cachorros de lobo fino en las Islas Shetland del Sur, el pingüino macaroni en Georgia del Sur y el petrel de mentón blanco en Georgia del Sur;

b) se prevé finalizar las prospecciones aéreas del lobo fino antártico en Georgia del Sur en la temporada 2008/09;

c) se ha continuado el desarrollo de una nueva base de datos que contiene los datos disponibles de conteos de pingüinos que pueden utilizarse para basar la estimación de abundancia en gran escala;

d) el desarrollo de dos nuevos métodos para tomar en cuenta los sesgos y la incertidumbre en los datos brutos de conteos al estimar la abundancia total, que sirven además para estimar la abundancia por UOPE;

e) existe una laguna considerable de datos de abundancia de las especies de aves voladoras de mayor prioridad en toda el Área 48, excepto de los petreles de mentón blanco en Georgia del Sur. Dada la falta de datos de estudios en terreno para este grupo de especies, el taller recomendó que WG-EMM solicitara la presentación de datos de estudios marinos de las aves voladoras en el Área 48 para su consideración en WG-EMM-09. El taller identificó los siguientes programas como posibles fuentes de conjuntos de datos para los análisis: datos de campañas estivales del programa AMLR de Estados Unidos, datos de campañas de invierto y verano del programa LTER de Estados Unidos, y datos de Georgia del Sur y a lo largo del Mar de Escocia recopilados por BAS.

ii) A corto plazo (trabajo intersesional para ser presentado en WG-EMM-08) –

Las estimaciones de abundancia de pingüinos a nivel de UOPE fueron presentadas en un documento de trabajo para el WG-EMM, como un ejemplo del uso de la base de datos compilada.

iii) Mediano plazo (trabajo intersesional para WG-EMM-09) –

a) de ser posible, estimación de la abundancia de la foca cangrejera por UOPE, basándose en la simulación del hábitat;
b) la finalización de la prospección del lobo fino antártico en Georgia del Sur prevista para inicios de 2009 proporcionará una importante actualización de las estimaciones actuales de abundancia que datan de 1991;

c) refinaciones y pruebas adicionales de los nuevos métodos de estimación de la abundancia de pingüinos, y aplicación de estos métodos para calcular el sesgo y la incertidumbre en el ajuste de los datos brutos de los conteos.

iv) Labor futura –

a) datos de censos recientes de pingüinos al oeste de las Islas Shetland del Sur y este de la Península Antártica;

b) datos de censos de aves voladoras en toda el Área 48;

c) datos para ajustar las estimaciones para la mayoría de las especies en la mayoría de las áreas. De especial importancia es la recopilación estratégica de datos de ajuste a fin de mejorar la estimación de la abundancia de pingüinos;

d) desarrollo de otros métodos para la prospección de grandes colonias de pingüinos.

3.40 El Comité Científico indicó que el trabajo de WG-EMM-STAPP representaba una contribución considerable al trabajo de la CCRVMA y a la estimación de la abundancia de los depredadores por UOPE (anexo 4, párrafo 5.8). Los aspectos más notables de esta contribución incluyen:

i) una base de datos combinada de los censos de pingüinos, que comprende los datos recopilados de acuerdo con el programa CEMP, los datos de ASI y los datos históricos disponibles de la literatura publicada (una vez finalizada, esta base de datos estará disponible para la CCRVMA y su acceso estará regido por las normas de acceso y utilización de datos de esta organización) (anexo 4, párrafos 5.9 y 5.10);

ii) el análisis de los datos APIS sobre la distribución y abundancia de las focas cangrejeras efectuado por BAS (anexo 4, párrafo 5.11);

iii) la identificación de áreas geográficas con baja cobertura donde se podrían realizar prospecciones en el futuro (vg. UOPE al este de la Península Antártica) (anexo 4, párrafo 5.12);

iv) los esfuerzos encaminados a cuantificar la incertidumbre en las estimaciones de abundancia de los depredadores, de notable utilidad para el modelado (anexo 4, párrafo 5.13).

3.41 El Comité Científico señaló que el Taller de prospecciones de depredadores representaba la primera etapa de un proceso de varias etapas, cuyo objetivo final era la estimación de la abundancia y consumo de depredadores a nivel regional, y convino en que la labor futura también debería incluir a los depredadores de peces.
Asesoramiento sobre las estimaciones de B_0 del kril

3.42 El Comité Científico reiteró la importancia de estimar la incertidumbre y proporcionar índices como por ejemplo, funciones de densidad de probabilidad) de la confianza en la estimación de B_0 (anexo 4, párrafo 5.112). El Comité Científico discutió las consecuencias que esto podría tener en la estimación de B_0 y aludió al párrafo 2.20(i) de WG-EMM-07 (SC-CAMLR-XXVI, anexo 4) que indica que:

“Se deberá mantener un conjunto estándar de protocolos por un período de cinco años. Al final de este período, cualquier mejora de los protocolos deberá ser acordada y aplicada. Esto incluirá la revisión de los conjuntos de datos existentes. No obstante, se reconoció que las mejoras a los protocolos acústicos durante el período establecido probablemente serían publicadas en su debida oportunidad en revistas de expertos”.

3.43 El Comité Científico reiteró su acuerdo en este sentido. Asimismo señaló que este párrafo se refiere específicamente al uso de protocolos para establecer el límite de captura precautorio, y que agradecería cualquier propuesta de revisión y actualización de los protocolos acústicos para ser examinados a la mayor brevedad por SG-ASAM (anexo 4, párrafo 5.113). Así, el Comité Científico reconoció que los protocolos para estimar B_0 continuarían mejorándose y refinándose en el futuro.

Efectos del cambio climático

3.44 El efecto del cambio climático se discute bajo el punto 7 de la agenda.

Agenda revisada y plan de trabajo a largo plazo para el WG-EMM

3.45 El Comité Científico examinó la propuesta de WG-EMM para revisar y estructurar su agenda de las próximas reuniones (anexo 4, párrafos 8.7 al 8.12), con el objeto de facilitar la consecución de objetivos a largo plazo manteniendo a la vez la flexibilidad necesaria para tratar los requisitos anuales para el examen científico y el asesoramiento esperados por el Comité Científico y la Comisión en el futuro.

3.46 El Comité Científico estuvo de acuerdo en que había por lo menos cuatro asuntos que requerirían esfuerzos a largo plazo, los cuales fueron ratificados previamente por el Comité Científico, o identificados como temas de interés para la Comisión:

i) El desarrollo y la evaluación de estrategias de ordenación retroactiva para la pesquería de kril, incluido el trabajo para estimar la abundancia y los requerimientos de los depredadores y para respaldar el desarrollo por etapas de la pesquería de kril en el Área 48 (vg. SC-CAMLR-XXVI, párrafo 3.36(vii)).

ii) El desarrollo y la aplicación de métodos para facilitar la conservación de la biodiversidad marina en el Área de la Convención, incluido el trabajo para identificar los EMV (vg. SC-CAMLR-XXVI, párrafo 14.9), y definir las
posibles AMP (vg. SC-CAMLR-XXVI, párrafo 3.87) para lograr una estrategia armonizada (vg. SC-CAMLR-XXV, párrafo 3.32) dentro del Sistema del Tratado Antártico y dentro de la CCRVMA.

iii) Consideración de los efectos de la pesca de peces en el ecosistema (vg. SC-CAMLR-XXVI, párrafo 3.99), incluida una mayor colaboración con WG-FSA.

iv) Consideración de los efectos del cambio climático en el ecosistema marino antártico (vg. CCAMLR-XXVI, párrafo 15.36).

3.47 El Comité Científico estuvo de acuerdo en que los temas centrales (como los incluidos en la agenda de WG-EMM en 2008) proporcionaron un mecanismo para favorecer la determinación de los requisitos del asesoramiento a corto plazo, y que los objetivos de trabajo a largo plazo debieran constituir los puntos fundamentales de la agenda de WG-EMM para el futuro. Indicó asimismo que el cambio climático podía ser considerado bajo numerosos puntos de la agenda pues estaba interrelacionado.

3.48 El Comité Científico aprobó la siguiente estructuración de la agenda propuesta para las futuras reuniones del WG-EMM:

i) Introducción (inauguración de la reunión, aprobación de la agenda y nombramiento de los relatores, revisión de los aspectos requeridos para el asesoramiento y la interacción con otros grupos de trabajo).

ii) Temas centrales de discusión (a ser determinados cada año dándosele prioridad a los temas que se relacionan con los aspectos requeridos para brindar asesoramiento a corto plazo).

iii) Efectos de la pesca de kril en el ecosistema (kril, depredadores dependientes, pesquería y observación científica, prospecciones y seguimiento, efectos del clima y estrategias de ordenación retroactiva).

iv) Efectos de la pesca de peces en el ecosistema (peces, depredadores dependientes, pesquería y observación científica, prospecciones y seguimiento, efectos del clima y colaboración con el WG-FSA).

v) Gestión de espacios para facilitar la conservación de la biodiversidad marina (EMV, áreas protegidas, y armonización de estrategias, tanto dentro de la CCRVMA como dentro del Sistema del Tratado Antártico).

vi) Asesoramiento al Comité Científico y a sus grupos de trabajo

vii) Labor futura

viii) Otros asuntos

ix) Aprobación del informe y clausura de la reunión.

3.49 El Comité Científico indicó que es posible que no se tenga que proponer un tema central de discusión cada año y que, en general, la discusión de estos temas no debiera tomar
más de dos o tres días de la reunión anual del WG-EMM. El Comité Científico también señaló que los temas centrales de discusión deberían ser acordados durante la reunión previa a la reunión del Comité Científico de la CCRVMA, donde los coordinadores de los grupos de trabajo y el Presidente del Comité Científico podrán consultar con los miembros. Esto también proporcionará una oportunidad para considerar el tiempo necesario y el programa de los temas centrales propuestos.

Ordenación de áreas protegidas

3.50 El coordinador del WG-EMM resumió la discusión y el asesoramiento derivado del tema central “progreso de la implementación de medidas de gestión de espacios que tienen como objeto facilitar la conservación de la biodiversidad marina” (anexo 4, párrafos 3.1 al 3.78).

3.51 Algunos miembros expresaron preocupación en relación con las prioridades identificadas por WG-EMM en cuanto al trabajo adicional que se requiere para avanzar el tema de las AMP (anexo 4, figura 12), ya que la biorregionalización secundaria no había finalizado (SC-CAMLR-XXVI, anexo 9, figura 4).

3.52 El Dr. X. Zhao (China) declaró que China, por ser un nuevo miembro de la Comisión, no participó en la labor de biorregionalización realizada previamente por el Comité Científico, y expresó su sincero aprecio por las contribuciones de todos los miembros que participaron activamente en ella. Comentó además que, en vista de que aún existían algunas inquietudes y opiniones divergentes, alentaba al WG-EMM a continuar trabajando para consolidar las distintas perspectivas sobre el tema.

3.53 Se indicó que la figura 12 del anexo 4 se basó en un análisis que demostraba la heterogeneidad de los ecosistemas marinos, como había sido reconocido previamente (SC-CAMLR-XXV, párrafo 3.48). La figura 12 simplemente identifica las áreas que tienen un alto grado de heterogeneidad y que por lo tanto podrían tener características biológicas y medio ambientales complejas. A fin de hacer mejor uso de los recursos limitados de la CCRVMA, WG-EMM estimó que estas áreas complejas eran regiones adecuadas para seguir trabajando en el establecimiento de las AMP.

3.54 Se señaló asimismo que en 2000 se comenzó el trabajo dedicado a las AMP y que el avance a la fecha incluye investigaciones científicas y modelado, varios talleres y discusiones con el Comité Científico, sus grupos de trabajo y la Comisión (v.g. CCAMLR-XXVI, párrafo 7.18). Se notó que los informes de estas reuniones y talleres eran fuentes de información.

3.55 El Comité Científico:

i) recordó que las discusiones recientes sostenidas por la CCRVMA y el CPA han concluido que es necesario dar alta prioridad al problema de cómo, y dónde, establecer un sistema de áreas marinas protegidas con el fin de conservar la biodiversidad del Océano Austral (CCAMLR-XXIII, párrafo 4.13; informe final de CPA-IX, párrafos 94 al 101) (anexo 4, párrafo 3.71);
ii) estuvo de acuerdo en que la biorregionalización del bentos y de las áreas pelágicas realizada por el Taller de Biorregionalización celebrado en 2007 era adecuada para esta labor, pero podría mejorarse, y se alentó a seguir trabajando en la refinación del método del árbol de regresión reforzado (BRT) (anexo 4, párrafo 3.72);

iii) señaló que se podrían utilizar varios métodos para diseñar un sistema representativo de AMP, por ejemplo, la biorregionalización y/o la planificación sistemática de la conservación, y apoyó la utilización del programa MARXAN, como un posible método para efectuar una planificación sistemática de la conservación (anexo 4, párrafo 3.76);

iv) estuvo de acuerdo en que se debía continuar, como asunto de prioridad, el proceso de consolidación de las perspectivas científicas para mantener una base común para establecer sistemas representativos de AMP, como fue acordado por la Comisión (CCAMLR-XXVI, párrafo 7.18). El establecimiento de sistemas representativos de AMP deberá centrarse en las áreas más importantes identificadas en la figura 12 del anexo 4, pero sin limitarse a ellas. Por lo tanto, se alentó a los miembros a utilizar las metodologías pertinentes para avanzar en esta labor (anexo 4, párrafo 3.77).

Relaciones entre WG-EMM y WG-FSA

3.56 El Comité Científico apoyó el compromiso de ampliar la colaboración entre el WG-EMM y el WG-FSA, que se traslucía en la nueva agenda acordada para el WG-EMM, en la cual se ha incluido un punto titulado “Efectos de la pesca de peces en el ecosistema” (párrafo 3.48).

3.57 A continuación, el Comité Científico examinó los antecedentes y los temas propuestos para el Segundo Taller sobre Pesquerías y Modelos de Ecosistemas en la Antártida (FEMA2).

3.58 El Comité Científico aprobó la propuesta presentada por los coordinadores del WG-EMM y del WG-FSA, de que se estructurara el taller FEMA2 para enfocar las pesquerías de austromerluza en el Mar de Ross a modo de estudio de caso particular, que serviría de ejemplo de cómo la consideración del ecosistema puede utilizarse para proporcionar asesoramiento sobre la ordenación de pesquerías dirigidas a los peces.

3.59 El Comité Científico examinó cuatro temas que según los coordinadores podrían ser considerados por FEMA2, y aprobó la opinión de ambos grupos de trabajo en el sentido que FEMA2 debería evaluar si el nivel de escape actualmente propugnado en los criterios de decisión que se aplican a la pesquería de austromerluza en el Mar de Ross es lo suficientemente precautorio cuando se considera a estos peces como importantes especies presa y como depredadores (anexo 4, párrafos 8.3 y 8.5; anexo 5, párrafo 13.15).

3.60 El Comité Científico acordó el siguiente cometido para FEMA2:

i) Examen de la información existente sobre las especies de depredadores (focas de Weddell, ballenas dentadas, etc.) en el Mar de Ross que se sabe consumen
Dissostichus spp. Esto podría ser facilitado por un análisis comparativo de la importancia de *Dissostichus* spp. como especie presa en las distintas regiones del Océano Austral. La revisión debería incluir:

a) abundancia de especies depredadoras
b) distribución temporal y espacial de la zona de depredación
c) solapamiento de la distribución vertical con la pesquería de austromerluza
d) composición de tallas de *Dissostichus* spp. objeto de la depredación
e) consumo diario de los depredadores
f) proporción de la población que se alimenta de *Dissostichus* spp.

ii) Considerar las estimaciones actuales de la biomasa, distribución y productividad de *Dissostichus* spp., así como las extracciones anuales de la pesquería.

iii) Examen de las razones que justifican el nivel de escape de 0.5 para *Dissostichus* spp. considerado actualmente y determinar si este nivel de escape es precautorio en el Mar de Ross, dado el requerimiento de los depredadores, la distribución de la zona de alimentación, la biomasa de los stocks de austromerluza, la distribución y la productividad.

iv) Examinar otros métodos u opciones para mitigar el riesgo en la pesquería de austromerluza realizada en el mar de Ross, como por ejemplo:

a) cierre de áreas
b) cierre de temporadas.

v) Desarrollar métodos para detectar cambios en los depredadores del mar de Ross, incluidos:

a) las focas de Weddell
b) las ballenas dentadas
c) otros?

3.61 El Comité Científico convino en que, considerando el tema acordado en FEMA2, el taller se beneficiaría de una discusión general acerca de la idoneidad de los niveles de escape cuando la edad (o talla) de reclutamiento de los peces a la pesquería se contrasta con la edad (o talla) a la cual los peces son vulnerables a la depredación por parte de otros depredadores. Se sugirió además que también convendría considerar el trabajo previo realizado por Thomson et al. (2000).

3.62 El Comité Científico decidió que los coordinadores del WG-EMM y del WG-FSA actuaran como coordinadores de FEMA2, y que el taller fuera realizado como tema central de discusión dentro de la agenda del WG-EMM (anexo 4, párrafo 8.11).

3.63 En la preparación del taller, convendría que los coordinadores de WG-EMM y WG-FSA consideraran si WG-SAM podría proporcionar un examen técnico de los métodos cuantitativos. En los casos en que sea necesario y corresponda hacer este examen, se necesitará discutir la inclusión de esta labor en la agenda del WG-SAM con el coordinador de dicho grupo.
3.64 El Comité Científico señaló que posiblemente WG-EMM y WG-FSA tengan que relacionarse para tratar los asuntos relacionados con la captura secundaria de peces en la pesquería de kril y la depredación de austromerluzas por mamíferos marinos.

3.65 Con respecto a este último asunto, el Comité Científico observó los resultados ambivalentes obtenidos de una prueba experimental realizada con palangres artesanales equipados con cachaloteras. Si bien hubo indicios de una reducción en la depredación por cetáceos, esto fue contrarrestado por la mala condición de las rayas y austromerluzas capturadas en el palangre, lo cual posiblemente las descalificaría para ser marcadas y liberadas (anexo 5, párrafos 3.81 al 3.83). El Comité Científico alentó a seguir investigando el uso de este sistema.

ESPECIES EXPLOTADAS

Recurso kril

Temporada de pesca 2007/08

4.1 Seis barcos de cinco países miembros habían pescado kril durante la temporada 2007/08.

4.2 Toda la pesca fue realizada en el Área 48 (tabla 1).

4.3 La captura de kril en 2007/08 (notificada hasta octubre de 2008) fue de 125 063 toneladas comparada con el total de 104 364 toneladas notificado en octubre de 2007 durante CCAMLR-XXVI (SC-CAMLR-XXVII/BG/1). El total de la captura notificada al mes de mayo de 2008 fue de 85 110 toneladas (anexo 4) lo que indicó que se había extraído una captura substancial (39 953 toneladas) durante los meses de invierno.

Notificaciones de pesca de kril para la temporada 2008/09

4.4 Nueve países presentaron notificaciones de pesca de kril para 18 barcos con una captura total proyectada de 629 000 toneladas. Este nivel de captura proyectada indica que existe suficiente capacidad en la flota de pesca para exceder el nivel de activación en el Área 48, y recalca la necesidad de avanzar rápidamente en la asignación de límites de captura del kril por UOPE (anexo 4, párrafo 4.14).

4.5 Se recibieron notificaciones de pesca de kril de nueve países: Chile (un barco) Islas Cook (uno), Japón (uno), República de Corea (tres), Noruega (cuatro), Polonia (uno), Rusia (cinco), Ucrania (uno) y Estados Unidos (uno) (tabla 3). Cuatro notificaciones adicionales de Estados Unidos y una de Ucrania fueron presentadas al WG-EMM (SC-CAMLR-XXVII/BG/3), pero éstas fueron retiradas posteriormente.

4.6 Casi todas las notificaciones de pesca fueron para el Área 48; una notificación rusa incluyó además la pesca de kril en el Área 58 (SC-CAMLR-XXVII/11). Las notificaciones de Estados Unidos y Rusia también indicaron que sus barcos tenían planeado pescar kril en la Subárea 48.3 durante el verano, lo cual se aparta de la práctica anterior (anexo 4, párrafo 4.8).
4.7 Chile señaló que su barco había capturado 2 toneladas en la temporada 2007/08 mientras desarrollaba técnicas de elaboración y captura. Estas técnicas ya han sido comprobadas y el barco estará en pleno funcionamiento en diciembre de 2008.

4.8 El Comité Científico observó que las capturas proyectadas contenidas en las notificaciones de 2007 para participar en la pesquería de kril (689 000 toneladas) también habían excedido las capturas notificadas en 2007/08 (125 063 toneladas). Por lo tanto, era difícil evaluar la seriedad de los planes de pesca propuestos en la mayoría de las notificaciones, no obstante, se reconoció que aún así las notificaciones proporcionaban una indicación del nivel de interés en la pesquería de kril.

4.9 Se señaló que la prensa del gremio también publica abiertamente otros intereses comerciales en la pesca de kril, y que tal vez convendría que el Comité Científico investigara la posibilidad de contar con esta información en las deliberaciones de los grupos de trabajo.

Tipos de artes de pesca

4.10 Las notificaciones para participar en la pesquería de kril indicaron que se utilizarían cuatro métodos de pesca: arrastre tradicional, bombeo para vaciar el copo, sistema de pesca continua, y arrastre de vara (CCAMLR-XXVII/11). Rusia explicó que el arrastre de vara se utilizaría para la pesca mesopelágica, conjuntamente con un método de bombeo, y que el efecto de esto en el bento o las comunidades pelágicas probablemente no sería mayor que el de otros métodos de pesca pelágicos.

4.11 El Comité Científico recomendó que el formulario de notificación se modificara para incluir información específica de la configuración de los artes tales como, luz de malla, abertura de la boca de la red, y presencia y diseño de cualquier dispositivo de exclusión de pinnípedos. Asimismo informó que se había presentado una propuesta para modificar la Medida de Conservación 21-03 a los efectos de lograr este fin (CCAMLR-XXVII/36).

4.12 Los informes de los observadores científicos también debían contener información sobre el tipo de arte y diagramas de los artes utilizados.

Estimación de la captura de kril

4.13 El Comité Científico tomó nota de la gran variedad de factores de conversión utilizados por los barcos de pesca para relacionar el peso de los productos de kril con la captura de kril de los barcos (anexo 4, párrafos 4.34 al 4.39). Los datos presentados a la CCRVMA no incluyen información sobre la incertidumbre relacionada con la estimación de los factores de conversión. Con el creciente número de productos de la pesquería de kril, es posible que aumente la gama de factores de conversión, por lo tanto, el Comité Científico señaló que era poco probable que los factores de conversión sirvieran para proporcionar estimaciones retrospectivas de la captura.

4.14 La información sobre el peso de kril de la captura puede provenir de una combinación de datos de observación e información de los barcos de pesca. El peso en vivo se puede medir eficazmente en los arrastres convencionales así como también en los métodos de pesca.
continuos con una balanza de flujo. El Dr. S. Iversen (Noruega) informó al Comité Científico que el control del peso en vivo a través de ese sistema se había implementado en todos los barcos noruegos de pesca de kril.

4.15 Además de la incertidumbre sobre el volumen real de la captura de kril estimado de los distintos factores de conversión utilizados, el Comité Científico observó que, debido a esto, hay más incertidumbre asociada con la extrapolación de la captura secundaria de peces en los primeros estadios del ciclo de vida que ocurre en la pesquería de kril. Este asunto también se refleja en CCAMLR-XXVII/BG/24.

4.16 Se señaló a la atención de la Comisión la necesidad de que los barcos de pesca de kril midan con precisión el peso en vivo del kril capturado para poder calcular el volumen real de extracciones de kril de las UOPE. Esto tendrá especial importancia a medida que la captura se aproxime al nivel de activación en el Área 48. Por lo tanto, el Comité Científico recomendó la medición directa del peso en vivo de kril.

4.17 El Comité Científico pidió que todos los barcos que participen en la pesquería de kril en la temporada entrante informen sobre la utilidad de los métodos presentados por el grupo especial TASO (SC-CAMLR-XXVII/BG/6) en la estimación del peso en vivo durante las operaciones. El Comité Científico pidió a los miembros que obtuvieran esta información de sus barcos y la presentaran a TASO para su consideración en la reunión de 2009.

4.18 Asimismo señaló que la inclusión de información sobre la gama de productos derivados de la pesquería en el formulario de notificación continuaba siendo valiosa.

Captura secundaria de larvas de peces y peces juveniles

4.19 El Comité Científico manifestó que, a pesar de que la pesquería japonesa presentaba informes regularmente, aún existía incertidumbre acerca del nivel de captura secundaria de peces juveniles y larvas de peces en la captura de kril en todas las temporadas y áreas en las que operaba la pesquería de kril, y con distintos artes de pesca.

4.20 Se informó que una guía rusa sobre las larvas de peces y los peces juveniles había sido presentada a la CCRVMA y que sería traducida para que la pudieran utilizar los observadores científicos. La recopilación de información sobre la captura secundaria de peces debía seguir siendo una tarea prioritaria para los observadores a bordo de barcos de pesca de kril.

Notificaciones de pesquerías exploratorias de kril

4.21 El Comité Científico observó que el plazo para la presentación de notificaciones establecido en la Medida de Conservación 21-02 podía conducir a situaciones en que la notificación de los planes de los miembros de participar en una pesquería exploratoria se hiciera después de la reunión anual del WG-EMM. Por lo tanto, el Comité Científico recomendó modificar esta medida para que las notificaciones de pesquerías exploratorias de kril sean recibidas antes de la reunión anual del WG-EMM, y para que guarde relación con otras medidas de conservación para pesquerías nuevas y exploratorias.
4.22 El Comité Científico agradeció a Noruega la presentación de su notificación de pesca exploratoria de kril en la Subárea 48.6 con antelación a la reunión del WG-EMM para que pudiera ser analizada como corresponde.

4.23 No existe una estimación formal de la biomasa de kril o un límite de captura precautorio establecido para la Subárea 48.6. Se necesitaría calcular la biomasa de kril (\(B_0\)) utilizando datos de una prospección acústica realizada de conformidad con los protocolos estándar de la CCRVMA. Dada la gran extensión de la Subárea 48.6, el WG-EMM debía considerar métodos para subdividir ecológicamente esta subárea de forma que pudiera explorarse realisticamente para derivar estimaciones de la biomasa del kril.

4.24 No existe un plan de recopilación de datos de la pesca exploratoria de kril. El Comité Científico recomendó elaborar un conjunto de requisitos generales para la investigación y un plan de recopilación de datos para las pesquerías exploratorias de kril. Este plan de recopilación de datos se describe en los párrafos 4.163 al 4.185.

Asesoramiento a la Comisión

4.25 Se señaló a la atención de la Comisión el hecho de que éste es el segundo año consecutivo en que los niveles de captura de la pesquería de kril propuestos en las notificaciones excedieron el nivel de activación para el Área 48 (párrafo 4.8).

4.26 El Comité Científico recomendó que el formulario de notificación de pesquerías del kril sea modificado para incluir información específica sobre la configuración del arte, por ejemplo, luz de malla, abertura de la boca de la red, así como el empleo y diseño de cualquier dispositivo de exclusión de pinnípedos (párrafo 4.11).

4.27 El Comité Científico recomendó la medición directa del peso en vivo del kril (párrafo 4.16).

4.28 El Comité Científico recomendó modificar la Medida de Conservación 21-02 para que las notificaciones para realizar pesquerías exploratorias de kril puedan ser recibidas antes de la reunión anual del WG-EMM (párrafo 4.21).

4.29 El Comité Científico recomendó la adopción de un plan de recopilación de datos para las pesquerías exploratorias de kril (párrafo 4.24).

Recurso peces

Información sobre pesquerías

Datos de captura, esfuerzo, talla y edad notificados a la CCRVMA

4.30 Se realizaron 12 pesquerías dirigidas al draco rayado (Champsocephalus gunnari), a las austromerluzas (D. eleginoides y/o D. mawsoni) y al kril (E. superba), de conformidad con las medidas de conservación en vigor en la temporada 2007/08 (CCAMLR-XXVII/BG/15).
Además, se realizaron otras tres pesquerías en el Área de la Convención en 2007/08:

- pesquería de *D. eleginoides* en la ZEE francesa de la División 58.5.1
- pesquería de *D. eleginoides* en la ZEE francesa de la Subárea 58.6
- pesquería de *D. eleginoides* en las ZEE sudafricanas de la Subáreas 58.6 y 58.7.

En la tabla 1 se resume la captura de especies objetivo por región declarada de las pesquerías realizadas en el Área de la Convención de la CCRVMA en 2007/08. La captura declarada en 2006/07 se resume en la tabla 2.

El Comité Científico tomó nota del trabajo efectuado por la Secretaría con relación a:

- el seguimiento y cierre de pesquerías cuando se alcanzan los límites de captura;
- aplicación de los parámetros talla-peso utilizados en las evaluaciones y desarrollo de un lenguaje en R para graficar las frecuencias de tallas ponderadas por la captura;

El Comité Científico tomó nota de las estimaciones de la captura y el esfuerzo de la pesca INDNR (anexo 5, tabla 2). La captura declarada de austromerluza en aguas fuera del Área de la Convención se considera bajo el punto 7 de la agenda.

Datos de entrada para las evaluaciones del stock

El Comité Científico notó que WG-FSA había revisado todos los datos de investigación disponibles que fueron posteriormente utilizados para actualizar las evaluaciones de los stocks de peces en el Área de la Convención. Esto incluyó los datos de captura por talla y edad de las pesquerías, las campañas de investigación, los análisis de la CPUE, los estudios de marcado, los parámetros biológicos, la estructura del stock y la depredación.

Campañas de investigación

El Comité Científico observó que se habían realizado cinco campañas de investigación en la temporada 2007/08 (anexo 5, párrafos 3.24 al 3.44):

i) Una prospección de arrastre de fondo realizada por el Reino Unido en la Subárea 48.3. Los resultados de esta campaña fueron utilizados para actualizar las evaluaciones de los stocks de draco rayado en esta subárea.

2 Y en el Área 51, fuera del Área de la Convención.
ii) Una prospección de arrastre de fondo realizada por Nueva Zelandia en el mar de Ross como parte de las actividades del API. Se presentaron las tasas de captura por estación para las ocho especies más abundantes, además de la frecuencia de tallas ponderada por la captura y estimaciones de biomasa para esas especies.

iii) Una prospección de arrastre de fondo realizada por Australia en la División 58.5.2. Los resultados de esta campaña fueron utilizados para actualizar las evaluaciones de los stocks de draco rayado en esta división.

iv) Una prospección de palangre estratificada aleatoriamente realizada por Australia en la División 58.4.3b. Los resultados de esta campaña fueron utilizados para estimar las tasas de captura, distribución de tallas y talla de madurez de austromerluzas en esta división.

v) Una campaña de investigación con palangres artesanales realizada por Japón en la División 58.4.4. El objetivo de ésta fue recolectar los datos biológicos sobre las austromerluzas que se necesitan para evaluar el estado de los stocks en esta división.

4.37 El Comité Científico felicitó a Australia, Japón, Nueva Zelandia y el Reino Unido por la realización de sus campañas de investigación y les agradeció su contribución a la serie cronológica de datos a largo plazo.

4.38 Bajo el punto 4(iii) de la agenda se consideran algunos aspectos de la campaña de investigación realizada por Japón en la División 58.4.4.

Estudios de marcado

4.39 El Comité Científico notó que varios aspectos fundamentales relacionados con el marcado de austromerluzas en las pesquerías exploratorias y en las pesquerías evaluadas de este recurso habían sido considerados detenidamente por WG-FSA (anexo 5, párrafos 3.46 al 3.63, por ejemplo:

i) continuación del experimento de recaptura de peces marcados en la Subárea 48.4 (anexo 5, párrafos 3.46 y 3.47);

ii) dificultades en el cotejo de los datos de recaptura de peces marcados con los registros sobre su liberación (anexo 5, párrafos 3.49 al 3.58).

4.40 El Comité Científico consideró que los requisitos de presentar fotografías, de registrar los detalles de la recaptura en los cuadernos de observación, y de devolver las marcas a la Secretaría eran un tanto superfluos, pero ayudaban en la convalidación. Por ejemplo, el Comité Científico reconoció que las fotografías digitales podían ser manipuladas de manera que la evidencia fotográfica por sí sola no era prueba suficiente de la devolución de una marca. El Comité Científico se mostró optimista porque la centralización del programa de marcado de las pesquerías nuevas y exploratorias podría ayudar en cierta medida a resolver estos problemas en el futuro.
Asesoramiento de ordenación

4.41 El Comité Científico estuvo de acuerdo en exigir que los miembros devuelvan las marcas a la Secretaría. Además, la Secretaría debe revisar que la transcripción de las marcas devueltas esté correcta, incluyendo todos los caracteres alfanuméricos.

4.42 El Comité Científico solicitó que la Secretaría verifique el detalle del marcado de todas las marcas recuperadas, mediante:

i) una comparación directa de los detalles de recaptura notificados con los datos almacenados en la base de datos de marcado;

ii) la utilización de fotografías digitales y de las marcas propiamente tales para verificar la identidad de la marca;

iii) la comunicación con los miembros para aclarar cualquier duda que no pueda ser resuelta.

Parámetros biológicos

4.43 El Comité Científico observó que se había examinado nueva información sobre los parámetros biológicos descritos en los párrafos 3.64 al 3.80 del anexo 5, que incluye información sobre la edad, el crecimiento y la madurez de Dissostichus spp. y C. gunnari.

Biología y ecología en general

4.44 El Comité Científico tomó nota de las discusiones del WG-FSA sobre biología y ecología que incluyó temas relacionados con Dissostichus spp., C. gunnari, las especies de la captura secundaria y las especies que han sido el objetivo de pesquerías anteriores (Chaenodraco wilsoni) (anexo 5, párrafos 9.1 al 9.23). Estos temas incluyen:

- distribución y abundancia de D. mawsoni
- dieta y consumo de alimento de varias especies de peces
- historia de las primeras etapas del ciclo de vida
- madurez y fecundidad
- edad y crecimiento
- refinamiento de las reseñas de especies.

4.45 En relación con las reseñas de especies, el Comité Científico observó que la reseña de D. eleginoides será actualizada en 2009, y recomendó que las reseñas de D. mawsoni, D. eleginoides y C. gunnari sean publicadas en el sitio web de la CCRVMA a principios de 2010, y actualizadas regularmente (anexo 5, párrafo 9.21).
Preparación y calendario de evaluaciones

Informe de WG-SAM

4.46 El Comité Científico indicó que WG-FSA había revisado las secciones pertinentes del informe de WG-SAM y aprobado las recomendaciones de este grupo.

Examen de los documentos de trabajo con evaluaciones preliminares de stocks

4.47 El Comité Científico tomó nota de dos evaluaciones preliminares del stock de *C. gunnari* en la Subárea 48.3 y en la División 58.5.2 que se realizaron durante el período entre sesiones y fueron revisadas por WG-FSA. Las discusiones pertinentes y los resúmenes relativos al asesoramiento de ordenación aparecen en el anexo 5, párrafos 4.2 al 4.10.

4.48 El Comité Científico notó además que WG-FSA había examinado las evaluaciones preliminares de austromerluza en las Divisiones 58.4.1 y 58.4.2 (anexo 5, párrafos 4.12 al 4.14). Asimismo, señaló que para poder proporcionar asesoramiento de ordenación para la pesquería exploratoria de austromerluza en la División 58.4.3a, WG-FSA se había basado en los avances logrados en la evaluación de esta pesquería presentados en WG-SAM (anexo 5, párrafos 5.44 al 5.46). WG-FSA también había examinado estimaciones indicativas de la biomasa del granadero *Macrourus whitsoni* en el talud continental del Mar de Ross (anexo 5, párrafos 4.16 y 14.17). Estas evaluaciones se discuten más a fondo bajo el punto 4(iii) de la agenda.

Evaluaciones realizadas y calendario de evaluaciones

4.49 El Comité Científico informó que, de conformidad con el actual método de ordenación multianual, este año no se requerían nuevas evaluaciones de las pesquerías de *Dissostichus* spp. en la Subárea 48.3, en la División 58.5.2 ni en el Mar de Ross.

4.50 La discusión de las evaluaciones efectuadas este año por WG-FSA se proporciona en el anexo 5, párrafos 5.1 al 5.107. Toda la labor de evaluación fue efectuada por los autores originales de las evaluaciones preliminares, que fueron sometidas a una revisión independiente durante la reunión del WG-FSA. Los resultados de las evaluaciones se describen en los Informes de Pesquerías (anexo 5, apéndices D a Q).

Evaluaciones y asesoramiento de ordenación

Dissostichus eleginoides en Georgia del Sur (Subárea 48.3)

4.51 El informe de la pesquería de *D. eleginoides* en la Subárea 48.3 se presenta en el anexo 5, apéndice J.

4.52 La captura de *D. eleginoides* notificada para esta subárea en 2008 fue de 3 856 toneladas, más 2 toneladas extraídas durante la prospección de pesca de arrastre. De
este total, 55 toneladas fueron extraídas con nasas y el resto con palangres. Las capturas en las áreas de gestión A, B y C fueron 8, 1 103 y 2 744 toneladas, respectivamente. La pesca INDNR estimada para la temporada de 2007/08 fue cero. De acuerdo con el asesoramiento del Comité Científico, esta evaluación no fue actualizada en 2008.

Asesoramiento de ordenación

4.53 El Comité Científico recomendó fijar en 3 920 toneladas el límite de captura de austromerluza en la Subárea 48.3 (stock de SGSR) en la temporada de pesca 2008/09 (el mismo nivel de 2007/08), y que en 2009 el WG-FSA realice una nueva evaluación de los stocks de austromerluza en la Subárea 48.3.

4.54 Los límites de captura de las áreas de gestión A, B y C deberán ser 0, 1 176 y 2 744 toneladas respectivamente. Se deberá mantener el límite de captura de 196 toneladas, tanto para las rayas como para los granaderos.

Dissostichus eleginoides en las Islas Kerguelén (División 58.5.1)

4.55 El informe de la pesquería de _D. eleginoides_ en la División 58.5.1 aparece en el anexo 5, apéndice K.

4.56 La captura de _D. eleginoides_ declarada para esta división al 31 de agosto de 2008 fue de 2 853 toneladas. En la actualidad sólo se permite el uso de palangres en esta pesquería. La estimación de la captura INDNR para la temporada 2007/08 dentro de la ZEE francesa fue cero. Es posible que se hayan realizado actividades de pesca INDNR fuera de la ZEE, según se informó en WG-FSA-08/10 Rev. 2.

4.57 La normalización de la CPUE de la División 58.5.1 no fue actualizada por WG-FSA.

Asesoramiento de ordenación

4.58 Para la División 58.5.1, el Comité Científico alentó la estimación de los parámetros biológicos, la realización de una evaluación del stock y la continuación del programa de marcado de Francia. También alentó a Francia y a Australia a seguir colaborando durante el período entre sesiones en el análisis de los datos de captura y esfuerzo y de otros datos, que se podrían utilizar para obtener más información sobre los stocks de peces y la dinámica de la pesquería en las Divisiones 58.5.1 y 58.5.2, y en la Subárea 58.6.

4.59 El Comité Científico recomendó que se evitara la pesca en aquellas zonas donde las tasas de captura incidental son especialmente altas.

4.60 No se dispuso de información nueva sobre el estado de las poblaciones de peces en la División 58.5.1, fuera de las zonas de jurisdicción nacional. Por lo tanto, el Comité Científico recomendó que se mantuviera la prohibición de la pesca dirigida a _D. eleginoides_ dispuesta en la Medida de Conservación 32-13.
4.61 El Comité Científico señaló que Francia había logrado un considerable avance en la mitigación de la captura incidental de aves marinas, e incluso había establecido áreas y temporadas cerradas a la pesca (SC-CAMLR-XXVI, anexo 6, párrafo II.23). Indicó que el análisis de la CPUE probablemente no se verá afectado por estos cambios, siempre que se continúe la presentación de datos detallados de cada lance.

Dissostichus eleginoides en Isla Heard (División 58.5.2)

4.62 El informe de la pesquería de *D. eleginoides* en la División 58.5.2 se presenta en el anexo 5, apéndice L.

4.63 La captura de *D. eleginoides* notificada para esta división al momento de celebrarse la reunión de WG-FSA fue de 1 496 toneladas. De éstas, 718 toneladas fueron extraídas por arrastres de fondo, y 778 toneladas por palangres. La captura INDNR para la temporada 2007/08 se estimó en cero.

4.64 Siguiendo la recomendación del Comité Científico, WG-FSA no actualizó la evaluación de *D. eleginoides* para la División 58.5.2, no obstante, el Comité Científico señaló que esto se realizaría en 2009.

Asesoramiento de ordenación

4.65 El Comité Científico recomendó establecer un límite de captura de 2 500 toneladas de *D. eleginoides* en la División 58.5.2 al oeste de 79°20'E para la temporada de pesca 2008/09.

Dissostichus eleginoides en las Islas Crozet (Subárea 58.6)

4.66 El informe de la pesquería de *D. eleginoides* en la Subárea 58.6 (ZEE francesa) aparece en el anexo 5, apéndice M.

4.67 La captura de *D. eleginoides* declarada para esta subárea hasta octubre de 2008 fue de 684 toneladas. Sólo se permite el uso de palangres en esta pesquería. Se estimó una captura INDNR de cero para la temporada 2007/08 dentro de la Subárea 58.6, según se informó en WG-FSA-08/10 Rev. 2.

4.68 WG-FSA no actualizó la serie de la CPUE para esta pesquería en 2008.

Asesoramiento de ordenación

4.69 Con relación a esta subárea, el Comité Científico pidió que se estimen los parámetros biológicos, se efectúe una evaluación del stock y Francia continúe su programa de marcado.

4.70 El Comité Científico recomendó evitar la pesca en zonas donde la tasa de captura secundaria es muy elevada.
4.71 No se dispuso de información nueva sobre el estado de las poblaciones de peces en la Subárea 58.6, fuera de las áreas de jurisdicción nacional. Por lo tanto, el Comité Científico recomendó mantener en vigor la prohibición de la pesca dirigida a *D. eleginoides* establecida en la Medida de Conservación 32-13.

4.72 El Comité Científico observó que Francia había logrado un considerable avance en la mitigación de la captura incidental de aves marinas, e incluso había establecido áreas y temporadas cerradas a la pesca (SC-CAMLR-XXVI, anexo 6, párrafo II.23). Indicó que el análisis de la CPUE probablemente no se verá afectado por estos cambios, siempre que se continúe presentando datos detallados de cada lance.

Dissostichus eleginoides en las Islas Príncipe Eduardo
(Subáreas 58.6 y 58.7)

4.73 El informe de la pesquería de *D. eleginoides* dentro de la ZEE de Sudáfrica en las Subáreas 58.6 y 58.7 se incluye en el anexo 5, apéndice N.

4.74 El límite de captura de *D. eleginoides* en la ZEE de Sudáfrica durante la temporada 2007/08 fue de 450 toneladas para el periodo del 1° de diciembre de 2007 al 30 de noviembre de 2008. La captura notificada para las Subáreas 58.6 y 58.7 al 5 de octubre de 2008 fue de 61 toneladas, extraída en su totalidad con palangres. Se supuso que la captura INDNR de la temporada 2007/08 fue igual a la captura INDNR de 2004/05, es decir, 156 toneladas.

4.75 La serie de la CPUE no fue actualizada por el WG-FSA en 2008.

Asesoramiento de ordenación de *D. eleginoides* dentro de la ZEE de las Islas Príncipe Eduardo y Marion (Subáreas 58.6 y 58.7)

4.76 El Comité Científico reiteró lo expresado en años anteriores en el sentido que la recomendación sobre los límites de captura adecuados propuestos en WG-FSA-05/58 para el futuro (véase además WG-FSA-06/58 y 07/34 Rev. 1) no se había basado en los criterios de decisión de la CCRVMA. Por lo tanto, el Comité Científico no pudo brindar asesoramiento de ordenación en relación con la pesquería que se realiza en la ZEE sudafricana de las Islas Príncipe Eduardo. El Comité Científico recomendó utilizar los criterios de decisión de la CCRVMA en la estimación de rendimientos para esta pesquería, y tomar nota de las inquietudes sobre la sensibilidad del ASPM a las ponderaciones de los datos de distintas fuentes y la estimación de los niveles de reclutamiento en las proyecciones a largo plazo.

Asesoramiento de ordenación de *D. eleginoides* fuera de la ZEE de las Islas Príncipe Eduardo (Subáreas 58.6 y 58.7 y División 58.4.4)

4.77 No se contó con información nueva acerca de los stocks de peces en las Subáreas 58.6 y 58.7 y en la División 58.4.4 fuera de las zonas de jurisdicción nacional. Por lo tanto, el Comité Científico recomendó mantener vigente la prohibición de la pesca dirigida a *D. eleginoides* descrita en las Medidas de Conservación 32-10, 32-11 y 32-12.
Champsocephalus gunnari en Georgia del Sur (Subárea 48.3)

4.78 El informe de la pesquería de *C. gunnari* en Georgia del Sur (Subárea 48.3) se incluye en el anexo 5, apéndice O.

4.79 El límite de captura establecido para *C. gunnari* en la Subárea 48.3 durante la temporada de pesca 2007/08 fue de 2 462 toneladas. Hasta el momento de la reunión del WG-FSA, la pesquería había capturado 1 326 toneladas. La pesquería fue posteriormente cerrada el 25 de octubre, habiéndose extraído una captura total de 2 366 toneladas hasta el 23 de octubre.

4.80 En abril de 2008, el Reino Unido realizó una campaña de arrastre de fondo estratificada aleatoriamente en las plataformas de Georgia del Sur y las Rocas Cormorán (WG-FSA-08/28). Se usó el mismo tipo de arte de arrastre y diseño de prospección utilizados en campañas anteriores del Reino Unido en la Subárea 48.3.

4.81 Se efectuó una proyección a corto plazo con el GYM, utilizando el valor bootstrap del límite inferior del intervalo de confianza de 95% de la biomasa total derivada de la prospección de 2008. Los demás parámetros de entrada de la evaluación fueron los mismos que en 2007.

Asesoramiento de ordenación

4.82 El Comité Científico recomendó establecer un límite de captura de 3 834 toneladas para *C. gunnari* en 2008/09 y 2 631 toneladas en 2009/10, sobre la base de los resultados de la proyección a corto plazo.

Champsocephalus gunnari en Isla Heard (División 58.5.2)

4.83 El informe de la pesquería de *C. gunnari* en la División 58.5.2 se presenta en el anexo 5, apéndice P.

4.84 El límite de captura de *C. gunnari* en la División 58.5.2 para la temporada 2007/08 fue de 220 toneladas para el período del 1 de diciembre de 2007 al 30 de noviembre de 2008. La captura notificada al 5 de octubre de 2008 para esta división fue 199 toneladas.

4.85 En la población estudiada por la prospección realizada en junio de 2008 predominó una clase anual abundante de peces de edad 2+, probablemente como resultado del desove de la cohorte de edad 4+ que predominó en la población en 2006.

4.86 La evaluación a corto plazo fue ejecutada en el GYM, utilizando el valor bootstrap del límite inferior del intervalo de confianza del 95% de la biomasa total de la prospección de 2008. Todos los demás parámetros fueron iguales a los de años anteriores.
Asesoramiento de ordenación

4.87 El Comité Científico recomendó fijar en 102 toneladas el límite de captura de *C. gunnari* en 2008/09.

4.88 Recomendó también mantener vigentes las demás medidas para esta pesquería.

Península Antártica e Islas Shetland del Sur (Subárea 48.1) e Islas Orcadas del Sur (Subárea 48.2)

4.89 Después de la temporada 1989/90, la CCRVMA cerró la pesquería comercial de peces en la Península Antártica (Subárea 48.1) y en las Islas Orcadas del Sur (Subárea 48.2). La reapertura de ambas subáreas a la pesca comercial está supeditada a resultados de estudios científicos que demuestren que la condición de los stocks de peces ha mejorado a tal punto que pueda permitir la explotación comercial.

4.90 El Comité Científico indicó que los resultados de las tres prospecciones más recientes en estas subáreas indican que la biomasa de peces no ha aumentado a un nivel que permita la consideración de la reapertura de la pesquería.

4.91 El Programa AMLR de Estados Unidos llevará a cabo una nueva prospección de arrastre en la Subárea 48.2 con participación internacional en febrero-marzo de 2009.

Asesoramiento de ordenación

4.92 El Comité Científico recomendó mantener vigentes las Medidas de Conservación 32-02 y 32-04 que prohíben la pesca de peces en las Subáreas 48.1 y 48.2 respectivamente.

Islas Sándwich del Sur (Subárea 48.4)

4.93 El Comité Científico tomó nota de los resultados del experimento de marcado y recaptura que hace tres años se está realizando en el sector norte de la Subárea 48.4 (Medida de Conservación 41-03). El experimento ha permitido efectuar una evaluación preliminar del stock de *D. eleginoides* en la zona norte, y se ha estimado una biomasa vulnerable entre 1 000 y 2 000 toneladas (anexo 5, párrafo 5.166).

4.94 El Comité Científico también tomó nota de la consideración prestada por el WG-FSA a la propuesta del Reino Unido de continuar el experimento de marcado y recaptura en la Subárea 48.4 en 2008/09 para poder evaluar detalladamente el stock de *D. eleginoides* de la zona norte en 2009. Además, el Reino Unido ha propuesto iniciar un experimento similar en el sector sur de la Subárea 48.4 (anexo 5, apéndice Q, figura 3), con el objeto de recopilar los datos necesarios para evaluar la estructura, el tamaño, el desplazamiento y el crecimiento de las poblaciones de *D. eleginoides* y *D. mawsoni* en la zona sur de la Subárea 48.4.
4.95 Los principales elementos de la propuesta se describen en el anexo 5, párrafo 5.168. La propuesta incluye un límite de captura de 75 toneladas para el sector norte y 75 para el sector sur.

4.96 El Comité Científico felicitó al Reino Unido por esta iniciativa, y señaló que el experimento de tres años de marcado y recaptura de peces y la nueva propuesta para 2008/09 permitirá realizar una evaluación por etapas de la población de *Dissostichus* spp. en la Subárea 48.4. Este enfoque demuestra cómo se pueden añadir nuevos datos a la información disponible para realizar evaluaciones en áreas para las cuales no existe información previa sobre el estado de los stocks.

Asesoramiento de ordenación

4.97 El Comité Científico aprobó la prolongación del experimento de marcado y recaptura, y convino en que el límite de captura fuera de 75 toneladas para la zona norte y 75 toneladas para la zona sur en la temporada 2008/09 (anexo 5, párrafo 5.171, y apéndice Q).

4.98 El Comité Científico apoyó además la recomendación de WG-IMAF de enmendar la Medida de Conservación 41-03 a fin de que los requisitos de mitigación de la captura incidental de aves marinas en la Subárea 48.4 correspondieran con la evaluación del riesgo de IMAF (anexo 6, párrafo 9.10), y se extendiera la temporada de pesca del 1 de diciembre al 30 de noviembre.

Pesquerías nuevas y exploratorias en 2007/08

4.99 En 2007 la Comisión aprobó la realización de siete pesquerías de palangre exploratorias de *Dissostichus* spp. en la temporada 2007/08 (Medidas de Conservación 41-04, 41-05, 41-06, 41-07, 41-09, 41-10 y 41-11). Las actividades de las pesquerías exploratorias se describen a continuación y se resumen en las tablas 5 y 6 del anexo 5.

4.100 Las notificaciones de pesquerías exploratorias para 2008/09 se resumen en la tabla 7 del anexo 5. Doce miembros presentaron notificaciones (y el pago correspondiente) de pesquerías de palangre exploratorias dirigidas a *Dissostichus* spp. en las Subáreas 48.6, 88.1 y 88.2 y en las Divisiones 58.4.1, 58.4.2, 58.4.3a y 58.4.3b; una pesquería de arrastre exploratoria de *E. superba* en la Subárea 48.6, y nuevas pesquerías de centollas, con nasas, en las Subáreas 48.2 y 48.4.

Notificación de pesquerías nuevas de centolla en las Subáreas 48.2 y 48.4

4.101 Un miembro (Rusia) notificó su intención de utilizar un barco para explotar una pesquería nueva de centollas, con nasas, en las Subáreas 48.2 y 48.4 durante la temporada 2008/09.
4.102 El Comité Científico indicó que nunca antes se había tratado de pescar centollas en las Subáreas 48.2 y 48.4. Tomando nota de las cuestiones que deben considerarse, además de los requisitos pertinentes a las pesquerías de centollas que se discuten más adelante, el Comité Científico estimó que las Medidas de Conservación 52-01 y 52-02 en vigor para la pesquería de centolla de la Subárea 48.3 podrían servir de base para elaborar un régimen de explotación experimental para dicho recurso en las Subáreas 48.2 y 48.4, en el caso de que se llevara a cabo la pesquería propuesta. Todos los aspectos de las Medidas de Conservación 52-01 y 52-02 deberían ser aplicados a las medidas de conservación elaboradas para las Subáreas 48.2 y 48.4, excepto por las modificaciones propuestas a continuación:

i) presencia obligatoria de dos observadores científicos a bordo, y por lo menos uno de ellos debe ser un observador científico internacional;

ii) la temporada 2008/09 debe definirse como el período entre el 1 de diciembre de 2008 y el 30 de noviembre de 2009, o hasta que se alcance el límite de captura, lo que suceda primero.

4.103 El Comité Científico recomendó que se registre la talla de todos los peces de la captura secundaria extraídos durante la pesca experimental y se les identifique a nivel de especie, y luego se les devuelva al mar con el mínimo de manipulación. Antes de su liberación, todos los ejemplares de *Dissostichus* spp. deben ser medidos y marcados. Se deberá registrar un conjunto completo de datos biológicos de los peces de la captura secundaria que hayan muerto, y se les deberá arrojar al mar.

4.104 Los siguientes párrafos describen las deliberaciones del Comité Científico con relación a la pesquería de centolla propuesta para cada subárea.

Subárea 48.2

4.105 El Comité Científico indicó que no existe información para determinar un límite de captura para la pesquería de centolla en la Subárea 48.2 ya que nada se sabe acerca del tipo de especies o abundancia de los stocks que podría permitir una explotación sostenible. El Comité Científico señaló que podría ser conveniente aplicar un enfoque congruente con la asignación de límites de captura en las pesquerías exploratorias de austromerluza, es decir, el límite de captura debería establecerse a un nivel nominal bajo para permitir la investigación sobre la distribución y abundancia del stock y para definir las estrategias que permitirán efectuar una evaluación del estado de los stocks y asegurar la explotación sostenible. Estuvo de acuerdo en que, de llevarse a cabo la pesquería de centollas en esta subárea en la temporada 2008/09, el régimen experimental descrito en el informe del WG-FSA (anexo 5, párrafos 5.13 al 5.15) resultaría adecuado con un límite de captura del orden de 250 toneladas.

Subárea 48.4

4.106 El Comité Científico recomendó que todos los barcos que participen en la pesquería de centollas en la Subárea 48.4 durante la temporada 2008/09 deberán realizar sus operaciones de pesca de acuerdo con el régimen de pesca experimental descrito en el informe del
WG-FSA (anexo 5, párrafos 5.17 al 5.20). El Comité Científico estuvo de acuerdo en que, de llevarse a cabo la pesquería de centollas en esta subárea, el régimen experimental resultaría adecuado con un límite de captura de 10 toneladas.

Progreso en las evaluaciones de pesquerías nuevas y exploratorias de austromerluza

4.107 El Comité Científico indicó que WG-FSA había avanzado en el desarrollo de métodos para evaluar las pesquerías exploratorias (anexo 5, párrafos 5.75 al 5.87). Señaló además que se habían considerado dos aspectos importantes: (i) los requisitos de recopilación de datos para la evaluación de las pesquerías exploratorias y (ii) diseños de investigación en las pesquerías exploratorias de austromerluza. El Comité Científico reconoció la importancia de entender la estructura, productividad y abundancia del stock, y estuvo de acuerdo en que la estimación de la abundancia del stock en muchas de las pesquerías exploratorias sigue siendo un problema fundamental.

4.108 El Comité Científico reconoció la importancia de los estudios de marcado en la adquisición de la información necesaria para las evaluaciones, y ratificó los factores identificados por WG-FSA que son importantes para asegurar el éxito de los programas de marcado (anexo 5, párrafo 5.77). El Comité Científico reconoció que era necesario que la distribución geográfica de las marcas coincidiera relativamente bien con el esfuerzo de pesca posterior y que la tasa de marcado debe ser lo suficientemente alta para asegurar una recuperación razonable de las marcas. El Comité Científico tomó nota de que WG-FSA había examinado el requisito de una tasa de marcado constante, así como la distribución requerida de las marcas a través de toda el área (anexo 5, párrafo 5.81). El Comité Científico señaló que los gráficos sobre la tasa de marcado por barco habían demostrado una alta variabilidad, y recomendó que esta materia fuera remitida a SCIC, indicando que es posible que se deba señalar a la atención de los miembros sus recomendaciones del año pasado (SC-CAMLR-XXVI, párrafo 4.117) así como los consiguientes cambios efectuados a la Medida de Conservación 41-01 ese mismo año (anexo 41-01/C, párrafo 2(i)) para solucionar este problema.

4.109 El Comité Científico estuvo de acuerdo en que, a falta de información fiable sobre el marcado, la única otra información disponible era sobre la CPUE. No obstante, se había expresado preocupación porque las estimaciones de la CPUE en algunas divisiones donde se realiza la pesca exploratoria no son compatibles, como es el caso cuando en cada localidad hay distintos barcos pescando cada año.

4.110 El Comité Científico recordó que existe una disposición que exige que los barcos que participan en las pesquerías exploratorias lleven a cabo 20 lances de investigación, separados por un mínimo de 5 millas náuticas. No obstante, algunas de las líneas utilizadas tienen hasta 40 km de largo, haciendo ineficaz la disposición de guardar una distancia mínima de 5 millas náuticas para distribuir el esfuerzo. El Comité Científico señaló que otra posibilidad sería la implementación de un plan de pesca más estructurado, pescando de manera más sistemática con líneas más cortas, similar al diseño experimental empleado en la pesquería de centollas en la Subárea 48.3.
4.111 El Comité Científico observó que WG-FSA había recomendado exigir que los barcos que ingresan a una nueva UIPE en la Subárea 48.6 o a una UIPE abierta en la Subárea 58.4 realicen 10 lances de investigación. Los lances se llevarían a cabo en, o cerca de, estaciones específica dentro de estratos definidos de acuerdo con las zonas explotables para las que existe información. Se podrían suministrar estaciones alternativas para reemplazar cualquier estación que por alguna razón no fuera explotable. Se consideró además que, si esto se realiza anualmente por los mismos barcos, se podría utilizar la información para crear una serie cronológica de los índices de abundancia relativa.

4.112 El Comité Científico acordó que cada una de las UIPE abiertas a la pesca en las Subáreas 48.6 y 58.4 sea dividida en dos estratos: (i) un estrato explotado anteriormente y (ii) un estrato que no ha sido explotado o ligeramente explotado. Cinco lances de investigación, cada uno con un mínimo de 3 500 anzuelos y un máximo de 5 000 anzuelos, serían realizados en cada estrato de acuerdo con la Medida de Conservación 41-01, anexo 41-01/B.

4.113 El Comité Científico observó además que la posición de los lances de investigación sería determinada aleatoriamente de la siguiente manera. Para las Divisiones 58.4.1 y 58.4.2, la posición de los cinco lances en el estrato explotado se determinaría mediante el método de bootstrap (sin reemplazo) a partir del punto medio de los lances efectuados previamente en el estrato explotado. Dentro del estrato no explotado, la posición de los cinco lances de investigación se obtendría dándole a los barcos un meridiano de longitud aleatorio. Luego se le pediría a los barcos que se asegurarán de que la orientación general de los lances fuera norte-sur hasta intersectar la isóbata de 1 000 m en esa línea de longitud. Para la Subárea 48.6 y las Divisiones 58.4.3a y 58.4.3b, la posición de los cinco lances de investigación en cada uno de los estratos explotados y en el estrato con una ligera explotación sería determinada con el método de bootstrap (sin reemplazo) a partir del punto medio de los lances efectuados previamente en cada uno de los respectivos estratos.

4.114 El Comité Científico pidió que la Secretaría elaborara listas de estaciones aleatorias para cada barco que participe en estas pesquerías de palangre exploratorias, y que enviara la lista a los miembros que hayan presentado notificaciones antes del inicio de la temporada 2008/09.

4.115 El Comité Científico señaló que las evaluaciones preliminares de *Dissostichus* spp. para las UIPE abiertas en las Divisiones 58.4.1 y 58.4.2 habían sido efectuadas durante la reunión del WG-FSA (anexo 5, párrafos 5.21 al 5.29). Estas evaluaciones habían llevado a estimaciones preliminares del rendimiento y recomendaciones sobre la reducción de los límites de captura en las UIPE abiertas.

4.116 Los Dres. K. Shust y Pshenichnov, en nombre de Rusia y Ucrania respectivamente, indicaron que las estimaciones de biomasa de austromerluzas en las Divisiones 58.4.1 y 58.4.2 se relacionaban solamente con las UIPE abiertas. Indicaron que el marcado de austromerluzas había resultado en una baja e inadecuada tasa de recuperación de marcas en las Divisiones 58.4.1 y 58.4.2 (WG-SAM-08/4), posiblemente debido a la migración de austromerluzas desde el lugar donde fueron marcadas a las UIPE cerradas a la pesca. Señalaron además que la suposición de que la CPUE es proporcional a la densidad de austromerluzas no es correcta para la pesquería de palangre, y esto aumenta la incertidumbre del análisis. En las UIPE abiertas, la biomasa de austromerluzas había sido estimada con una constante desconocida (la capturabilidad) (WG-FSA-08/43). Se desconoce la capturabilidad
de la pesca de palangre en general, y de la pesca de palangre dirigida a las austromerluzas en particular y no debería utilizarse para la estimación de la biomasa. Los Dres. Shust y Pshenichnov también destacaron que las capturas de peces inmaduros (1–4 años de edad) en la División 58.4.2 (WG-FSA-08/23) con redes de arrastre de fondo lleva a pensar que el reclutamiento y la biomasa de peces en esta división es superior a lo que se indica en el documento WG-FSA-01/43.

4.117 Muchos miembros señalaron que las austromerluzas en las Divisiones 58.4.1 y 58.4.2 pueden provenir de la misma población, incluidos los peces del banco de BANZARE. Esto se infiere de los datos y análisis efectuados por WG-FSA para esta región en los dos últimos años. Estos análisis no sugieren que el stock esté agotado sino que la población de toda la región probablemente sea mucho menor de, por decir, la población de las Subáreas 88.1 y 88.2. En consecuencia, no se espera que el stock en las áreas abiertas de las Divisiones 58.4.1 y 58.4.2 esté agotado cuando se compara con las áreas cerradas. Las estrategias para concentrar el esfuerzo a fin de recopilar datos que ayuden en las evaluaciones sigue siendo la mejor manera de lograr el desarrollo de estas pesquerías.

Dissostichus spp. en la Subárea 48.6

4.118 Cuatro miembros (Japón, República de Corea, Nueva Zelanda y Sudáfrica) notificaron su intención de participar en la pesquería exploratoria en la Subárea 48.6 en 2007/08; no obstante, a la fecha, ninguno de ellos pescó y la pesquería sigue abierta hasta el 30 de noviembre de 2008. El límite de captura precautorio de _Dissostichus_ spp. fue 400 toneladas. No hubo evidencia de que se hubiera realizado la pesca INDNR en 2007/08.

4.119 Dos miembros (Japón y la República de Corea) notificaron su intención de participar con un total de tres barcos en la pesquería de austromerluza en la Subárea 48.6 en 2008/09.

4.120 El Comité Científico ratificó la recomendación de WG-FSA de aumentar la tasa de marcado a tres peces por tonelada en esta subárea (anexo 5, párrafo 5.65).

4.121 El Comité Científico también acordó exigir que los barcos que entran a una UIPE de la Subárea 48.6 lleven a cabo lances de investigación de acuerdo con el procedimiento descrito en los párrafos 4.112 al 4.114.

Dissostichus spp. en la División 58.4.1

4.122 Cuatro miembros (España, Namibia, República de Corea y Uruguay) participaron con seis barcos en la pesquería exploratoria en la División 58.4.1 en 2007/08. El límite de captura precautorio de _Dissostichus_ spp. fue de 600 toneladas y la captura declarada a la fecha fue de 413 toneladas. La información sobre las actividades de pesca INDNR indicó que se había extraído 94 toneladas de austromerluza en 2007/08 (anexo 5, párrafos 5.30 y 5.31).

4.123 Seis miembros (España, Japón, Nueva Zelanda, República de Corea, Sudáfrica y Uruguay) notificaron su intención de participar con un total de 13 barcos en la pesquería de austromerluzas en la División 58.4.1 en 2008/09.
4.124 El Comité Científico recomendó que se mantuviera la tasa de marcado mínima de tres peces por tonelada (anexo 5, párrafo 5.100).

4.125 El Comité Científico indicó que científicos de España y del Reino Unido habían llevado a cabo una evaluación preliminar de *Dissostichus* spp. en la División 58.4.1 y la habían presentado a WG-FSA (anexo 5, párrafos 5.21 al 5.29). El Comité Científico indicó que ésta era la primera evaluación de *Dissostichus* spp. en esta división y agradeció a los científicos que participaron en este trabajo.

4.126 El Comité Científico estuvo de acuerdo en que, si bien eran inciertas, las estimaciones de la mediana del rendimiento de las UIPE abiertas a la pesca presentadas en la tabla 13 del anexo 5, representaban el mejor asesoramiento científico disponible sobre el rendimiento de *Dissostichus* spp. en esta división. No obstante, el Comité Científico no pudo llegar a un consenso para brindar asesoramiento sobre los límites de captura para esta división.

4.127 Algunos miembros del Comité Científico consideraron que la red actual de UIPE abiertas y cerradas a la pesca en esta división dificultaba la evaluación de toda la población de esta división (párrafo 4.116). El Comité Científico estuvo de acuerdo en que el problema del sesgo potencial causado por las UIPE abiertas y cerradas a la pesca era una cuestión que sería mejor tratada por WG-SAM. El Comité Científico pidió a los miembros que presentaran trabajos a la reunión de 2009 de WG-SAM sobre este problema.

4.128 El Comité Científico también recomendó exigir que los barcos que entren a una UIPE en la División 58.4.1 lleven a cabo lances de investigación de acuerdo con el procedimiento descrito en los párrafos 4.112 al 4.114.

4.129 Dos miembros (República de Corea y Namibia) participaron con tres barcos en la pesca exploratoria en la División 58.4.2 durante 2007/08. El límite de captura precautorio de austromerluzas fue de 780 toneladas y la captura declarada a la fecha es de 217 toneladas. No hubo indicios de pesca INDNR en 2007/08.

4.130 Seis miembros (Australia, España, Japón, Nueva Zelanda, República de Corea y Uruguay) notificaron su intención de participar con un total de nueve barcos en la pesquería de *Dissostichus* spp. en la División 58.4.2 en 2008/09.

4.131 El Comité Científico recomendó que se mantuviera la tasa de marcado mínima de tres peces por tonelada (anexo 5, párrafo 5.100).

4.132 El Comité Científico indicó que científicos de España y del Reino Unido habían llevado a cabo una evaluación preliminar de *Dissostichus* spp. en la División 58.4.2 y las habían presentado a WG-FSA (anexo 5, párrafos 5.21 al 5.29). El Comité Científico indicó que ésta era la primera evaluación de *Dissostichus* spp. en esta división y agradeció a los científicos que participaron en este trabajo.

4.133 El Comité Científico estuvo de acuerdo en que, si bien eran inciertas, las estimaciones de la mediana del rendimiento de las UIPE abiertas a la pesca presentadas en la tabla 13 del
anexo 5, representaban el mejor asesoramiento científico disponible sobre el rendimiento de *Dissostichus* spp. en esta división. No obstante, el Comité Científico no pudo llegar a un consenso para brindar asesoramiento sobre los límites de captura para esta división.

4.134 Algunos miembros del Comité Científico consideraron que la red actual de UIPE abiertas y cerradas a la pesca en esta división dificultaba la evaluación de toda la población de esta división (párrafo 4.116). El Comité Científico estuvo de acuerdo en que el problema del sesgo potencial causado por las UIPE abiertas y cerradas a la pesca era una cuestión que sería mejor tratada por WG-SAM. El Comité Científico pidió a los miembros que presentaran trabajos que trataran este problema a la reunión de 2009 de WG-SAM.

4.135 El Comité Científico también recomendó exigir que los barcos que entren a una UIPE en la División 58.4.2 lleven a cabo lances de investigación de acuerdo con el procedimiento descrito en los párrafos 4.112 al 4.114.

Dissoistichus spp. en la División 58.4.3a

4.136 Un miembro (Uruguay) participó con un barco en la pesca exploratoria en la División 58.4.3a en 2007/08. El límite de captura precautorio de austromerluza fue de 250 toneladas y se declaró una captura de 9 toneladas. No hubo evidencia de que se hubiera realizado la pesca INDNR en 2007/08.

4.137 Un miembro (Japón) notificó su intención de participar con un barco en la pesquería de austromerluza en la División 58.4.3a en 2008/09.

4.138 El Comité Científico recomendó que se mantuviera la tasa de marcado mínima de tres peces por tonelada (anexo 5, párrafo 5.100).

4.139 El Comité Científico indicó que científicos del Reino Unido habían realizado una evaluación preliminar de *Dissostichus* spp. utilizando un modelo de excedente de producción de la dinámica de la biomasa en la División 58.4.3a, y la habían presentado a WG-SAM (anexo 7, párrafos 3.6 al 3.8). El Comité Científico señaló que esta era la primera evaluación de *Dissostichus* spp. en esta división y agradecía a los científicos que participaron en este trabajo.

4.140 El límite de captura para la División 58.4.3a en 2007/08 fue de 250 toneladas. El grupo de trabajo estuvo de acuerdo en que la evaluación indicaba que este nivel de captura no era sostenible, y que el límite de captura para esta división debería ser reducido a un nivel entre 86 y 113 toneladas.

4.141 El Comité Científico también recomendó exigir que los barcos que entren a una UIPE en la División 58.4.3a lleven a cabo lances de investigación de acuerdo con el procedimiento descrito en los párrafos 4.112 al 4.114.
Dissostichus spp. en la División 58.4.3b

4.142 Tres miembros (Japón, Namibia y Uruguay) participaron con tres barcos en la pesca exploratoria en la División 58.4.3b durante 2007/08. El límite de captura precautorio de austromerluzas fue de 150 toneladas y la captura declarada de 139 toneladas. La información de las actividades de pesca INDNR indicó que se extrajeron 246 toneladas de austromerluza en 2007/08 (anexo 5, párrafo 5.50).

4.143 Tres miembros (España, Japón y Uruguay) notificaron su intención de participar con tres barcos en la pesquería de austromerluza en la División 58.4.3b en 2008/09.

4.144 El Comité Científico recomendó que se mantuviera la tasa de marcado mínima de tres peces por tonelada (anexo 5, párrafo 5.100).

4.145 El Comité Científico observó que en mayo de 2008 Australia había realizado una prospección aleatoria con palangres en el banco de BANZARE (anexo 5, párrafo 3.32). El Comité Científico convino en que las tasas de captura de Dissostichus spp. de la prospección fueron muy bajas, lo que concuerda con una reducción de los stocks de austromerluza en el área explorada. No obstante, no había podido llegar a un consenso en cuanto al estado de la población de Dissostichus spp. en toda la división.

4.146 El Comité Científico reconoció que la investigación había demostrado lo siguiente:

i) Sobre la base de la información pesquera obtenida hasta el año pasado, las pesquerías que operan en el banco de BANZARE demuestran que los caladeros de pesca preferidos de la zona sur habían sido agotados (UIPE B cerrada a la pesca en 2007/08, Medida de Conservación 41-07 (2007)).

ii) Sobre la base de la prospección y las pesquerías a través del banco de BANZARE, hay muy pocos peces aparte de los que se encuentran en los caladeros de pesca preferidos.

iii) Los peces que se encontraron en los caladeros de pesca preferidos fueron peces grandes y probablemente estaban desovando; no se encontraron peces pequeños y hubo una mayor proporción de machos (79%).

iv) En la prospección los peces fueron grandes y en su mayoría machos.

v) Al este de la Antártida sólo se han encontrado peces desovantes en el banco de BANZARE (WG-FSA-07/44 y anexo 5, párrafo 3.32).

4.147 El Comité Científico indicó que sólo dos de los tres caladeros de pesca preferidos en el área fueron cubiertos por la prospección aleatoria. No obstante, la naturaleza aleatoria de la prospección implica que el área fue cubierta adecuadamente. Japón indicó que hubiera preferido que se hubiera cubierto el tercer caladero de pesca preferido y un número mayor de estaciones muestreadas para obtener una estimación más robusta de la biomasa. El Comité Científico recomendó que WG-SAM estudiara cómo diseñar las prospecciones de pesca de palangre, en particular en relación a cómo tratar el tema de los caladeros preferidos y cómo reconciliar los conjuntos de datos obtenidos con distintos tipos de artes de pesca. También se refirió a los párrafos 5.84 al 5.87 del anexo 5 que tratan el tema del diseño de las prospecciones de investigación.
4.148 El Comité Científico no pudo brindar asesoramiento de ordenación con respecto a los límites de captura en esta división.

4.149 El Comité Científico también recomendó exigir que los barcos que entren a una UIPE en la División 58.4.3b lleven a cabo lances de investigación de acuerdo con el procedimiento descrito en los párrafos 4.112 al 4.114.

Dissostichus spp. en las Subáreas 88.1 y 88.2

4.150 En 2007/08, ocho miembros (Argentina, República de Corea, España, Nueva Zelandia, Rusia, Sudáfrica, Reino Unido y Uruguay) participaron con 15 barcos en la pesca exploratoria en la Subárea 88.1. La pesquería fue cerrada el 31 de agosto de 2008 y la captura total notificada de *Dissostichus* spp. fue de 2 259 toneladas (84% del límite de captura) (CCAMLR-XXVII/BG/15, tabla 2). En el curso de la pesca, se cerraron las UIPE B, C y G el 19 de diciembre de 2007, debido al nivel de captura de *Dissostichus* spp. alcanzado (captura total de 259 toneladas; 83% del límite de captura).

4.151 La captura INDNR para la temporada 2007/08 se estimó en 187 toneladas (anexo 5, párrafo 5.66).

4.152 Cuatro miembros (Nueva Zelandia, Reino Unido, Rusia y Uruguay) participaron con cuatro barcos en la pesca exploratoria en la Subárea 88.2. La pesquería fue cerrada el 31 de agosto de 2008, y la captura total notificada de *Dissostichus* spp. fue de 416 toneladas (73% del límite de captura) (CCAMLR-XXVII/BG/15, tabla 2). La UIPE E se cerró el 1 de febrero de 2008, debido al nivel de captura de *Dissostichus* spp. alcanzado (captura total de 333 toneladas; 98% del límite de captura). No hubo indicios de pesca INDNR en 2007/08.

4.153 Nueve miembros (Argentina, Chile, República de Corea, España, Nueva Zelandia, Rusia, Sudáfrica, Reino Unido y Uruguay) notificaron su intención de participar en la pesquería de *Dissostichus* spp. en la Subárea 88.1 con un total de 21 barcos en 2008/09. Nueve miembros (Argentina, Chile, República de Corea, España, Nueva Zelandia, Reino Unido, Rusia, Sudáfrica y Uruguay) notificaron su intención de participar en la pesquería de *Dissostichus* spp. en la Subárea 88.2 con un total de 19 barcos en 2008/09.

4.154 De conformidad con el asesoramiento del Comité Científico de 2007, no se actualizó la evaluación de las Subáreas 88.1 y 88.2. El Comité Científico estuvo de acuerdo en mantener el asesoramiento de ordenación vigente sobre límites de captura para las Subáreas 88.1 y 88.2.

4.155 El Comité Científico observó que científicos neocelandeses habían realizado un examen minucioso del experimento de tres años en las pesquerías de austromerluzas realizadas en las Subáreas 88.1 y 88.2 (anexo 5, párrafos 5.88 al 5.90). Este examen describió los objetivos y éxitos del experimento de tres años e identificó cambios menores al esquema operacional para poder cumplir con los objetivos científicos y de ordenación de la pesquería. El Comité Científico agradeció a Nueva Zelandia por este trabajo.

4.156 La mayoría de los miembros estuvieron de acuerdo en que se había logrado avanzar considerablemente en la evaluación del stock de *D. mawsoni* en las Subáreas 88.1 y 88.2 como resultado de este experimento.
4.157 No obstante, los Dres. Shust y Pshenichnov, en nombre de Rusia y Ucrania respectivamente, opinaron que el experimento de tres años de marcado de austromerluza realizado en el Mar de Ross no había tenido éxito, pues no había resultado en una mejora considerable de la evaluación del stock de austromerluza en esas subáreas. Destacaron varias fuentes de considerable incertidumbre en las evaluaciones del stock de austromerluza en el Mar de Ross basadas en la recuperación de marcas (WG-SAM-08/8). La primera fuente es la ausencia de datos de las UIPE cerradas. Otra es que se toman en cuenta las marcas recuperadas de la pesquería de Nueva Zelandia solamente, que cada año opera en ciertas áreas del Mar de Ross solamente y en aguas adyacentes. Combinadas, estas fuentes de incertidumbre pueden resultar en una subestimación substancial de la biomasa de austromerluza y de sus límites de captura en el Mar de Ross. Tomando en cuenta las razones mencionadas anteriormente, el programa de marcado de austromerluza no debe seguir estando restringido a las UIPE abiertas a la pesca solamente. Es posible que las incertidumbres relacionadas con el programa actual de marcado sean amplificadas aún más por los experimentos de tres o cinco años en la ordenación de la pesquería de austromerluza. Tomando todo esto en cuenta, los Dres. Shust y Pshenichnov sugirieron que la Comisión considere la posibilidad de abrir todas las UIPE cerradas para distribuir mejor el esfuerzo de la pesca exploratoria a través de las Subáreas 88.1 y 88.2 en su totalidad, y obtener mejores estimaciones del stock de austromerluza en esas subáreas.

4.158 El Comité Científico reconoció los distintos puntos de vista de los miembros en cuanto a la red de UIPE abiertas y cerradas en estas dos subáreas (anexo 5, párrafos 5.89 y 5.94 al 5.96). Recomendó que los méritos relativos de cada opinión sobre las estrategias de explotación y programas de investigación de austromerluza en el Mar de Ross sean evaluados mediante simulaciones (ver anexo 7, párrafos 5.1 al 5.6). Recomendó que este trabajo fuera presentado a WG-SAM para la revisión de los métodos de simulación y de evaluación empleados, antes de presentar los resultados a la consideración de WG-FSA.

4.159 El Comité Científico indicó además que científicos de Nueva Zelandia y Rusia estaban estudiando otros enfoques para evaluar y modelar la pesquería del Mar de Ross y alentó a seguir refinando dichos enfoques de modelado y a presentarlos a WG-SAM para su revisión y evaluación (anexo 5, párrafo 4.11; anexo 7, párrafos 8.1 al 8.3).

4.160 El Comité Científico ratificó las siguientes recomendaciones:

i) La creación de otra UIPE en la región al oeste de los 170°E en la zona oeste del Mar de Ross que incluya la Bahía de Terra Nova y el Estrecho de McMurdo (es decir, UIPE 881J oeste) y que esta nueva UIPE (881M) (figura 2) sea cerrada a la pesca dada su importancia porque actúa como un corredor por donde las austromerluzas subadultas se desplazan de la plataforma al sector norte para desovar.

ii) Mantener la combinación actual de los límites de captura de las UIPE, y además, combinar los límites de captura de las UIPE 881J (al este de 170°E) y 881L.

iii) Reajustar los límites de captura proporcionales en estas nuevas UIPE de acuerdo con las nuevas estimaciones del lecho marino y de la CPUE.
iv) Permitir que se mantengan los límites de captura vigentes para la austromerluza y las especies de la captura secundaria en los experimentos “fuera de temporada” en las UIPE abiertas a la pesca.

v) Continuar con las evaluaciones de *D. mawsoni* cada dos años en ambas subáreas.

vi) Elaborar un plan de recopilación de datos específicos y un plan de investigación para las pesquerías en las Subáreas 88.1 y 88.2.

4.161 En la tabla 4 se presentan las nuevas proporciones del límite de captura a ser asignadas a las regiones de la plataforma, del talud y del norte de la Subárea 88.1, revisadas sobre la base del área proporcional de lecho marino y de la CPUE con los métodos descritos en SC-CAMLR-XXIV, párrafos 4.152 al 4.176.

<table>
<thead>
<tr>
<th>Zona</th>
<th>UIPE</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona norte</td>
<td>88.1B, C, G</td>
<td>0.13</td>
</tr>
<tr>
<td>Zona del talud</td>
<td>88.1H, I, K</td>
<td>0.74</td>
</tr>
<tr>
<td>Zona de la plataforma</td>
<td>88.1J, L</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>88.1A, D, E, F, M</td>
<td>0.</td>
</tr>
</tbody>
</table>

4.162 El Comité Científico recomendó nuevos límites de captura para *Macrourus* spp. en la Subárea 88.1 sobre la base del asesoramiento proporcionado en los párrafos 6.16 al 6.22 del anexo 5 y en la tabla 17.

Planes de investigación y de recopilación de datos para las pesquerías exploratorias de kril

Aspectos generales

4.163 El Comité Científico examinó la clasificación jerárquica de las investigaciones que se podrían efectuar y los posibles planes de recopilación de datos para las pesquerías exploratorias de kril proporcionados por WG-EMM (anexo 4, tablas 1 y 2) y acordó que:

i) los datos recopilados de la opción “pesca comercial” (anexo 4, tabla 1) no serían suficientes para proveer el asesoramiento científico requerido para las pesquerías exploratorias de kril en el futuro;

ii) debe haber flexibilidad, permitiendo que los miembros (y los barcos de su pabellón) elijan un plan de investigación y de recopilación de datos de una pequeña selección de planes, que aún siendo genéricos (anexo 4, párrafo 4.74), pueden ser utilizados para cada caso particular;

iii) el conjunto de planes de investigación y de recopilación de datos debiera incluir planes dependientes de la pesca (anexo 4, tabla 1) y planes independientes de la pesca (anexo 4, tabla 2);

iv) no se dispuso de tiempo suficiente para especificar todos los detalles requeridos en cada plan de recopilación de datos del conjunto de planes, y por lo tanto, el
conjunto de planes acordados para la temporada de pesca de kril de 2008/09 debiera ser considerado como provisional, sometido a una revisión más detallada y refinado por el WG-EMM y el Comité Científico en 2009;

v) los barcos que participan en las pesquerías exploratorias de kril y que recoplan datos siguiendo el plan de pesca deberán realizar sus operaciones normales de pesca exploratoria y las investigaciones especificadas en el plan, siendo el esfuerzo de la pesca normal y el esfuerzo de las actividades de investigación determinado sobre la base del volumen de kril capturado en las operaciones normales;

vi) el conjunto de planes de recopilación de datos debiera incluir un límite de captura precautorio que sea congruente con el artículo II de la Convención.

4.164 El Comité Científico acordó que, a fin de que se puedan ajustar a cada caso específico (el miembro y los barcos de su pabellón), el conjunto de planes de recopilación de datos deberá incluir:

i) “lances normalizados de investigación realizados de forma sistemática o aleatoria con redes de arrastre por los barcos de pesca” (anexo 4, tabla 1);

ii) “transectos acústicos normalizados realizados de forma sistemática por los barcos de pesca” (anexo 4, tabla 1);

iii) “seguimiento de los depredadores” (anexo 4, tabla 2);

iv) “campañas de investigación por barcos de investigación científica” (anexo 4, tabla 2).

4.165 Con respecto a los puntos (i) y (ii) anteriores, el Comité Científico acordó que los arrastres de investigación proporcionarían la mejor información sobre la demografía del kril, y que probablemente los transectos acústicos proporcionarían la información necesaria para estimar el nivel de captura precautorio. Ambas estrategias podían proporcionar información sobre la distribución espacial de kril.

4.166 Al considerar la posibilidad de que los datos de los transectos acústicos puedan ser recopilados durante la ejecución de una pesquería exploratoria de kril en la temporada 2008/09, el Comité Científico estuvo de acuerdo en que SG-ASAM diera prioridad al asesoramiento sobre protocolos para la recopilación y el análisis de los datos acústicos de los barcos de pesca comercial (párrafo 2.7).

Implementación de los planes

4.167 La figura 4.3.1 proporciona una representación esquemática de los planes descritos a continuación.

4.168 El Comité Científico estuvo de acuerdo en que, en una temporada de pesca, los barcos que participan en las pesquerías exploratorias de kril deberían realizar primero sus operaciones normales de pesca exploratoria, y a continuación, los requisitos adicionales de
investigación. Los barcos realizarían sus operaciones de pesca normales hasta que, voluntariamente, decidieran cesar la pesca en la temporada o hasta que se alcanzara el límite de captura de la pesquería exploratoria. Se esperaría que los barcos llevaran a cabo todas las operaciones de investigación requeridas, que deben ser finalizadas en una temporada de pesca.

4.169 El Comité Científico convino en que:

i) una unidad de exploración se define como un área de 1° de latitud por 1° de longitud, cuyos vértices yacen en números enteros de latitud y longitud;

ii) la “pesca” se define como el tiempo que cualquier arte de pesca – redes de arrastre tradicionales, o que funcionan con bombas para vaciar el copo, o artes de pesca continua – permanece en el agua;

iii) un lance de investigación se define como un lance efectuado aleatoriamente, en dirección oblicua, con una red de investigación a una profundidad de 200 m y una duración de 0.5 h. Un conjunto de lances de investigación se define como tres lances de investigación realizados a 10 millas náuticas de distancia como mínimo;

iv) un transecto acústico se define como un transecto realizado aleatoriamente, siguiendo una trayectoria continua a una velocidad constante de 10 nudos o menos, sin cambiar de rumbo. La distancia mínima entre el inicio y el final es de 30 millas náuticas. Un conjunto de transectos acústicos se define como dos transectos realizados a 10 millas náuticas de distancia como mínimo.

4.170 El Comité Científico estuvo de acuerdo en que, durante las operaciones normales de pesca exploratoria, los barcos podrán seleccionar la unidad de exploración donde deseen pescar, así como el método de pesca que mejor se ajuste a sus estrategias individuales. Sin embargo, para facilitar la comparación de los datos recopilados durante las operaciones normales de pesca exploratoria con aquellos recopilados durante las operaciones de investigación, se exigirá que los barcos efectúen un conjunto de transectos acústicos o un conjunto de lances de investigación en cada unidad de exploración visitada durante las operaciones normales de pesca.

4.171 El Comité Científico recomendó que los planes de recopilación de datos dependientes de la pesquería (planes (i) y (ii) en el párrafo 4.164) se implementen de la siguiente manera:

i) al finalizar las operaciones normales de pesca exploratoria (voluntariamente o si se ha alcanzado el límite de captura), el barco se trasladará a la unidad de exploración más cercana que no haya visitado, y comenzará las operaciones de investigación;

ii) el barco determinará cuántas unidades de exploración que no ha visitado deberán ser exploradas durante las operaciones de investigación, dividiendo la captura obtenida durante las operaciones normales de pesca exploratoria por 2 000 toneladas y redondeando el resultado al número entero más cercano;
iii) el barco deberá a continuación seleccionar el número de unidades de exploración determinado por los cálculos descritos en el punto (ii) supra y llevar a cabo un conjunto de transectos acústicos o un conjunto de lances de investigación en cada una de estas unidades;

iv) las unidades de exploración visitadas durante las operaciones de investigación no deberán haber sido visitadas durante las operaciones normales de pesca exploratoria;

v) la prospección será efectuada de tal forma que se asegure que las unidades de exploración visitadas durante la pesca de investigación rodeen las unidades donde previamente se efectuaron las operaciones de pesca normales.

4.172 El Comité Científico convino en que los lances de investigación sean efectuados con redes de arrastre de necton utilizadas generalmente en las prospecciones científicas (es decir, redes de tipo IKMT o RMT) con luz de malla de 4–5 mm, incluido el copo. Los miembros deberán proporcionar información detallada sobre la configuración de las redes utilizadas en los arrastres de investigación.

4.173 El Comité Científico estuvo de acuerdo en que los transectos acústicos deberán ser realizados con un ecoacústica apropiado para la investigación científica que emplee una frecuencia de 120 kHz. De ser posible, el ecoacústico deberá ser calibrado.

4.174 El Comité Científico estuvo de acuerdo en que todos los barcos que participan en las pesquerías exploratorias de kril deberían llevar a bordo un observador científico como mínimo para que recopile datos durante toda la campaña de pesca. Es posible que se requiera más de un observador para recopilar toda la información necesaria.

4.175 Con relación a los planes de recopilación de datos independientes de la pesca (planes (iii) y (iv) en el párrafo 4.164), el Comité Científico acordó que:

i) el seguimiento de los depredadores sea efectuado, en lo posible, de acuerdo con los métodos estándar del CEMP y durante un periodo de tiempo suficiente para cubrir toda la época de reproducción de los depredadores con colonias terrestres, así como la duración de cualquier pesquería exploratoria realizada durante su época de reproducción;

ii) las campañas de los barcos de investigación sean efectuadas de acuerdo con los protocolos de recopilación de datos y análisis especificados para la prospección CCAMLR-2000.

Recopilación y notificación de datos

4.176 En relación con la recopilación de datos y la notificación de los mismos durante las operaciones de pesca de investigación, el Comité Científico estuvo de acuerdo en que, en la medida de lo posible, los protocolos deberán concordar con el Manual del Observador Científico de la CCRVMA. Por lo tanto, mientras se está llevando a cabo una pesquería exploratoria de kril, cualquier duda surgida mientras se realiza la pesca de investigación deberá tratarse de resolverse consultando primero este manual.
4.177 El Comité Científico convino en que los datos requeridos para cada lance de investigación son:

i) posición y hora del inicio y final del lance;

ii) fecha en que se realizó el lance;

iii) características del lance como: velocidad de remolque, máxima longitud del cable de alambre largado durante el remolque, promedio del ángulo del cable durante el remolque, y valores calibrados del medidor de flujo que puedan ser utilizados para medir con precisión el volumen filtrado;

iv) una estimación de la captura total (en número o volumen) de kril;

v) una muestra aleatoria de 200 kril como máximo, o la captura total, lo que sea menor, tomada del lance por el observador. La talla, el sexo y el estadio de madurez deberán ser determinados y registrados para todo ejemplar de kril según los protocolos del *Manual del Observador Científico de la CCRVMA*.

4.178 El Comité Científico acordó que, *inter alia*, los datos recopilados de los transectos acústicos deberían:

i) en la medida de lo posible, registrarse de acuerdo con los protocolos especificados para la prospección CCAMLR-2000;

ii) ser relacionados con los datos registrados por un GPS;

iii) ser registrados continuamente y luego archivados electrónicamente cada cinco días, o cada vez que el barco se traslada a otra unidad de exploración, lo que suceda con más frecuencia.

4.179 El Comité Científico reconoció que los datos biológicos recopilados de las redes de arrastre son esenciales para interpretar los datos acústicos. Por lo tanto, se acordó además que todos los transectos acústicos sean acompañados por un lance de red como mínimo. Estos lances podrán ser realizados con redes de arrastre comerciales o de investigación, pero es necesario que se informe detalladamente a la Secretaría con respecto al tipo de lance efectuado. Los arrastres que deben efectuarse conjuntamente con los transectos acústicos podrán ser llevados a cabo durante el transepto mismo o inmediatamente después de haberse terminado. En este caso, el arrastre deberá ser efectuado a lo largo de un segmento previo de la línea del transepto. La duración mínima de los arrastres que se efectúen con los transectos acústicos deberá ser de 0.5 h, y los datos recopilados deben ser los mismos que los requeridos de los lances de investigación.

4.180 Todos los datos recopilados durante las operaciones de pesca de investigación deben ser notificados a la Secretaría por el miembro que efectúa la pesquería exploratoria, a más tardar, un mes después de finalizada cada campaña de pesca.

4.181 En relación con las operaciones de pesca normales, el Comité Científico acordó un conjunto de requisitos mínimos de notificación para las pesquerías exploratorias de kril:
i) el sistema de notificación de datos de captura y esfuerzo cada 10 días dispuesto por la Medida de Conservación 23-02;
ii) la notificación de datos de captura y esfuerzo de cada lance dispuesta por la Medida de Conservación 23-04, incluido el plazo de notificación de un mes;
iii) los datos de observación científica de conformidad con el Sistema de Observación Científica Internacional de la CCRVMA.

4.182 Los datos recopilados de conformidad con los planes independientes de la pesca deberán ser presentados a la Secretaría siguiendo las guías desarrolladas para los datos del CEMP y de la prospección CCAMLR-2000, y con tiempo suficiente para que sean considerados en la próxima reunión del WG-EMM.

4.183 El Comité Científico reconoció que al dar flexibilidad a los miembros (y a los barcos de su pabellón) para elegir un plan del conjunto de cuatro planes de investigación y recopilación de datos descritos supra, sería necesario recopilar información detallada de la configuración de cada red de arrastre comercial utilizada en una campaña de pesca.

Limitaciones a la captura

4.184 Para aumentar al máximo la probabilidad de que la CCRVMA consiga los objetivos especificados en el artículo II, el Comité Científico recomendó un límite de captura anual de 15 000 toneladas para las pesquerías exploratorias de kril, añadiendo que no más del 75% de este límite podría ser extraído de áreas situadas a menos de 60 millas náuticas de colonias terrestres de reproducción conocidas de los depredadores dependientes de kril.

4.185 El Comité Científico subrayó el carácter provisional de los planes de investigación y de recopilación de datos acordados para la temporada de pesca de 2008/09, y por lo tanto, éstos deberán ser examinados y posiblemente modificados en las próximas reuniones de WG-EMM y del Comité Científico.

Propuesta para combinar las medidas de conservación sobre pesquerías nuevas y exploratorias

4.186 El Dr. Holt presentó el documento CCAMLR-XXVII/33 que contiene una propuesta preparada por Estados Unidos para combinar las Medidas de Conservación 22-01 (pesquerías nuevas) y 22-02 (pesquerías exploratorias). El documento recuerda que las medidas de conservación aplicables a las pesquerías nuevas y exploratorias fueron formuladas en el transcurso de varios años y que había resultado en una falta de coherencia de la información y los requisitos especificados en ambas medidas. La medida relativa a las pesquerías nuevas sirve principalmente para notificar a la Comisión sobre la intención de realizar la pesca, y solicita datos en general. No se ha estructurado un protocolo para asegurar la recopilación y notificación de datos específicos. Sin embargo, la medida sobre pesquerías exploratorias detalla específicamente un plan de recopilación de datos y un plan de pesca. También exige la designación de un observador científico de la CCRVMA para recopilar datos biológicos y de pesca a bordo del barco. Por lo tanto, el uso de medidas de conservación separadas para
las pesquerías nuevas y exploratorias tiene el potencial de demorar en un año la capacidad de
la Comisión de empezar a recopilar la información necesaria para evaluar el estado de las
pesquerías propuestas.

4.187 La medida de conservación combinada propuesta trata de minimizar los cambios del
texto de las dos medidas ya acordado por la Comisión. Los requisitos de la medida
combinada propuesta son los mismos dispuestos por la medida existente para las pesquerías
exploratorias. Simplemente, se ha ampliado la definición de pesquería exploratoria para que
se incluya el primer año de la pesquería.

4.188 El Dr. Parkes se alegró por la presentación del documento de Estados Unidos y señaló
que la combinación propuesta de las medidas para pesquerías nuevas y exploratorias está de
acuerdo con las discusiones previas del Comité Científico sobre el desarrollo de un marco
regulatorio unificado para la CCRVMA (SC-CAMLR-XIX, párrafos 7.2 al 7.23). Esas
discusiones consideraron en detalle la relación entre dichas medidas, y se elaboró una tabla
sobre las exigencias reglamentarias vigentes y sobre cómo se podían generalizar para ser
aplicadas al desarrollo de todas las pesquerías (SC-CAMLR-XIX, tablas 7 y 8).

4.189 Una conclusión importante de las discusiones previas fue que el marco regulatorio
unificado anularía la necesidad de contar con definiciones de los tipos de pesquería o de las
etapas, que han pasado a ser demasiado complejas o ambiguas (SC-CAMLR-XIX,
párrafo 7.10). El Dr. Parkes propuso que el proceso de unificación de las medidas sobre
pesquerías nuevas y exploratorias ofrecía la oportunidad de eliminar la definición específica
de pesquería exploratoria, que en el pasado ha dado lugar a ciertas dificultades en su
interpretación. Esto se podría lograr aplicando las disposiciones de la nueva medida a todas
las pesquerías, excepto las listadas específicamente en un anexo. Las pesquerías listadas en el
anexo serían las que actualmente se consideran como pesquerías “establecidas” o
“evaluadas”. Cada año el Comité Científico podría indicar las pesquerías que deberían
listarse en el anexo, sobre la base de la información requerida para las evaluaciones y la
preparación de asesoramiento de ordenación.

4.190 El Comité Científico estuvo de acuerdo en que las pesquerías deberían ser listadas
utilizando las descripciones habituales de especies, artes y áreas.

4.191 El Dr. Constable agradeció al Dr. Holt por la presentación de esta propuesta. Con
respecto a la lista de pesquerías, el Dr. Constable señaló que a medida que las pesquerías
progresen y los datos permiten la realización de evaluaciones más completas, las pesquerías
podrían quedar fuera del alcance de la medida existente para las pesquerías exploratorias. Por
ejemplo, los planes de recopilación de datos y los planes de pesca para las pesquerías de
austromerluza en el Mar de Ross han permitido la realización de una evaluación, pero no se
trata simplemente de la disponibilidad de datos, sino también de la calidad de los datos que
son de importancia para determinar el grado de evaluación de una pesquería y elaborar un
asesoramiento de ordenación robusto.

4.192 El Comité Científico acordó que la combinación de las medidas de conservación para
las pesquerías nuevas y las pesquerías exploratorias sería muy conveniente para racionalizar
la recopilación de datos y los requisitos de investigación de las pesquerías en las etapas
iniciales de su desarrollo. Asimismo, recomendó a la Comisión que se elaborara una lista de
las pesquerías a las cuales no se aplicaría la medida. Si una pesquería no aparece en la lista,
quedaría automáticamente contemplada en la medida.
Recursos calamar y centolla

Centollas (*Paralomis* spp.) en la Subárea 48.3

4.193 No se pescó centollas durante la temporada 2007/08. Rusia notificó a la Comisión su intención de pescar centollas en esta subárea durante la temporada 2008/09, indicando que realizaría sus operaciones de pesca de conformidad con las disposiciones de las Medidas de Conservación 52-01 y 52-02.

Asesoramiento de ordenación

4.194 El Comité Científico recomendó mantener en vigor las Medidas de Conservación 52-01 y 52-02 aplicables a la pesca de centollas.

Calamar (*Martialia hyadesi*) en la Subárea 48.3

4.195 No se pescó calamar durante la temporada 2007/08. La CCRVMA no recibió ninguna propuesta de pesca de calamar durante la temporada 2008/09.

Asesoramiento de ordenación

4.196 La pesquería de calamar está sujeta a las disposiciones de la Medida de Conservación 61-01. No se dispuso de nueva información sobre esta especie, y el Comité Científico recomendó mantener vigente esta medida de conservación.

Captura secundaria de peces e invertebrados

Regla de traslado y límites de la captura secundaria de *Macrourus* en las pesquerías nuevas y exploratorias

4.197 El Comité Científico indicó que WG-FSA había revisado el nivel de la captura secundaria de peces e invertebrados, y que no se había excedido ninguno de los límites de la captura secundaria establecidos en las medidas de conservación pertinentes a las áreas estadísticas ordenadas por la CCRVMA durante la temporada 2007/08.

4.198 También indicó que WG-FSA había revisado el funcionamiento de la nueva regla de traslado aplicable a *Macrourus* spp. en las pesquerías nuevas y exploratorias (Medida de Conservación 33-03). Dado que la captura secundaria de *Macrourus* spp. no había aumentado en 2007/08, el Comité Científico recomendó mantener esta nueva regla.

4.199 El Comité Científico señaló que WG-FSA había estado en condiciones de revisar su asesoramiento sobre límites precautorios de la captura secundaria de *Macrourus* spp. en el Mar de Ross, gracias a la prospección de arrastre realizada por Nueva Zelandia como parte de sus actividades relacionadas con el API (anexo 5, párrafos 6.16 al 6.22).
4.200 El Comité Científico aprobó la recomendación de asignar los límites de captura secundaria revisados en todas las UIPE como se indica en la tabla 17 del anexo 5, y se alegó de que se hubiera separado el límite de la captura secundaria del límite de captura de austromerluzas.

Año de la Raya

4.201 El Comité Científico tomó nota de la discusión de WG-FSA sobre los protocolos de recopilación de datos para el Año de la Raya durante la temporada de pesca 2008/09. Aprobó la recomendación de enmendar los formularios L5 y L6 y eliminar el formulario L11 para simplificar el registro de datos sobre las rayas (anexo 5, párrafo 6.34).

4.202 El Comité Científico recomendó que durante el Año de la Raya todas las rayas sean subidas a bordo, o acercadas al halador de la línea para identificarlas correctamente, ver si tienen marcas y evaluar su condición. Durante 2008/09, todos los barcos deberán retener todas las rayas muertas o con heridas que amenazan su supervivencia (condición 1 ó 2 en el formulario). En el caso de las rayas que tienen mayores probabilidades de sobrevivir luego de su liberación (condición 3 ó 4), el animal deberá ser liberado cortando la brazolada lo más cerca del anzuelo que se pueda, o cortando la brazolada y sacándole el anzuelo, siempre que esto no le ocasioné más daño. El Comité Científico pidió que WG-FSA examinara este enfoque en su reunión de 2009.

4.203 El Comité Científico aprobó la tasa de marcado recomendada de una por cada cinco rayas capturadas en las pesquerías nuevas y exploratorias durante 2008/09, hasta un máximo de 500 rayas por barco, colocando dos marcas a todas las rayas. El programa de marcado será coordinado por la Secretaría, que será el depositario de los kits de marcado de rayas. El Comité Científico aprobó además la recomendación de que cualquier raya marcada sea identificada a nivel de especie, sea medida antes de su liberación y, en lo posible, se realicen experimentos de marcado para comparar los distintos tipos de marcas y estimar las tasas de pérdida de las mismas.

4.204 El Comité Científico acordó que cuando se capturen rayas en la línea, éstas sean muestreadas aleatoriamente por los observadores a razón de tres rayas/mil anzuelos, reduciendo el muestreo de Dissostichus spp. a cuatro austromerluzas de cada especie/mil anzuelos para efectuar mediciones biológicas. En el caso de que no se capturen suficientes rayas para satisfacer este protocolo, se propone que el número total de muestras biológicas por línea permanezca constante, y se muestreen más ejemplares de Dissostichus spp. El Comité Científico recomendó que este aumento en la recopilación de información biológica de las rayas se limite inicialmente al Año de la Raya, pero que se evalúe en la reunión del WG-FSA del próximo año.

4.205 El Comité Científico recomendó no sacrificar rayas para el muestreo biológico, y que el estadio de madurez de las hembras sólo sea registrado si la raya está muerta o ha sufrido heridas que amenacen su supervivencia (condiciones 1 y 2). Todas las rayas vivas que sean parte del muestreo biológico, y que no hayan sufrido heridas de este tipo, deben ser manipuladas con cuidado y liberadas una vez que se haya registrado la información biológica, si aún están en condiciones de ser liberadas (es decir, aún en condición 3 ó 4).
Guías de identificación de la captura secundaria de bentos

4.206 El Comité Científico recibió complacido la presentación de nuevas herramientas para la identificación de invertebrados del bentos en la captura secundaria, incluida una guía de campo sobre invertebrados en la División 58.5.2 elaborada por Australia y un cartel de identificación de taxones del bentos para el Mar de Ross preparado por Nueva Zelandia, y señaló que dichas herramientas podían ser utilizadas para mejorar la recolección de datos sobre los posibles encuentros de EMV.

Actividades de pesca de fondo y EMV

4.207 El Comité Científico recordó sus deliberaciones del año pasado sobre la pesca de fondo en aguas de altura del Área de la Convención de la CCRVMA (SC-CAMLR-XXVI, párrafos 4.159 al 4.171), incluidos su aprobación del informe del WG-FSA, los aspectos que se necesita considerar, y mención especial sobre una serie de cuestiones (SC-CAMLR-XXVI, párrafos 4.162 y 4.163). El Comité Científico aprobó el procedimiento y las definiciones proporcionadas por el WG-FSA, que se basan en prácticas y procedimientos existentes (SC-CAMLR-XXVI, párrafo 4.164 y figura 1) y que demuestran claramente qué se necesita para proporcionar asesoramiento científico sobre:

i) guías prácticas para identificar indicios de EMV durante la pesca;
ii) procedimientos que servirían en caso de que hubiera indicios de un EMV;
 a) evaluar los EMV y el potencial de que éstos sufran daño considerable;
 b) formular estrategias para evitar y mitigar daños considerables que la pesca podría provocar en los ecosistemas del bentos.

4.208 El Comité Científico recordó también que la Comisión había aprobado el marco que había propuesto el año pasado (CCAMLR-XXVI, párrafos 5.11 y 5.12) y la labor futura (CCAMLR-XXVI, párrafos 5.13 al 5.15). También se le había encargado el desarrollo de guías prácticas y flexibles para:

i) identificar los EMV;
ii) definir las medidas que deberán tomar los barcos cuando encuentren indicios de un EMV en el curso de las operaciones de pesca.

Estas guías serían examinadas en su próxima reunión (CCAMLR-XXVI, párrafo 5.16).

4.209 El Comité Científico tomó nota de las deliberaciones sobre el tema en las reuniones de este año del WG-EMM (anexo 4, párrafos 3.21 al 3.44) y del WG-FSA (anexo 5, párrafos 10.3 al 10.109). Estuvo de acuerdo en estructurar su discusión de acuerdo con el asesoramiento de WG-FSA que fue organizado conforme a las expectativas de la Comisión en lo que se refiere al asesoramiento sobre las guías y la implementación de la Medida de Conservación 22-06.
Guías

4.210 El Comité Científico consideró lo siguiente al formular su asesoramiento para la Comisión de acuerdo con su solicitud en CCAMLR-XXVI, párrafos 5.13 al 5.15.

4.211 El Comité Científico convino en que una prueba adecuada de la efectividad de estas guías sería si se evitan los efectos negativos considerables en los EMV mientras se formula y mejora el asesoramiento científico y los enfoques de gestión.

Identificación de EMV

4.212 El Comité Científico tomó nota de las deliberaciones del WG-FSA sobre la identificación de los EMV (anexo 5, párrafos 10.44 al 10.55).

4.213 Existe suficiente información acerca de la distribución y abundancia de los taxones del bentos en el Océano Austral como para confeccionar mapas de la distribución de algunos de los taxones (anexo 5, párrafo 10.45 y 10.64). Se indicó que es posible que exista un alto grado de endemismo, en particular, en los montes marinos (anexo 5, párrafos 10.46 y 10.47). Asimismo, se señaló que podrían haber otras fuentes de datos sobre la distribución de los EMV y los grupos taxonómicos que allí habitan, como por ejemplo, los datos de campañas recientes del API y CAML (anexo 5, párrafo 10.48). No obstante, el Comité Científico estuvo de acuerdo en que la distribución general de los EMV en el Océano Austral tendría que inferirse aplicando modelos de los hábitats (anexo 5, párrafo 10.49). Éstos podrían utilizarse para elaborar mapas de evaluación del riesgo para predecir el riesgo potencial de que se dañen los EMV en distintas localidades de pesca.

4.214 El Comité Científico convino en que, cuando se disponga de pruebas directas de la presencia de un EMV, éstas se deberían utilizar para elaborar mapas de evaluación del riesgo y para identificar los EMV que se deben evitar (anexo 5, párrafos 10.50 y 10.65). Se reconoció que las pruebas conseguidas con filmadoras eran las de más peso en la identificación de los EMV pero que las pruebas obtenidas con los dispositivos de muestreo como los arrastres de vara, los trineos y las excavadoras darían indicaciones fidedignas de la presencia de taxones de un EMV.

4.215 El Comité Científico señaló que los artes de pesca probablemente sean poco eficaces para tomar muestras de los taxones de EMV (anexo 5, párrafos 10.51 y 10.66). El Comité Científico convino en que la presencia de estos taxones o de indicadores de EMV en muestras tomadas con cualquiera de estos métodos sería una prueba de la posible existencia de un EMV. Sin embargo, convino también en que la situación inversa – ausencia de taxones o de indicadores de EMV en las muestras – no sería necesariamente una prueba de que no existía un EMV. El grado de certeza de esta conclusión dependería de la selectividad y de la eficacia de los artes empleados para el muestreo.

4.216 El Comité Científico tomó nota de la falta de pruebas experimentales de la vulnerabilidad de los grupos taxonómicos del bentos a los distintos artes de pesca de fondo utilizados en las pesquerías exploratorias (anexo 5, párrafos 10.52 y 10.67). En consecuencia, acordó que en primera instancia, el mapa de evaluación de riesgo tendrá que depender de las opiniones de expertos sobre la vulnerabilidad y el posible efecto de los artes de pesca en los distintos tipos de hábitats y en los EMV.
Sobre la base del asesoramiento proporcionado por WG-FSA (anexo 5, párrafos 10.54 y 10.68) y WG-EMM (anexo 4, párrafos 3.31 al 3.33), el Comité Científico estuvo de acuerdo en que sería conveniente celebrar un taller de expertos para considerar los temas relacionados con la pesca de fondo y la necesidad de evitar el daño considerable de los EMV. El Comité Científico acordó que el cometido debería ser el siguiente:

Taller sobre Ecosistemas Marinos Vulnerables en relación con la Medida de Conservación 22-06 de la CCRVMA

Proporcionar guías sobre las siguientes preguntas a fin de reducir la incertidumbre sobre la posibilidad de que las pesquerías de fondo de la CCRVMA causen efectos negativos considerables en los EMV, tomando en cuenta los comentarios de WG-FSA, WG-EMM y SC-CAMLR, y las definiciones y conceptos formulados en el informe de WG-FSA en 2007 (SC-CAMLR-XXVI, anexo 5, párrafos 14.4 al 14.6):

i) ¿Cuáles serían los hábitats, grupos taxonómicos que forman hábitats y taxones poco comunes indicativos de un EMV, y los métodos para facilitar la identificación de la extensión de los hábitats en base a la distribución y densidad de los grupos taxonómicos que forman hábitats?

a) ¿Cuáles son las características probables del ciclo de vida de los taxones indicativos de estos EMV, y la consiguiente capacidad de recuperación y resistencia de estos EMV con respecto a los efectos de la pesca de fondo, y cuál es la vulnerabilidad potencial de estos EMV a los distintos tipos de artes de pesca?

b) ¿Cuál sería el menor nivel de resolución taxonómica que podría utilizarse para describir los grupos taxonómicos que concuerdan con, o son indicativos de un EMV?

c) ¿Cuán importantes serían los grupos taxonómicos de los EMV para los conglomerados de peces y hasta qué grado se podría considerar la diversidad de los peces como indicativa de la presencia de un EMV?

ii) ¿Qué métodos serían útiles para identificar las áreas donde se podrían encontrar taxones vulnerables?

a) ¿De qué tipo de datos se dispone, como los de la base de datos de SCAR MarBIN, para identificar la posición de un EMV?

b) A falta de observaciones directas de los EMV ¿cómo se podrían elaborar mapas que indicaran su posible ubicación?

c) ¿Hasta qué punto estaría limitada la distribución de los grupos taxonómicos del bentos?

iii) ¿Cuáles indicadores podrían ser utilizados por los barcos de pesca para determinar cuándo pescan sobre un EMV?
4.218 En nombre de Estados Unidos, el Dr. Holt ofreció celebrar un taller de una semana de duración en su país durante el próximo período intersesional. El Comité Científico agradeció la generosa oferta de Estados Unidos y observó que este país se comunicará con los miembros cuando se haya determinado el lugar y la fecha.

4.219 El Comité Científico designó a los Dres. Jones y K. Martin-Smith (Australia) como coordinadores del taller, y los alentó a mantener correspondencia con los miembros para conseguir la participación del mayor número posible de expertos en ecología del bentos del Océano Austral. El Comité Científico acordó invitar a tres expertos al taller para que contribuyeran a su labor.

4.220 El Comité Científico estuvo de acuerdo en que la labor de identificación de los EMV y de consideración del riesgo de que los EMV sufran daño considerable a causa de las actividades de pesca de fondo podría separarse de la consideración de las medidas de mitigación y de los planes de recopilación de datos (anexo 5, párrafo 10.55 y 10.69). Asimismo, el Comité Científico convino en que WG-EMM podría encargarse de la consideración de los EMV y del riesgo, y WG-FSA podría encargarse de la consideración de las medidas de mitigación.

Medidas a tomar por los barcos de pesca que encuentran EMV

4.221 El Comité Científico tomó nota del asesoramiento del WG-FSA en relación con la definición de las medidas que deberán tomar los barcos cuando encuentren indicios de un EMV en el curso de la pesca, las cuales se describen más detalladamente en las secciones pertinentes a la aplicación de la Medida de Conservación 22-06 (anexo 5, párrafos 10.70 al 10.109). Esto se considera además en los párrafos 4.244 al 4.253.

Asesoramiento sobre las tareas de la Medida de Conservación 22-06

4.222 El Comité Científico consideró el siguiente asesoramiento en cuanto a las tareas identificadas en la Medida de Conservación 22-06.

Asesoramiento sobre la presentación de evaluaciones preliminares y medidas de mitigación propuestas por los miembros

4.223 De conformidad con las solicitudes descritas en el párrafo 7 de la Medida de Conservación 22-06, el Comité Científico tomó nota de la revisión efectuada por el WG-FSA de las evaluaciones preliminares y las medidas de mitigación propuestas que fueron presentadas por los miembros que habían notificado su intención de participar en la pesca de fondo (anexo 5, párrafos 10.24 al 10.28 y 10.72). El Comité Científico observó que sólo cinco de 12 propuestas presentadas por 11 miembros contenían evaluaciones preliminares. En consecuencia, el Comité Científico no pudo examinar ni asesorar sobre los posibles efectos de todas las pesquerías nuevas y exploratorias propuestas.
4.224 El Comité Científico tomó nota de las evaluaciones preliminares y de las medidas de mitigación propuestas por los miembros, que fueron compiladas en el documento CCAMLR-XXVII/26. Tomó nota además de los datos resumidos sobre el bentos en la base de datos de la CCRVMA y que fueron proporcionados por la Secretaría en ese documento. El Comité Científico examinó la notificación de la captura accesoria del bentos (datos C2 y de observación) efectuada por barcos que han sido incluidos en las notificaciones de pesquerías exploratorias en 2008/09. Este análisis confirmó que la base de datos no contiene suficiente información para evaluar y reexaminar el impacto potencial en los EMV o los posibles requisitos de mitigación en las notificaciones de pesquerías exploratorias que no incluyeron evaluaciones preliminares.

4.225 El Comité Científico observó la gran variación en el contenido de las evaluaciones preliminares y estuvo de acuerdo en que se necesita un enfoque común para la presentación de dichas evaluaciones, similar a los requisitos para la notificación de pesquerías exploratorias (anexo 5, párrafos 10.25 y 10.73). El Comité Científico recomendó que la Comisión aprobara el formulario estándar elaborado por WG-FSA (anexo 5, párrafos 10.25 y 10.26) y presentado en la tabla 20 del anexo 5, para uniformar la presentación de evaluaciones preliminares de los miembros sobre la posibilidad de que las actividades de pesca de fondo propuestas tengan efectos negativos considerables en los EMV. Este formulario fue diseñado para que concordara con los requisitos que se aplican a las notificaciones de pesquerías exploratorias y se basa en las disposiciones de los párrafos 7(i) y (ii) de la Medida de Conservación 22-06.

Asesoramiento sobre los procedimientos y normas para evaluar los posibles efectos de las propuestas y de las posibles medidas de mitigación

4.226 El Comité Científico indicó que se le había encomendado la tarea de examinar, refinar y, en la medida que se necesitará, desarrollar procedimientos y estándares para evaluar los posibles efectos de las propuestas y de posibles medidas de mitigación (Medida de Conservación 22-06, párrafo 7(iii)). El Comité Científico indicó que el WG-FSA había efectuado recomendaciones acerca de tres tipos de procedimientos y enfoques:

i) la magnitud de la huella actual de las pesquerías de fondo con relación a la Medida de Conservación 22-06 y los posibles efectos que esta huella podría haber dejado en los EMV (anexo 5, párrafos 10.9 al 10.23);

ii) el riesgo de que las actividades de pesca de fondo pasadas y futuras contribuyan a dañar considerablemente los EMV (anexo 5, párrafos 10.29 al 10.31, 10.49 y 10.50);

iii) enfoques para desarrollar medidas de mitigación para los barcos (anexo 5, párrafos 10.32 al 10.43).
Huella actual de las pesquerías de fondo

4.227 El Comité Científico tomó nota de los mapas actualizados proporcionados por WG-FSA sobre la huella histórica de las pesquerías de fondo en lo que concierne a la Medida de Conservación 22-06 (anexo 5, párrafo 10.17 y figura 7).

4.228 El Comité Científico convino en que las evaluaciones a las cuales se debe prestar mayor atención son las de los efectos potenciales de la pesca de fondo en los EMV situados en los caladeros donde se aplica el mayor esfuerzo pesquero en relación con el área de lecho marino (anexo 5, párrafo 10.76). También reconoció que se debe distinguir entre el esfuerzo aplicado en áreas de poca profundidad y el aplicado en áreas más profundas; esto sólo se ha efectuado para algunas áreas del este de la Antártida, incluido el banco de BANZARE. Ratificó el método utilizado por WG-FSA para calcular la proporción del área de lecho marino que posiblemente ha sido afectada por los palangres (anexo 5, párrafos 10.9 al 10.12, 10.18 y 10.19) utilizando un valor bajo y otro alto para el ancho estimado del área afectada por un solo palangre: 1 m y 25 m. También ratificó la recomendación de WG-FSA de actualizar la información sobre el área de lecho marino para los tres estratos de profundidad con datos obtenidos de fuentes fiables para todas las UIPE (anexo 5, párrafo 10.20) para estos cálculos en el futuro, indicando que se debe utilizar una profundidad de 550 m en vez de 600 m para demarcar el estrato de profundidad.

4.229 El Comité Científico tomó nota de que los resultados (anexo 5, tabla 18) siguen siendo de baja resolución en relación con la escala de los EMV considerados por el WG-FSA (anexo 5, párrafo 10.83). A una escala más amplia, estos cálculos indican que es posible que hasta un 3–4% de toda el área explotable haya sido afectada en los montes marinos del sector norte del Mar de Ross en las UIPE 881B y C en los últimos 10 años. También señaló que estos datos podrían utilizarse para evaluar el posible efecto negativo de las actividades de pesca propuestas en distintas áreas (anexo 5, párrafo 10.80). Sin embargo, los cálculos no consideran los EMV en las áreas donde efectivamente se realiza la explotación, como lo muestra la figura 7 del anexo 5, y no hay suficiente información sobre las áreas propuestas en las notificaciones de las próximas pesquerías exploratorias como para asesorar sobre el efecto que podrían tener en los EMV. El Comité Científico tomó nota de los puntos generales en relación con estos métodos, como que estos análisis deberán tomar en cuenta la posibilidad de que las líneas se solapen, que la magnitud de los efectos dentro la huella es difícil de cuantificar debido a la falta de datos empíricos sobre el efecto de los distintos tipos de palangres en los hábitats del bentos y en los taxones de los EMV, y que la captura secundaria observada de los palangres podría no ser una buena indicación de las interacciones del arte con los EMV. Estos puntos se consideran en detalle en el párrafo 10.22 del anexo 5.

4.230 El Comité Científico indicó que la reducción de la incertidumbre de las evaluaciones del efecto acumulado y de la posibilidad de que las actividades de pesca propuestas tengan un efecto negativo en el futuro dependerá del refinamiento de los métodos para evaluar la huella de la pesca y del desarrollo de evaluaciones de riesgo en distintas áreas (anexo 5, párrafo 10.82).

4.231 El Comité Científico tomó nota de las probables diferencias entre los tipos de hábitats y la biodiversidad en distintos lugares:

i) aguas cercanas a la costa del continente antártico de menos de 200 m de profundidad
ii) áreas de plataformas y bancos hasta 550 m de profundidad
iii) áreas del talud hasta 1 500 m de profundidad
iv) áreas de más de 1 500 m de profundidad.

En este sentido, el Comité Científico indicó que las actividades de investigación en ensenadas poco profundas también podrían afectar a los EMV, ya sea por las actividades de muestreo con artes de grandes dimensiones que son utilizados en la pesca comercial o por una acumulación de los efectos producidos por equipos de arrastre más pequeños. También se destacó que estos dos casos no están cubiertos por las Medidas de Conservación 22-06 y 24-01. Estuvo de acuerdo en que convendría considerar la forma de abordar este asunto en el taller a ser celebrado conjuntamente por el CPA y el Comité Científico de la CCRVMA en 2009. Por ejemplo, se podría considerar si se debería limitar el número de arrastres de investigación permitidos en algunas áreas.

Estrategias de evaluación del riesgo

4.232 El Comité Científico acordó que convendría contar con un método de evaluación de riesgo similar al utilizado por el grupo WG-IMAF, y que el método considerado por WG-FSA podría ser refinado en este sentido (anexo 5, párrafos 10.29 y 10.30). Señaló que el riesgo de que ocurrieren efectos negativos considerables debiera evaluarse en escalas espaciales commensurables con el área ocupada por un EMV, es decir, con una resolución espacial mucho menor que la considerada por WG-IMAF. Los elementos de importancia en una evaluación de riesgo incluirían, inter alia, los siguientes conceptos:

i) No todas las áreas tienen igual probabilidad de contener un EMV que pueda ser afectado, pero la información necesaria para evaluar esta probabilidad es muy limitada.

ii) Es posible formular modelos de hábitats potencialmente vulnerables basados en datos geomorfológicos, oceanográficos y medioambientales, y relacionar éstos con las observaciones de los lugares donde se encuentran los distintos grupos taxonómicos de EMV. Las observaciones podrían ser directas (con filmadoras, o equipos de muestreo del bentos) o indirectas, como la captura secundaria en las pesquerías.

iii) La escala apropiada para caracterizar el riesgo sería una cuadrícula de 0.5° de latitud por 1.0° de longitud, que concuerda con las áreas en escala fina de la CCRVMA.

iv) Las distintas áreas tendrán distinto nivel de riesgo, por ejemplo, áreas de alto riesgo podrían ser los montes marinos, la cabecera de los cañones y el estrato de profundidad hasta los 550 m.

v) Habrá distintos requisitos con respecto a la recopilación de datos, la investigación y la mitigación para distintos artes de pesca y distintos niveles de riesgo.

vi) El nivel de riesgo asignado deberá ser revisado a medida que se disponga de nueva información.
4.233 El Comité Científico tomó nota del desarrollo de un marco para la evaluación del riesgo desarrollado por WG-EMM (anexo 5, párrafos 3.22 al 3.29) y WG-FSA (anexo 5, párrafos 10.29 y 10.30). También notó que WG-FSA no pudo elaborar un mapa para la evaluación del riesgo a ser utilizado para brindar asesoramiento sobre el posible efecto de las actividades de pesca propuestas durante esta reunión. Decidió que este enfoque debería perfeccionarse para la próxima reunión de WG-FSA (anexo 5, párrafo 10.84). También decidió que se deberían utilizar las pruebas directas disponibles de la presencia de un EMV para elaborar mapas de evaluación de riesgo y para identificar los EMV que se deben evitar (anexo 5, párrafo 10.50). Sin embargo, el Comité Científico también se refirió a la falta de pruebas empíricas de la vulnerabilidad de los grupos taxonómicos del bentos a los distintos artes de pesca de fondo utilizados en las pesquerías exploratorias (anexo 5, párrafo 10.52). En consecuencia, acordó que, en primera instancia, el mapa de evaluación de riesgo tendrá que depender de las opiniones de expertos sobre la vulnerabilidad y el posible efecto de los artes de pesca en los distintos tipos de hábitats y de EMV, lo que será facilitado por el taller recomendado anteriormente (párrafo 4.217).

Medidas de mitigación

4.234 El Comité Científico indicó que las medidas de mitigación incluyen el cierre de áreas antes de una temporada de pesca, así como medidas aplicables cuando un barco detecta la presencia de un EMV. Continuó sus discusiones sobre el último asunto cuando consideró el asesoramiento sobre las prácticas a seguir cuando existen indicios de un EMV (párrafos 4.244 al 4.253).

4.235 El Comité Científico indicó que la pesca está prohibida en todas las áreas de menos de 550 m de profundidad en las Divisiones 58.4.1 y 58.4.2 (Medidas de Conservación 41-04 y 41-05) debido al alto riesgo para los hábitats del bentos (anexo 5, párrafo 10.83(iv)). Con respecto a los objetivos de la Medida de Conservación 22-06, el Comité Científico estuvo de acuerdo en que una prohibición de la pesca en profundidades menores de 550 m debiera ser aplicada de forma más general a las pesquerías de fondo cubiertas por la Medida de Conservación 22-06. El Comité Científico indicó que, a pesar de este asesoramiento, es posible que se deba establecer una disposición específica para la pesquería de centollas con nasas, como se propuso para una pesquería exploratoria durante 2008/09 (CCAMLR-XXVII/20). Esto se debe a que el régimen de explotación experimental acordado por WG-FSA (anexo 5, párrafo 5.13 y 5.14) puede verse afectado por esta prohibición. El Comité Científico estuvo de acuerdo en que si se efectúa la pesca con nasas en la Subárea 48.2, se tendrán que establecer requisitos específicos para la mitigación del efecto del arte de pesca utilizado, a fin de que se puedan realizar las actividades de pesca exploratoria en áreas de la plataforma (ver párrafo 4.231).

Asesoramiento en relación con la presencia de EMV

4.236 El Comité Científico tomó nota del asesoramiento brindado por WG-FSA (anexo 5, párrafos 10.63 al 10.69 y 10.96 al 10.100) y WG-EMM (anexo 4, párrafos 3.21 al 3.38) en relación con la identificación de los EMV para ser considerado en el requisito del párrafo 12 de la Medida de Conservación 22-06.
4.237 El Comité Científico indicó que el documento CCAMLR-XXVII/26 contenía datos para examinar la ubicación de las capturas de taxones de EMV, pero advirtió los problemas con respecto a la calidad y cantidad de este tipo de datos (párrafo 4.224).

4.238 El Comité Científico tomó nota de la presentación de notificaciones de EMV en la División 58.4.1 (SC-CAMLR-XXVII/13). Tomó nota de la revisión que WG-EMM realizó de un bosquejo anterior de la notificación (anexo 4, párrafos 3.34 al 3.38) y de la revisión efectuada por WG-FSA (anexo 5, párrafos 10.56, 10.57 y 10.98). Concordó con la opinión del WG-FSA de que esto representaba sin lugar a dudas casos de EMV, con claros indicios de la existencia de una gran diversidad de comunidades bentónicas.

4.239 El Comité Científico aprobó el borrador del formulario para la notificación de los EMV elaborado por la Secretaría de acuerdo con los requisitos de la Medida de Conservación 22-06 y la notificación presentada en forma tabular en SC-CAMLR-XXVII/13 (anexo 5, párrafos 10.58, 10.59 y 10.99). Se diseñó de tal manera que los miembros podrían presentarlo como parte del sistema de notificación de datos cada cinco días durante las operaciones de pesca, pero también podría ser utilizado por los miembros que realicen actividades de investigación. El Comité Científico recomendó utilizarlo para notificar a la Secretaría cuando se encontraran indicios de un EMV.

4.240 El Comité Científico tomó nota del pedido del WG-FSA de que considerara el método para revisar dichas notificaciones y el proceso a seguir para incorporar un nuevo EMV al registro de los mismos. El Comité Científico indicó que este último proceso tendría que ser considerado por la Comisión. Con respecto al método para revisar las notificaciones, el Comité Científico indicó que las notificaciones que figuran en SC-CAMLR-XXVII/13 habían sido revisadas por WG-EMM y por WG-FSA. Señaló que tales notificaciones sólo necesitaban ser revisadas por WG-EMM, de acuerdo con la asignación de responsabilidades considerada más adelante (párrafos 4.268; anexo 5, párrafo 10.55).

4.241 El Comité Científico señaló que los requisitos para proteger a los EMV pueden cambiar a medida que se disponga de más información, como por ejemplo, información sobre la extensión de las áreas abarcadas por los EMV y de su vulnerabilidad a la pesca.

Asesoramiento sobre efectos conocidos y previstos

4.242 El Comité Científico indicó que WG-FSA no pudo proporcionar asesoramiento este año sobre hallazgos reales o potenciales de EMV durante el curso de la pesca de palangre exploratoria (anexo 5, párrafos 10.101 y 10.102), ni sobre los efectos conocidos y previstos, pero que algunos estratos de profundidad en ciertas UIPE podrían haber experimentado un mayor nivel de interacción con los artes de pesca de fondo que otras zonas de la Subárea 88.1 (anexo 5, tabla 18). El Comité Científico recomendó examinar este tema más a fondo el año próximo.

4.243 El Comité Científico aprobó la recomendación de WG-FSA de que se preparara un informe sobre “Pesquerías de fondo y ecosistemas marinos vulnerables”, similar a los informes de pesquerías, a fin de recopilar la información existente sobre EMV, el potencial de efectos adversos considerables, las evaluaciones de riesgo y los posibles efectos ocasionados por la pesca de fondo (anexo 5, párrafo 10.103). Pidió que el taller (párrafo 4.217) elaborara
una plantilla de este informe para que fuera examinada por WG-FSA y WG-EMM, y considerara cómo compilar y actualizar este tipo de informe. Indicó que, una vez elaborado, el contenido del informe podría separarse en los informes de pesquerías pertinentes.

Asesoramiento sobre las prácticas
cuando se reconoce la presencia de un EMV

4.244 Al considerar los enfoques para formular medidas de mitigación y prácticas cuando se encuentran indicios de un VME, el Comité Científico señaló que las acciones contempladas pueden dividirse naturalmente en tres clases principales – actividades de los observadores, respuestas de los barcos y requerimientos relativos a la notificación de información (anexo 5, párrafo 10.32).

4.245 El Comité Científico estuvo de acuerdo en que las observaciones de la captura secundaria del bentos serán importantes en el año próximo y aprobó la recomendación del WG-FSA de que se hagan las observaciones y mediciones identificadas por este grupo de trabajo (anexo 5, párrafos 10.33 y 10.88) el año próximo. El Comité Científico aprobó también la opinión del WG-FSA de que sería conveniente que los observadores obtuviesen información sobre el funcionamiento del arte de pesca y datos para elaborar protocolos de seguimiento. Sin embargo, dado el gran volumen de trabajo de los observadores, se les dio menor prioridad entre las tareas para el año próximo (anexo 5, párrafo 10.34).

4.246 El Comité Científico tomó nota de la consideración de WG-FSA de la respuesta esperada de los barcos cuando encuentran indicios de un EMV (anexo 5, párrafos 10.36 al 10.40 y 10.89). El Comité Científico también tomó nota de la consideración de WG-FSA sobre la notificación del hallazgo de un EMV por parte de los barcos (anexo 5, párrafo 10.90).

4.247 El Comité Científico señaló las medidas de mitigación propuestas y las respuestas ante el hallazgo de un EMV descritas en las evaluaciones preliminares presentadas en la tabla 21 del anexo 5. Las características de las medidas de mitigación propuestas, colectivamente, son:

i) los indicios de un EMV serían cuantificados de forma general y fácilmente por un barco;

ii) la Secretaría deberá ser notificada de los hallazgos;

iii) es necesario determinar el área ocupada por el EMV encontrado, incluida un área de protección adecuada para compensar por la imprecisión de la ubicación, para poder controlar las operaciones del barco o de la flota;

iv) el esfuerzo en esas localidades deberá ser limitado.

4.248 Un problema difícil de resolver durante la discusión fue la necesidad de proteger los EMV de efectos negativos considerables y de obtener información de tales efectos, es decir, si están ocurriendo o ya ocurrieron. En estas circunstancias, cualquier estrategia para evitar efectos negativos considerables en un EMV, como la delimitación clara de las áreas que se deben evitar, deberá ser formulada tomando en cuenta los puntos descritos en el párrafo 10.38 del informe del WG-FSA (anexo 5, párrafos 10.91).
4.249 El Comité Científico señaló la acotación de WG-FSA de que continuar la pesca en áreas donde existen indicios en la captura secundaria que apuntan a posibles interacciones con un EMV contradice la intención de proteger los EMV de efectos negativos considerables. Asimismo, continuar la pesca en un área donde se han encontrado indicios de la presencia de un EMV puede contravenir lo dispuesto en el párrafo 8 de la Medida de Conservación 22-06 (anexo 5, párrafo 10.93).

4.250 El Comité Científico reconoció este dilema (anexo 5, párrafo 10.40), e indicó que WG-FSA no pudo estimar en esta reunión el grado de certidumbre de la existencia de EMV que se requeriría para motivar acciones de parte de los distintos barcos, pero que había convenido en que será importante cumplir plenamente con los requisitos relativos a la provisión de datos sobre la captura secundaria del bentos a fin de determinar recomendaciones específicas para cada barco en cuanto a los niveles críticos. Otra alternativa sería identificar las áreas que deben ser evitadas por todos los barcos (véase el anexo 5, párrafo 10.94).

4.251 El Comité Científico estuvo de acuerdo en que sería útil realizar simulaciones de los distintos enfoques de gestión para evaluar si el traslado o la realización de estudios era más eficaz para evitar efectos negativos considerables en los EMV, cuando no existe información para juzgar cuál es la estrategia apropiada, y pidió a los miembros que presentaran las simulaciones a WG-SAM para su evaluación, y luego los resultados a la consideración de WG-FSA.

4.252 En su consideración más detallada de las posibles prácticas que podrían recomendarse para la próxima temporada, el Comité Científico destacó lo siguiente:

i) la necesidad de desarrollar una estrategia que pudiera ser aplicada por los barcos y que no dependa de los observadores, incluida la notificación de los EMV encontrados a la Secretaría;

ii) la necesidad de limitar el esfuerzo en áreas que contienen EMV pero contemplando la posibilidad de realizar actividades de investigación para obtener datos que puedan ser examinados por el Comité Científico y sus grupos de trabajo, observando que esto no debe inadvertidamente producir un daño significativo en un EMV;

iii) podría ser conveniente efectuar comparaciones de las especies del bentos presentes en la captura secundaria de distintos barcos en áreas parecidas;

iv) las medidas para abordar el problema de la interacción debieran aplicarse a toda la flota de barcos, por ejemplo, las áreas en donde se ha identificado la posible presencia de un EMV debieran estar protegidas de los efectos de toda la flota de barcos y no de un barco específico;

v) se debería formular una estrategia general para ser utilizada por todos los barcos pero con variaciones específicas de acuerdo con los distintos artes cuando se diera la necesidad;

vi) las medidas para este año serían revisadas el año próximo sobre la base de los resultados de la temporada 2008/09.
4.253 El Comité Científico estuvo de acuerdo en que las prácticas acordadas para la próxima temporada pueden ser consideradas en cinco categorías:

i) identificación por un barco de un posible encuentro durante las faenas de pesca
ii) observaciones necesarias
iii) declaración de una Zona de Riesgo
iv) medidas de ordenación
v) revisión.

Identificación por un barco, de un posible encuentro durante las faenas de pesca

4.254 El Comité Científico estuvo de acuerdo en que el registro y notificación de las pruebas de un posible encuentro de un EMV debería ser la responsabilidad del barco. También acordó que la mejor manera de acumular dichas pruebas sería:

i) dividiendo los palangres en secciones que contengan 1 000 anzuelos, o de 1 200 m, lo que sea de menor longitud, y dividiendo las líneas con nasas en secciones de 1 200 m. Estas secciones de los palangres y nasas serán las unidades utilizadas para vigilar y encontrar un EMV;

ii) en esta etapa, la mejor forma de medir una posible interacción sería por el volumen de invertebrados sésiles acumulado, como se describe en el cartel de Nueva Zelanda (WG-FSA-08/19);

iii) para las especies ramificadas, como los corales, que pueden ser difíciles de colocar en un receptáculo para medir volumen, un peso equivalente para agregar al volumen de otro tipo de material podría ser: 1 kg equivale a un litro;

iv) todas las secciones de la línea deberán vigilarse para determinar la captura de bentos.

4.255 Con respecto a los volúmenes y pesos que indicarían la posible presencia de un EMV, el Comité Científico señaló que es posible que en el futuro se tenga que abordar este asunto por taxón. Esto se debe a la posibilidad de haya que considerar especies raras, pequeñas o susceptibles, especialmente si estos taxones son muy vulnerables a los palangres pero difíciles de capturar. El Comité Científico solicitó al taller que le brindara asesoramiento sobre este tema.

4.256 El Comité Científico reconoció la necesidad de que tanto la terminología como las definiciones sean claras para definir la acción que deben tomar los barcos. Se acordaron las siguientes definiciones:

i) Unidad indicadora de un EMV
 Puede ser un litro de especies sésiles (párrafo 4.254(ii)) que pueden colocarse dentro de un cubo, o, para los taxones contemplados en el párrafo 4.254(iii) (especies ramificadas cuyo volumen es difícil de medir), un kilogramo.
ii) Prueba de un EMV
Mientras no se tenga más información acerca de una prueba de este tipo, una medición combinada de 10 unidades indicadoras de un EMV de especies sésiles (párrafo 4.254(ii)) recuperadas en una sección dada de la línea, constituiría una prueba de la posible presencia de un EMV.

iii) Zona de Riesgo
Una zona alrededor del lugar donde se recogieron pruebas de un EMV deberá ser designada como zona que podría contener un EMV y que podría estar en peligro si las actividades de pesca continúan, mientras no se hayan revisado las pruebas de la presencia de un EMV y otros datos sobre esa zona, y se hayan tomado las medidas de gestión necesarias.

4.257 El Comité Científico señaló que la cantidad de 10 unidades indicadoras de un EMV, a ser utilizada como prueba de un EMV, había sido derivada de la información y experiencia de la pesca en el Mar de Ross y en el Océano Índico, que formó la base de la información presentada en CCAMLR-XXVII/26. El Comité Científico acordó que esta información representaba una buena base para determinar el número de unidades indicadoras de un EMV para este año. Señaló que los datos de la próxima temporada servirían para formular las futuras recomendaciones sobre la prueba de un EMV.

4.258 El Comité Científico acordó que si la prueba de un EMV se obtiene de una sola sección de la línea, entonces la ubicación de esta sección debiera considerarse como Zona de Riesgo que necesita protección provisoria de la pesca por el resto de la temporada.

4.259 El Comité Científico acordó que cuando se obtuviera pruebas de un EMV, el barco deberá informar inmediatamente a la Secretaría y al Estado del pabellón la posición de la sección, o secciones, de la línea donde se encontró pruebas.

4.260 El Comité Científico indicó que la designación de Zonas de Riesgo de acuerdo con la acumulación de unidades indicadoras de la existencia de un EMV en una sola sección de la línea por sí misma no sería suficiente para otorgar protección de un EMV para el cual las pruebas pueden separarse entre secciones de la línea, o pueden acumularse hasta muy cerca del número crítico en cada una de varias secciones consecutivas de la línea. Se reconoció que es posible que esto suceda con respecto a las interacciones con los EMV, pero el Comité Científico no pudo formular estrategias que pudieran utilizarse para determinar cuándo esos EMV pueden designarse como Zonas de Riesgo. El Comité Científico indicó que se podía utilizar una acumulación de pruebas de un EMV en varias secciones consecutivas de la línea para designar una Zona de Riesgo alrededor de esas secciones de la línea.

Requisitos de observación

4.261 El Comité Científico convino en pedir a los observadores que:

i) durante el “período de anotaciones”, registren el bentos que se sube a la superficie;

ii) en un encuentro, revisen los detalles taxonómicos del bentos extraído (cartel de Nueva Zelandia, WG-FSA-08/19);
iii) examinen regularmente cualquier otro material acumulado por el barco fuera del periodo de anotaciones;

iv) se aseguren de que todo el material revisado por ellos tenga anotada una posición aproximada (por lo menos a nivel de la sección de la línea).

Declaración de una Zona de Riesgo

4.262 El Comité Científico acordó que una zona de seguridad de 1 milla náutica alrededor de la sección, o secciones, donde se encontraron pruebas sería apropiada para determinar el tamaño de una Zona de Riesgo, y permitir la recopilación de otros datos en los alrededores de la misma.

4.263 El Comité Científico estuvo de acuerdo en que para una Zona de Riesgo definida por una sola sección de la línea, el barco sería capaz de responder fácilmente si se pudiera establecer el punto medio de la sección y extender de ahí un radio de protección de 1 milla náutica. Esto podría tratarse como una zona que debe ser evitada utilizando un punto de ruta en el sistema de navegación del barco. El Comité Científico observó que esto incluiría secciones adyacentes en la Zona de Riesgo.

4.264 El Comité Científico indicó que es posible que la estrategia descrita en el párrafo 4.263 no otorgue la protección necesaria si el EMV abarca varias millas, como se describe en SC-CAMLR-XXVII/13 y, por ejemplo, la sección donde se obtuvo pruebas de un EMV cruzó su periferia.

4.265 El Comité Científico señaló que la zona de protección generalmente aplicada en las medidas de conservación de la CCRVMA era de 5 millas náuticas. No obstante, se indicó que en el pasado esta zona había sido aplicada a las especies móviles, mientras que en la actualidad, los EMV se consideran principalmente sobre la base de su biota sésil y sedentaria. El Comité Científico había observado que el Consejo Europeo utilizó una zona de 5 millas náuticas en su reciente Decreto No. 734/2008 sobre la pesca de fondo.

Medidas de gestión

4.266 El Comité Científico estuvo de acuerdo en que las unidades indicadoras del bentos de un EMV en la captura secundaria deberían ser notificadas por el barco para cada sección de la línea, como se define anteriormente.

4.267 El Comité Científico estuvo de acuerdo en que el barco deberá cesar inmediatamente el calado de las líneas que intersecten una Zona de Riesgo. La flota deberá cesar de calar líneas que intersecten con la Zona de Riesgo inmediatamente después de recibir la notificación de la Secretaría, lo que debe suceder dentro de las 24 horas de recibido el informe del encuentro de un EMV.
Revisión

4.268 El Comité Científico acordó que se encomendara al WG-FSA la tarea de revisar los datos de observación y del barco en su próxima reunión, y de brindar asesoramiento sobre las medidas de mitigación y prácticas cuando se encuentran pruebas de un EMV, tomando en cuenta los resultados del taller.

General

4.269 El Comité Científico señaló que:

i) se deberán establecer acuerdos provisionales para el año entrante mientras se formula el asesoramiento, por ende, el sistema tal vez no sea perfecto pero necesita ser lo suficientemente precautorio;

ii) se podrían considerar las estrategias de ordenación y mitigación acordadas en otros foros (Comunidad Europea, NAFO).

Asesoramiento sobre otras medidas de mitigación

4.270 Con respecto a la Medida de Conservación 22-06, párrafo 7(iii), el Comité Científico no tiene más recomendaciones que hacer en relación con otras medidas de mitigación.

Asesoramiento sobre planes de investigación y recopilación de datos

4.271 Con respecto a los planes de investigación y de recopilación de datos para las pesquerías de fondo reglamentadas por la Medida de Conservación 22-06, el Comité Científico estuvo de acuerdo con el WG-FSA de que cualquiera que fuese la estrategia adoptada para el año próximo, es importante recopilar la máxima cantidad de datos de la captura secundaria del bentos posible para efectuar un análisis el año próximo (anexo 5, párrafo 10.106). Coincidió además en que la experiencia del grupo WG-IMAF demostraba la importancia de los siguientes factores en la mitigación de la mortalidad incidental de aves marinas en las pesquerías, y en la mitigación de efectos negativos considerables en los EMV:

i) educación de las tripulaciones de los barcos que participan en las pesquerías de fondo exploratorias ayudará a sensibilizarlas sobre el valor de los EMV, en términos de la biodiversidad marina y hábitats de comunidades de peces, y sobre la importancia de elaborar medidas de mitigación para evitar que sean dañados;

ii) refinación continua de los métodos para reducir la frecuencia de pérdida de los artes de pesca que pueden afectar los EMV.

4.272 El Comité Científico apoyó al WG-FSA en que convendría que los observadores proporcionaran información sobre (anexo 5, párrafos 10.33 y 10.107):
i) los tipos de grupos taxonómicos en la captura secundaria y la ubicación de la captura, identificando estos grupos por lo menos a nivel de tipo morfológico según el cartel elaborado por Nueva Zelanda;

ii) el número, y cuando sea posible, el peso total de cada taxón subido a bordo;

iii) información sobre el posible origen geográfico de los taxones – teniendo en cuenta que las observaciones por anzuelo o por bandeja podrían relacionarse con la posición geográfica de la línea en el sustrato, si bien esto requeriría que se proporcionara al observador un GPS manual para registrar la posición del barco cuando se sube un taxón a bordo;

iv) en el futuro, la información sobre la captura de tipos específicos de grupos taxonómicos requerirá un mayor grado de detalle, no obstante se reconoció que por el momento, se deberán registrar todos los grupos taxonómicos subidos a bordo y que la información presentada por los observadores deberá ser lo más completa posible para los periodos de observación.

4.273 El Comité Científico tomó nota de la necesidad de mejorar la presentación de datos de la captura secundaria de bentos para que éstos se puedan utilizar en los análisis de la interacción de las actividades de pesca de fondo con los EMV.

Asesoramiento a la Comisión

4.274 Con respecto a la elaboración de guías para la identificación de los EMV y de medidas a ser aplicadas por los barcos de pesca que encuentran EMV (CCAMLR-XXVI, párrafos 5.13 al 5.15), el Comité Científico pidió a la Comisión que:

i) tomara nota de:

a) que una prueba adecuada de la efectividad de estas guías sería si evitan los efectos negativos considerables en los EMV mientras se formula y refina el asesoramiento científico y los enfoques de gestión (párrafo 4.211);

b) el progreso del WG-FSA en el desarrollo de métodos y estrategias para identificar de los EMV (párrafos 4.212 al 4.214);

c) que los artes de pesca probablemente sean poco eficaces para tomar muestras de los taxones de EMV. La presencia de estos taxones o de indicadores de EMV en muestras tomadas con cualquiera de estos métodos sería una prueba de la posible existencia de un EMV. Sin embargo, la situación inversa – ausencia de taxones o de indicadores de EMV en las muestras – no sería necesariamente una prueba de que no existe un EMV. El grado de certeza de esta conclusión dependería de la selectividad y de la eficacia de los artes empleados para el muestreo (párrafo 4.215);

d) la falta de pruebas empíricas de la vulnerabilidad de los taxones del bentos a los distintos artes de pesca de fondo utilizados en las pesquerías exploratorias (párrafo 4.216);
e) el asesoramiento en relación con las medidas que los barcos deben tomar cuando encuentren indicios de un EMV en el curso de sus actividades de pesca, se describe en las secciones pertinentes a la aplicación de la Medida de Conservación 22-06;

ii) aprobara:

a) la celebración de un taller de expertos sobre Ecosistemas Marinos Vulnerables con relación a la Medida de Conservación 22-06 para proporcionar guías sobre las cuestiones que deben resolverse a fin de reducir la incertidumbre sobre la posibilidad de que las pesquerías de fondo de la CCRVMA causen efectos negativos considerables en los EMV, tomando en cuenta los comentarios de WG-FSA, WG-EMM y SC-CAMLR, y las definiciones y conceptos formulados en el informe de WG-FSA en 2007 (SC-CAMLR-XXVI, anexo 5, párrafos 14.4 al 14.6) (párrafos 4.217 al 4.219);

iii) decidiera que:

a) la distribución general de los EMV en el Océano Austral se infiera aplicando modelos de los hábitats (párrafo 4.213) que luego pudieran utilizarse para elaborar mapas de evaluación del riesgo para predecir el grado de riesgo de que se dañen los EMV en distintas localidades de pesca. En primera instancia el mapa de evaluación de riesgo tendrá que depender de las opiniones que los expertos tengan sobre la vulnerabilidad y el posible efecto de los artes de pesca en los distintos tipos de hábitats y en los EMV.

4.275 El Comité Científico consideró las siguientes recomendaciones en cuanto a las tareas identificadas en la Medida de Conservación 22-06.

4.276 Con respecto al asesoramiento sobre la presentación de evaluaciones preliminares y de medidas de mitigación propuestas por los miembros, el Comité Científico recomendó que la Comisión:

i) tomaría nota de:

a) que sólo 5 de los 11 miembros que presentaron un total de 12 propuestas habían incluido evaluaciones preliminares (párrafo 4.223). Por lo tanto, el Comité Científico no pudo examinar ni asesorar sobre los posibles efectos de todas las pesquerías nuevas y exploratorias propuestas;

b) que la base de datos no contiene suficiente información para evaluar y analizar el impacto potencial en los EMV, o los posibles requisitos de mitigación, en las notificaciones de pesquerías exploratorias que no incluyeron evaluaciones preliminares (párrafo 4.224);

c) la gran variación en el contenido de las evaluaciones preliminares y de que se necesita un enfoque común para la presentación de dichas evaluaciones, similar a los requisitos para la notificación de pesquerías exploratorias (párrafo 4.225);
ii) aprobara:

a) el formulario presentado en la tabla 20 del anexo 5, para uniformar la presentación por parte de los miembros de evaluaciones preliminares sobre la posibilidad de que las actividades de pesca de fondo propuestas tengan efectos negativos considerables en los EMV. Este formulario ha sido diseñado para que concuerde con los requisitos que se aplican a las notificaciones de pesquerías exploratorias y se basa en las disposiciones de los párrafos 7(i) y 7(ii) de la Medida de Conservación 22-06 (párrafo 4.225).

4.277 Con respecto al asesoramiento sobre los procedimientos y normas para evaluar los posibles efectos de las propuestas y posibles medidas de mitigación, el Comité Científico recomendó que la Comisión:

i) toma nota de:

a) la discusión y el análisis de la magnitud de la huella histórica de las pesquerías de fondo en lo que concierne a la Medida de Conservación 22-06, y los posibles efectos que dicha huella haya podido tener en los EMV (párrafos 4.226 al 4.230);

b) las discusiones sobre la evaluación del riesgo de que las actividades de pesca de fondo pasadas y futuras contribuyan a producir un efecto negativo considerable en los EMV (párrafos 4.232 al 4.233);

c) las discusiones sobre el desarrollo de medidas de mitigación no relacionadas con el asesoramiento sobre las prácticas cuando se encuentran pruebas de un EMV (párrafos 4.234 al 4.235);

ii) aprobara:

a) la elaboración de un marco para la evaluación del riesgo y de mapas de evaluación del riesgo para señalar el riesgo de efectos negativos considerables de las pesquerías de fondo que se realizan en el Área de la Convención de la CCRVMA de acuerdo con la Medida de Conservación 22-06 (párrafos 4.232 y 4.233), donde la escala espacial de resolución de tales mapas sería conmensurable con el área ocupada por un EMV, y no a nivel de áreas de ordenación;

iii) decidiera que:

a) se aplique en forma más general una prohibición de la pesca de fondo en profundidades menores de 550 m a las pesquerías de fondo cubiertas por la Medida de Conservación 22-06, como se hace actualmente en las Divisiones 58.4.1 y 58.4.2 (párrafo 4.235), pero destacando que se deberá contemplar una disposición específica para la pesquería de centollas con nasas, como se propuso para una pesquería exploratoria en 2008/09 (párrafo 4.235);
iv) brindará asesoramiento sobre:
 a) lo que podría considerar más útil de los análisis de la magnitud de la huella histórica de las pesquerías de fondo en lo que respecta a la Medida de Conservación 22-06 (párrafos 4.227 al 4.231).

4.278 En lo que concierne al asesoramiento sobre la presencia de EMV, el Comité Científico recomendó a la Comisión que:

 i) tomara nota de:
 a) la discusión sobre la presencia de un EMV (párrafos 4.236 al 4.241);
 b) que los requisitos para proteger a los EMV pueden cambiar a medida que se disponga de más información, como por ejemplo, información sobre la extensión de las áreas abarcadas por los EMV y de su vulnerabilidad a la pesca (párrafo 4.241);

 ii) aprobará:
 a) el proceso de revisión de las notificaciones de EMV y que las notificaciones sean examinadas por WG-EMM antes de ser consideradas por el Comité Científico (párrafo 4.240);

 iii) decidiera que:
 a) las áreas notificadas en SC-CAMLR-XXVII/13 dentro de la División 58.4.1 son EMV con claros indicios de la existencia de una gran diversidad de comunidades bentónicas (párrafo 4.238);

 iv) aceptara:
 a) el formulario de notificación preliminar para que los miembros notifiquen a la Secretaría cuando encuentren pruebas de la presencia de un EMV (párrafo 4.239).

4.279 En lo que concierne al asesoramiento sobre los efectos conocidos y previstos, el Comité Científico recomendó a la Comisión que:

 i) tomara nota de:
 a) la consideración de los efectos conocidos y previstos (párrafos 4.242 y 243);

 ii) aprobará:
 a) trabajos adicionales sobre la evaluación de los efectos conocidos y previstos de las actividades de pesca de fondo contempladas en la Medida de Conservación 22-06 (párrafo 4.242);
b) la elaboración de un informe similar a los informes de pesquerías sobre “Pesquerías de fondo y ecosistemas marinos vulnerables”, recopilando la información existente sobre EMV, el potencial de efectos negativos considerables, las evaluaciones de riesgo y los posibles efectos ocasionados por la pesca de fondo (párrafo 4.243).

4.280 El Comité Científico desea informar a la Comisión que, a falta de (i) observaciones directas del efecto del arte de pesca, (ii) censos de la distribución y abundancia de los hábitats del bentos, y (iii) una evaluación de las consecuencias ecológicas de los efectos de la pesca en esos hábitats y en procesos ecológicos críticos, se necesita adoptar una estrategia precautoria capaz de evitar efectos negativos considerables en los EMV, mientras se realizan evaluaciones del efecto y se formulen estrategias de mitigación a largo plazo. El Comité Científico señaló además que se necesita considerar los siguientes temas en la elaboración de una estrategia tal:

i) Se supone que muchos de los taxones de EMV son sésiles, de lento crecimiento y larga vida, lo que implica que si estos taxones han mermado, la probabilidad de que se recuperen en dos o tres décadas como lo especifica el Artículo II es muy baja. Por lo tanto, la evitación del espacio ocupado por los taxones de EMV es una importante consideración en el mantenimiento de EMV viables.

ii) Se necesita adoptar estrategias precautorias para evitar efectos negativos considerables en los EMV y en aquellos taxones de EMV de distribución limitada, como por ejemplo, los taxones endémicos de la zona.

iii) Se necesitará efectuar una recopilación de datos controlada, compatible con el enfoque precautorio.

iv) Es poco probable que un solo evento de pesca cause efectos negativos considerables en los EMV, no obstante, el efecto acumulativo entre evaluaciones y decisiones de ordenación podría dar origen a efectos adversos considerables. Se necesitan estrategias para limitar los efectos acumulativos entre evaluaciones ya que a la larga será un solo evento de pesca el que cause un daño considerable durante un período de pesca entre evaluaciones.

v) Entre las estrategias provisorias se pueden incluir:

 a) cierres de grandes áreas con una probabilidad razonable de que contengan EMV representativos;

 b) cierres de pequeñas áreas basados en una captura secundaria limitada de bentos durante las operaciones de pesca, tomando en cuenta que el bentos afectado por los sistemas de pesca de palangre posiblemente no esté bien representado en la captura secundaria;

 c) cierres temporales como en (b) mientras se realizan estudios para establecer la extensión espacial de los hábitats y los EMV.

vi) Sin el conocimiento adecuado, será muy difícil predecir cuándo se producirá una acumulación tal de las consecuencias de la pesca de fondo que cause efectos
adversos considerables en los EMV. Bajo tales circunstancias, tal vez no se pueda detectar ningún daño considerable hasta después de que se haya hecho evidente.

vii) Si debido a la distribución de peces las actividades de pesca deben coincidir considerablemente con zonas donde existen EMV, el escape de los EMV tendrá que ser mayor de lo previsto. Esto se debe a que se necesita considerar efectos inesperados en los EMV que pueden acumularse y causar un daño considerable.

4.281 En lo que concierne al asesoramiento sobre las prácticas cuando hay pruebas de la presencia de un EMV, el Comité Científico recomendó a la Comisión que:

i) tomará nota de:

a) sus discusiones sobre los enfoques para formular medidas de mitigación y prácticas cuando se encuentran pruebas de la presencia de un VME (párrafos 4.244 al 4.260);

b) la disyuntiva entre la necesidad de proteger los EMV de efectos negativos considerables y la necesidad de obtener información para determinar si tales efectos están ocurriendo o ya ocurrieron, y que continuar la pesca en áreas en las cuales la captura secundaria indica una posible interacción con un EMV contradice la intención de proteger los EMV de efectos negativos considerables y puede contravenir lo dispuesto en el párrafo 8 de la Medida de Conservación 22-06 (párrafos 4.248 al 4.250);

c) que sería útil realizar simulaciones de los distintos enfoques de gestión para evaluar cuál enfoque de evitación/investigación podría ser más eficaz para evitar efectos negativos considerables en los EMV, cuando no existe información para determinar la estrategia apropiada, y pidió a los miembros que presentaran estas simulaciones a WG-SAM para su evaluación, y los resultados luego a la consideración de WG-FSA (párrafo 4.251);

d) la consideración del Comité Científico del asesoramiento para la temporada 2008/09 sobre prácticas específicas cuando hay pruebas de la presencia de un EMV durante las actividades de pesca de fondo (párrafos 4.252 al 4.268);

e) que se deberán establecer acuerdos provisionales para el año entrante mientras se formula el asesoramiento (párrafo 4.269);

f) que se podrían considerar las estrategias de ordenación y mitigación acordadas en otros foros (Comunidad Europea, NAFO) (párrafo 4.269);

ii) aprobará:

a) la recopilación de datos de la captura secundaria de bentos por los observadores, incluidos los requisitos específicos para el año entrante (párrafo 4.261), para facilitar los análisis de los EMV y de los efectos de la pesca de fondo del próximo año (párrafo 4.245);
b) las definiciones de unidades indicadoras de EMV, prueba de un EMV y Zonas de Riesgo, para determinar las medidas que los barcos de pesca podrían tomar cuando encontrarán indicios de un posible hallazgo de un EMV (párrafo 4.254 al 4.257);

c) que se encomiende al WG-FSA la tarea de revisar los datos de observación y del barco en su próxima reunión y de brindar más asesoramiento sobre las medidas de mitigación y prácticas cuando se encuentren pruebas de un EMV, tomando en cuenta los resultados del taller;

iii) decidiera:

a) que el barco será responsable de registrar y notificar la captura secundaria de bentos, de vigilar la captura para determinar si hay pruebas de un EMV y de notificar a la Secretaría y al Estado del pabellón la posible presencia de un EMV sobre la base de lo que constituye prueba de un EMV (párrafos 4.254, 4.255 y 4.266);

b) el método mediante el cual se acumularían pruebas de un EMV utilizando secciones de la línea como unidades de control, y que todas las secciones sean observadas para determinar la captura secundaria de bentos (párrafo 4.254);

c) qué constituirá una Zona de Riesgo y su gestión en 2008/09, tomando en cuenta que el Comité Científico había:

- acordado que si la prueba de un EMV se obtiene de una sola sección de la línea, entonces la posición de dicha sección debería considerarse Zona de Riesgo que necesita protección provisoria de la pesca por el resto de la temporada (párrafo 4.258);

- acordado que cuando se obtuviera pruebas de un EMV, el barco deberá informar inmediatamente a la Secretaría y al Estado del pabellón la posición de la sección, o secciones de la línea donde se encontraron pruebas (párrafo 4.259);

- indicado que la designación de Zonas de Riesgo de acuerdo con la acumulación de pruebas de la existencia de un EMV en una sola sección de la línea por si misma no sería suficiente para otorgar protección a un EMV para el cual las pruebas pueden separarse entre secciones de la línea, o pueden acumularse hasta muy cerca del número crítico en cada una de varias secciones consecutivas de la línea, y que se podía utilizar una acumulación de pruebas de un EMV en varias secciones consecutivas de la línea para designar una Zona de Riesgo alrededor de esas secciones consecutivas de la línea (párrafo 4.260);

- considerado y efectuado decisiones en cuanto a lo que se requeriría para declarar una Zona de Riesgo, incluida la designación de una zona de seguridad (párrafos 4.262 al 4.265);
• y decidido que los barcos deberán cesar inmediatamente el calado de líneas que intersecten una Zona de Riesgo, y apenas la flota reciba notificación de la Secretaría (lo que debe suceder dentro de las 24 horas de recibido el informe del encuentro de un EMV), ésta no podrá calar líneas que intersecten la Zona de Riesgo (párrafo 4.267).

4.282 El Comité Científico no cuenta con asesoramiento para la Comisión con respecto a otras medidas de conservación (párrafo 4.270).

4.283 En lo que concierne al asesoramiento sobre planes de investigación y recopilación de datos, el Comité Científico recomendó a la Comisión que:

 i) tomar nota de:

 a) que cualquiera que fuese la estrategia adoptada para el año próximo, será importante recopilar la máxima cantidad posible de datos de la captura secundaria de bentos para efectuar un análisis el año próximo (párrafo 4.271);

 b) que la experiencia de WG-IMAF demostró la importancia de los siguientes factores en la mitigación de la mortalidad incidental de aves marinas en las pesquerías, y en la mitigación de los efectos negativos considerables en los EMV (párrafo 4.271):

 • la educación de las tripulaciones de los barcos que participan en las pesquerías de fondo exploratorias ayudará a sensibilizarlas sobre el valor de los EMV, en términos de la biodiversidad marina y como hábitats de comunidades de peces, y la importancia de elaborar medidas de mitigación para evitar que sean dañados;

 • el refinamiento continuo de métodos para reducir la frecuencia de pérdida de artes de pesca que puedan afectar los EMV;

 ii) aprobar:

 a) los datos a ser recopilados por los observadores (párrafo 4.272);

 iii) reconociera:

 a) la necesidad de mejorar la presentación de datos de la captura secundaria de bentos para que éstos se puedan utilizar en los análisis sobre la interacción de la pesca de fondo con los EMV, y de tomar las medidas necesarias a este fin (párrafo 4.273).

4.284 El Comité Científico indicó que los párrafos 2 y 4 de la Medida de Conservación 22-05 podían eliminarse pues ya no eran necesarios.
MORTALIDAD INCIDENTAL

5.1 Tras examinar el informe de WG-IMAF (anexo 6), el Comité Científico aprobó su contenido y conclusiones y el plan de trabajo intersesional (anexo 6, tabla 1), sujeto a los comentarios siguientes.

5.2 El Comité Científico invitó a los miembros a examinar la participación en WG-IMAF y facilitar la asistencia de sus representantes a las reuniones, especialmente la de coordinadores técnicos y miembros que participan en actividades de pesca en el Área de la Convención, o zonas adyacentes, que no hayan participado recientemente en dicho grupo de trabajo (anexo 6, párrafo 1.10).

Mortalidad incidental de aves y mamíferos marinos en las pesquerías dentro del Área de la Convención en 2007/08

5.3 El Comité Científico observó que:

i) el total extrapolado de la mortalidad de aves marinas causada por las interacciones con la pesca de palangre dirigida a *Dissostichus* spp. en el Área de la Convención durante 2007/08 se estimó en 1 355 petreles (91% petreles de mentón blanco, 7% de fardelas grises y 2% especies *Macronectes*). Todas estas estimaciones de mortalidad se relacionaron con las ZEE francesas – 131 aves en la Subárea 58.6 y 1 244 en la División 58.5.1 (anexo 6, párrafos 2.3 y 2.4);

ii) éste era el tercer año consecutivo en que no se observaba la captura de ningún albatros en las pesquerías de palangre del Área de la Convención, y el segundo año consecutivo en que la única mortalidad incidental de aves marinas dentro del Área de la Convención provenía de la pesquería de palangre que opera en las ZEE francesas;

iii) se notificó la mortalidad de cinco aves marinas (tres petreles de mentón blanco y dos pingüinos rey) durante la pesca de arrastre de peces en el Área de la Convención; todas ocurrieron en la pesquería del draco en la Subárea 48.3. No se registró la mortalidad de aves marinas durante la pesca de arrastre de kril ni durante la pesca con nasas (anexo 6, párrafos 2.13, 2.18, 2.19 y 2.22);

iv) se registró la mortalidad de nueve pinnípedos en el Área de la Convención durante la temporada 2007/08 (WG-FSA-08/5 Rev. 1, párrafo 5): dos lobos finos antárticos y una foca cangrejera en la pesquería de palangre, y cinco lobos finos antárticos y un pinnípedo no identificado en la pesquería de arrastre (anexo 6, párrafos 2.23 al 2.26).

5.4 El Comité Científico remitió a SCIC la información sobre los barcos que no implementaron plenamente las Medidas de Conservación 26-01, 25-02 y 25-03 (anexo 6, párrafo 2.49).

5.5 El Comité Científico recomendó que los miembros distribuyeran activamente el cartel educativo de la CCRVMA sobre la necesidad de evitar la eliminación de desechos con anzuelos, y el cartel sobre desechos marinos de la CCRVMA (cuando se haya terminado).
(anexo 6, párrafo 2.54), entre los pescadores que operan en áreas donde se encuentran aves y mamíferos marinos del Área de la Convención, y se asegurarán de que estos carteles fueran exhibidos en los barcos (anexo 6, párrafos 2.31, 2.39 y 12.12).

Examen de los planes de acción para eliminar la mortalidad de aves marinas

Plan de acción de Francia para reducir/eliminar la mortalidad de aves marinas en la Subárea 58.6 y División 58.5.1

5.6 La reducción en la mortalidad incidental de aves marinas registrada en la Subárea 58.6 y División 58.5.1 dentro de las ZEE francesas ha sido muy alentadora para el Comité Científico (anexo 6, párrafos 2.7 y 2.8).

5.7 Estos resultados preliminares se pueden relacionar directamente con el progreso logrado por Francia en la implementación de su plan de acción. El Comité Científico reconoció que si bien algunas de las recomendaciones aún estaban siendo consideradas, muchas de ellas ya se habían implementado. Aparentemente se pueden alcanzar reducciones significativas, y quizás una tasa de mortalidad cercana a cero, si se continúa actuando con diligencia y respetando estrictamente el plan de acción.

5.8 El Comité Científico pidió a Francia que:

i) presentara una traducción al inglés del documento SC-CAMLR-XXVII/BG/8 y, si fuera posible, enviara expertos a WG-SAM (SC-CAMLR-XXVI, párrafo 5.6(ii)) (anexo 6, párrafo 3.10);

ii) en 2009 proporcionara al WG-IMAF y al Comité Científico un informe detallado sobre el avance logrado en la implementación del plan de acción;

iii) incluyera cifras para ilustrar el solapamiento entre el esfuerzo pesquero semanal por sector y la tasa de mortalidad incidental de aves marinas, en su informe de avance de 2009 (anexo 6, párrafo 3.12).

5.9 El Comité Científico tomó nota de que Francia continuaba esforzándose por utilizar y crear medidas de mitigación eficaces en las pesquerías dentro de sus ZEE, y reduciendo la mortalidad incidental de aves marinas. El Comité Científico se mostró complacido por el firme propósito de Francia de lograr una mortalidad incidental de aves marinas de casi cero a mediano plazo, y una reducción a menos de 1000 casos de mortalidad en el futuro cercano.

5.10 El Comité Científico señaló que mantenía su asesoramiento de que si Francia implementara plenamente todos los elementos de las recomendaciones de mejores prácticas de la CCRVMA para la mitigación de la mortalidad incidental de aves marinas, los niveles de mortalidad observadas en las ZEE francesas se reducirían considerablemente a niveles próximos a cero.

5.11 El Prof. Duhamel (Francia) agradeció a los miembros y al WG-IMAF por el apoyo a sus esfuerzos para reducir la mortalidad incidental de aves marinas, y manifestó que Francia continuaría trabajando en conjunto con el WG-IMAF y otros miembros para resolver este problema.
Mortalidad incidental de aves marinas durante la pesca realizada fuera del Área de la Convención

5.12 Dado que los niveles de mortalidad de aves marinas del Área de la Convención en zonas al norte de la misma siguen siendo considerablemente más altos que los niveles que se dan dentro del Área de la Convención, el Comité Científico indicó que WG-IMAF había solicitado a los miembros que notificaran la mortalidad incidental de aves y mamíferos marinos del Área de la Convención provocada por la pesca que se realiza fuera de ella (Resolución 22/XXV, párrafo 3; anexo 6, párrafo 4.3). Todos los miembros del Comité Científico, con la excepción de Argentina, estuvieron de acuerdo con el asesoramiento de WG-IMAF.

5.13 El Dr. E. Barrera-Oro (Argentina) indicó que Argentina no había estado presente en la reunión de WG-IMAF.

5.14 El Comité Científico observó que parecía incongruente que los miembros pudieran satisfactoriamente reducir la mortalidad incidental de aves marinas cuando pescaban dentro el Área de la Convención, pero que registraran altos niveles de mortalidad incidental cuando lo hacían fuera de la misma.

5.15 Varios representantes del Comité Científico señalaron que tenían la intención de proporcionar nueva información sobre la mortalidad incidental de aves marinas en el Área de la Convención causada por la pesca realizada fuera del Área de la Convención en 2009.

5.16 El Comité Científico observó que en áreas adyacentes al Área de la Convención la pesca de palangre pelágico seguían presentando un grave riesgo para las aves marinas del Área de la Convención. El Comité Científico recordó su comentario de 2005 de que las pesquerías de palangre bajo la competencia de CCSBT podían estar causando la muerte de 10 000 albatros por año (SC-CAMLR-XXIV, anexo 5, apéndice O, párrafo 175) en marcado contraste con los niveles próximos a cero de la mortalidad incidental de albatros y petreles dentro del Área de la Convención de la CCRVMA.

5.17 El Comité Científico señaló que entre los factores que juegan un papel crítico en el logro de resultados positivos en el Área de la Convención se incluyen la utilización de observadores en toda la flota, el examen y comentario experto de la información técnica, y la implementación de medidas de mitigación eficaces y obligatorias. El Comité Científico convino en que la aplicación de un enfoque tal fuera del Área de la Convención era un asunto de urgencia si se deseaba revertir los efectos insostenibles en algunas poblaciones de aves marinas del Área de la Convención.

Mortalidad incidental de aves marinas durante la pesca no reglamentada en el Área de la Convención

5.18 Este año no se prepararon estimaciones de la mortalidad incidental de aves marinas durante la pesca INDR dentro del Área de la Convención – previamente estimadas para el esfuerzo de la pesca de palangre –, debido a que la mayor parte de la pesca INDR fue realizada por barcos que utilizaron redes de enmalle, y no se contaba con suficiente información para hacer extrapolaciones para este tipo de arte (anexo 6, párrafo 5.3).
5.19 El Comité Científico solicitó información adicional de los miembros que realizan pesquerías reglamentadas con redes de enmalle, concretamente datos empíricos y orientación que ayudara en este proceso en el futuro (anexo 6, párrafo 5.4). También, la información de las acciones tomadas en contra de barcos de pesca INDNR ayudaría a WG-IMAF a describir la interacción entre la pesca con redes de enmalle y las aves marinas.

5.20 El Comité Científico señaló que se podría obtener información sobre la interacción de las redes de enmalle con las aves y mamíferos marinos a partir de los datos sobre artes similares (p. ej. redes de trasmallo) utilizados en la pesca de investigación en el Área de la Convención, de la pesca efectuada dentro de las ZEE de los miembros, de las observaciones de las operaciones de la pesca INDNR con redes de enmalle en alta mar, y de datos sobre la recuperación de artes de la pesca INDNR dentro del Área de la Convención. El Comité Científico recomendó que cuando se proporcione esta información también se incluya una descripción técnica del arte de pesca con la cual se relaciona la mortalidad incidental.

5.21 Argentina y Uruguay indicaron que poseen una amplia experiencia en los aspectos operacionales de los artes de pesca de enmalle (es decir, redes de trasmallo) en aguas costeras. Se reconoció que esta información podría servir para evaluar la mortalidad incidental potencial de aves y mamíferos marinos causada por las operaciones de pesca INDNR con redes de enmalle.

5.22 El Comité Científico expresó gran preocupación por la posibilidad de que la pesca INDNR con redes de enmalle estuviera provocando la muerte de aves marinas, y reconoció que el no poder estimar la mortalidad incidental relacionada con esta actividad pesquera no implicaba que fuera menor que lo que se anticiparía si todos los barcos de pesca INDNR detectados usaran palangres (anexo 6, párrafo 5.6).

5.23 No obstante, el Comité Científico reiteró sus conclusiones de años recientes de que incluso estos niveles de mortalidad incidental de aves marinas provocada por la pesca INDNR eran muy preocupantes, y posiblemente insostenibles para algunas de las poblaciones afectadas (SC-CAMLR-XXVI, anexo 6, párrafo I.33). Se alentó a la Comisión a continuar sus esfuerzos encaminados a la reducción de la mortalidad incidental de aves marinas causada por la pesca INDNR.

Investigación de medidas de mitigación y experiencias conexas

5.24 El Comité Científico tomó nota de la recomendación de WG-IMAF de referirse a la medida creada por Chile para mitigar la mortalidad incidental y la depredación como palangres artesanales con cachaloteras (anexo 6, párrafo 6.18). El término para esta configuración necesita resolverse, de manera que todos los grupos de trabajo del Comité Científico utilicen una terminología uniforme.

5.25 El Comité Científico solicitó al grupo especial TASO que durante el periodo entre sesiones formulara descripciones detalladas de los distintos tipos de arte, en especial, una descripción técnica de los métodos de arrastre continuo utilizados en la pesca de kril dentro del Área de la Convención, que incluyera el arte utilizado, las operaciones de pesca, los detalles de la elaboración del producto a bordo y la eliminación de desechos por la borda (anexo 6, párrafo 6.9).
5.26 El Comité Científico reiteró su recomendación (SC-CAMLR-XXVI, anexo 6, párrafo I.44) de probar la utilidad del amarre de la red, según proceda, en otras pesquerías de arrastre pelágicas que se realizan dentro del Área de la Convención (anexo 6, párrafo 6.10).

5.27 El Comité Científico recomendó que la Medida de Conservación 25-02 fuera modificada para que incluyera disposiciones relativas al lastrado de las líneas utilizadas en los barcos que pescan con el sistema de palangre artesanal (anexo 6, párrafo 6.11).

Recopilación de datos de observación

5.28 El Comité Científico examinó las necesidades con respecto a la recopilación de datos sobre distintos aspectos de la interacción con aves y mamíferos marinos y sobre la mitigación, y recomendó algunos cambios o adiciones a los cuadernos de observación, a los informes de campaña y a las prácticas de observación, incluidos:

 i) en relación con aspectos generales –

 a) en el futuro los observadores registren información detallada en sus informes de campañas sobre cualquier ave anillada observada para que la Secretaría pueda estudiar la procedencia de las mismas (anexo 6, párrafo 7.3);

 b) actualizaciones a la matriz de tareas y prioridades de observación (SC-CAMLR-XXVI, anexo 5, tabla 20) y recomendaciones sobre la cobertura de observación requerida según el nivel de riesgo (SC-CAMLR-XXVI, anexo 6, tabla 20) en las tablas 13 a la 15 (anexo 6, párrafos 7.21, 7.22 y 7.25);

 c) se pida a los observadores que proporcione fotografías de los artes utilizados en el Área de la Convención y de cualquier pérdida accidental o intencional de artes de pesca, cintas plásticas de embalaje o cualquier otro material que no sea biodegradable (anexo 6, párrafo 7.28);

 d) que el grupo especial TASO elabore un protocolo para crear un archivo fotográfico de referencia de los artes de pesca utilizados (anexo 6, párrafos 7.28 y 12.9);

 ii) en relación con las pesquerías de kril –

 a) se requiere una cobertura de observación sistemática en la pesquería de kril para poder hacer una extrapolación de la mortalidad incidental total de mamíferos marinos (anexo 6, párrafos 7.4 al 7.8);

 b) durante 2008/09 se utilice un protocolo modificado para registrar las colisiones con el cable de la red en las pesquerías de arrastre de kril que operan con el método de pesca continuo (anexo 6, párrafos 7.14 y 7.15);
c) a fin de atender a las prioridades del Comité Científico, los requisitos con respecto a la recopilación de datos sobre la mortalidad incidental de aves y mamíferos marinos aplicables a los arrastreros de kril (anexo 6, párrafo 7.23) son:

- observar el 100% de los barcos (la tabla 14 del anexo 6 describe la proporción de lances y arrastres que deben ser observados en cada lance);
- registrando el uso y diseño de los dispositivos de mitigación;
- observar el cable de la red por lo menos una vez cada 24 horas para detectar colisiones de las aves con el cable;

iii) en relación con las pesquerías de palangre –

a) los coordinadores técnicos alientan a los observadores a medir la línea espantapájaros una vez cada siete días, y se modifique el formulario L2 y las instrucciones pertinentes a fin de incluir la técnica de medición utilizada para estimar el área cubierta por la línea espantapájaros (anexo 6, párrafos 7.17 y 7.18);

b) en los informes relativos a la pesca de palangre, se distinga cuál de los tres métodos de pesca fue utilizado: el sistema español, el de calado automático o los palangres artesanales, o una combinación de los mismos. Además, si se utilizó un palangre artesanal, es importante registrar si se utilizaron “cachaloteras” (anexo 6, párrafo 7.27);

iv) en relación con las pesquerías de arrastre –

a) se aplique el protocolo de recopilación de datos de colisiones con el cable de la red en todas las pesquerías de arrastre dentro del Área de la Convención en 2008/09 (SC-CAMLR-XXVI, anexo 6, párrafo II.124), especialmente en las pesquerías de arrastre en la División 58.5.2 (anexo 6, párrafos 7.9 al 7.11);

b) los observadores proporcionen una descripción más detallada de las medidas de mitigación utilizadas en la pesquería del draco rayado en la Subárea 48.3 (anexo 6, párrafo 2.16).

5.29 El Comité Científico señaló que el protocolo sobre colisiones con el cable de la red no se puede aplicar a una gran proporción de los arrastres de las pesquerías cuyas operaciones se realizan principalmente durante la noche, como es el caso en la División 58.5.2. El Comité Científico pidió que la Secretaría presentara información sobre la proporción de colisiones con el cable de la red observada en los arrastres diurnos y la proporción observada durante los arrastres nocturnos para que fuera considerada por WG-IMAF en 2009.
Estudios del estado y la distribución de aves y mamíferos marinos

5.30 El Comité Científico subrayó la importancia fundamental de contar con información actualizada sobre el estado y la distribución de las aves marinas para la elaboración de las evaluaciones del riesgo de interacción con las pesquerías. El Comité Científico expresó su deseo de continuar con la cooperación y coordinación establecida con ACAP y con BirdLife International, incluida la invitación permanente a los expertos de estas organizaciones (SC CAMLR-XXVI, párrafo 5.56), a fin de asegurar que la CCRVMA disponga de la mejor información científica disponible (anexo 6, párrafo 8.2).

Evaluación del riesgo en las subáreas y divisiones de la CCRVMA

5.31 Este año no se realizaron revisiones de las evaluaciones exhaustivas del riesgo potencial de interacción entre las aves marinas y las pesquerías para todas las áreas estadísticas en el Área de la Convención, ya que no se proporcionó nueva información relacionada con la distribución marina de las aves. Por lo tanto, las evaluaciones y el asesoramiento que fueron combinados en un documento de referencia y presentados al Comité Científico y a la Comisión en 2007 (SC-CAMLR-XXVI/BG/31), fueron ratificados nuevamente por el Comité Científico (anexo 6, párrafo 9.3).

5.32 El Comité Científico recomendó que, de realizarse, las investigaciones propuestas por Japón dentro de la División 58.4.4 sean efectuadas cumpliendo plenamente con la Medida de Conservación 25-02 (anexo 6, párrafo 9.6).

5.33 El Comité Científico tomó nota de la propuesta de Japón de eximirse del requisito de efectuar pruebas de la tasa de hundimiento del palangre fuera del Área de la Convención cuando realice la pesca a fines de la temporada 2007/08 y principios de la temporada 2008/09 en la Subárea 48.6. El Comité Científico convino en que esta exención propuesta no presentaba un riesgo adicional para las aves marinas del Área de la Convención (anexo 6, párrafo 9.9).

5.34 El Comité Científico recomendó que se modificara la Medida de Conservación 24-02 a fin de que:

i) incluyera una relajación del requisito de efectuar pruebas iniciales de la tasa de hundimiento del palangre fuera del Área de la Convención, permitiendo así que estas pruebas se realicen dentro de las aguas de la CCRVMA pero con anzuelos sin carnada. Esto se aplicaría a los protocolos A, B y C en vigor (anexo 6, párrafo 9.8);

ii) se agregara la Subárea 48.4 al párrafo 1 (anexo 6, párrafo 9.10);

iii) se incorporara un nuevo protocolo para el palangre artesanal y para el palangre artesanal con “cachaloteras” (anexo 6, párrafo 9.11).
Mortalidad incidental de aves marinas relacionada con pesquerías nuevas y exploratorias

5.35 El Comité Científico recomendó que:

i) los barcos que participan en pesquerías nuevas y exploratorias de palangre y de arrastre tengan el nivel de observación requerido para registrar la mortalidad incidental y otra información pertinente, según se describe en las tablas 13 y 15 del anexo 6 (anexo 6, párrafo 10.2);

ii) en la pesquería exploratoria de kril que será realizada por Noruega en la Subárea 48.6 se utilice un dispositivo de exclusión de mamíferos marinos para impedir que los pinnípedos entren en la red (CCAMLR-XXVII/13), y se observe por lo menos un 25% de los lances y un 75% de las recogidas de la red (anexo 6, párrafo 10.6);

iii) se utilice un dispositivo de exclusión de mamíferos marinos diseñado para impedir que los pinnípedos entren en la red en todas las pesquerías de kril (anexo 6, párrafo 10.13);

iv) se realicen observaciones para recopilar información descriptiva sobre la mortalidad incidental potencial en las pesquerías con nasas propuestas (anexo 6, párrafo 10.8);

v) la Secretaría elabore una lista de comprobaciones similar a la utilizada en las notificaciones de pesquerías nuevas y exploratorias de palangre, específicamente para las notificaciones de otras pesquerías nuevas y exploratorias (anexo 6, párrafo 10.10).

Iniciativas internacionales y nacionales pertinentes a la mortalidad incidental de aves marinas relacionada con la pesca de palangre

5.36 El Comité Científico recomendó que:

i) se alentara a los miembros a que apoyaran la adopción de estas Directrices Técnicas de las Mejores Prácticas de FAO para los planes de acción sobre Aves Marinas en la 28ª sesión de COFI (2 al 6 de marzo de 2009) (anexo 6, párrafo 11.8);

ii) se solicitara a la Comisión que examinara otras posibles acciones para acelerar la adopción de medidas encaminadas a evitar o mitigar la mortalidad incidental de aves marinas provenientes del Área de la Convención en las pesquerías reguladas por CCSBT (anexo 6, párrafo 11.11);

iii) se pidiera a la Secretaría que estudiara la posibilidad de obtener datos de la mortalidad incidental y de esfuerzo, y demás detalles, de la Secretaría de IOTC en relación con la pesca con redes de enmalle regulada por dicha organización (anexo 6, párrafo 11.13);
iv) la Comisión tomará nota del papel cada vez mayor y beneficioso que está jugando ACAP en mejorar la gestión de la mortalidad incidental de aves marinas provenientes del Área de la Convención, que ocurre fuera de ella, y que es responsabilidad de las OROP (anexo 6, párrafos 8.1 y 11.1 al 11.3) y alentará a las Partes de la CCRVMA que aún no han suscrito el Acuerdo de ACAP para que lo consideraran;

v) además de otras actividades que pudieran surgir periódicamente:

a) se solicitará al Secretario Ejecutivo de la CCRVMA que escribiera a los Secretarios Ejecutivos de las OROP que figuran en el apéndice 1 de la Resolución 22/XXV, para reiterarles nuevamente el objetivo de la Comisión de reducir la mortalidad incidental de aves marinas del Área de la Convención en áreas fuera de la misma (anexo 6, párrafos 11.5 y 11.6);

b) se solicitará al Secretario Ejecutivo de la CCRVMA que tratara de incluir un punto en la agenda que reflejara el interés de la Comisión en reducir la mortalidad incidental de aves marinas del Área de la Convención en áreas fuera de la misma, en la agenda de la reunión de secretarías de los Organismos Pesqueros Regionales a celebrarse en marzo de 2009 (anexo 6, párrafos 11.20(v)(b));

c) se alentará a las Partes pertinentes de la CCRVMA a que realicen o continúen realizando las actividades descritas en los párrafos 3, 4 y 5 de la Resolución 22/XXV (anexo 6, párrafo 11.5).

5.37 El Comité Científico pidió a la Secretaría que preparara y presentara un documento de trabajo a la reunión de los Organismos Pesqueros Regionales a la cual se hace referencia en el párrafo 5.36(v)(b), que ilustrara la superposición espacial de las zonas de alimentación de las aves que se reproducen en el Área de la Convención con las actividades de pesca de la CCSBT.

5.38 El Comité Científico discutió estos temas (párrafo 5.12 al 5.16) y reiteró la importancia de la implementación de la Resolución 22/XXV por parte de los miembros, tanto en relación con las OROP de las cuales forman parte como a las pesquerías bajo su jurisdicción.

Desechos marinos y su efecto en las aves y mamíferos marinos en el Área de la Convención

5.39 El Comité Científico señaló:

i) que el cometido revisado de WG-IMAF incluye la consideración de los desechos marinos en el Área de la Convención, específicamente, del efecto directo de los desechos marinos en las aves y los mamíferos marinos (anexo 6, párrafo 12.2);

ii) el aumento general de la frecuencia de desechos marinos (anexo 6, párrafo 12.11).
5.40 El Comité Científico recomendó:

i) la implementación de las definiciones revisadas de desechos en relación con las colonias de aves marinas (anexo 6, párrafo 12.3), y de la edad y sexo del lobo fino antártico, para la notificación de datos de desechos marinos (anexo 6, párrafo 12.4);

ii) la creación de un archivo fotográfico de los desechos encontrados, que incluya fotos de aparejos de pesca tomadas por observadores (anexo 6, párrafo 12.9);

iii) la inclusión de información relacionada con los desechos marinos en las comunicaciones de la CCRVMA con otras organizaciones internacionales, incluidas las OROP (anexo 6, párrafo 12.10);

iv) la publicación de un cartel de tamaño A3 de plexiglás, para poner de relieve la importancia de la gestión de desechos de conformidad con las medidas de conservación, y las consecuencias para los animales marinos de no hacer esto en forma eficaz (anexo 6, párrafo 12.12);

v) que la Comisión enmiende la Medida de Conservación 26-01 para asegurar que todos los zunchos plásticos de empaque se corten en trozos pequeños (~10 cm) antes de deshacerse de ellos o incinerarlos (anexo 6, párrafo 12.13);

vi) que los miembros proporcione datos sobre desechos marinos a la Secretaría (anexo 6, párrafo 12.14).

5.41 El Comité Científico felicitó al grupo WG-IMAF por haber tratado el tema de los desechos marinos y su efecto en las aves y mamíferos marinos por primera vez, y aprobó el programa de trabajo para avanzar en esta labor. En particular, el Comité Científico pidió información sobre la procedencia de los anzuelos presentes en las colonias de reproducción, y que se determinara si éstos provenían de las pesquerías del Área de la Convención (anexo 6, párrafo 12.7). Esta tarea requerirá la notificación de información detallada de los miembros que han realizado estudios de las colonias de reproducción de aves marinas, y la compilación de datos sobre los distintos ars de pesca utilizados en el Área de la Convención (anexo 6, párrafo 7.29(i)(d)).

Interacción con otros grupos de trabajo del Comité Científico

5.42 El Comité Científico tomó nota de la continua y constructiva interacción entre el WG-IMAF, WG-FSA, WG-EMM, WG-SAM y el grupo especial TASO (anexo 6, párrafos 13.1 al 13.6 y 14.3; anexo 5, párrafos 7.7 al 7.11) y señaló que esta interacción está ayudando a racionalizar la labor de sus grupos de trabajo.
Racionalización de la labor del Comité Científico

5.43 El Comité Científico aprobó:

i) el cometido revisado de WG-IMAF (anexo 6, párrafo 15.7);

ii) las tareas esenciales a ser efectuadas cada año (anexo 6, párrafo 15.3);

iii) el cambio de nombre del grupo de trabajo (anexo 6, párrafo 15.8);

iv) el cambio de nombre de los documentos de trabajo de WG-IMAF (anexo 6, párrafo 15.9);

v) la realización de sesiones de WG-IMAF conjuntamente con otros grupos de trabajo del Comité Científico, según sea necesario (anexo 6, párrafo 15.10).

Asuntos varios

5.44 El Comité Científico aceptó la renuncia de su coordinador, Sr. Smith, al final de esta reunión, y señaló que la Sra. Rivera continuará actuando en esta capacidad. Se agradeció al Sr. Smith por su trabajo e importante contribución como coordinador de WG-IMAF en los últimos cuatro años. El Comité Científico convino en que el Sr. N. Walker (Nueva Zelandia) fuera nombrado coordinador del grupo WG-IMAF para que trabajara con la Sra. Rivera.

Asesoramiento a la Comisión

5.45 Esta sección trata de distinguir entre el asesoramiento general (que la Comisión podría considerar digno de nota o aprobación) y el asesoramiento específico, que incluye peticiones a la Comisión para que tomen medidas.

Asesoramiento general

5.46 Se pidió a la Comisión que tomara nota de:

i) que el nivel de mortalidad incidental de aves marinas en la pesquería reglamentada de palangre en la mayoría de las zonas del Área de la Convención en 2008 sigue siendo bajo; que por segundo año consecutivo no había habido mortalidad de aves en la pesquería de palangre reglamentada (excepto en las ZEE de Francia); y que por tercer año consecutivo no se había observado mortalidad de albatros en las pesquerías de palangre efectuadas en el Área de la Convención (párrafo 5.3);
ii) que el nivel de mortalidad incidental de aves y mamíferos marinos en las pesquerías de arrastre del Área de la Convención había continuado siendo relativamente bajo en 2008 (párrafo 5.3);

iii) la reducción de la mortalidad incidental de aves marinas notificada para la Subárea 58.6 y la División 58.5.1 dentro de las ZEE de Francia (párrafo 5.6);

iv) la presentación de un plan de acción de Francia, y el progreso en su implementación, de manera que es posible que se consiga una mortalidad cercana a cero si se continua actuando diligentemente y si se cumple estrictamente con el plan de acción (párrafo 5.7);

v) el objetivo de Francia de conseguir una mortalidad incidental de aves marinas próxima a cero a mediano plazo, con una reducción de la mortalidad incidental a menos de 1 000 aves marinas a corto plazo (párrafo 5.9);

vi) la recomendación de que los miembros velaran por que sus barcos exhiban el cartel producido por la CCRVMA sobre la eliminación de anzuelos eliminados en los desechos marinos (párrafo 5.5);

vii) la evaluación de la implementación de las medidas de conservación pertinentes y las listas de barcos que no las cumplen en su totalidad (párrafo 5.4);

viii) la solicitud de información a los miembros sobre las operaciones de pesca con redes de enmalle, en particular, acerca del nivel y las tasas de captura incidental de aves marinas en las operaciones de pesca efectuadas con este tipo de arte (párrafos 5.19 y 5.20);

ix) la solicitud al grupo especial TASO de que preparara una descripción técnica de los métodos de pesca continua con redes de arrastre utilizados en las pesquerías de kril efectuadas en el Área de la Convención (párrafo 5.25);

x) la recomendación de probar la utilidad del amarre de la red, según proceda (párrafo 5.26);

xi) la investigación propuesta por Japón en la División 58.4.4 (WG-FSA-08/39) que, de realizarse, se hiciera cumpliendo fielmente con la Medida de Conservación 25-02 (párrafo 5.32);

xii) la propuesta de Japón de eximirse del requisito de efectuar pruebas de la tasa de hundimiento del palangre fuera del Área de la Convención cuando realice la pesca a fines de la temporada 2007/08 y principios de la temporada 2008/09 en la Subárea 48.6. El Comité Científico convino en que esta exención propuesta no presentaba un riesgo adicional para las aves marinas del Área de la Convención (párrafo 5.33);

xiii) el Comité Científico había nombrado al Sr. Walker como coordinador de WG-IMAF luego del retiro del coordinador actual, el Sr. Smith. La Sra. Rivera continuará en su papel de coordinadora (párrafo 5.44).
5.47 Se pidió que la Comisión aprobara:

i) varias solicitudes a Francia para que contribuya al esfuerzo por reducir aún más la captura incidental de aves marinas en la ZEE francesa, a niveles cercanos a cero (párrafo 5.8);

ii) los cambios recomendados del cuaderno de observación, los informes de campaña y las prácticas de observación (párrafo 5.28);

iii) niveles adecuados de observación en los barcos que participan en las pesquerías nuevas y exploratorias, el uso de dispositivos para la exclusión de mamíferos marinos en todas las pesquerías de arrastre de kril, y el desarrollo de listas de verificación para todas las pesquerías nuevas y exploratorias a efectuarse con artes de pesca distintos a los palangres (párrafo 5.35);

iv) el programa que está desarrollando WG-IMAF para revisar y analizar los datos sobre la magnitud y la importancia de los efectos directos de los desechos marinos en el Área de la Convención (párrafos 5.39 y 5.40).

5.48 Todos los miembros, con excepción de Argentina, solicitaron a la Comisión que aprobara el llamado de WG-IMAF a los miembros para que cumplieran con el pedido de notificar la mortalidad incidental de aves y mamíferos marinos del Área de la Convención ocasionada por la pesca que se realiza fuera de ella (párrafos 5.12 y 5.15).

Asesoramiento específico

5.49 Se pidió a la Comisión que considerara medidas con relación a:

i) la producción y distribución de un cartel de la CCRVMA sobre los desechos marinos (párrafo 5.40(iv));

ii) las modificaciones propuestas de las Medidas de Conservación 25-02, 24-02 y 26-01 (párrafos 5.27, 5.34 y 5.40(v));

iii) medidas permanentes relacionadas con la mortalidad de aves marinas causada por la pesca INDNR (párrafo 5.23);

iv) la implementación continua y diligente de la Resolución 22/XXV (párrafos 5.16, 5.17 y 5.36 al 5.38).

SISTEMA DE OBSERVACIÓN CIENTÍFICA INTERNACIONAL DE LA CCRVMA

6.1 De conformidad con el Sistema de Observación Científica Internacional de la CCRVMA, se emplearon observadores científicos en todos los barcos que participaron en las pesquerías de peces realizadas en el Área de la Convención.
6.2 La información recopilada por los observadores científicos a bordo de palangreros, arrastreros (peces y kril) y barcos de pesca con nasas fue resumida por la Secretaría en SC-CAMLR-XXVII/BG/2.

6.3 El Comité Científico tomó nota además de las deliberaciones del grupo especial WG-IMAF (anexo 6, párrafos 7.1 al 7.29), WG-FSA (anexo 5, párrafos 11.1 al 11.8) y WG-EMM (anexo 4, párrafos 4.28 al 4.66) sobre el programa de observación.

Grupo especial TASO

6.4 El Comité Científico recordó que en su última reunión había apoyado el establecimiento del grupo especial TASO (SC-CAMLR-XXVI, párrafos 7.9 al 7.12).

6.5 Los coordinadores del grupo especial TASO, Sr. Heinecken y Dr. Welsford, presentaron el informe de la primera reunión realizada conjuntamente con WG-EMM y WG-SAM en San Petersburgo, Rusia, los días 19 y 20 de julio de 2008 (SC-CAMLR-XXVII/BG/6).

6.6 La agenda de la primera reunión de TASO abarcó el diseño y la operación de los distintos artes utilizados en las pesquerías en el Área de la Convención, las prioridades de observación en las pesquerías de arrastre, palangre y con nasas, los planes de trabajo futuro y el cometido de este grupo.

6.7 El Comité Científico apoyó el cometido elaborado por el grupo TASO (SC-CAMLR-XXVII/BG/6, párrafo 4.2).

6.8 El Comité Científico apoyó el plan de trabajo a largo plazo de TASO en el que: (i) se asegurara un nivel equivalente de capacitación y acreditación para todos los observadores en el Área de la Convención, y (ii) facilitara el intercambio de conocimientos y experiencias entre coordinadores técnicos y observadores experimentados en métodos de capacitación de nuevos observadores.

6.9 El Comité Científico señaló que muchas de las recomendaciones del grupo TASO habían resultado útiles para su trabajo y habían sido bien recibidas por WG-FSA (anexo 5, párrafo 1.4), WG-EMM (anexo 4, párrafos 4.41 al 4.46) y WG-IMAF (anexo 6, párrafo 13.4).

6.10 El Comité Científico consideró los planes para la próxima reunión del grupo TASO. Pese a que reconocía que en el futuro la reunión se podría llevar a cabo independientemente de las demás reuniones de los grupos de trabajo para ayudar al desarrollo de la capacidad de los programas de observación y flotas de los miembros, se acordó llevar a cabo la reunión de 2009 conjuntamente con WG-EMM y WG-SAM.

6.11 El Dr. Iversen extendió complacido la invitación de Noruega para celebrar las reuniones del WG-EMM, WG-SAM y del grupo especial TASO en 2009.

6.12 El Comité Científico pidió que al preparar sus agendas, los coordinadores consideraran los puntos específicos remitidos a TASO por los grupos de trabajo.
6.13 El Dr. Barrera-Oro consideró que los expertos que componían el grupo especial TASO, incluidos representantes de la industria, podrían tal vez proporcionar información sobre las operaciones de pesca INDNR en las que se utilicen redes de enmalle, y solicitó que esto se considerara en la próxima reunión de TASO.

6.14 El Prof. O. Pin (Uruguay) estuvo de acuerdo y opinó que aquellos con intereses en la industria y los observadores nacionales que tienen experiencia fuera del Área de la Convención posiblemente puedan proporcionar información de gran valor para el Comité Científico en relación con las actividades de pesca INDNR y sus efectos.

6.15 El Prof. C. Moreno señaló que evidentemente TASO era capaz de resolver una amplia gama de asuntos técnicos. No obstante, todo miembro que tuviera información sobre las actividades y efectos de la pesca INDNR tenía la obligación de notificar esta información, y que TASO tal vez no fuera el foro adecuado para tales asuntos.

Asesoramiento del WG-FSA

6.16 El Comité Científico consideró y aprobó las recomendaciones del WG-FSA en relación con aspectos del Sistema de Observación Científica Internacional de la CCRVMA (esto fue discutido en el anexo 5, párrafo 11.8).

Asesoramiento de WG-IMAF

6.17 El Comité Científico consideró y aprobó las recomendaciones de WG-IMAF en relación con aspectos del Sistema de Observación Científica Internacional de la CCRVMA (esto fue discutido en el anexo 6, párrafos 7.3, 7.13 al 7.20, y 7.29).

Asesoramiento de WG-EMM

6.18 El Comité Científico señaló que seis cuadernos de observación científica fueron presentados a la Secretaría durante la temporada 2007/08, por observadores científicos de la CCRVMA a bordo de los barcos Saga Sea (Noruega), Niitaka Maru (Japón) y Dalmor II (Polonia) (anexo 4, párrafo 4.28).

6.19 Asimismo, el Comité Científico indicó que la Secretaría había recibido cinco notificaciones de la designación de observadores científicos internacionales de la CCRVMA en barcos pesqueros de kril que operaron en el Área 48 durante 2007/08 (anexo 4, párrafo 4.29). Esta información fue actualizada en WG-IMAF (anexo 6, párrafo 2.20 y tabla 7).

6.20 El Comité Científico indicó que el porcentaje de arrastres observados varió bastante entre observadores, temporadas y barcos. Por ejemplo, en 2006/07, se observó entre 20 y 86% de los arrastres por campaña de observación, tanto los realizados con el método de
6.21 El Comité Científico aprobó el asesoramiento de WG-EMM en relación con la revisión de las instrucciones del *Manual del Observador Científico* para que reflejaran el cambio de prioridades en la recopilación de datos (anexo 4, párrafos 4.47 al 4.54).

6.22 El Comité Científico tomó nota de las discusiones sobre el nivel de cobertura de observación científica necesaria para la pesquería de kril. Tomó nota además de que el grupo de trabajo acordó que se deberá cubrir el 100% de los barcos (es decir, cada barco deberá llevar a bordo por lo menos un observador durante todo el periodo en que se encuentra en el Área de la Convención), lo antes posible, con observadores designados por sus respectivos gobiernos o con observadores internacionales (anexo 4, párrafo 4.58).

6.23 El Comité Científico tomó nota de la petición de WG-EMM de que considerara la manera más práctica de establecer un programa de observación tal a partir de diciembre de 2009 (anexo 4, párrafo 4.59).

6.24 El Comité Científico señaló que una vez que hayan transcurrido dos años con 100% de cobertura, WG-EMM estaría en posición de asesorar al Comité Científico en relación con el nivel de cobertura que se deberá mantener (anexo 4, párrafo 4.61).

6.25 Asimismo, el Comité Científico tomó nota de la recomendación de que cualquier nuevo participante en la pesquería (miembro o barco), y cualquier barco que utilice nuevos métodos de pesca, deberá mantener un 100% de cobertura de observación durante dos años, ya sea con observadores internacionales o designados por el Estado y esto podría ser revisado al final de los dos años para determinar la cobertura que se necesitaría más adelante (anexo 4, párrafo 4.62).

6.26 El Comité Científico observó también que los barcos con mayor capacidad de captura y procesamiento podrían requerir más de un observador (anexo 4, párrafo 4.63).

6.27 Todos los miembros, excepto China, Japón y la República de Corea, aprobaron el plan de WG-EMM de designar observadores científicos en toda la flota de pesca de kril por dos años, comenzando en diciembre de 2009.

6.28 El Sr. Matsushima declaró lo siguiente:

"Japón ha dado gran importancia a la recopilación de datos científicos y muestras biológicas de la pesquería de kril. En este sentido, Japón ha empleado voluntariamente observadores científicos nacionales y ha aceptado observadores de otros países miembros en su barco de pesca de kril, suministrando datos e información científica a la CCRVMA. Creemos que esta contribución científica de Japón ha sido muy apreciada por el Comité Científico de la CCRVMA.

En respuesta al pedido del Comité Científico en 2008, Japón presentó un plan de cobertura sistemática de observadores científicos a la última reunión del WG-EMM. No obstante, desafortunadamente, Japón no recibió información alguna de por qué su plan no cumplía con los requisitos científicos para alcanzar el objetivo mencionado en el párrafo 3.7 del informe de SC-CAMLR-XXVI."
Además, el párrafo 3.14 del informe señala que el Comité Científico había pedido al WG-EMM que realizara una evaluación de cómo el esfuerzo de recopilación de datos sería afectado por los distintos enfoques propuestos en los párrafos 3.10 y 3.11. No obstante, el informe del WG-EMM no mencionó ningún resultado de una evaluación de este tipo.

En este sentido, Japón no encuentra ninguna razón científica que explique la necesidad de una cobertura total (100%), como fuera recomendado por WG-EMM, ni siquiera por un período inicial de dos años.

Sin embargo, Japón está dispuesto a emplear observadores nombrados por su gobierno para lograr un 50% de cobertura de observación como mínimo durante la temporada de pesca 2009/10”.

6.29 El Dr. Shin cuestionó los detalles de la evaluación llevada a cabo en la reunión de WG-EMM sobre las consecuencias de los distintos niveles de cobertura de observación. Opinó que aún no se cuenta con un análisis que demuestre que el 100% de cobertura de observación es indispensable, análisis que su delegación ha tratado de conseguir por muchos años. Lamentó que la utilidad del alto nivel de cobertura propuesto no hubiese sido adecuadamente evaluada. No obstante, indicó que por el momento todos estaban de acuerdo en que se necesita una cobertura sistemática considerable, y que esperaba que esto pudiera continuar.

6.30 El Dr. X. Zhao expresó que comprendía la génesis de la iniciativa que llevó a la recomendación del 100% de cobertura de observación. Sin embargo, también expresó su preocupación ante las dificultades que podrían emerger del aumento tan abrupto de la cobertura de observación, como fuera mencionado en las deliberaciones de los delegados japoneses y coreanos. En consecuencia, el Dr. Zhao propuso adoptar un enfoque más práctico aumentando gradualmente la cobertura para conseguir el mismo objetivo.

6.31 El Dr. Zhao indicó también que, en relación con la recomendación del párrafo 6.24, se hiciera una distinción entre los nuevos participantes de la pesquería y los nuevos métodos de pesca, ya que pertenecen a distintas categoría. Además, observó que no se debería imponer requisitos obligatorios adicionales a los nuevos participantes de la pesquería sin un sólido fundamento científico que lo justificara.

6.32 La mayoría de los miembros expresaron gran desilusión ante la postura adoptada por Japón, la República de Corea, y China, sobre el tema de la cobertura de observación de 100%. La mayoría de los miembros consideraron que WG-EMM había evaluado en forma exhaustiva la propuesta de Japón de implementar una cobertura de observación de 50% (WG-EMM-08/34). Este grupo de trabajo había convenido en que una vez que el programa de 100% de cobertura haya estado funcionando durante un período de dos años, estaría en posición de indicarle al Comité Científico qué nivel de cobertura sería necesario mantener, dado que se espera una cobertura sistemática mínima de 50% días-barco en la pesquería de kril (anexo 4, párrafo 4.61).

6.33 Estos miembros expresaron además su confusión ante la postura de Japón, dada su plena participación en las discusiones que precedieron el asesoramiento de WG-EMM, y consideraron que esto tenía el potencial de debilitar seriamente el rol del Comité Científico y de sus grupos de trabajo.
6.34 El Comité Científico acordó que se deberá presentar a la Comisión un anexo con el texto y referencias a los párrafos que contienen las discusiones previas sobre la cobertura de observación científica en la pesquería de kril, para guiar sus deliberaciones sobre este asunto (anexo 9).

6.35 El Comité Científico indicó que su labor dependía del esfuerzo de los observadores en la recopilación de datos, y pidió a los miembros que luego de finalizada la reunión se aseguraran de transmitir su agradecimiento a todos los observadores.

ORDENACIÓN DE PESQUERÍAS Y CONSERVACIÓN EN CONDICIONES DE INCERTIDUMBRE

Estimación de la captura de la pesca INDNR

7.1 El Comité Científico tomó nota del asesoramiento de WG-FSA sobre las tendencias en la pesca INDNR en la temporada de pesca 2007/08 (anexo 5, párrafos 8.3 al 8.8). El grupo de trabajo informó que se habían observado menos barcos involucrados en la pesca INDNR en 2007/8, y que se estimaba que la pérdida causada por esta actividad había disminuido de 3 615 toneladas en 2006/07 a 1 169 toneladas en 2007/08 (anexo 5, tablas 2 y 3).

7.2 El Comité Científico observó con preocupación que la flota de pesca INDNR opera en su mayoría con redes de enmalle (anexo 5, párrafo 8.4), y que prácticamente se desconoce la configuración y dimensiones de los artes utilizados por estos barcos, las tasas de captura de austromerluza, la captura secundaria de peces y aves, y el efecto en el bentos. Por consiguiente, la incertidumbre en la estimación de la captura INDNR para 2007/08 fue muy alta, y WG-IMAF no pudo estimar la captura incidental de aves marinas en dicha pesquería. A pesar de esta incertidumbre, el Comité Científico señaló que las redes de enmalle constituyen un método relativamente destructivo, y posiblemente capturan peces más eficazmente que los palangres. Además no se requiere carnada y se necesitan menos tripulantes que en los barcos palangreros.

7.3 El Comité Científico convino en que, dadas las pruebas existentes, no podía concluir que la pesca INDNR y sus efectos – en particular la captura secundaria de peces, bentos y aves – habían disminuido considerablemente en el Área de la Convención. Además, el Prof. Duhamel señaló que la pesca INDNR aún se efectuaba en las Divisiones 58.4.1, 58.4.3b y 58.5.1 y había vuelto a ocurrir en las Subáreas 58.6 y 88.1 luego de varios años en los que no se habían realizado actividades de esta índole en dichas subáreas.

7.4 El Comité Científico apoyó el llamado de WG-FSA a los miembros para documentar las actividades de pesca INDNR con redes de enmalle realizadas en el Área de la Convención y, cuando fuese posible, recoger las redes de enmalle caladas o abordar estos barcos de pesca INDNR para examinar la captura y las bitácoras a fin de obtener más información sobre este método de pesca INDNR.

7.5 El Prof. Moreno señaló al Comité Científico que la información obtenida de la industria indicaban que las redes de enmalle utilizadas en la pesca INDNR en el Área de la Convención tenían hasta 6 millas náuticas de longitud y 80 m de altura. El Dr. R. Leslie (Sudáfrica) recordó al Comité Científico que el año pasado Sudáfrica había presentado información sobre el funcionamiento de los barcos de la pesca INDNR que utilizan redes de
enmalle (CCAMLR-XXVI/BG/30 y BG/33). El Dr. Welsford indicó que las comparaciones de las tasas de captura con palangres y con redes de enmalle en pesquerías legítimas realizadas al norte del Área de la Convención podrían ayudar a comprender las posibles diferencias entre estos artes de pesca en el Área de la Convención, pero que aún se necesitarían realizar observaciones directas de las actividades con redes de enmalle en el Área de la Convención para entender plenamente su efecto.

7.6 El Comité Científico señaló que si bien las redes de enmalle tal vez sean eficaces para capturar peces y especies secundarias, las interacciones de estas redes con las aves sería muy diferente a las interacciones que ocurren con los palangres. Por ejemplo, en el caso de las aves voladoras podría ocurrir la captura accidental cuando éstas son atraídas por los desechos vertidos, en lugar de la captura directa mientras toman la carnada del anzuelo. También se prevé que en aguas superficiales las redes de enmalle tendrán un efecto mucho mayor en los pingüinos que los palangres.

7.7 El representante de la UICN se refirió a un nuevo informe de TRAFFIC y WWF (CCAMLR-XXVII/BG/38) que presenta una evaluación de la captura de austromerluza basada en el comercio. Estos datos podrían utilizarse para proporcionar mejores estimaciones de la captura INDNR en el Área de la Convención.

7.8 El Dr. Barrera-Oro proporcionó información adicional sobre la captura de *D. eleginoides* en el sector de la Patagonia de la ZEE argentina (Área 41). El límite de captura para 2007/08 fue el mismo que para las dos temporadas anteriores (2 500 toneladas), pero sólo se extrajeron 1 800 toneladas. El stock está aumentando debido a estrategias de ordenación implementadas principalmente en 2003. Desde 2006/07, se han marcado 2 020 peces, 10 de los cuales fueron recapturados. Se espera que la tasa de recaptura aumente en los próximos años, debido a la buena cooperación entre el programa de marcado, la flota pesquera y los observadores científicos bordo de los barcos.

7.9 El Dr. Welsford manifestó que sería conveniente que se proporcionara a la Secretaría la información sobre el programa de marcado argentino, y los detalles de las marcas liberadas en aguas adyacentes al Área de la Convención.

Cambio climático

7.10 El Dr. Trathan presentó dos trabajos del Reino Unido sobre el cambio climático (SC-CAMLR-XXVII/7 Rev. 1 y BG/13), que destacaron cuatro áreas importantes donde el cambio climático podría causar efectos en los ecosistemas marinos que preocuparían a la CCRVMA.

7.11 El Comité Científico agradeció al Reino Unido por la presentación de sus ideas sobre cómo se podrían considerar sistemáticamente los efectos potenciales del cambio climático en el ecosistema marino antártico.

7.12 El Comité Científico informó a la Comisión que las siguientes consecuencias del cambio climático podrían conllevar riesgos considerables para los ecosistemas marinos antárticos: aumento de la temperatura del mar, aumento del nivel del mar, cambios en la circulación termohalina oceánica mundial, acidificación creciente del océano, introducción de especies foráneas, y acceso creciente de lugares previamente restringidos por el hielo marino a la pesca, el turismo y el transporte comercial.
7.13 El Comité Científico estuvo de acuerdo con el Reino Unido en que existen cuatro aspectos importantes que merecerán la consideración de la CCRVMA:

- los posibles efectos del cambio climático en los invertebrados, incluidas las especies pelágicas y las comunidades del bentos;
- los posibles efectos del cambio climático en niveles tróficos más elevados – particularmente en aquellos que puedan sufrir a causa de una disminución en la coincidencia temporal y espacial con las funciones esenciales del ecosistema;
- los efectos potenciales del cambio climático en las pesquerías reglamentadas de la CCRVMA, particularmente los posibles trastornos ocasionados en la población actual y en la dinámica de reclutamiento;
- los efectos especiales del mayor acceso relacionado con el aumento de zonas sin hielo en aguas de altura de la Antártida.

7.14 El Comité Científico convino en que habría tres tareas importantes que deberán realizarse para proporcionar asesoramiento específico a la Comisión sobre las medidas de ordenación adecuadas para hacer frente al cambio climático (habida cuenta de las cuestiones mencionadas en el párrafo 7.13) y que asegurarían que los objetivos de la Convención fueran alcanzados. Éstas son:

i) Examinar la solidez del asesoramiento científico proporcionado por el Comité Científico y de las evaluaciones de los stocks preparadas por sus grupos de trabajo ante la creciente incertidumbre asociada al cambio climático, particularmente en relación con las predicciones sobre cómo responderán las poblaciones y cuáles serán los niveles de reclutamiento en el futuro.

ii) Examinar la necesidad de mejorar, y de implementar cuando corresponda, los actuales programas de seguimiento de las especies explotadas, especies dependientes y especies afines, para proporcionar indicadores fidedignos y oportunos de los efectos del cambio climático.

iii) Determinar si los objetivos de ordenación e indicadores del rendimiento de la CCRVMA requieren modificación para seguir siendo adecuados ante la incertidumbre del cambio climático.

7.15 El Comité Científico pidió a sus grupos de trabajo (WG-SAM, WG-EMM, WG-IMAF y WG-FSA) que consideraran los temas planteados en el párrafo 7.14 en sus reuniones de 2009.

Planes de ordenación de pesquerías

7.17 El Comité Científico recordó que el año pasado la Comisión había acordado que el grupo especial para la elaboración de Planes de Ordenación de Pesquerías (FMP) debía continuar desarrollando el concepto y los detalles de una lista genérica de comprobación para la ordenación de pesquerías de la CCRVMA, y describir el posible rol de los FMP en el contexto del enfoque de ordenación utilizado por la CCRVMA (CCAMLR-XXVI, párrafo 5.7).

7.18 El coordinador de este grupo especial informó al Comité Científico que el grupo no había continuado elaborando la lista de comprobación durante el período intersesional porque el Comité de Evaluación del Funcionamiento consideraría temas similares, y en muchos casos idénticos. Por lo tanto, el grupo decidió esperar que la Comisión considerara el informe del Comité y priorizara sus recomendaciones antes de continuar con esta tarea.

EXENCIÓN POR INVESTIGACIÓN CIENTÍFICA

Notificaciones de campañas de investigación con barcos de pesca comercial

8.1 El Comité Científico consideró dos propuestas para realizar una campaña de investigación de austromerluzas con palangres en 2009 con barcos de pesca comercial, de acuerdo con las disposiciones de la Medida de Conservación 24-01.

8.2 Nueva Zelandia propuso realizar estudios científicos en la Subárea 88.1 en invierno para investigar los primeros estadios del ciclo de vida y la reproducción de *D. mawsoni* en el Mar de Ross (anexo 5, párrafos 5.108 al 5.110; ver también CCAMLR-XXVII/BG/15).

8.3 El Comité Científico indicó que si bien la mayoría de los miembros del WG-FSA reconocieron que esta campaña proporcionaría importante información sobre la biología reproductiva y los primeros estadios de vida de *D. mawsoni* (anexo 5, párrafo 5.111), se expresó preocupación acerca del tamaño de la captura propuesta y de otros elementos de la propuesta (anexo 5, párrafos 5.111 al 5.115).

8.4 Japón propuso continuar sus estudios sobre la distribución y estructura de la población de austromerluzas en las Divisiones 58.4.4a y 58.4.4b que había comenzado en 2007/08 (anexo 5, párrafos 5.116 y 5.117; ver también CCAMLR-XXVII/BG/15).

8.5 El Comité Científico tomó nota de la preocupación expresada por WG-FSA ante la posibilidad de que esta investigación impida la recuperación de este stock. El límite de captura para esta área cuando la pesquería fue cerrada era sólo de 103 toneladas, de manera que la captura propuesta de 120 toneladas parecería excesiva.

8.6 El Comité Científico indicó que la medida de conservación señala que el área deberá permanecer cerrada hasta que se haya llevado a cabo una prospección y los resultados hayan sido considerados por la Comisión. Agregó que si bien la campaña de investigación fue realizada, aún no se había enviado un informe detallado de la misma y los grupos de trabajo pertinentes y el Comité Científico no habían tenido oportunidad de examinarlo. También se señaló que WG-SAM estaba en mejores condiciones de examinar el diseño aleatorio de la campaña de palangre propuesta por Japón durante la reunión del Comité Científico.
8.7 En respuesta a la discusión sostenida durante la reunión de WG-FSA (anexo 5, párrafos 5.118 al 5.121) Japón propuso incluir otros elementos a la campaña:

i) los lances de palangre se efectuarían aleatoriamente durante la fase 1;

ii) se utilizarían palangres artesanales y el sistema español para hacer análisis comparativos de la pesca durante la fase 1;

iii) se aumentaría la tasa de marcado a cinco peces por tonelada.

8.8 El Comité Científico consideró estos elementos adicionales y después de una larga discusión recomendó tomar las siguientes medidas antes de comenzar otros estudios en esta área:

i) los resultados de los estudios con artes de palangre efectuados recientemente sean notificados a la próxima reunión de WG-FSA;

ii) el diseño de una futura campaña de investigación sea considerado y aprobado por WG-SAM;

iii) el próximo año se realicen pruebas experimentales comparables en otras áreas aparte de la División 58.4.4, para tratar de calibrar el arte de palangre artesanal con respecto a los otros artes de palangre.

Estudios de investigación patrocinados por la CCRVMA

8.9 El Comité Científico consideró los principios y requisitos generales que se deben satisfacer para llevar a cabo estudios de investigación patrocinados por la CCRVMA. Se especificó que este tipo de estudio:

i) estaría diseñado para apoyar la labor de la Comisión encaminada al logro de los objetivos del artículo II;

ii) debe ser compatible con el enfoque precautorio de la CCRVMA;

iii) no debería socavar las iniciativas tomadas en otras partes de la CCRVMA o en otras partes del Sistema del Tratado Antártico, como la protección de especies, el cierre de áreas y/o las ASPA y las ASMA;

iv) bajo un patrocinio directo tal, puede contemplan, entre otras cosas,

a) asignaciones de captura especiales de un límite de captura para realizar estudios de investigación;

b) exenciones de las medidas de conservación vigentes con fines de investigación según la Medida de Conservación 24-01;

c) la coordinación de la recopilación de datos y programas de campo a través de la Secretaría de la CCRVMA;
d) requisitos especiales aplicables a todos los miembros durante las operaciones de pesca.

8.10 El Comité Científico tomó nota de la experiencia recogida en el diseño de la prospección CCAMLR-2000 y en otros trabajos realizados bajo los auspicios de la CCRVMA, e indicó que se seguirían los siguientes pasos en la formulación y utilización de estudios patrocinados por la CCRVMA:

i) Preparación:

a) Demostrar la necesidad de la investigación –

Se subrayó que la “necesidad” puede determinarse sobre la base de las consecuencias que tenga el estudio para la Comisión en la persecución de los objetivos del artículo II, decidiendo, por ejemplo, si el límite de captura es demasiado elevado (tal vez no se satisfagan los objetivos de conservación) o demasiado bajo (no representa riesgo para la conservación y por lo tanto se puede permitir una captura mayor), y sin mayores probabilidades de que sea corregido utilizando el proceso actual, y si el estudio podría mejorar el asesoramiento proporcionado a la Comisión. Se podrían utilizar análisis que demostraran la necesidad, por ejemplo, evaluaciones de las estrategias de ordenación, análisis de potencia, y/o evaluaciones preliminares utilizando conjuntos de datos plausibles que se puedan obtener del estudio.

b) Crear un diseño de investigación para satisfacer la necesidad –

Será importante identificar los datos que se deben recopilar para resolver el problema, incluyendo el muestreo espacial y temporal requerido para resolver el problema, y el número de muestras necesario para lograr la precisión requerida de la estimación.

c) Evaluar si habrá efectos a corto o largo plazo del plan de investigación en el asesoramiento actual proporcionado a la Comisión –

Se señaló que mientras se esté realizando la investigación, la calidad del asesoramiento actual puede variar. El grado en el cual eso afectaría el logro de los objetivos por parte de la Comisión necesitaría ser considerado.

d) Identificar los estándares que deben satisfacerse durante la recopilación de datos –

Tales estándares deberán incluir la especificación de requisitos de calidad de datos (e.g. marcado), estándares y capacidad del barco y de los observadores, diseño e implementación de la investigación.

e) Determinar cualquier requisito específico que deba satisfacerse para implementar el programa de investigación –

Estos requisitos incluirán la consideración de posibles participantes (miembros, barcos de pesca, barcos de investigación), cómo se organizará
la participación, definición de la capacidad para satisfacer los estándares, determinación de la contribución requerida de la CCRVMA (asignación de captura, requisitos de las medidas de conservación, exenciones con fines de investigación, contribuciones de los miembros), y requisitos pertinentes a los observadores y los barcos.

ii) Implementación

iii) Análisis de los resultados

iv) Suministro de asesoramiento a la Comisión.

8.11 El Comité Científico convino en que estas directrices eran muy útiles y recomendó que se siguieran al establecer los programas de investigación patrocinados por la CCRVMA.

Nota de campañas de investigación con barcos científicos 8.12 El Comité Científico señaló que los siguientes miembros realizarían actividades de investigación científica en 2009 de conformidad con la Medida de Conservación 24-01:

Australia: prospección de peces demersales en la División 58.5.2 en mayo–junio de 2009
Reino Unido: prospección de peces demersales en la Subárea 48.3 en enero–febrero de 2009
Estados Unidos: prospección de peces demersales en la Subárea 48.2.

COOPERACIÓN CON OTRAS ORGANIZACIONES

9.1 Esta sesión del Comité Científico estuvo presidida por el Dr. Iversen, Vicepresidente del Comité Científico.

Cooperación con el Sistema del Tratado Antártico

CPA

9.2 El Dr. N. Gilbert (Observador del CPA) hizo referencia al informe del Secretario Ejecutivo sobre su participación en la Undécima reunión del CPA (Kiev, Ucrania, del 2 al 6 de junio de 2008) (CCAMLR-XXVII/BG/5), y brevemente destacó aquellos asuntos planteados en XI CPA que podrían ser de interés para el Comité Científico.

9.3 El Dr. Gilbert señaló que en la Undécima reunión del CPA se había acordado un plan de trabajo de cinco años renovable para permitir la priorización de sus tareas. Los temas considerados de alta prioridad para el CPA comprenden: prevención de la introducción de
especies no autóctonas, aspectos y efectos del turismo y actividades no gubernamentales; presiones mundiales sobre la Antártida incluido el cambio climático y la contaminación; y el sistema de áreas antárticas protegidas, incluidas las AMP.

9.4 Con respecto al tema de especies no autóctonas, el Dr. Gilbert hizo referencia al documento CCAMLR-XXVII/BG/19 Rev. 1 que resume las deliberaciones del CPA sobre el asunto hasta la fecha. El documento había sido preparado reconociendo la alta prioridad asignada al tema en el plan de trabajo de cinco años del CPA y anticipando el tiempo que se le dedicaría en la próxima reunión del CPA. El Dr. Gilbert denotó en particular la consideración del CPA respecto a especies no autóctonas en el medio ambiente marino, y la preocupación acerca del cambio de agua de lastre y contaminación del casco de la embarcación.

9.5 En la XI reunión del CPA y la XXXI reunión de la RCTA se apoyó el Análisis de Dominios Ambientales Antárticos (la versión terrestre del concepto de biorregionalización de SC-CAMLR) realizado por Nueva Zelanda, como modelo dinámico para basar el sistema de áreas antárticas protegidas, y asistir en la identificación de nuevas áreas que requieren protección.

9.6 En este contexto el CPA había considerado 21 planes nuevos o revisados de áreas protegidas o de gestión. Catorce de éstos fueron aprobados por el CPA y posteriormente ratificados por la RCTA.

9.7 El Dr. Gilbert informó que SCAR había realizado un taller en mayo de 2008 conjuntamente con ACAP y otros expertos para evaluar el estado del petrel gigante antártico (SC-CAMLR-XXVI, párrafo 10.3). Sobre la base de esa evaluación y el asesoramiento de SCAR, el CPA había acordado que no se justificaba incluir esta especie en la lista de especies especialmente protegidas, de acuerdo con las disposiciones del Anexo II del Protocolo.

9.8 El CPA consideró las consecuencias del cambio climático en el medio ambiente antártico y destacó el trabajo en curso de SCAR dedicado a la preparación de un informe completo sobre el Cambio Climático y el Medio Ambiente en la Antártida. El CPA señaló que reconsideraría una propuesta para llevar a cabo una reunión de expertos sobre el cambio climático antártico sobre la base del informe de SCAR una vez que fuera publicado.

9.9 El CPA recibió complacido la presentación del Observador de la CCRVMA sobre la labor de la CCRVMA en general, que le había dado una visión más clara de la labor de la CCRVMA y le había asistido en la consideración del taller conjunto SC-CAMLR–CPA propuesto.

9.10 El Dr. Gilbert indicó que en SC-CAMLR-XXVI se había propuesto realizar un taller con el CPA para considerar temas de interés común para ambos comités (SC-CAMLR-XXVI, párrafos 10.8 y 10.9). En respuesta, el XI-CPA había acogido esta propuesta como una oportunidad de considerar formas de mejorar y mantener una cooperación práctica entre los dos organismos. El CPA preparó la siguiente lista de temas que consideraba merecían ser considerados en un taller de este tipo:

- estudios sobre el cambio climático
- seguimiento del ecosistema y medio ambiente
- áreas protegidas y medidas de gestión espacial
- especies que requieren protección especial
• contaminación marina
• ordenación de la biodiversidad y especies no autóctonas.

9.11 El CPA había sugerido que el tema central del taller podría ser “Oportunidades para la colaboración y cooperación práctica entre CPA y SC-CAMLR” ya que englobaba el propósito del mismo. Esto fue apoyado por el Comité Científico.

9.12 El CPA había pedido que el Observador de la CCRVMA en el CPA transmitiera esto a SC-CAMLR (Informe final de la IX reunión del CPA, párrafos 337 y 338; SC CIRC 08/47 y 08/65).

9.13 El Comité Científico observó que el WG-EMM había considerado en su reunión la respuesta del CPA al taller propuesto, y había subrayado la importancia de todos los temas propuestos, señalando en particular los temas “Áreas Protegidas y medidas de gestión espacial” y “Especies que requieren protección especial” como asuntos que merecían la atención de SC-CAMLR (anexo 4, párrafo 9.5). En el caso de la protección de especies, el WG-EMM había indicado que se debía considerar cómo establecer una relación y cooperación práctica entre SC-CAMLR y CPA para dar protección adicional a las especies que interesaban a SC-CAMLR y/o a CPA (anexo 4, párrafos 9.1 al 9.5).

9.14 Tras un examen más detallado de los temas que podrían discutirse en el taller SC-CAMLR-CPA, el Comité Científico convino en que los EMV también fueran incluidos en las discusiones relativas a las áreas protegidas, la gestión espacial y la biodiversidad. En particular, el Comité Científico señaló que el CPA tal vez pudiera tener conocimiento o información de los EMV en bahías donde se realizan programas de investigación nacionales (párrafo 4.231).

9.15 El Comité Científico precisó que el grupo de dirección del Taller conjunto SC-CAMLR-CPA había sido establecido por correspondencia y que la representación de la CCRVMA incluía los coordinadores de los grupos de trabajo y los actuales vicepresidentes del Comité Científico, y que una vez elegido, el nuevo Presidente del Comité Científico se uniría al grupo. El CPA había nombrado a su Presidente y dos vicepresidentes como representantes en el grupo de dirección.

9.16 El grupo de dirección del Taller SC-CAMLR–CPA había propuesto el siguiente cometido para el taller:

I. Llegar a un acuerdo mutuo sobre los objetivos y prioridades de conservación de CPA y de SC-CAMLR.

II. Identificar áreas de interés común para CPA y SC-CAMLR.

III. Definir mecanismos para la cooperación práctica y continua entre CPA y SC-CAMLR, por ejemplo, para compartir y archivar datos e información, y cuando sea posible, el organismo líder en temas de interés mutuo.

IV. Considerar oportunidades de colaboración en el futuro.

V. Preparar un informe y recomendaciones para la consideración de CPA-XII y SC-CAMLR-XXVIII.
9.17 El grupo de dirección del Taller SC-CAMLR–CPA había propuesto también el siguiente plan de trabajo para el comité directivo:

- preparar y distribuir una agenda detallada y calendario para el taller antes de fines de noviembre;
- acordar la participación para mediados de diciembre, y enviar las invitaciones a los oradores y otros para finales de 2008;
- preparar y traducir el informe del taller (con el apoyo de la Secretaría del Tratado Antártico) para su consideración en XII-CPA (Baltimore, EEUU, del 6 al 9 de abril de 2009) y de SC-CAMLR-XXVIII.

9.18 El Comité Científico apoyó el cometido y el plan de trabajo y agradeció el ofrecimiento de Estados Unidos para celebrar el taller en Baltimore (EEUU), los días 3 y 4 de abril de 2009, inmediatamente antes de XII-CPA. El Comité Científico a sus miembros a que participen en este taller para facilitar el contacto entre científicos.

SCAR

9.19 El Dr. G. Hosie (Observador de SCAR) comenzó su informe sobre las actividades de SCAR (CCAMLR-XXVII/BG/42) con un mensaje del nuevo Presidente de SCAR, Prof. M. “Chuck” Kennicutt II (EEUU). El Prof. Kennicutt expresó su compromiso de trabajar más estrechamente con la CCRVMA para tratar temas antárticos. Tiene proyectado visitar la CCRVMA en la primera oportunidad en 2009 para discutir esta colaboración futura.

9.20 Las sesiones ordinarias de la XXX reunión de SCAR, la reunión de delegados de SCAR y el Tercer Simposio Abierto de Ciencias se llevaron a cabo en San Petersburgo, Rusia, del 5 al 11 de julio de 2008. La Reunión de Delegados tuvo lugar en Moscú, del 14 al 16 de julio de 2008. El Simposio fue el más exitoso hasta la fecha y la sesión sobre el Ecosistema Marino Polar contó con el mayor número de participantes de todas las sesiones. La XXXI reunión de SCAR, la Reunión de Delegados de SCAR así como el Cuarto Simposio Abierto de Ciencias se celebrarán en Buenos Aires, Argentina, en agosto de 2010. Uno de los principales temas del simposio será la acidificación del Océano Austral. SCAR continuará invitando al Presidente del Comité Científico a asistir a sus reuniones.

9.22 El informe del Dr. Hosie destacó el considerable progreso logrado en el desarrollo de SCAR-MarBIN y su importancia para la CCRVMA y la comunidad antártica en general. No obstante, sólo se cuenta con financiación hasta finales de 2009.

9.25 SCAR ha creado tres grupos nuevos grupos de acción:

i) Predicción de cambios en el ambiente físico y biológico de la Antártida – el cometido aparece en CCAMLR-XXVII/BG/42, párrafo 49;

ii) Derrames de petróleo en la Antártida – creado en respuesta al hundimiento del MS Explorer;

iii) Infiltraciones frías y respiraderos hidrotérmicos en la Antártida – para identificar zonas que puedan contener EMV.

9.27 El Dr. Hosie también hizo referencia al informe de la reunión del Grupo de Expertos en Oceanografía de SCAR/SCOR para elaborar el Sistema de Observación del Océano Austral (SOOS). Dicho sistema abarcará procesos físicos, biogeoquímicos y ecológicos (CCAMLR-XXVII/BG/43).

SCAR-MarBIN

9.28 El Sr. D. Delbare (Bélgica) presentó el informe sobre la red de información de biodiversidad marina de SCAR (SCAR-MarBIN), base de datos de libre acceso por internet (CCAMLR-XXVII/BG/25).

9.29 Esta base de datos demostró ser muy útil para la CCRVMA durante el Taller de Biorregionalización celebrado en Bruselas (Bélgica) en 2007 y también durante el examen de todos los ecosistemas conocidos y potencialmente vulnerables realizado este año por la División Antártica Australiana. SCAR-MarBIN ha demostrado ser un instrumento útil y puede jugar un papel fundamental en el cometido de la CCRVMA sobre el medio ambiente para actuar en el Océano Austral y conservar la biodiversidad marina propugnando la explotación racional de los recursos vivos marinos.
9.30 El proyecto SCAR-MARBIN fue iniciado en mayo de 2005 por SCAR con el apoyo de la Fundación Sloan, a través de CML. Se continuó a través de la contribución belga al API y actualmente cuenta con la financiación de la Oficina de Política Científica de Bélgica hasta fines de 2009.

9.32 SCAR-MarBIN está actualmente tratando de ampliar su base de apoyo. Tiene proyectado hacerlo mediante el establecimiento de un consorcio que proporcione fondos para continuar manteniendo los servicios que SCAR-MarBIN presta a la comunidad antártica.

9.33 El Comité Científico señaló que WG-FSA había señalado que SCAR-MarBIN era una excelente fuente de información sobre los EMV, que incluye datos de la taxonomía, distribución y abundancia de la fauna del bentos (anexo 5, párrafo 10.45).

Informes de observadores de organizaciones internacionales

ASOC

9.34 El Dr. R. Werner señaló a la atención del Comité Científico los documentos presentados por ASOC (CCAMLR-XXVII/BG/24, BG/26, BG/27 y BG/30).

9.35 Con respecto a la pesquería de kril antártica, ASOC acogía la labor del Comité Científico en relación con la evaluación del riesgo en la Etapa 1 de la subdivisión del límite precautorio entre las UOPE del Área 48. No obstante, ASOC también advertía con preocupación el alto nivel de incertidumbre que está afectando el avance de esta subdivisión. Esto es especialmente inquietante si se toma en cuenta que las notificaciones de pesca de kril continúan aumentando, y las notificaciones para la temporada próxima exceden nominalmente el límite de captura provisorio de 620 000 toneladas para las Subáreas 48.1 a 48.4.

9.36 ASOC consideró que se debía elaborar urgentemente un plan de investigación coordinado para la ordenación de pesquerías de kril en el Área 48, con el objeto de reducir las principales incertidumbres. Entretanto, la CCRVMA debía considerar la posibilidad de tomar medidas preventivas para evitar la concentración excesiva de la captura en zonas costeras cercanas a las colonias de depredadores. Estas medidas debían entrañar una mayor responsabilidad y mecanismos de ejecución para asegurar la observación de estas nuevas disposiciones.

9.37 Hasta que no se apliquen tales medidas o se realice la subdivisión del límite de captura precautorio entre las UOPE, ASOC consideraba que los miembros de la CCRVMA no debían comprometerse a aumentar la capacidad de pesca de kril.

9.38 Por otra parte, la CCRVMA necesita comenzar a elaborar procedimientos de gestión interactiva lo antes posible. En consecuencia, el Comité Científico necesita formular recomendaciones para adaptar y ampliar el actual programa CEMP a fin de satisfacer las necesidades de un sistema de gestión interactiva a nivel de UOPE. Al mismo tiempo, se deberán adoptar mecanismos de financiación, como el fondo especial del CEMP, para apoyar el seguimiento actual y futuro.
9.39 ASOC advertía con gran preocupación las incertidumbres relacionadas con la notificación de las capturas de kril actuales, según lo manifestó recientemente el WG-EMM. Se debía establecer urgentemente, un modelo estandarizado para notificar el peso en vivo de las capturas de kril, y el requisito de que todos los barcos lo utilizaran.

9.40 Finalmente, ASOC se sentía alentada por las deliberaciones del WG-EMM sobre la cobertura de observación científica sistemática para todos los barcos de la pesca de kril, y esperaba que el Comité Científico proporcionara asesoramiento explícito a la Comisión para adoptar una medida de conservación que exigiera que los países que participaban en la pesca de kril tuvieran una cobertura sistemática de observadores científicos internacionales a bordo, de conformidad con el Sistema de Observación Científica Internacional de la CCRVMA.

9.41 En relación con los efectos del cambio climático en los ecosistemas marinos antárticos, el cambio climático ha surgido como un importante tema en la investigación antártica en la última década, pero hasta ahora poco ha cambiado en la CCRVMA en lo que se refiere a aspectos operacionales y aquellos relacionados con la formulación de políticas. Los cambios relacionados con el clima se están acelerando, por ejemplo, la alteración regional en la duración y cobertura del hielo marino. La reducción general del hielo marino en el futuro posiblemente conlleve a alteraciones importantes en la distribución y abundancia de las especies marinas antárticas.

9.42 ASOC acogió complacido el pedido de la Comisión al Comité Científico respecto a incorporar el tema del cambio climático en su agenda. En el contexto de la ordenación de pesquerías antárticas basada en el ecosistema, la CCRVMA, a través de este punto de la agenda del Comité Científico, debía tomar en cuenta los efectos acumulativos de la pesca y el cambio climático. Debido a las serias repercusiones del cambio climático, se necesitaba un enfoque proactivo en lugar de reactivo. ASOC alentaba al Comité Científico a trabajar más rápidamente para poner en marcha mecanismos que permitan distinguir los efectos del cambio climático de los efectos de la pesca, y proporcionar a la Comisión el asesoramiento necesario para tomar decisiones de ordenación acertadas.

9.43 Con respecto a la implementación de redes de AMP en la Antártida y el Océano Austral, ASOC acogió con agrado la labor intersesional realizada por la CCRVMA y el Comité Científico, especialmente en lo que respecta a la intención de iniciar el proceso de establecer sistemas representativos de AMP en las áreas de prioridad identificadas hasta ahora. ASOC apoyaba además la propuesta de realizar el taller conjunto SC-CAMLR-CPA, ya que demostraba el reconocimiento de la importancia del tema de áreas protegidas y medidas de gestión espacial.

9.44 La CCRVMA se encuentra ahora en situación de comenzar el proceso de diseñar redes exhaustivas, adecuadas y representativas de AMP, que incluyen reservas marinas, en el Océano Austral. Este proceso debe ser guiado por criterios para la designación de las mismas que sean elaborados conjuntamente por la CCRVMA y la RCTA, entre los cuales la representatividad sea un criterio clave. La decisión de designar redes de AMP representativas enmarca tanto el enfoque “precautorio” como el de “ecosistema” en la conservación y ordenación que son la piedra angular de los principios de conservación de la CCRVMA. ASOC señaló que acogía con agrado la planificación sistemática de la conservación y la biorregionalización en escala fina como instrumentos útiles para designar redes de AMP representativas y esperaba que el Comité Científico pudiera poner en práctica estos instrumentos mediante recomendaciones específicas a la mayor brevedad.

109
9.45 En relación con la pesca de fondo, ASOC observó que el Comité Científico se encuentra actualmente preparando su asesoramiento para la Comisión encaminado a satisfacer los requisitos de la Resolución 61/105 de la AGNU cuyo plazo vence en diciembre de 2008. Esta resolución requiere cerrar todas las pesquerías de fondo en aguas de altura que no estén reguladas por medidas de conservación adecuadas que protegen a los EMV. ASOC se sentía alentada por las discusiones en los subgrupos informales, y exhortaba al Comité Científico a que orientara a la Comisión para cumplir mejor con la resolución de la AGNU dentro del Área de la Convención de la CCRVMA.

9.46 Con respecto a la captura incidental de aves marinas:

i) ASOC felicitó a la CCRVMA por haber logrado reducir la mortalidad de albatros y petreles en las pesquerías del Océano austral. La CCRVMA es líder de las mejores prácticas y ha contribuido a la implementación de iniciativas de “pesca inteligente” en una escala mundial. Las medidas de mitigación innovadoras aplicadas por los miembros de la CCRVMA han dado como resultado una reducción substancial del número de aves que mueren dentro del Área de la Convención en la pesca reglamentada de palangre.

ii) ASOC observó con agrado que los niveles de la captura incidental de aves marinas registrados en las ZEE francesas continuaban disminuyendo, y esperaba que los palangreros autorizados por Francia llegaran a alcanzar los mismos bajos niveles de otros barcos de palangre en el Área de la Convención.

9.47 ASOC felicitaba además a la CCRVMA por haber reducido satisfactoriamente el nivel de pesca INDNR. Este resultado, conjuntamente con el cambio al uso de redes de enmalle por los pescadores INDNR, había redundado en una reducción substancial de la captura incidental total de aves marinas.

9.48 Finalmente, el estado de conservación de las aves marinas amenazadas por la pesca no puede mejorar solamente por la acción de la CCRVMA. Las poblaciones de aves marinas en el Océano Austral siguen estando amenazadas a causa de la pesca que se realiza en aguas adyacentes. ASOC sugería que el Comité Científico recomendara a la Comisión exhortar a sus miembros a participar más estrechamente con ACAP, a fin de asegurar que todos los Estados costeros, Estados del pabellón y las OROP que reglamentan la pesca de palangre dentro de la zona de distribución de las aves marinas en el Océano Austral, adoptaran y aplicaran medidas de mitigación para reducir la mortalidad de aves marinas.

UICN

9.49 El representante de la UICN señaló a la atención del Comité Científico que el documento SC-CAMLR-XXVII/BG/36 fue presentado por la UICN para su información. Señaló que proporcionaba un resumen de ciertos estudios y productos comercializados basados en muestras biológicas de la región antártica proporcionadas por la Base de Datos de Prospecciones Biológicas Antárticas, agregando que 56% de los registros que contiene la base de datos provienen del medio ambiente marino del Océano Austral.

9.50 Se señaló además a la atención del Comité Científico que la Novena Conferencia de las Partes de la Convención sobre la Biodiversidad Biológica (CBD) había adoptado
recientemente criterios científicos para identificar zonas marinas de importancia ecológica o biológica que necesitan protección, además de orientación científica para crear redes representativas de AMP, y que la CBD invitaba a los gobiernos y organizaciones pertinentes a ofrecer sus opiniones y experiencias sobre el uso de estos criterios y orientación.

9.51 El representante de la UICN informó además que se realizará un taller de expertos de la CBD para proporcionar orientación científica y técnica sobre el uso y desarrollo de los sistemas de clasificación biogeográfica, y sobre la identificación de zonas fuera de las jurisdicciones nacionales que satisfacen los criterios científicos adoptados.

9.52 La UICN alentó al Comité Científico a contribuir a este esfuerzo mundial, particularmente dada la excelente labor que este comité ha realizado con respecto a la biorregionalización del Océano Austral.

9.53 La UICN y su Comisión Mundial de Áreas Protegidas (CMAP) compilarán información sobre el avance de las redes de AMP y la biorregionalización. La CMAP tiene un subgrupo sobre la Antártida y el Océano Austral que está interesado en colaborar con el Comité Científico en este tema.

Informe de representantes de la CCRVMA en reuniones de otras organizaciones internacionales

ACAP

9.54 El Comité Científico mencionó la asistencia del Funcionario Científico a la reunión del grupo de trabajo sobre captura incidental de aves marinas de ACAP (SC-CAMLRL-XXVII/BG/7) y que esta invitación reflejaba el buen concepto que se tenía de la CCRVMA en lo que se refiere a la mitigación de la captura incidental de aves marinas. El Comité Científico hizo mención de la positiva contribución de los expertos invitados de ACAP al WG-IMAF y señaló que aguardaba con interés la interrelación futura con ACAP en lo que se refiere a la captura incidental de aves marinas.

CWP

9.55 El Grupo Coordinador de Trabajo sobre Estadísticas de Pesca (CWP) proporciona un mecanismo para协调iar los programas de estadísticas pesqueras de los organismos de pesca regionales y otras organizaciones intergubernamentales interesadas en este tipo de estadísticas.

9.56 El Administrador de Datos participó en la Reunión Intersesional del CWP que se llevó a cabo en la Secretaría de la NAFO en Dartmouth (Canadá), del 7 al 9 de julio de 2008. Los resultados de la reunión (notificados en SC-CAMLRL-XXVII/BG/5) de especial interés para el Comité Científico fueron:

- consideración adicional sobre el posible uso de los datos de SCV en la recopilación de estadísticas de pesca y datos de seguimiento. Algunas organizaciones que no
tienen acceso a datos de captura y esfuerzo por lance, están explorando maneras de utilizar los datos VMS para determinar los niveles del esfuerzo de pesca en los caladeros;

- consideración del uso de bitácoras electrónicas y solicitud a la CCRVMA para que proporcione información sobre sus formularios electrónicos de datos (p.ej. C1, C2, TAC, observación) en CWP-23;

- acuerdo para revisar el manual del CWP para reflejar los cambios en los requerimientos de datos que han surgido a través de la ordenación de pesquerías basada en el ecosistema (véase además el párrafo 13.4);

- inicio de la labor de integración de las bases de datos de estadísticas de pesca de las RFB, en especial, los que se basan en datos STATLANT.

IWC

9.57 El Dr. K.-H. Kock (Observador en la IWC), informó sobre la 60ª Reunión del Comité Científico de la Comisión Ballenera Internacional celebrada en Santiago de Chile, del 1 al 13 de junio de 2008.

9.58 Se informó una captura total de 2 214 ballenas en 2007. Japón capturó 551 rorcuales aliblancos y 3 ballenas de aleta en el Océano Austral, de conformidad con un permiso especial con fines científicos. Se ha logrado cierto avance en la conciliación de las estimaciones de abundancia obtenidas durante las tres campañas circumpolares (CPS I–III) llevadas a cabo en los últimos 30 años.

9.59 Una de las grandes incógnitas sigue siendo el número de rorcuales aliblancos presentes en la banquisa que no es accesible durante las campañas científicas. Varias estimaciones recientes del número de ballenas jorobadas en ambos lados de África demostraron que se habían recuperado en distinto grado (27–90%) de la explotación pasada. La caza de ballenas redujo el número de ballenas azules de 256 000 (235 000–307 000) a 395 (235–804) en 1963, cuando se prohibió la caza de este animal. Las últimas estimaciones fidedignas (1997) del número de ballenas azules dieron un total de 2 280 ejemplares (0.9% de su número inicial).

9.60 En marzo de 2009, la IWC llevará a cabo un segundo taller sobre cambio climático que centrará su atención en el Ártico, la región oeste de la Antártida y Bangladesh.

Cooperación futura

9.61 El Comité Científico enumeró varias reuniones internacionales de pertinencia para su labor, y designó a los siguientes observadores y representantes:

- Undécima sesión del Comité Científico de IOTC, 5 al 9 de noviembre de 2008, Seychelles – por nombrar;
• Taller de SCAR-MarBIN (Red de Información sobre Biodiversidad Marina), 8 al 9 de noviembre de 2008, Valencia (España) – por nombrar;

• Taller de revisión del Southern Seabird Solutions Trust, 10 y 11 de noviembre de 2008, Nelson (Nueva Zelanda) – por nombrar;

• Conferencia Mundial sobre Biodiversidad Marina y Funcionamiento del Ecosistema (MarBEF), 11 al 15 de noviembre de 2008, Valencia (España) – por nombrar;

• Taller del IWC sobre cambio climático, 3 al 6 de marzo de 2009 (por confirmar), cerca de Siena (Italia) – por nombrar;

• Décimo segunda Reunión del CPA, 3 al 11 de abril de 2009 (incluye el Taller SC-CAMLR–CPA), Baltimore, MD (EEUU) – Presidente del Comité Científico y Funcionario Científico de la CCRVMA;

• Seguimiento de los Efectos del Cambio Climático – Establecimiento de un Programa de Vigilancia del Océano Austral (Sentinel Program) (Taller de CPA de 5 días), 20 al 24 de abril de 2009, Hobart (Australia) – por nombrar;

• Simposio de ICES de 2009: Problemas enfrentados por los océanos: oportunidades y desafíos económicos, científicos y de gobernanza en el trabajo en alta mar, 27 al 30 de abril de 2009, Azores (Portugal) – por nombrar;

• Grupo de Trabajo de ICES sobre Ciencias Acústicas y Tecnología Pesquera (WGFAST), 18 al 22 de mayo de 2009, Ancona (Italia) – por nombrar;

• Conferencia Anual de Ciencias de ICES, 21 al 25 de septiembre de 2009, Berlín (Alemania) – por nombrar;

• Tercera Conferencia Abierta de GLOBEC, 22 al 26 de junio de 2009, Victoria, Columbia Británica (Canadá) – Australia (Dr. Kawaguchi);

• Décimo Simposio de Biología de SCAR, 26 al 31 de julio de 2009, Sapporo (Japón) – Funcionario de Enlace de SCAR (Dr. Hosie);

• Quinta Sesión Ordinaria del Comité Científico de WCPFC, 10 al 21 de agosto de 2009 (fechas por confirmar y lugar por determinar) – por nombrar;

• Conferencia Anual de Ciencias de ICES, 21 al 25 de septiembre de 2009, Berlín (Alemania) – por nombrar;

• 14ª Reunión del Comité Científico de la CCSBT (fecha y lugar por confirmar) – por nombrar;

• Quinta Reunión Anual del Comité Científico de SEAFO (fecha y lugar por confirmar) – por nombrar.
El Comité Científico alentó a otros representantes a participar siempre que fuera posible en estas reuniones, y a rendir un informe en la reunión de 2009 del Comité Científico.

INFORME DEL COMITÉ DE EVALUACIÓN DEL FUNCIONAMIENTO DE LA CCRVMA

10.1 El Comité Científico examinó el Informe del Comité de Evaluación del Funcionamiento de la CCRVMA (PRP) (CCAMLR-XXVII/8), como fuera dispuesto por la Comisión en su reunión de 2007 (CCAMLR-XVI, anexo 7, párrafo 10). Este tema fue considerado bajo un punto específico de la agenda del Comité Científico.

10.2 El Comité Científico consideró aspectos generales del informe del PRP y formuló un plan para considerar las recomendaciones del mismo durante 2009 y en adelante. Las recomendaciones del PRP y los subpuntos considerados de pertinencia para la labor del Comité Científico fueron identificados en el documento CCAMLR-XXVII/BG/39 y se proporcionan en la tabla 5. Sin embargo, el Comité Científico estuvo de acuerdo en que se debían examinar todos los subpuntos bajo cada recomendación para determinar cuáles eran pertinentes para su labor y cómo se debían llevar a cabo.

Comentarios generales

10.3 El Comité Científico felicitó al Comité de Evaluación por su diligencia en la redacción de un informe tan completo en tan corto tiempo y señaló que el análisis de los objetivos y las actividades científicas había sido muy detallado y demostraba un profundo conocimiento del papel de la ciencia en el ámbito de la CCRVMA y de su relación con los objetivos de conservación de los recursos marinos vivos antárticos contenidos en el artículo II.

10.4 El Comité Científico apreció los comentarios hechos por el Comité de Evaluación en relación con la calidad del asesoramiento proporcionado a la Comisión, y se alegró de que el Comité hubiera reconocido la “singularidad” de la CCRVMA en lo que se refiere a su larga trayectoria en el campo de la conservación, su principio de precaución y su enfoque de ecosistema (CCAMLR-XXVII/8, punto 1.3). El Comité Científico señaló que el Comité de Evaluación reconoció que la CCRVMA había avanzado mucho en el desarrollo y la utilización de métodos de gestión de las especies presa con el fin de proteger a los depredadores dependientes, en la evaluación y limitación de los efectos de las pesquerías en las especies de captura secundaria, y en la formulación de un proceso estructurado y precautorio para el desarrollo ordenado de las pesquerías nuevas y exploratorias (CCAMLR-XXVII/8, párrafo 3.1.1.16). El Comité Científico reconoció que el Comité de Evaluación proporcionó varias perspectivas similares sobre los diversos aspectos científicos de la CCRVMA.

10.5 El Comité Científico observó que los lectores del informe, en particular aquellos ajenos a la CCRVMA, corrían el riesgo de arribar a la conclusión de que el funcionamiento de la CCRVMA no era satisfactorio, si leían solamente las secciones del informe que contienen el resumen ejecutivo y el resumen de recomendaciones. La lectura parcial del informe podría hacer que el lector no advirtiera los muchos aspectos positivos identificados por el Comité de Evaluación.
10.6 El Comité Científico manifestó además que el PRP había recomendado labor adicional en casi todos los aspectos del informe. Muchas de estas recomendaciones, de ser implementadas, requerirían un gran volumen de recursos, tanto financieros como humanos.

10.7 El Comité Científico reconoció el papel que la ciencia en la CCRVMA jugaba en el Sistema del Tratado Antártico y en la comunidad internacional en general. Se señaló que esta función ahora se extendía más allá de su papel tradicional orientado a la pesca, a un plano internacional más amplio (p. ej. cambio climático, las AMP, etc.).

10.8 No obstante, como se manifestó en otras partes de este informe, el Comité Científico reconoció que no contaba con los recursos para satisfacer sus objetivos adecuadamente. Esto se debía a varias razones, entre ellas, el costo de enviar a científicos a las reuniones, la fuga de conocimiento a otros programas nacionales, y el hecho de que algunos miembros no enviaban representantes a las reuniones de los grupos de trabajo (párrafo 16.7).

10.9 El Comité Científico apoyó la propuesta de invitar la presentación de ponencias pertinentes (p. ej. sobre los EMV/bentos, cambio climático, etc.) de científicos no miembros para asegurar que la información crítica llegara al Comité Científico y a sus grupos de trabajo. Estos trabajos podrían presentarse con bastante antelación, tal vez dos meses antes del comienzo de la reunión pertinente. El Presidente del Comité Científico y los coordinadores de los grupos de trabajo podrían entonces decidir cuáles documentos serían pertinentes a su agenda y luego distribuirlos. Esto no aumentaría los costes de viaje o el tiempo relacionado con la asistencia a las reuniones.

Recomendaciones del Comité de Evaluación relativas al Comité Científico

10.10 El Comité Científico convino en se debían considerar todos los aspectos de las diez recomendaciones generales (tabla 5) hechas por el Comité de Evaluación, además de las que figuran en los subpuntos. El Comité Científico convino además que tres de las recomendaciones debían examinarse durante el próximo año intersesional, y las demás se examinaran en un plazo más largo. Las tres recomendaciones que se deben considerar el año próximo son los puntos 2.4 (Áreas de protección), 3.1 (Estado de los recursos vivos) y 3.2 (Enfoque de ecosistema).

10.11 El Comité Científico pidió que el Presidente, durante el período intersesional, formara un comité directivo para elaborar un “mapa de ruta” (plan de acción) que orientara a los distintos grupos de trabajo del Comité Científico respecto a cómo abordar las tres recomendaciones de mayor prioridad y las restantes en el futuro. Con esta labor se pretende asegurar que el Comité Científico pueda proporcionar asesoramiento a la Comisión sobre estos asuntos en su reunión de 2009.

PRESUPUESTO DE 2009 Y PREVISIÓN DEL PRESUPUESTO DE 2010

11.1 El presupuesto del Comité Científico acordado para 2009 y la previsión del presupuesto para 2010 se resumen en la tabla 6. Las notas en la tabla 6 se refieren a los siguientes gastos:
1) Preparación y apoyo de la reunión anual del WG-SAM: corrección, traducción y publicación de su informe como anexo del informe del Comité Científico, y costos de participación (pasajes aéreos y viático) de un miembro del personal de la Secretaría durante todo el período de la reunión, y de otro miembro de la Secretaría (durante dos días) para brindar apoyo administrativo, suponiendo que la reunión se efectúe conjuntamente con la reunión del WG-EMM.

2) Preparación y apoyo de la reunión anual del WG-EMM: corrección, traducción y publicación de su informe como anexo del informe del Comité Científico y participación de cuatro miembros del personal de la Secretaría.

3) Preparación y apoyo de la reunión anual del WG-FSA: recursos informáticos, corrección, traducción y publicación de su informe como anexo del informe del Comité Científico.

4) Preparación y apoyo de la reunión anual del WG-IMAF: recursos informáticos, corrección, traducción y publicación del informe como anexo del informe del Comité Científico.

5) Preparación y apoyo de la reunión de SG-ASAM: corrección, traducción y publicación de su informe como anexo del informe del Comité Científico y participación de un miembro del personal de la Secretaría.

6) Preparación y apoyo del taller sobre los EMV: corrección, traducción y publicación de su informe como anexo del informe del Comité Científico y participación de tres miembros del personal de la Secretaría.

7) Costos relacionados con el Taller CCAMLR-IWC realizado en agosto de 2008 (ver SC-CAMLR-XXVI, párrafo 11.1).

8) Preparación y apoyo de la reunión del grupo especial TASO: corrección, traducción y publicación de su informe como anexo del informe del Comité Científico y participación del personal de la Secretaría, suponiendo que la reunión se efectúe conjuntamente con la reunión del WG-EMM.

9) Participación de cinco expertos invitados a las reuniones y los talleres de los grupos de trabajo en 2009 (SG-ASAM: dos expertos; Taller de EMV: tres expertos).

10) Estimación del coste de preparación de un cartel a todo color a prueba de agua para destacar el peligro que representa para la fauna la eliminación de desechos en el Área de la Convención (anexo 6, párrafo 12.12), traducido a los idiomas oficiales de la CCRVMA, además de indonesio, coreano y japonés. El Comité Científico aprobó la edición de 500 carteles tamaño A3 sobre plexiglás ($6 000 AUD incluye el coste de edición y franqueo).

11.2 El Comité Científico indicó que el monto diferido para la revisión externa del GYM por expertos independientes que se había colocado en el Fondo Especial para las Ciencias, será devuelto al Fondo General en 2009 ya que la suma no había sido utilizada dentro del tiempo

11.3 El Comité Científico decidió publicar el informe del Taller CCAMLR-IWC como anexo del informe del Comité Científico. Indicó que todos los fondos asignados a dicho taller que no sean gastados serán traspasados al Fondo Especial para las Ciencias, sujeto a la decisión sobre una posible financiación parcial de una publicación especial surgida del trabajo del taller CCAMLR-IWC.

11.4 El Comité Científico aprobó los siguientes gastos del presupuesto de 2009 de la Comisión:

i) apoyo editorial para la edición de la revista *CCAMLR Science*;

ii) asignación permanente de $12 000 AUD para el apoyo lingüístico de *CCAMLR Science*;

iii) difusión electrónica de *CCAMLR Science* en el sitio web de la CCRVMA;

iv) finalización de la traducción al inglés de la guía rusa sobre los primeros estadios del ciclo de vida de los peces antárticos, publicada por VNIRO (~16 páginas tamaño A5). Esta traducción será utilizada por los grupos de trabajo para elaborar una guía de identificación detallada para ser utilizada en la pesquería de kril;

v) traducción al inglés de los documentos más importantes (a ser determinado de acuerdo con cada caso en particular) presentados por científicos de habla hispana, francesa o rusa a los grupos de trabajo. Se estima que se requerirá la traducción de 10 páginas de texto al año;

vi) participación del Presidente del Comité Científico y del Funcionario Científico en la reunión del CPA en 2009.

11.5 El Comité Científico pidió a la Comisión que le orientara sobre la manera de incorporar el trabajo anual que se necesita realizar en respuesta a la resolución de la AGNU sobre la pesca de fondo, en el volumen ya sobrecargado de trabajo del Comité Científico y de sus grupos de trabajo (SC-CAMLR-XXVI, párrafo 11.7).

11.6 El Comité Científico reconoció que las crecientes exigencias científicas de la Comisión y las nuevas iniciativas internacionales habían aumentado el trabajo de este comité y de sus grupos de trabajo. El Comité Científico también reconoció la necesidad de contar con un Plan Científico para asignar prioridades con respecto a su labor y a la de los grupos de trabajo. Se pidió a la Comisión para que le asesorara en cuanto a cómo la CCRVMA debía proceder para satisfacer las crecientes exigencias científicas y manejar sus actividades a largo plazo (SC-CAMLR-XXVI, párrafo 11.7).
ASESORAMIENTO A SCIC Y SCAF

12.1 El Presidente presentó el asesoramiento del Comité Científico a SCIC y a SCAF durante la reunión. El asesoramiento a SCAF se resume en la sección 11. El asesoramiento a SCIC se resume a continuación, y el asesoramiento principal figura en otra parte del informe.

Asesoramiento a SCIC

Medidas de mitigación para evitar la mortalidad incidental de aves y mamíferos marinos

12.2 El Comité Científico observó que WG-IM AF había identificado explícitamente aquellos barcos que no cumplieron plenamente con los requisitos de las Medidas de Conservación 26-01, 25-02 y 25-03 (anexo 6, párrafo 2.49) y recomendó que esta información fuera remitida a SCIC para facilitar la evaluación del cumplimiento. Los barcos y aspectos de las medidas de conservación pertinentes fueron:

i) Antarctic Bay, Argos Froyanes, Shinsei Maru No. 3, Austral Leader II y Koryo Maru 11 – llevaban cintas plásticas para embalar las cajas de carnada a bordo durante sus campañas realizadas en el Área de la Convención (anexo 6, párrafo 2.30);

ii) Viking Bay y Koryo Maru 11 – restos de artes de pesca; y Viking Bay - vertido de desechos (anexo 6, párrafo 2.31);

iii) Koryo Maru 11 y Hong Jin No. 707 – excedieron la distancia máxima entre los pesos del palangre (párrafo 2.32);

iv) Viking Bay – vertido de restos con anzuelos (anexo 6, párrafo 2.38);

v) Insung No. 1 y Antartic III – emplearon líneas espantapájaros que no cumplieron con la longitud mínima estipulada (anexo 6, párrafo 2.41);

vi) Punta Ballena – no utilizó dispositivos para espantar a las aves durante el virado en todos los lances (anexo 6, párrafo 2.44);

vii) Maksim Starostin – utilizó un cable de arrastre de red durante un lance de arrastre de kril (anexo 6, párrafo 2.46);

viii) Dalmor II – vertió restos de pescado durante el virado de la red de arrastre de de kril (anexo 6, párrafo 2.47).

Programa científico de marcado

12.3 El Comité Científico tomó nota de las deliberaciones sobre la implementación del programa de marcado reflejadas en el informe de WG-FSA (anexo 5, párrafos 3.46 al 3.63 y 5.81) y convino que si bien el requisito de presentar fotografías, de registrar los detalles de la recaptura en los cuadernos de observación, y de devolver las marcas a la Secretaría parecía
excesivo, permitía una mejor convalidación. No obstante, reconoció que las imágenes digitales podían manipularse, y por lo tanto las pruebas fotográficas no podían considerarse por sí solas como prueba de la devolución de una marca.

12.4 El Comité Científico convino en que la Secretaría debía verificar la correcta transcripción de las marcas recuperadas, incluyendo todos los caracteres alfanuméricos, e indicó que actualmente la Medida de Conservación 41-01 no incluía el requisito de devolver todas las marcas recuperadas. El Comité Científico manifestó su optimismo ante la posibilidad de que la centralización del programa de marcado en la Secretaría para las pesquerías nuevas y exploratorias ayudara de alguna manera a resolver estos problemas en el futuro.

12.5 El Comité Científico observó que había dos tipos de errores de registro que pueden producir una discrepancia en las tasas de marcado y de recaptura notificadas por los barcos y observadores. Se señaló que estos errores podían ser ‘accidentales o de incumplimiento’, y que sería útil separar las metodologías para detectar y remediar ambos errores.

12.6 El Comité Científico expresó que existe un claro incentivo para que los barcos notifiquen la tasa de marcado, a fin de cumplir con las medidas de conservación. No obstante, actualmente no se dispone de una evaluación formal de las tasas de recaptura, y es posible manipularlas (y por ende, se puede afectar el resultado de los modelos de evaluación), cuando se notifican recapturas con datos incompletos, lo que hace más difícil, o imposible, reconciliarlas con los registros de liberación.

12.7 El Comité Científico tomó nota de que un barco que no había logrado la tasa de marcado requerida de tres peces por tonelada en la División 58.4.1 había pescado luego en las Divisiones 58.4.3a y 58.4.3b, y marcado en exceso de la tasa exigida. El Comité Científico manifestó que este aumento en la tasa de marcado fuera de la División 58.4.1 no cumplía con los objetivos del programa de marcado, y le preocupaba que esta situación pudiera indicar que no se estaban liberando suficientes marcas a través de toda la operación de pesca. El Comité Científico señaló que este asunto podría ser considerado en forma más adecuada por SCIC.

12.8 Se graficó la tasa de marcado por barco en función del tiempo para verificar si el marcado se estaba realizando al mismo ritmo que la pesca, de conformidad con la Medida de Conservación 42-01 (anexo 5, figura 4). Los resultados fueron muy variables; algunos barcos marcaron de acuerdo con la tasa exigida durante el curso de la pesca, pero otros liberaron muy pocas marcas al principio y aumentaron considerablemente la tasa de marcado en la mitad o al final del período de pesca. El Comité Científico expresó preocupación por el hecho de que una tasa de marcado relativamente alta en un período corto podría ser perjudicial para la condición del pez liberado, y no obedecía a la distribución requerida de peces marcados en toda el área. El Comité Científico recomendó remitir este asunto a SCIC señalando que se necesitaba prestar especial atención a la Medida de Conservación 42-01 y a los cambios efectuados el año pasado para resolver este problema.
Discrepancia entre la notificación de la captura en escala fina y los registros del SDC

12.9 El Comité Científico observó que el año pasado WG-FSA había cuestionado la presencia de *D. eleginoides* en las capturas notificadas por el barco *Paloma V*, en ese entonces de pabellón uruguayo, que pescó en las Divisiones 58.4.1 y 58.4.3b en 2006/07 (SC-CAMLR-XXVI, anexo 5, párrafo 4.29). El *Paloma V* había notificado que la mayor parte de su captura proveniente de esas divisiones era de *D. eleginoides* (80% de la captura en la División 58.4.1; 92% en la División 58.4.3b), mientras que los desembarques notificados en el SDC indicaban que la captura consistió en su mayor parte de *D. mawsoni*. En 2008 la Secretaría contactó a las autoridades uruguayas para pedirles una aclaración y confirmación con respecto a los datos en escala fina que presentó el *Paloma V* cuando pescó en las Divisiones 58.4.1 y 58.4.3b en 2006/07, y para confirmar la especie de austromerluza declarada. Uruguay confirmó que la captura de *D. eleginoides* declarada en los formularios de datos de pesquería y observación eran correctos y que la discrepancia había ocurrido en los datos del SDC; esta discrepancia había sido resuelta (anexo 5, párrafo 3.5). El Comité Científico estimó que tal vez convendría que este asunto fuera considerado en mayor detalle por SCIC.

Notificaciones de la pesca de fondo de conformidad con la Medida de Conservación 22-06

12.10 El Comité Científico consideró las evaluaciones preliminares y medidas de mitigación propuestas por los miembros (CCAMLR-XXVII/26) encaminadas a evitar y mitigar efectos adversos considerables en los EMV, y destacó que sólo cinco de 12 propuestas contenían evaluaciones preliminares. Señaló además que había una gran variación en la esencia de las evaluaciones preliminares (párrafos 4.223 al 4.225).

12.11 El Comité Científico coincidió en que se necesitaba uniformar estas evaluaciones mediante requisitos similares a los utilizados para las notificaciones de pesquerías exploratorias. Convino en que se necesitaba mantener cierta coherencia en el suministro de información, basándose en las disposiciones establecidas en los párrafos 7(i) y (ii) de la Medida de Conservación 22-06, y recomendó utilizar un formulario como el que se describe en la tabla 20 del anexo 5, en el futuro.

Pesquerías INDNR con redes de enmalle

12.12 El Comité Científico indicó que el número de barcos de pesca INDNR observado en 2007/08 había disminuido (anexo 5, párrafo 3.14). No obstante, dado que las redes de enmalle son utilizadas predominantemente por la flota INDNR, no existe actualmente información para estimar la captura de estos barcos o su efecto en las especies objetivo, en las especies secundarias, en las aves o en los mamíferos marinos (anexo 6, párrafos 5.8 al 5.10).
Procedimiento de verificación de la calidad de los datos

12.13 El Comité Científico tomó nota del método para evaluar la calidad de los datos que había sido considerado por WG-SAM y WG-FSA (WG-SAM-08/13) y manifestó que este método podría ser utilizado por SCIC para identificar los barcos que no cumplen con los requisitos de notificación de datos de la CCRVMA. El Comité Científico apoyó la recomendación de WG-FSA de que los autores de WG-SAM-08/13 continuaran elaborando una serie de índices de la calidad de los datos conjuntamente con la Secretaría durante el período entre sesiones, y se rindiera un informe de avance a WG-SAM.

ACTIVIDADES APOYADAS POR LA SECRETARÍA

Administración de Datos

13.1 El Comité Científico tomó nota del informe del Administrador de Datos que describe la labor llevada a cabo por la sección de Administración de Datos en 2007/08, y las medidas tomadas para mantener la integridad de los datos de la CCRVMA (SC-CAMLR-XXVII/BG/13). El Comité Científico reconoció que el volumen y la complejidad de esta labor siguen aumentando (SC-CAMLR-XXVII/BG/13, figura 1), y que las labores realizadas habían incluido:

i) administración y mantenimiento de la base de datos, tratamiento y convalidación de los datos presentados en 2007/08, revisión de formularios de datos, de conformidad con las decisiones de la Comisión y del Comité Científico, y refinamiento de las estructuras, rutinas y documentación pertinentes a la base de datos;

ii) análisis de los datos e informes para el Comité Científico, sus grupos y subgrupos de trabajo, y para el taller conjunto CCAMLR-IWC;

iii) seguimiento de los límites de captura en las pesquerías de la CCRVMA, pronóstico del cierre de pesquerías, notificación de capturas, actualización de informes de pesquerías, preparación del Boletín Estadístico, y asistencia en la presentación y gestión de las notificaciones de los planes de pesca (pesquerías nuevas, exploratorias o de kril);

iv) establecimiento de cooperación internacional, por ejemplo, las contribuciones a la labor de CWP, FIRMS y SCAR-MarBIN.

Datos STATLANT

13.2 El Comité Científico observó que la Secretaría había implementado una nueva estrategia acordada en 2007 para mejorar la calidad de los datos STATLANT presentados anualmente por las Partes contratantes (SC-CAMLR-XXVI, párrafos 13.5 al 13.11; CCAMLR-XXVI, párrafo 4.89). Esta estrategia mejoró notablemente la calidad de los datos STATLANT sobre el esfuerzo de pesca y la captura de especies secundarias.
13.3 El Comité Científico señaló también que los datos STATLANT mejorados incluyen ahora un resumen de los datos de la captura incidental relacionada con la pesca (IMAF). El Comité Científico consideró una propuesta (SC-CAMLR-XXVII/BG/3) para incluir estos datos STATLANT IMAF en las estadísticas pesqueras de la CCRVMA notificadas en el Boletín Estadístico de la CCRVMA.

13.4 El Comité Científico pidió que la Secretaría elaborara un ejemplo del tipo de tabla que se ha propuesto utilizar para resumir los datos STATLANT IMAF en el Boletín Estadístico de la CCRVMA, y que lo distribuyera a los miembros durante el período entre sesiones. Sujeto a la revisión de los miembros, este resumen de los datos STATLANT IMAF podría ser publicado en el próximo volumen del Boletín Estadístico de la CCRVMA. Un resumen tal también serviría para alentar al CWP a establecer este procedimiento de notificación de datos para todos sus miembros.

Datos de captura y esfuerzo

13.5 El Comité Científico estuvo de acuerdo con la recomendación de WG-FSA de modificar el formulario para registrar los datos de captura y esfuerzo de lance por lance de las pesquerías de palangre (formulario C2) para describir la variedad de palangres artesanales (anexo 5, párrafo 11.8):

- número de anzuelos en un manojo
- número de manojos de anzuelos por espinel (línea secundaria)
- distancia entre los espineles
- distancia entre los manojos de anzuelos
- distancia entre el manojo de anzuelos más profundo de la línea y el fondo.

13.6 El Comité Científico aprobó también la recomendación del WG-FSA de que cuando se calen dos secciones de línea unidas bajo el agua, éstas sean notificadas como lances independientes, siendo la posición geográfica del inicio y fin de estos lances dada por la posición de las anclas o rezones.

Metadatos

13.7 El Comité Científico aprobó las etapas propuestas por la Secretaría (SC-CAMLR-XXVII/BG/4) para establecer una base de metadatos de la CCRVMA, de conformidad con la decisión de la Comisión (CCAMLR-XXVI, párrafo 4.89). Estas etapas incluyen:

i) utilización del Directorio General de Cambios Globales (GCMD; véase http://gcmd.nasa.gov) como depósito de los metadatos;

ii) creación de un portal para la CCRVMA en el GCMD administrado por la Secretaría;

iii) identificación de las clasificaciones de metadatos para los datos pesqueros y de investigación de la CCRVMA;
iv) creación y gestión de los registros de metadatos de la CCRVMA en su portal en el GCMD.

Proyecto D4Science

13.8 El Comité Científico tomó nota del desarrollo de D4Science, un proyecto europeo que consiste en una infraestructura en la web que tiene como objetivo establecer una red con enlaces a ordenadores específicos para satisfacer las necesidades emergentes de las comunidades científicas que trabajan en programas de Seguimiento del Medio Ambiente y de Gestión de Recursos de Pesquerías y Acuicultura (SC-CAMLR-XXVII/BG/3).

13.9 En el contexto del modelado del ecosistema, el proyecto D4Science está desarrollando una red de información para facilitar experimentos con nuevos modelos de evaluación. Esto podría proporcionar una plataforma para desarrollar conceptos globales y normas para el intercambio de datos resumidos de los modelos de ecosistemas, como los datos utilizados en el taller conjunto CCAMLR-IWC.

13.10 El Comité Científico pidió que la Secretaría investigara la posible aplicación del proyecto D4Science en la labor de la CCRVMA, e informara a WG-SAM y a WG-EMM en 2009.

Normas de acceso y utilización de los datos de la CCRVMA

13.11 El Comité Científico no hizo recomendaciones relacionadas con este tema.

Publicaciones

13.12 El Comité Científico informó que los siguientes documentos habían sido publicados en 2008 en apoyo de su trabajo:

i) Informe de la 26º reunión del Comité Científico
ii) Revista CCAMLR Science, Volumen 15
iii) Resúmenes Científicos de la CCRVMA 2007, en el sitio web de la CCRVMA
iv) Boletín Estadístico, Volumen 20
v) Revisiones al Manual del Observador Científico.

13.13 El Comité Científico tomó nota también del establecimiento de un archivo electrónico de los documentos de trabajo en el sitio web (CCAMLR-XXVI, párrafos 14.3 y 14.4). En 2008 se logró avanzar en esta labor y ahora el sitio web de la CCRVMA contiene – en las secciones de acceso restringido de la Comisión y del Comité Científico – una bibliografía de referencia con enlaces a los documentos de trabajo de las reuniones.

13.14 Asimismo, se ha creado un archivo del contenido de la base de datos en el sitio web que permite búsquedas. Éste consiste de una página de libre acceso en el sitio web que
13.15 Los usuarios pueden ver la lista resultante de la búsqueda de todos los documentos archivados en la base de datos, pero los documentos de trabajo de las reuniones están protegidos por una clave que combina nombre de usuario/contraseña, de conformidad con los protocolos relativos a la seguridad del archivo de documentos, manteniéndose de esta manera la jerarquía de privilegios que se usa actualmente. Por lo tanto, si bien los usuarios pueden ver los resultados de la búsqueda, no tienen acceso a los documentos ni pueden bajarlos o guardarlos sin la combinación correspondiente.

13.16 Este archivo ha sido ampliado para incluir una base de datos de todos los documentos públicos, incluidas las publicaciones y la revista *CCAMLR Science*. No se requiere un nombre de usuario ni una contraseña para ver, o bajar estos documentos.

13.17 El Comité Científico felicitó a la Secretaría por esta labor que facilitará enormemente el acceso de los miembros a los documentos de referencia.

CCAMLR Science

13.18 En 2007, el Comité Científico pidió que el Editor, en consulta con el Presidente del Comité Científico y los coordinadores de los grupos de trabajo, preparara una revisión de la política de publicación de la revista *CCAMLR Science*, y que se considerara el procedimiento para la selección de documentos (SC-CAMLR-XXVI, párrafos 13.24 y 13.25).

13.20 El Comité Científico felicitó al Funcionario Científico por la revisión, y apoyó la modificación de la política de publicación y el procedimiento de selección de documentos a ser publicados, como también la función más amplia del Comité Editorial (SC-CAMLR-XXVII/6).

13.21 Para alentar una mayor participación del Comité Editorial en el proceso, desde la presentación a la publicación, el Comité Científico propuso la inclusión de expertos en el Comité Editorial. El Comité Científico pidió que cuando se identificaran estos expertos, el Funcionario Científico (Editor Jefe) se comunicara con el Presidente del Comité Científico para extenderles una invitación a integrar el Comité Editorial.

13.22 El Comité Científico pidió también que la Secretaría considerara otras maneras de elevar el perfil de la revista *CCAMLR Science*, y en general, para difundir más ampliamente la labor de la CCRVMA entre la comunidad científica y el público en general. Algunas posibilidades incluyen el desarrollo de un boletín informativo, y un mayor uso de la web para la difusión de información.
13.23 El Comité Científico alentó a los miembros a continuar aportando documentos científicos de alta calidad de pertinencia para la CCRVMA, a fin de asegurar que la revista *CCAMLR Science* siga publicando artículos de la más alta excelencia científica.

ACTIVIDADES DEL COMITÉ CIENTÍFICO

Coordinación de la labor del Comité Científico y de sus grupos de trabajo

14.1 El Comité Científico reconoció que, tal como en años anteriores, no hubo tiempo durante la reunión para que los coordinadores de los grupos de trabajo y el Presidente del Comité Científico pudieran considerar la asignación de prioridades a las tareas del Comité y de sus grupos de trabajo para el futuro. Por lo tanto, el Comité Científico reconoció que era necesario encontrar un mecanismo para lograr identificar las prioridades científicas. Se encargó al Presidente del Comité Científico la tarea de encontrar este mecanismo e implementarlo.

14.2 El Comité Científico indicó que había una gran coincidencia entre el requisito de identificar las prioridades científicas a largo plazo y las tareas especificadas en el párrafo 10.11 emanadas de las recomendaciones de la Evaluación del Funcionamiento de la CCRVMA y que, en lo posible, se debería adoptar un enfoque común.

Actividades durante el período entre sesiones en 2008/09

14.3 El Comité Científico aceptó muy complacido la invitación de Noruega de servir de sede de las reuniones de WG-SAM y de WG-EMM y de la segunda reunión del grupo especial TASO, desde el 29 de junio al 17 de julio de 2009 (no se ha confirmado el lugar).

14.4 El Comité Científico convino en celebrar las siguientes reuniones en 2008/09:

- Taller mixto SC-CAMLR–CPA, Baltimore (EEUU), 3 y 4 de abril de 2009;
- SG-ASAM en Ancona (Italia), 25 al 29 de mayo de 2009 (Coordinadores: Dres. Watkins y O’Driscoll);
- WG-SAM en Noruega, 29 de junio al 3 de julio de 2009 (Coordinador: Dr. Constable);
- Grupo especial TASO, Noruega, 4 y 5 de julio de 2009 (Coordinadores: Dr. Welsford y Sr. Heinecken);
- WG-EMM, Noruega, 6 al 17 de julio de 2009 (Coordinador: Dr. Watters). El taller FEMA2 se llevará a cabo como Tema Central durante la primera semana de la reunión de WG-EMM y será presidido por los coordinadores del WG-EMM y del WG-FSA;
- Taller sobre los EMV, Washington DC (EEUU) (Coordinadores: Dres. Martin-Smith y Jones, lugar y fecha a ser anunciadas en diciembre de 2008);
• WG-FSA, sede de la CCRVMA en Hobart (Australia), 12 al 23 de octubre de 2009 (Coordinador: Dr. Jones);

• WG-IMAF, sede de la CCRVMA en Hobart (Australia), 12 al 16 de octubre de 2009 (Coordinadores: Sra. Rivera y Sr. Walker).

14.5 El Comité Científico aprobó el enfoque descrito en el párrafo 10.9 en relación con las reuniones de los grupos de trabajo del próximo año, indicando que sería conveniente darle participación a los científicos interesados en la labor de la CCRVMA, no solamente de países no miembros sino de organizaciones que no están normalmente asociadas con SC-CAMLR.

Proyectos del CCAMLR-API

14.6 El Comité Científico notó la participación de los miembros en varias prospecciones realizadas durante el período entre sesiones con motivo del API. Entre otras cosas, el Comité Científico:

• apoyó vehementemente las iniciativas llevadas a cabo como parte de API-CAML, e indicó que éstas eran un excelente ejemplo del éxito de la colaboración y coordinación entre varios países dentro del Sistema del Tratado Antártico;

• señaló que el programa CAML-API permitió que científicos de países miembros colaboraran en la planificación y realización de investigaciones conjuntas, y dieran forma a una nueva era para la ciencia polar;

• destacó que los análisis de las prospecciones realizadas por Australia, Francia, Alemania, Japón, Nueva Zelandia, Noruega y Rusia, y de los 18 países que participaron en las prospecciones del CAML-API estaban bien encaminados, y que los resultados ayudarían a la CCRVMA en la gestión de la conservación del medio ambiente marino antártico. El censo también contribuirá al conocimiento de los efectos de cambios globales, como el cambio climático.

14.7 El Dr. Constable, en nombre de Australia, agradeció a los muchos países que han participado en los proyectos de la CCRVMA con 18 reconocidos barcos de investigación. Estos proyectos han contribuido con casi un millón de registros de datos con referencias geográficas, sobre 8 500 especies identificadas en el portal de la base de datos de SCAR-MarBIN. Australia alentó a los miembros a que apoyaran los análisis y las síntesis de los datos generados por CAML, y a ponerse en contacto con el coordinador del censo (Australian Antarctic Division) si desean mayor información.

Invitación de observadores a la próxima reunión

14.8 El Comité Científico acordó que todos los observadores invitados a la reunión de 2008 serían invitados a participar en SC-CAMLR-XXVIII.
Invitación de expertos a las reuniones de los grupos de trabajo

14.9 El Comité Científico estuvo de acuerdo en invitar hasta dos expertos a la reunión de SG-ASAM, y tres expertos al taller sobre los EMV.

Próxima reunión

14.10 La próxima reunión del Comité Científico está programada para el período del 26 al 30 de octubre de 2009 en la sede de la CCRVMA en Hobart (Australia).

ELECCIÓN DEL PRESIDENTE Y VICEPRESIDENTE DEL COMITÉ CIENTÍFICO

15.1 El Comité Científico invitó a presentar candidaturas para el cargo de Presidente. El Dr. Iversen propuso al Prof. Moreno. Esta propuesta fue secundada por el Dr. V. Siegel (Comunidad Europea) y el Comité Científico eligió unánimemente al Prof. Moreno para servir en el cargo por un periodo de dos reuniones ordinarias (2009 y 2010). El Comité Científico extendió una cálida bienvenida al nuevo Presidente.

15.2 El mandato del Dr. Sullivan como Vicepresidente terminó al final de esta reunión, y el Comité Científico invitó a presentar candidaturas para el cargo de Vicepresidente. El Dr. Iversen propuso al Dr. Bizikov. Esta propuesta fue secundada por el Dr. Pshenichnov y el Comité Científico eligió unánimemente al Dr. Bizikov para servir en el cargo por un periodo de dos reuniones ordinarias (2009 y 2010). El Comité Científico extendió una cálida bienvenida al nuevo Vicepresidente.

15.3 El Comité Científico agradeció al Dr. Sullivan por su gran contribución a la labor del comité (véase además el párrafo 18.6).

ASUNTOS VARIOS

Racionalización de las contraseñas para acceder al sitio web de la CCRVMA

16.1 El Comité Científico consideró la propuesta de la Secretaría de racionalizar el sistema actual de seguridad de las contraseñas del sitio web de la CCRVMA (CCAMLR-XXVII/27). Los principales puntos de la propuesta incluyen el uso de una sola combinación “nombre de usuario/contraseña” que permita:

 i) a los miembros, la entrada a secciones de acceso restringido de la Comisión;

 ii) a los miembros, la entrada a las secciones de acceso restringido del Comité Científico;

 iii) a los representantes de las ONG y a los observadores, el acceso a la información sobre las reuniones en curso del Comité Científico y de la Comisión solamente;
iv) a los expertos invitados, el acceso a la información sobre las reuniones en curso solamente.

16.2 El Comité Científico señaló además que esta propuesta reduciría al mínimo el tiempo y esfuerzo dedicado por el personal de la Secretaría a la administración de los nombres de usuario y contraseñas, y facilitaría la entrada a las secciones de acceso restringido del sitio web para los miembros. La labor administrativa requerida de parte de los contactos oficiales de los miembros para difundir esta información también disminuiría.

16.3 El Comité Científico indicó también que el arreglo actual para el SDC y los Estados Adherentes seguiría siendo el mismo.

16.4 El Comité Científico señaló que esta racionalización facilitaría la integración de los grupos de trabajo y no disminuiría el grado de seguridad otorgado por el sistema actual. Felicitó a la Secretaría por su iniciativa y aprobó la racionalización.

Aumento de la capacidad

16.5 El Comité Científico señaló con preocupación que el volumen de trabajo del WG-FSA y de los demás grupos de trabajo había aumentado en los últimos años, mientras el número de participantes y miembros representados había disminuido en el mismo período. En consecuencia, el volumen de trabajo estaba siendo repartido entre menos participantes, y el WG-FSA ya no puede abordar todas sus tareas con el detenimiento esperado por el Comité Científico. En este contexto, aludió al comentario del WG-FSA de que el cambio a evaluaciones bienales para tres stocks había dado muy buenos resultados porque se había contado con más tiempo durante el período entre sesiones y en las reuniones de WG-SAM y WG-FSA (anexo 5, párrafo 12.6).

16.6 El Comité Científico estuvo de acuerdo en que se necesita con urgencia formular un Plan de la Labor Científica a mediano y largo plazo para hacer frente a las exigencias y prioridades de la Comisión, facilitar la coordinación entre los grupos de trabajo y asignar prioridades de investigación. El Comité Científico observó que al no disponer de un plan de este tipo, el WG-FSA continuaría tratando los temas que estima son de alta prioridad para el Comité Científico. Este trabajo se vería limitado por el tiempo disponible durante las reuniones y por el número de participantes y sus campos de experiencia.

16.7 El Comité Científico reiteró su preocupación ante la disminución de la participación de los miembros en los grupos de trabajo. Los miembros que no pueden asistir a las reuniones a menudo tienen dificultad para entender los resultados y el asesoramiento de los grupos de trabajo. En algunas circunstancias, estos miembros no pueden participar plenamente en las discusiones del Comité Científico y, en algunas ocasiones, ha sido necesario retrasar las decisiones hasta el año siguiente o subsiguiente. La mayoría de los miembros estuvieron de acuerdo en que esta situación puede dilatar la entrega oportuna de asesoramiento sobre materias de importancia para la Comisión, en particular el asesoramiento necesario para la consecución de los objetivos contenidos en el artículo II.

16.8 El Comité Científico instó a los miembros a considerar cómo se podría aumentar la capacidad y la participación en la labor del WG-FSA y de otros grupos de trabajo.
Año del Granadero

Año de los EMV

16.10 El Comité Científico aprobó la propuesta de WG-FSA de designar el año 2010 como el Año de los EMV a fin de continuar realizando actividades de investigación encaminadas al desarrollo de métodos para evitar y mitigar el daño considerable causado por la pesca de fondo en los EMV.

Informes de las actividades de los miembros

16.11 El Comité Científico reiteró su asesoramiento a la Comisión en el sentido de que los informes de las actividades de los miembros ya no son necesarios para su labor, ni para la de sus grupos de trabajo (SC-CAMLR-XXIV, párrafos 15.1 al 15.5).

APROBACIÓN DEL INFORME

17.1 Se aprobó el informe de la 27ª reunión del Comité Científico.

CLAUSURA DE LA REUNIÓN

18.1 Al clausurar la reunión, el Dr. Sullivan agradeció a los coordinadores de los grupos de trabajo, a los coordinadores de otros grupos y a todos los participantes por todo el trabajo realizado durante la reunión y el período entre sesiones, así como a todo el personal de la Secretaría por su apoyo y dedicación. Anteriormente, el Dr. Sullivan también había agradecido a los intérpretes por facilitar las deliberaciones en las sesiones plenarias. Este esfuerzo colectivo había permitido seguir avanzando en la labor del Comité Científico. El Dr. Sullivan informó que era poco probable que asistiera a la reunión del Comité Científico del próximo año pero que participaría nuevamente en la CCRVMA en el futuro.

18.2 El Dr. Miller entregó el martillo de presidente de la Dra. Fanta en reconocimiento póstumo de su labor como Presidenta del Comité Científico (2005–2007). El Dr. Miller invitó al Comité Científico a firmar un libro de condolencias que será enviado a la familia de la Dra. Fanta.

18.3 El Dr. Miller tomó nota del retiro inminente del Dr. Holt y le entregó un pequeño obsequio en nombre de la Secretaría.
18.4 El Dr. Constable, en nombre del Comité Científico, expresó su profundo agradecimiento por la excepcional contribución del Dr. Holt a la labor de la CCRVMA.

18.5 El Dr. Miller también entregó un martillo de presidente al Dr. Sullivan, por dirigir la reunión del Comité Científico.

18.6 El Dr. Constable también agradeció al Dr. Sullivan por su experta dirección de las deliberaciones del Comité Científico.

18.7 La reunión fue clausurada.

REFERENCIAS

Tabla 1: Captura de especies objetivo (en toneladas) declarada en 2007/08 (diciembre 2007 a octubre 2008) (fuente: informes de datos de captura y esfuerzo, salvo que se indique otra cosa).

<table>
<thead>
<tr>
<th>Especie</th>
<th>País</th>
<th>Subárea o división</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>48.1</td>
<td>48.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48.3</td>
<td>48.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48.6</td>
<td>58.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58.2</td>
<td>58.4a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58.4b</td>
<td>58.4c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58.4d</td>
<td>58.5a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58.5b</td>
<td>58.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58.7</td>
<td>88.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>88.2</td>
<td></td>
</tr>
</tbody>
</table>

Draco rayado

<table>
<thead>
<tr>
<th>Especie</th>
<th>País</th>
<th>Subárea o división</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champsocephalus</td>
<td>Australia</td>
<td></td>
<td>199</td>
</tr>
<tr>
<td>gunnari</td>
<td>Chile</td>
<td></td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>República de Corea</td>
<td></td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>Reino Unido</td>
<td></td>
<td>716</td>
</tr>
<tr>
<td>Total (dracos)</td>
<td></td>
<td></td>
<td>1 524</td>
</tr>
</tbody>
</table>

Austromerluza

<table>
<thead>
<tr>
<th>Especie</th>
<th>País</th>
<th>Subárea o división</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissostichus</td>
<td>Argentina</td>
<td></td>
<td><1</td>
</tr>
<tr>
<td>eleginoides</td>
<td>Australia</td>
<td><1</td>
<td>1 497</td>
</tr>
<tr>
<td></td>
<td>Chile</td>
<td>388</td>
<td>816</td>
</tr>
<tr>
<td></td>
<td>Francia</td>
<td>2 853</td>
<td>3 537</td>
</tr>
<tr>
<td></td>
<td>CE – España</td>
<td>684</td>
<td>816</td>
</tr>
<tr>
<td></td>
<td>Japón</td>
<td>77</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>República de Corea</td>
<td>3</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Namibia</td>
<td><1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Nueva Zelândia</td>
<td>457</td>
<td>507</td>
</tr>
<tr>
<td></td>
<td>Rusia</td>
<td><1</td>
<td>507</td>
</tr>
<tr>
<td></td>
<td>Sudáfrica</td>
<td>310</td>
<td>364</td>
</tr>
<tr>
<td></td>
<td>Reino Unido</td>
<td>49</td>
<td>1 632</td>
</tr>
<tr>
<td></td>
<td>Uruguay</td>
<td>9</td>
<td>263</td>
</tr>
<tr>
<td>Total (austromerluza)</td>
<td></td>
<td></td>
<td>416</td>
</tr>
</tbody>
</table>

(continúa)
Tabla 1 (continuación)

<table>
<thead>
<tr>
<th>Especie</th>
<th>País</th>
<th>Subárea o división</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>48.1</td>
<td>48.2</td>
</tr>
<tr>
<td>Kril</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euphausia superba</td>
<td>Chile</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CE – Polonia</td>
<td>4 686 2 419</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Japón</td>
<td>435 18 052 16 796</td>
<td></td>
</tr>
<tr>
<td></td>
<td>República de Corea</td>
<td>10 375 8 396</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noruega</td>
<td>2147 34 204 19 197</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rusia</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reino Unido</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ucrania</td>
<td>8 133</td>
<td></td>
</tr>
<tr>
<td>Total (kril)</td>
<td></td>
<td>2582 75 449 47032</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 125 063</td>
</tr>
</tbody>
</table>

* Captura declarada durante la pesca con fines de investigación
** A fines de octubre se reanudó la pesca en la Subárea 48.3 y al 23 de octubre se habían declarado 1 040 toneladas.
*** Captura declarada hasta agosto de 2008

<table>
<thead>
<tr>
<th>Especie</th>
<th>País</th>
<th>Subárea o división</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48.1*</td>
<td>48.2</td>
<td>48.3</td>
</tr>
<tr>
<td>Draco rayado</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Champsocephalus gunnari</td>
<td>Australia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 502</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chile</td>
<td>1 248</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reino Unido</td>
<td>1 595</td>
<td></td>
</tr>
<tr>
<td>Total (draco rayado)</td>
<td>1</td>
<td>0</td>
<td>4 345</td>
</tr>
</tbody>
</table>

Austromerluzas

Dissostichus eleginoides	Australia	2 387												
	345													
	CE – España	369												
	Francia	5 201	410											
	Japón	75	2	35										

(continúa)
<table>
<thead>
<tr>
<th>Especie</th>
<th>País</th>
<th>48.1</th>
<th>48.2</th>
<th>48.3</th>
<th>48.4</th>
<th>58.4.1</th>
<th>58.4.2</th>
<th>58.4.3a</th>
<th>58.4.3b</th>
<th>58.5.1</th>
<th>58.5.2</th>
<th>58.6</th>
<th>58.7</th>
<th>88.1</th>
<th>88.2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austromerluzas (cont.)</td>
<td></td>
</tr>
<tr>
<td>Republica de Corea</td>
<td></td>
<td>202</td>
<td>2</td>
<td><1</td>
<td>11</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>Namibia</td>
<td></td>
<td><1</td>
<td>48</td>
<td></td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Nueva Zelandia</td>
<td></td>
<td>393</td>
<td>48</td>
<td></td>
<td>1</td>
<td>442</td>
<td></td>
</tr>
<tr>
<td>Sudfrica</td>
<td></td>
<td>341</td>
<td></td>
<td>26</td>
<td>148</td>
<td>516</td>
<td></td>
</tr>
<tr>
<td>Reino Unido</td>
<td></td>
<td>1657</td>
<td>6</td>
<td></td>
<td></td>
<td>1664</td>
<td></td>
</tr>
<tr>
<td>Uruguay</td>
<td></td>
<td>232</td>
<td></td>
<td>94</td>
<td>35</td>
<td><1</td>
<td>360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissostichus mawsoni</td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td></td>
</tr>
<tr>
<td>CE – Alemania</td>
<td></td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>CE – España</td>
<td></td>
<td>233</td>
<td>1</td>
<td>81</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>Japon</td>
<td></td>
<td>23</td>
<td><1</td>
<td>73</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Republica de Corea</td>
<td></td>
<td>4</td>
<td>260</td>
<td>58</td>
<td>453</td>
<td>775</td>
<td></td>
</tr>
<tr>
<td>Namibia</td>
<td></td>
<td>23</td>
<td>65</td>
<td>20</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Nueva Zelandia</td>
<td></td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td>1159</td>
<td>1160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noruego</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td>151</td>
<td>267</td>
<td></td>
</tr>
<tr>
<td>Rusia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>434</td>
<td>586</td>
<td></td>
</tr>
<tr>
<td>Sudfrica</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Reino Unido</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>440</td>
<td>474</td>
<td></td>
</tr>
<tr>
<td>Uruguay</td>
<td></td>
<td>24</td>
<td>3</td>
<td></td>
<td>239</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>Total (toothfish)</td>
<td></td>
<td><1</td>
<td>0</td>
<td>3539</td>
<td>112</td>
<td>634</td>
<td>124</td>
<td>4</td>
<td>251</td>
<td>5 201</td>
<td>2 387</td>
<td>436</td>
<td>148</td>
<td>3091</td>
<td>347</td>
<td>16 329</td>
</tr>
<tr>
<td>Krill</td>
<td></td>
</tr>
<tr>
<td>Euphausia superba</td>
<td></td>
</tr>
<tr>
<td>CE – Polonia</td>
<td></td>
<td>2307</td>
<td>3171</td>
<td>1936</td>
<td>7 414</td>
<td></td>
</tr>
<tr>
<td>Japon</td>
<td></td>
<td>1608</td>
<td>15 220</td>
<td>7 473</td>
<td>24 301</td>
<td></td>
</tr>
<tr>
<td>Republica de Corea</td>
<td></td>
<td>11 636</td>
<td>14 341</td>
<td>7 112</td>
<td>33 088</td>
<td></td>
</tr>
<tr>
<td>Noruego</td>
<td></td>
<td>2868</td>
<td>32 860</td>
<td>4 055</td>
<td>39 783</td>
<td></td>
</tr>
<tr>
<td>Total (krill)</td>
<td></td>
<td>18 419</td>
<td>65 591</td>
<td>20 576</td>
<td>0</td>
<td>104 586</td>
</tr>
</tbody>
</table>

* Captura declarada durante la pesca con fines de investigación.
Tabla 3: Información proporcionada en las notificaciones de pesquerías de kril en 2008/09.

<table>
<thead>
<tr>
<th>País y fecha de notificación</th>
<th>Nombre del barco</th>
<th>Captura prevista (toneladas)</th>
<th>Meses cuando se realizará la pesca</th>
<th>Subárea y división donde se realizará la pesca</th>
<th>Productos a ser derivados de la captura (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diciembre</td>
<td>Enero</td>
<td>Febrero</td>
</tr>
<tr>
<td>Chile 26-junio-08</td>
<td>Betanzos</td>
<td>16 000</td>
<td>x x x x x x</td>
<td>x</td>
<td>x x x x</td>
</tr>
<tr>
<td>Islas Cook 23-junio-08</td>
<td>Hannover</td>
<td>12 000</td>
<td>x x x x x x</td>
<td>x</td>
<td>x x x x</td>
</tr>
<tr>
<td>Japón 17-junio-08</td>
<td>Niitaka Maru</td>
<td>30 000</td>
<td>x x x x x x</td>
<td>x</td>
<td>x x x x</td>
</tr>
<tr>
<td>República de Corea 17-junio-08</td>
<td>Kwang Ja Ho</td>
<td>18 000</td>
<td>x x x x x x</td>
<td>x</td>
<td>x x x x</td>
</tr>
<tr>
<td></td>
<td>Dongsan Ho</td>
<td>26 000</td>
<td>x x x x x x</td>
<td>x</td>
<td>x x x x</td>
</tr>
<tr>
<td></td>
<td>Insung Ho</td>
<td>12 000</td>
<td>x x x x x x</td>
<td>x</td>
<td>x x x x</td>
</tr>
<tr>
<td>Noruega 19-junio-08</td>
<td>Antarctic Navigator</td>
<td>50 000</td>
<td>x x x x x x</td>
<td>x</td>
<td>x x x x</td>
</tr>
<tr>
<td></td>
<td>Juvel</td>
<td>50 000</td>
<td>x x x x x x</td>
<td>x</td>
<td>x x x x</td>
</tr>
<tr>
<td></td>
<td>Saga Sea</td>
<td>50 000</td>
<td>x x x x x x</td>
<td>x</td>
<td>x x x x</td>
</tr>
<tr>
<td></td>
<td>Thorshavdi 1</td>
<td>50 000</td>
<td>x x x x x x</td>
<td>x</td>
<td>x x x x</td>
</tr>
<tr>
<td>Polonia 20-junio-08</td>
<td>Dalmor II</td>
<td>20 000</td>
<td>x x x x x x</td>
<td>x</td>
<td>x x x x</td>
</tr>
<tr>
<td>Rusia 25-junio-08</td>
<td>Maksim Starostin</td>
<td>100 000</td>
<td>x x x x x x</td>
<td>x</td>
<td>x x x x</td>
</tr>
<tr>
<td></td>
<td>Alexandre Kosarev</td>
<td>50 000</td>
<td>x x x x x x</td>
<td>x</td>
<td>x x x x</td>
</tr>
<tr>
<td></td>
<td>Kapitir Kuznetsov</td>
<td>30 000</td>
<td>x x x x x</td>
<td>x</td>
<td>x x x x</td>
</tr>
<tr>
<td></td>
<td>Ivan Ludnikov</td>
<td>30 000</td>
<td>x x x x x</td>
<td>x</td>
<td>x x x x</td>
</tr>
<tr>
<td></td>
<td>Semiozernoe</td>
<td>30 000</td>
<td>x x x x x</td>
<td>x</td>
<td>x x x x</td>
</tr>
<tr>
<td>Ucrania 25-junio-08</td>
<td>Konstruktor Koshkin</td>
<td>15 000</td>
<td>x x x x x</td>
<td>x</td>
<td>x x x x</td>
</tr>
</tbody>
</table>

(continúa)
<table>
<thead>
<tr>
<th>País y fecha de notificación</th>
<th>Nombre del barco</th>
<th>Captura prevista (toneladas)</th>
<th>Meses cuando se realizará la pesca</th>
<th>Subárea y división donde se realizará la pesca</th>
<th>Productos a ser derivados de la captura (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2008</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diciembre</td>
<td>Enero</td>
<td>Febrero</td>
</tr>
<tr>
<td>EEUU 18-junio-08</td>
<td>Top Ocean</td>
<td>40 000</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Frey</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frigg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Odin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>18 barcos</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>629 000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ns No se especifica
* El producto elaborado del Konstraktor Koshkin incluye carne de kril envasada (40%).
1 Noruega también ha señalado su intención de participar en una pesquería exploratoria de kril en la Subárea 48.6 con el barco Thorshovdi.
+ Notificación de pesca de kril retirada el 7 de octubre de 2008.
++ Notificación de pesca de kril retirada el 16 de octubre de 2008.
Tabla 4: Proporción del valor estimado de rendimiento recomendada para ser distribuida entre las UIPE del norte, talud y plataforma.

<table>
<thead>
<tr>
<th>UIPE</th>
<th>CPUE relativo</th>
<th>Área explotable (km²)</th>
<th>Proporción</th>
</tr>
</thead>
<tbody>
<tr>
<td>881B</td>
<td>0.22</td>
<td>4 318</td>
<td>0.028</td>
</tr>
<tr>
<td>881C</td>
<td>0.58</td>
<td>4 444</td>
<td>0.075</td>
</tr>
<tr>
<td>881G</td>
<td>0.13</td>
<td>7 110</td>
<td>0.028</td>
</tr>
<tr>
<td>881H</td>
<td>0.39</td>
<td>19 245</td>
<td>0.221</td>
</tr>
<tr>
<td>881I</td>
<td>0.28</td>
<td>30 783</td>
<td>0.254</td>
</tr>
<tr>
<td>881K</td>
<td>0.36</td>
<td>24 695</td>
<td>0.263</td>
</tr>
<tr>
<td>881J</td>
<td>0.22</td>
<td>9 800</td>
<td>0.063</td>
</tr>
<tr>
<td>881L</td>
<td>0.14</td>
<td>16 807</td>
<td>0.068</td>
</tr>
</tbody>
</table>

Tabla 5: Recomendaciones de la evaluación del funcionamiento de la CCRVMA relacionadas con el Comité Científico. El documento CCAMLR-XXVII/8 contiene todas las recomendaciones de este examen.

2.3 **Conservación**
Recomendaciones 2.3.1.1, 2.3.1.2

2.4 **Áreas protegidas**
Recomendaciones 2.4.3.2(b)

2.5 **Contaminación marina**
Recomendaciones 2.5.1.3

3.1 **Estado de los recursos vivos**
Recomendaciones 3.1.1.1, 3.1.1.2, 3.1.1.3, 3.1.2.2, 3.1.2.3, 3.1.3.1, 3.1.3.2, 3.1.3.3, 3.1.3.6, 3.1.3.7

3.2 **Enfoque de ecosistemas**
Recomendaciones 3.2.1.1, 3.2.1.2, 3.2.1.3, 3.2.1.4, 3.2.1.5

3.3 **Recopilación e intercambio de datos**
Recomendaciones 3.3.1.1, 3.3.2.1, 3.3.2.3, 3.3.4.2

3.4 **Calidad y provisión de asesoramiento científico**
Recomendaciones 3.4.1.1, 3.4.1.2, 3.4.1.3

3.5 **Adopción de medidas de conservación y ordenación**
Recomendaciones 3.5.2.2, 3.5.3.1, 3.5.3.2, 3.5.3.3, 3.5.3.4, 3.5.6.2, 3.5.6.3

6.1 **Transparencia**
Recomendaciones 6.1.1.2, 6.1.2.1, 6.1.2.2, 6.1.2.3, 6.1.2.4

7.2 **Eficiencia y eficacia en función de los costos**
Recomendaciones 7.2.1.2, 7.1.2.3, 7.2.2.4

<table>
<thead>
<tr>
<th>Item</th>
<th>Presupuesto de 2008 $ AUD</th>
<th>Presupuesto de 2009 $ AUD</th>
<th>Presupuesto previsto de 2010 $ AUD</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>WG-SAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apoyo y participación de la Secretaría</td>
<td>6 000</td>
<td>6 200</td>
<td>6 400</td>
<td>(1)</td>
</tr>
<tr>
<td>Redacción y traducción del informe</td>
<td>20 000</td>
<td>21 000</td>
<td>21 800</td>
<td></td>
</tr>
<tr>
<td>WG-EMM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apoyo y participación de la Secretaría</td>
<td>82 300</td>
<td>86 000</td>
<td>89 400</td>
<td>(2)</td>
</tr>
<tr>
<td>Redacción y traducción del informe</td>
<td>40 000</td>
<td>42 000</td>
<td>43 700</td>
<td></td>
</tr>
<tr>
<td>WG-FSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servicios informáticos</td>
<td>5 700</td>
<td>5 900</td>
<td>6 100</td>
<td></td>
</tr>
<tr>
<td>Apoyo de la Secretaría</td>
<td>31 000</td>
<td>20 400</td>
<td>21 000</td>
<td></td>
</tr>
<tr>
<td>Redacción y traducción del informe</td>
<td>83 600</td>
<td>60 400</td>
<td>62 000</td>
<td></td>
</tr>
<tr>
<td>WG-IMAF</td>
<td></td>
<td></td>
<td></td>
<td>(3)</td>
</tr>
<tr>
<td>(incluido antes en los costes de WG-FSA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apoyo de la Secretaría</td>
<td>12 000</td>
<td>13 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redacción y traducción del informe</td>
<td>27 000</td>
<td>28 600</td>
<td>41 600</td>
<td></td>
</tr>
<tr>
<td>SG-ASAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apoyo y participación de la Secretaría</td>
<td>0</td>
<td>6 000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Redacción y traducción del informe</td>
<td>0</td>
<td>8 400</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Taller sobre los EMV</td>
<td></td>
<td></td>
<td></td>
<td>(4)</td>
</tr>
<tr>
<td>Apoyo y participación de la Secretaría</td>
<td>36 000</td>
<td>36 000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Redacción y traducción del informe</td>
<td>8 400</td>
<td>44 400</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Taller mixto CCAMLR-IWC</td>
<td></td>
<td></td>
<td></td>
<td>(5)</td>
</tr>
<tr>
<td>Organización del taller y expertos invitados</td>
<td>88 500</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Apoyo y participación de la Secretaría</td>
<td>12 000</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Redacción y traducción del informe</td>
<td>20 000</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ad hoc TASO</td>
<td></td>
<td></td>
<td></td>
<td>(6)</td>
</tr>
<tr>
<td>Apoyo y participación de la Secretaría</td>
<td>(7 000)</td>
<td>2 000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Redacción y traducción del informe</td>
<td>(7 000)</td>
<td>4 000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Otros gastos del programa del Comité Científico</td>
<td></td>
<td></td>
<td></td>
<td>(7)</td>
</tr>
<tr>
<td>Expertos externos invitados a las reuniones</td>
<td>6 000</td>
<td>32 500</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cartel de las aves marinas</td>
<td>5 000</td>
<td>6 000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Plantilla fotográfica</td>
<td>1 500</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Conf. Internacional de Observadores Pesq.</td>
<td>0</td>
<td>8 000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Año Polar Internacional</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Imprevistos</td>
<td>1 200</td>
<td>1 200</td>
<td>1 200</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>402 800</td>
<td>393 400</td>
<td>307 200</td>
<td></td>
</tr>
</tbody>
</table>

137
Figura 1: Situación de las UOPE propuestas para la pesquería de kril en la Subárea 48.4. Área pelágica de las Islas Sándwich del Sur (16); Islas Sándwich del Sur (17).

Figura 2: Situación de las UIPE en el Mar de Ross, incluida la nueva UIPE 881M.
La notificación es examinada por el WG-EMM, el Comité Científico y la Comisión – se enviará a los miembros cualquier comentario al respecto.

<table>
<thead>
<tr>
<th>Planes dependientes de la pesca:</th>
<th>El miembro autor de la notificación selecciona un plan específico para cada caso</th>
<th>Planes independientes de la pesca: Seguimiento de depredadores o campaña de investigación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transectos acústicos* o arrastres de investigación</td>
<td>El barco realiza sus actividades normales de pesca – debiendo efectuar un conjunto de transectos acústicos o un conjunto de lances de investigación en cada unidad de exploración en la cual pesca</td>
<td>El barco realiza sus actividades normales de pesca mientras el miembro lleva a cabo una campaña de investigación o el seguimiento de depredadores**</td>
</tr>
<tr>
<td>Las actividades normales de pesca cesan voluntariamente o porque se ha alcanzado el límite de captura</td>
<td>Se calcula el número de unidades de exploración en las cuales se realizarán las actividades de investigación (R): [R = \frac{\text{captura total(toneladas)}}{2000}]</td>
<td>Las actividades normales de pesca cesan voluntariamente o porque se ha alcanzado el límite de captura</td>
</tr>
<tr>
<td>El barco realiza actividades de investigación – debiendo efectuar un conjunto de transectos acústicos o un conjunto de lances de investigación en cada una de las R unidades de exploración – estas unidades deben circundar el área donde se realizaron las actividades normales de pesca</td>
<td>El barco realiza actividades de investigación – debiendo efectuar un conjunto de transectos acústicos o un conjunto de lances de investigación en cada una de las R unidades de exploración – estas unidades deben circundar el área donde se realizaron las actividades normales de pesca</td>
<td>El barco sale del caladero de pesca</td>
</tr>
</tbody>
</table>

* Los transectos acústicos deberán ir acompañados de un lance de arrastre.
** La finalización de la campaña de investigación depende del diseño de la misma, y la finalización del seguimiento de los depredadores ocurre a fines de la época de reproducción –estas fechas pueden o no coincidir con el término de las actividades normales de pesca.

Figura 3: Descripción esquemática de las principales actividades a ser realizadas durante la planificación y ejecución de las pesquerías exploratorias de kril.
LISTA DE PARTICIPANTES
LISTA DE PARTICIPANTES

PRESIDENTE DE LA COMISIÓN
Mr Peter Amutenya
Ministry of Fisheries and Marine Resources
Windhoek, Namibia
pamutenya@mfmr.gov.na

PRESIDENTE DEL COMITÉ CIENTÍFICO
Dr Kevin Sullivan
Ministry of Fisheries
Wellington, New Zealand
kevin.sullivan@fish.govt.nz

ARGENTINA

Representante:
Dr. Enrique Marschoff
Instituto Antártico Argentino
Ministerio de Relaciones Exteriores, Comercio Internacional y Culto
Buenos Aires
marschoff@dna.gov.ar

Representantes suplentes:
Dr. Esteban Barrera Oro
Instituto Antártico Argentino
Ministerio de Relaciones Exteriores, Comercio Internacional y Culto
Buenos Aires
ebarreraoro@dna.gov.ar

Sr. Ariel R. Mansi
Director General de Asuntos Antárticos
Ministerio de Relaciones Exteriores, Comercio Internacional y Culto
Buenos Aires
rpc@mrecic.gov.ar

Asesor:
Sr. Máximo Gowland
Dirección General de Asuntos Antárticos
Ministerio de Relaciones Exteriores, Comercio Internacional y Culto
Buenos Aires
rpc@mrecic.gov.ar
AUSTRALIA

Representante: Dr Andrew Constable
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Tasmania
andrew.constable@aad.gov.au

Representantes suplentes: Dr So Kawaguchi
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Tasmania
so.kawaguchi@aad.gov.au

Dr Keith Martin-Smith
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Tasmania
keith.martin-smith@aad.gov.au

Dr Stephen Nicol
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Tasmania
steve.nicol@aad.gov.au

Dr Anthony Press
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Tasmania
tony.press@aad.gov.au

Ms Gillian Slocum
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Tasmania
gill.slocum@aad.gov.au
Asesores:

Dr Dirk Welsford
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Tasmania
dirk.welsford@aad.gov.au

Ms Deborah Bourke
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Tasmania
deborah.bourke@aad.gov.au

Prof. Colin Buxton
Representative of State and Territory Government
Tasmania
colin.buxton@utas.edu.au

Mr Alistair Graham
Representative of Conservation Organisations
Tasmania
alistairgraham1@bigpond.com

Mr Ian Hay
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Tasmania
ian.hay@aad.gov.au

Ms Megan Lloyd
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Tasmania
megan.lloyd@aad.gov.au

Mr Peter Neave
Australian Fisheries Management Authority
Canberra
peter.neave@afma.gov.au

Mr Les Scott
Representative of Australian Fishing Industry
Tasmania
rls@petunasealord.com
Dr Colin Southwell
Australian Antarctic Division
Department of the Environment, Water, Heritage
and the Arts
Tasmania
colin.southwell@aad.gov.au

BÉLGICA
Representante:
Mr Daan Delbare
Institute for Agriculture and Fisheries Research
Oostende
daan.delbare@ilvo.vlaanderen.be

BRASIL
Representante:
Capt. José Medeiros
Brazilian Antarctic Programme
Brasilia

CHILE
Representante:
Prof. Carlos Moreno
Instituto de Ecología y Evolución
Universidad Austral de Chile
Valdivia
cmoreno@uach.cl

Asesores:
Sra. Valeria Carvajal
Subsecretaría de Pesca
Valparaíso
vco@subpesca.cl

Sr. Rubén Darío Rojas Todorovich
Armada de Chile
Dirección General del Territorio Marítimo y de
Marítima Mercante
Valparaíso
rrojast@directemar.cl
REPÚBLICA POPULAR CHINA

Representante: Mr Xian-Yong Zhao
Chinese Academy of Fishery Sciences
Qingdao
zhaoxy@ysfri.ac.cn

Representante suplente: Ms Mei Jiang
Chinese Arctic and Antarctic Administration
Beijing
chinare@263.net.cn

Asesor: Ms Lei Zhao
Department of Treaty and Law
Ministry of Foreign Affairs
Beijing
zhao_lei@mfa.gov.cn

COMUNIDAD EUROPEA

Representante: Dr Volker Siegel
Federal Research Institute for Rural Areas,
Forestry and Fisheries
Institute of Sea Fisheries
Hamburg, Germany
volker.siegel@vti.bund.de

FRANCIA

Representante: Prof. Guy Duhamel
Muséum National d'Histoire Naturelle
Paris
duhamel@mnhn.fr

Representante suplente: M. Pierre Tribon
Direction des pêches maritimes et de l'aquaculture
Ministère de l’Agriculture et de la Pêche
Paris
pierre.tribon@agriculture.gouv.fr

Asesores: M. Emmanuel Reuillard
Ecosystem and Natural Habitat Management
Department
French Southern and Antarctic Lands
Saint Pierre, La Réunion
emmanuel.reuillard@taaf.fr
M. Serge Segura
Ministère des Affaires étrangères et européennes
Paris
serge.segura@diplomatie.gouv.fr

ALEMANIA

Representante: Dr Karl-Hermann Kock
Johann Heinrich von Thünen Institute
Federal Research Institute for Rural Areas,
Forestry and Fisheries
Institute of Sea Fisheries
Hamburg
karl-hermann.kock@vti.bund.de

Representante suplente: Mr Josef Reichhardt
Federal Foreign Office
Berlin
504-8@diplo.de

INDIA

Representante: Dr V.N. Sanjeevan
Centre for Marine Living Resources and Ecology
Ministry of Earth Sciences
Kochi
vnsanjeevan@gmail.com

Representante suplente: Mr Perumal Madeswaran
Ministry of Earth Sciences
New Delhi
mades-dod@nic.in

ITALIA

Representante: Dr Marino Vacchi
Museo Nazionale Antartide
Università degli Studi di Genova
Genoa
m.vacchi@unige.it

Asesor: Dr Nicola Sasanelli
Embassy of Italy
Canberra, Australia
adScientifico.canberra@esteri.it
JAPÓN

Representante: Mr Kiyoshi Katsuyama
International Affairs Division
Fisheries Agency of Japan
Tokyo

Representantes suplentes: Dr Taro Ichii
National Research Institute of Far Seas Fisheries
Yokohama
ichii@affrc.go.jp

Mr Takaaki Sakamoto
Fisheries Agency of Japan
Tokyo
takaaki_sakamoto@nm.maff.go.jp

Asesores: Mr Naohiko Akimoto
Japan Overseas Fishing Association
Tokyo
naohiko@sol.dti.ne.jp

Mr Hirohide Matsushima
International Affairs Division
Fisheries Agency of Japan
Tokyo
hirohide_matsushima@nm.maff.go.jp

Mr Naohisa Miyagawa
Fishing Industry Representative
Tokyo
kani@maruha-nichiro.co.jp

Dr Kentaro Watanabe
National Institute of Polar Research
Tokyo
kentaro@nipr.ac.jp

Mr Yoshinobu Nishikawa
Fishing Industry Representative
Tokyo
kani@maruha-nichiro.co.jp
REPÚBLICA DE COREA

Representante: Dr Hyun-Su Jo
National Fisheries Research and Development Institute
Busan
hsjo@nfrdi.re.kr

Representante suplente: Dr Hyoung-Chul Shin
Korea Polar Research Institute
Seoul
hcshin@kopri.re.kr

Asesores: Mrs Yeon Suk Lee
International Fisheries Organization Division
Ministry for Food, Agriculture, Forestry and Fisheries
Seoul
aglys99@mifaff.go.kr

Ms Jie Hyoun Park
Citizens Institute for Environmental Studies
Seoul
sophile@gmail.com

Mr Kyujin Seok
Ministry for Food, Agriculture, Forestry and Fisheries
Seoul
pisces@nfrdi.go.kr

NAMIBIA

Representante: Mr Titus Iilende
Ministry of Fisheries and Marine Resources
Windhoek
tiilende@mfmr.gov.na

Asesor: Mr Hafeni Mungungu
Fisheries Observer Agency
Walvis Bay
mungungu@foa.com.na
NUEVA ZELANDIA

Representante: Mr Neville Smith
Ministry of Fisheries
Wellington
neville.smith@fish.govt.nz

Representante suplente: Dr Stuart Hanchet
National Institute of Water and Atmospheric Research
Nelson
s.hanchet@niwa.co.nz

Asesores:
Ms Rebecca Bird
WWF-New Zealand
Wellington
rbird@wwf.org.nz

Mr Jack Fenaughty
Fishing Industry Representative
Wellington
jmfenaughty@clear.net.nz

Ms Ingrid Jamieson
Ministry of Fisheries
Wellington
ingrid.jamieson@fish.govt.nz

Mr Ben Sims
Ministry of Fisheries
Wellington
ben.sims@fish.govt.nz

Mr Barry Weeber
EcoWatch
Wellington
ecowatch@paradise.net.nz

NORUEGA

Representante: Mr Svein Iversen
Institute of Marine Research
Bergen
sveini@imr.no
Asesor: Mr Harald Steen
Norwegian Polar Institute
Tromsø
steen@npolar.no

POLONIA

Representante: Mr Leszek Dybiec
Fisheries Department
Ministry of Agriculture and Rural Development
Warsaw
leszek.dybiec@minrol.gov.pl

FEDERACIÓN RUSA

Representante: Dr Konstantin Shust
Russian Federal Research Institute of Fisheries and Oceanography
Moscow
antarctica@vniro.ru

Asesores: Mr Nikolay Androsov
JSC Murmansk Trawl Fleet
Murmansk
androsov@mtf.ru
Dr Viacheslav A. Bizikov
Russian Federal Research Institute of Fisheries and Oceanography
Moscow
bizikov@vniro.ru
Mr Dmitry Kremenyuk
Federal Agency for Fisheries
Moscow
d.kremenyuk@fishcom.ru

SUDÁFRICA

Representante: Dr Robin Leslie
Marine and Coastal Management
Department of Environmental Affairs and Tourism
Cape Town
rwleslie@deat.gov.za
Asesores:
Ms Thersassa Frantz
Marine and Coastal Management
Department of Environmental Affairs and Tourism
Cape Town
tackers@deat.gov.za

Mr Christopher Heinecken
Capfish
Cape Town
chris@capfish.co.za

Ms Estelle Van der Merwe
NGO Representative
Cape Town
estellevdm@mweb.co.za

ESPAÑA
Representante:
Sra. María del Sagrario Moset Martínez
Ministerio de Medio Ambiente, y Medio Rural y Marino
Secretaría General del Mar
Madrid
smosetma@mapya.es

SUECIA
Representante:
Prof. Bo Fernholm
Swedish Museum of Natural History
Stockholm
bo.fernholm@nrm.se

Representante suplente:
Ambassador Helena Ödmark
Ministry for Foreign Affairs
Stockholm
helena.odmark@foreign.ministry.se

UCRANIA
Representante:
Mr Leonid Pshenichnov
YugNIRO
Kerch
lkp@bikent.net
Asesores:

Dr Volodymyr Herasymchuk
State Committee for Fisheries of Ukraine
Kiev
v.herasymchuk@dkrg.gov.ua

Dr Gennadi Milinevsky
National Taras Sherchenko University of Kiev
Kiev
genmilinevsky@gmail.com

REINO UNIDO

Representante:

Dr David Agnew
Renewable Resources Assessment Group
Imperial College
London
d.agnew@imperial.ac.uk

Representantes suplentes:

Dr Philip Trathan
British Antarctic Survey
Cambridge
p.trathan@bas.ac.uk

Dr Graeme Parkes
Marine Resources Assessment Group Ltd
London
g.parkes@mrag.co.uk

Asesores:

Dr Susie Grant
British Antarctic Survey
Cambridge
suan@bas.ac.uk

Ms Indrani Lutchman
Institute for European Environmental Policy
London
ilutchman@ieeplondon.org.uk

Dr Rebecca Mitchell
Marine Resources Assessment Group Ltd
London
r.mitchell@mrag.co.uk

Mr Scott Parnell
Foreign and Commonwealth Office
London
scott.parnell@fco.gov.uk
Ms Helen Upton
Foreign and Commonwealth Office
Polar Regions Unit
London
helen.upton@fco.gov.uk

ESTADOS UNIDOS DE AMÉRICA

Representante: Dr Rennie Holt
Southwest Fisheries Science Center
National Marine Fisheries Service
La Jolla, California
rennie.holt@noaa.gov

Representante suplente: Dr Christopher Jones
Southwest Fisheries Science Centre
National Marine Fisheries Service
La Jolla, California
chris.d.jones@noaa.gov

Asesores: Mr Ned Cyr
NOAA Fisheries
Office of Science and Technology
Silver Spring, Maryland
ned.cyr@noaa.gov

Dr Polly Penhale
National Science Foundation
Office of Polar Programs
Arlington, Virginia
ppenhale@nsf.gov

Mr Jean-Pierre Ple
NOAA Fisheries Service
Silver Spring, Maryland
jean.pierre.ple@noaa.gov

Ms Kim Rivera
NOAA Fisheries
Protected Resources Division
Juneau, Alaska
kim.rivera@noaa.gov

Mr Mark Stevens
National Environment Trust
Washington, DC
mstevens@net.org
Ms Pamela Toschik
Department of Commerce
National Oceanic and Atmospheric Administration
Washington, DC
pamela.toschik@noaa.gov

Dr George Watters
Southwest Fisheries Science Centre
National Marine Fisheries Service
La Jolla, California
george.watters@noaa.gov

URUGUAY

Representante:
Prof. Oscar Pin
Dirección Nacional de Recursos Acuáticos
Montevideo
opin@dinara.gub.uy

Representante suplente:
Sr. Alberto T. Lozano
Comisión Interministerial CCRVMA – Uruguay
Ministerio de Relaciones Exteriores
Montevideo
comcruma@mrree.gub.uy

OBSERVADORES – ESTADOS ADHERENTES

PAÍSES BAJOS
(2ª semana)
Mr Jan Groeneveld
Special Adviser to the Director for Fisheries
Ministry of Agriculture, Nature and Food Quality
Remagen, Germany
groeneveld1938@hotmail.com

VANUATU
Mr Gerry Geen
Fishing Industry Representative
Sydney, Australia
ggeen@bigpond.net.au

OBSERVADORES – ORGANIZACIONES INTERNACIONALES

ACAP
Mr Barry Baker
ACAP Secretariat
Tasmania, Australia
barry.baker@latitude42.com.au
Dr Marco Favero
ACAP Secretariat
Tasmania, Australia
mafavero@mdp.edu.ar

Mr Warren Papworth
ACAP Secretariat
Tasmania, Australia
warren.papworth@acap.aq

CPA
(1ª semana)
Dr Neil Gilbert
Antarctica New Zealand
Christchurch, New Zealand
n.gilbert@antarcticanz.govt.nz

UICN
Ms Imèn Meliane
IUCN – International Union for Conservation of Nature
Gland, Switzerland
imene.meliane@iucn.org

IWC
Prof. Bo Fernholm
Swedish Museum of Natural History
Stockholm, Sweden
bo.fernholm@nrm.se

Dr Karl-Hermann Kock
Johann Heinrich von Thünen Institute
Federal Research Institute for Rural Areas, Forestry and Fisheries
Institute of Sea Fisheries
Hamburg, Germany
karl-hermann.kock@vti.bund.de

SCAR
Dr Graham Hosie
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Tasmania, Australia
graham.hosie@aad.gov.au

WCPFC
(1ª semana)
Mr Andrew Wright
Western and Central Pacific Fisheries Commission
Pohnpei
Federated States of Micronesia
andrew.wright@wcpfc.int
ASOC

Ms Adriana Fabra
Antarctic Krill Conservation Project
Barcelona, España
afabra@yahoo.es

Ms Virginia Gascón
Antarctic Krill Conservation Project
Bariloche, Río Negro
Argentina
virginia.antarctica@gmail.com

Ms Lyn Goldsworthy
ASOC
Gordon, Australia
lyn.goldsworthy@ozemail.com.au

Ms Nina Jensen
WWF-Norway
Oslo, Norway
njensen@wwf.no

Mr Gerald Leape
Antarctic Krill Conservation Project
Washington DC, USA
gleape@pewtrusts.org

Ms Margaret Moore
WWF-Australia
Thornbury, Australia

Mr Robert Nicoll
WWF-Australia
Sydney, Australia
rnicoll@wwf.org.au

Mr Richard Page
Greenpeace
London, UK
richard.page@uk.greenpeace.org

Ms Ayako Sekine
Antarctic Krill Conservation Project
Tokyo, Japan
ayakos04@yahoo.co.jp
Dr Rodolfo Werner
Antarctic Krill Conservation Project
Bariloche, Rio Negro
Argentina
rodolfo.antarctica@gmail.com

COLTO

Mr Martin Exel
Austral Fisheries Pty Ltd
Western Australia
mexel@australfisheries.com.au

Mr James Wallace
Fortuna Ltd
Stanley, Falkland Islands
jameswallace@fortunlimited.com

OBSERVADORES – PARTES NO CONTRATANTES

ISLAS MARSHALL
(1ª semana)
Mr James Myazoe
Office of the Maritime Administrator
Majuro
tcmi@ntamar.net
SECRETARÍA

Secretario Ejecutivo
Asuntos generales de oficina y conferencias
Asistente

Ciencias
Funcionario científico
Análisis de los datos de observación científica
Asistente de investigación

Administración de Datos
Administrador de datos
Asistente de administración de datos
Administrador/Programador de la base de datos

Ejecución y cumplimiento
Funcionario de cumplimiento
Asistente de cumplimiento

Administración y Finanzas
Administrador
Asistente de finanzas

Comunicaciones
Funcionaria de comunicaciones
Asistente de publicaciones y sitio web
Traductora y coordinadora de equipo español
Traductora (español)
Traductora (español)
Traductora y coordinadora de equipo francés
Traductora (francés)
Traductora (francés)
Traductora (francés)
Traductora y coordinadora de equipo ruso
Traductora (ruso)
Traductor (ruso)

Sitio web y servicios de información
Sitio web y servicios de información
Asistente de servicios de información

Tecnología de la información
Administrador de tecnología de la información
Asistente de la tecnología de la información
Intérpretes
Aramais Aroustian
Patricia Ávila
John Benson
Adriana Caminiti
Vera Christopher
Joëlle Coussaert
Vadim Doubine
Sandra Hale
Alexey Ivacheff

Isabel Lira
J.C. Lloyd-Southwell
Marc Orlando
Peter Peterson
Philip Saffery
Ludmila Stern
Philippe Tanguy
Roslyn Wallace
Emy Watt
LISTA DE DOCUMENTOS
LISTA DE DOCUMENTOS

SC-CAMLR-XXVII/1 Agenda provisional de la Vigésimo séptima Reunión del Comité Científico para la Conservación de los Recursos Vivos Marinos Antárticos

SC-CAMLR-XXVII/2 Agenda provisional comentada de la Vigésimo séptima Reunión del Comité Científico para la Conservación de los Recursos Vivos Marinos Antárticos

SC-CAMLR-XXVII/3 Informe del Grupo de Trabajo de Seguimiento y Ordenación del Ecosistema (San Petersburgo, Rusia, 23 de julio al 1 de agosto de 2008)

SC-CAMLR-XXVII/3 Corrigenda a la figura 2 Informe del Grupo de Trabajo de Seguimiento y Ordenación del Ecosistema (San Petersburgo, Rusia, 23 de julio al 1 de agosto de 2008)

SC-CAMLR-XXVII/4 Informe del Grupo de Trabajo de Evaluación de las Poblaciones de Peces (Hobart, Australia, 13 al 24 de octubre de 2008)

SC-CAMLR-XXVII/5 Informe del Grupo de Trabajo de Estadística, Evaluación y Modelado (San Petersburgo, Rusia, 14 al 22 de julio de 2008)

SC-CAMLR-XXVII/6 CCAMLR Science: Política y proceso editorial Secretaría

SC-CAMLR-XXVII/7 Consecuencias del cambio climático para las pesquerías de la CCRVMA y para el trabajo del Comité Científico Delegación del Reino Unido

Rev. 1

SC-CAMLR-XXVII/8 Action plan aimed at reducing seabird by-catch in the French EEZs in Statistical Division 58.5.1 and Subarea 58.6 Delegation of France

SC-CAMLR-XXVII/9 Ver SC-CAMLR-XXVII/BG/11

SC-CAMLR-XXVII/10 Resumen de los informes presentados por Francia en relación con las recomendaciones del Comité Científico sobre la mortalidad incidental de aves marinas Delegación de Francia

SC-CAMLR-XXVII/11 Ver SC-CAMLR-XXVII/BG/12
Efectos ambientales, espaciales, temporales y operacionales sobre la mortalidad incidental de aves en la pesquería de palangre de la zona de Crozet y Kerguelén de 2003 a 2006
Delegación de Francia

Corrigenda a la tabla 14

Notificación de Ecosistemas Marinos Vulnerables en el Área estadística 58.4.1
Delegación de Australia

Resumen ejecutivo – Taller conjunto CCAMLR-IWC
(Hobart, Australia, 11 al 15 de agosto de 2008)

Informe del Grupo de Trabajo especial sobre la Mortalidad Incidental relacionada con la Pesca
(Hobart, Australia, 13 al 17 de octubre de 2008)

Catches in the Convention Area in the 2006/07 and 2007/08 seasons
Secretariat

Summary of scientific observation programs undertaken during the 2007/08 season
Secretariat

Data Management report on activities in 2007/08
Secretariat

Development of CCAMLR metadata
Secretariat

Secretariat

Report of the ad hoc Technical Group for at-sea Operations
(St Petersburg, Russia, 19 and 20 July 2008)

Attendance of Science Officer at the Second Meeting of the ACAP Seabird Bycatch Working Group
(Hermanus, South Africa, 17 to 18 August 2008)
Secretariat
<table>
<thead>
<tr>
<th>Document Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC-CAMLR-XXVII/BG/8</td>
<td>Etude d’évaluation de l’impact des pêcheries sur les populations de pétrels à menton blanc Procellaria aequinoctialis et de pétrels gris Procellaria cinerea aux îles Crozet et Kerguelen Délégation française</td>
</tr>
<tr>
<td>SC-CAMLR-XXVII/BG/9</td>
<td>Observer’s Report from the 60th Meeting of the Scientific Committee of the International Whaling Commission (Santiago, Chile, 1 to 13 June 2008) CCAMLR Observer (K.-H. Kock, Germany)</td>
</tr>
<tr>
<td>SC-CAMLR-XXVII/BG/11</td>
<td>Instruments de réglementation en vigueur pour réduire la mortalité des oiseaux de mer directement ou indirectement Délégation française</td>
</tr>
<tr>
<td>SC-CAMLR-XXVII/BG/12</td>
<td>Mise en place d’un système d’effarouchement au poste de virage sur les palangriers exploitant la légine dans les ZEE françaises incluses dans les sous-zones statistiques 58.5.1 et 58.6 – Campagne de pêche 2007–2008 Délégation française</td>
</tr>
<tr>
<td>SC-CAMLR-XXVII/BG/13</td>
<td>The implications of climate change for CCAMLR fisheries and for the work of the Scientific Committee Delegation of the United Kingdom</td>
</tr>
<tr>
<td>SC-CAMLR-XXVII/BG/14</td>
<td>Report of the Convener of WG-EMM-08 to SC-CAMLR-XXVII</td>
</tr>
<tr>
<td>SC-CAMLR-XXVII/BG/15</td>
<td>Calendar of meetings of relevance to the Scientific Committee in 2008/09 Secretariat</td>
</tr>
<tr>
<td>SC-CAMLR-XXVII/BG/16</td>
<td>Report of the Joint CCAMLR-IWC Workshop (Hobart, Australia, 11 to 15 August 2008)</td>
</tr>
<tr>
<td>SC-CAMLR-XXVII/BG/17</td>
<td>Report on the FAO-sponsored Workshop on Knowledge and Data on Deep-water Fisheries in the High Seas Secretariat</td>
</tr>
<tr>
<td>SC-CAMLR-XXVII/BG/18</td>
<td>Report of the Conveners of ad hoc WG-IMAF-08 to SC-CAMLR-XXVII</td>
</tr>
</tbody>
</table>
SC-CAMLR-XXVII/BG/19 Proposals for revised conservation measures submitted by ad hoc WG-IMAF to the Scientific Committee for further consideration

CCAMLR-XXVII/1 Agenda provisional de la Vigésimo séptima Reunión de la Comisión para la Conservación de los Recursos Vivos Marinos Antárticos

CCAMLR-XXVII/2 Agenda provisional comentada de la Vigésimo séptima Reunión de la Comisión para la Conservación de los Recursos Vivos Marinos Antárticos

CCAMLR-XXVII/3 Examen de los estados financieros revisados de 2007 Secretario Ejecutivo

CCAMLR-XXVII/4 Revisión del presupuesto de 2008, proyecto de presupuesto de 2009 y previsión de presupuesto de 2010 Secretario Ejecutivo

Rev. 2

CCAMLR-XXVII/5 Procedimiento para la Contratación del Secretario Ejecutivo de la CCRVMA Secretaría

CCAMLR-XXVII/6 Informe del Secretario Ejecutivo a la reunión de SCAF de 2008 Secretario Ejecutivo

CCAMLR-XXVII/7 Revisión de las funciones científicas y de administración de datos de la Secretaría de la CCRVMA Secretaría

CCAMLR-XXVII/8 Informe del Comité de Evaluación del Funcionamiento de la CCRVMA

CCAMLR-XXVII/9 Auditoría requerida para los Estados financieros de 2008 Secretaría

CCAMLR-XXVII/10 Aplicación de las Medidas de Conservación 10-06 y 10-07: Listas provisionales de barcos de pesca INDNR en 2008 Secretaría

CCAMLR-XXVII/11 Resumen de las notificaciones de pesquerías de kril en 2008/09 Secretaría
CCAMLR-XXVII/11 Resumen de las notificaciones de pesquerías de kril en 2008/09 Secretaría
CCAMLR-XXVII/12 Resumen de las notificaciones de pesquerías nuevas y exploratorias en 2008/09 Secretaría
CCAMLR-XXVII/12 Corrigenda a la tabla 5 Resumen de las notificaciones de pesquerías nuevas y exploratorias en 2008/09 Secretaría
CCAMLR-XXVII/13 Notificación de la intención de Noruega de realizar una pesquería de arrastre exploratoria de *Euphausia superba* en la temporada 2008/09 Delegación de Noruega
CCAMLR-XXVII/14 Notificaciones de la intención de Argentina de realizar pesquerías de palangre exploratorias de *Dissostichus* spp. en la temporada 2008/09 Delegación de Argentina
CCAMLR-XXVII/15 Notificación de la intención de Australia de realizar una pesquería de palangre exploratoria de *Dissostichus* spp. en la temporada 2008/09 Delegación de Australia
CCAMLR-XXVII/16 Notificaciones de la intención de Chile de realizar pesquerías de palangre exploratorias de *Dissostichus* spp. en la temporada 2008/09 Delegación de Chile
CCAMLR-XXVII/17 Notificaciones de la intención del Japón de realizar pesquerías de palangre exploratorias de *Dissostichus* spp. en la temporada 2008/09 Delegación de Japón
CCAMLR-XXVII/18 Notificaciones de la intención de la República de Corea de realizar pesquerías de palangre exploratorias de *Dissostichus* spp. en la temporada 2008/09 Delegación de la República de Corea
CCAMLR-XXVII/19 Notificaciones de la intención de Nueva Zelanda de realizar pesquerías de palangre exploratorias de *Dissostichus* spp. en la temporada 2008/09 Delegación de Nueva Zelanda
CCAMLR-XXVII/20 Notificaciones de la intención de Rusia de iniciar nuevas pesquerías de centollas con nasas en la temporada 2008/09 Delegación de Rusia
Notificaciones de la intención de Rusia de realizar pesquerías de palangre exploratorias de *Dissostichus* spp. en la temporada 2008/09
Delegación de Rusia

Notificaciones de la intención de Sudáfrica de realizar pesquerías de palangre exploratorias de *Dissostichus* spp. en la temporada 2008/09
Delegación de Sudáfrica

Notificaciones de la intención de España de realizar pesquerías de palangre exploratorias de *Dissostichus* spp. en la temporada 2008/09
Delegación de España

Notificaciones de la intención del Reino Unido de realizar pesquerías de palangre exploratorias de *Dissostichus* spp. en la temporada 2008/09
Delegación del Reino Unido

Notificaciones de la intención de Uruguay de realizar pesquerías de palangre exploratorias de *Dissostichus* spp. en la temporada 2008/09
Delegación de Uruguay

Preliminary assessments of known and anticipated impacts of proposed bottom fishing activities on vulnerable marine ecosystems
Collated by the Secretaría

Sitio web de la CCRVMA: racionalización de contraseñas
Secretaría

Enmienda propuesta de la Medida de Conservación 10-05 sobre el Sistema de Documentación de Capturas
Delegación de Francia

Directrices prácticas para el cambio del agua de lastre en el Área de la Convención
Delegación del Reino Unido

Aplicación y utilización del fondo SDC de conformidad con la Medida de Conservación 10-05 (Sistema de Documentación de Capturas de *Dissostichus* spp.)
Delegación del Reino Unido

Propuesta para enmendar la Medida de Conservación 22-06 (2007) sobre la pesca de fondo en el Área de la Convención
Delegación de Estados Unidos
CCAMLR-XXVII/32 Correcciones propuestas al Sistema de Observación Científica Internacional de la CCRVMA
Delegación de Estados Unidos

CCAMLR-XXVII/33 Propuesta para combinar las Medidas de Conservación 22-01 (pesquerías nuevas) y 22-02 (pesquerías exploratorias)
Delegación de Estados Unidos

CCAMLR-XXVII/34 Propuesta para modificar la Medida de Conservación 24-01: aplicación de las medidas de conservación a la investigación científica
Delegación de Australia

CCAMLR-XXVII/35 Mejoras generales a las medidas de conservación
Delegación de Australia

CCAMLR-XXVII/36 Propuesta para enmendar la Medida de Conservación 21-03 con relación al uso de nuevos artes de pesca en las pesquerías de kril (y enmienda subsiguiente de la Medida de Conservación 21-01)
Delegación de Australia

CCAMLR-XXVII/37 Aplicación de la Medida de Conservación 21-03 (notificaciones de la intención de participar en una pesquería de Euphausia superba) a las Partes contratantes
Delegación de Australia

CCAMLR-XXVII/38 Propuesta para reforzar el Sistema de Inspección de la CCRVMA
Rev. 1
Delegación de Australia

CCAMLR-XXVII/39 Medida de conservación propuesta para que se adopten medidas comerciales con miras a fomentar el cumplimiento
Rev. 1
Delegación de la Comunidad Europea

CCAMLR-XXVII/40 Propuesta para que la CCRVMA adopte una resolución para el uso de una nomenclatura arancelaria específica para el kril
Delegación de la Comunidad Europea

CCAMLR-XXVII/41 Adopción de un sistema de notificación de los transbordos efectuados dentro del Área de la Convención de la CCRVMA
Delegación de la Comunidad Europea

CCAMLR-XXVII/42 Enmiendas propuestas a las medida de conservación relacionadas con límites de captura en la pesquería de kril
Delegación de Ucrania
CCAMLR-XXVII/43 Incertidumbre actual de los datos científicos empleados en las evaluaciones de riesgo para la asignación de los límites de captura de kril a las UOPE del Área 48 Delegación de Ucrania

CCAMLR-XXVII/44 Programa de trabajo propuesto para el Grupo encargado del Desarrollo de un Procedimiento de Evaluación del Cumplimiento Informe de los coordinadores del Grupo de Trabajo sobre el Desarrollo de un Procedimiento de Evaluación del Cumplimiento

CCAMLR-XXVII/45 Informe del Comité Permanente de Administración y Finanzas (SCAF)

CCAMLR-XXVII/46 Informe del Comité Permanente de Ejecución y Cumplimiento (SCIC)

CCAMLR-XXVII/BG/1 List of documents

CCAMLR-XXVII/BG/2 List of participants

CCAMLR-XXVII/BG/3 Interpreting services for the Standing Committee on Implementation and Compliance (SCIC) Secretariat

CCAMLR-XXVII/BG/4 Wireless computer network Secretariat

CCAMLR-XXVII/BG/5 Report of the CCAMLR Observer to ATCM XXXI and CEP XI (Kyiv, Ukraine, 2 to 13 June 2008) Executive Secretary

CCAMLR-XXVII/BG/6 Expert Workshop to consider Flag State Control Executive Secretary

CCAMLR-XXVII/BG/7 Report of attendance at the World Ocean in Globalization: Challenges in Marine Regions Conference (Nansen Institute, Oslo, Norway, 21 to 23 August 2008) Executive Secretary

CCAMLR-XXVII/BG/8 Implementation of the System of Inspection and other CCAMLR enforcement provisions in 2007/08 Secretariat
<table>
<thead>
<tr>
<th>CCAMLR-XXVII/BG/9</th>
<th>Implementation and operation of the Catch Documentation Scheme in 2007/08 Secretariat</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCAMLR-XXVII/BG/10</td>
<td>Implementation and operation of the Centralised Vessel Monitoring System (C-VMS) in 2007/08 Secretariat</td>
</tr>
<tr>
<td>CCAMLR-XXVII/BG/11</td>
<td>Vacante</td>
</tr>
<tr>
<td>CCAMLR-XXVII/BG/12</td>
<td>New and revised conservation measures recommended by SCIC for adoption by the Commission Secretariat</td>
</tr>
<tr>
<td>CCAMLR-XXVII/BG/13</td>
<td>Proposals for new and revised conservation measures submitted by SCIC to the Commission for further consideration Secretariat</td>
</tr>
<tr>
<td>CCAMLR-XXVII/BG/14</td>
<td>Summary of current conservation measures and resolutions in force 2007/08 Secretariat</td>
</tr>
<tr>
<td>CCAMLR-XXVII/BG/15</td>
<td>Implementation of fishery conservation measures in 2007/08 Secretariat</td>
</tr>
<tr>
<td>CCAMLR-XXVII/BG/16</td>
<td>Report of the Fifth Meeting of the FIRMS Steering Committee Secretariat</td>
</tr>
<tr>
<td>CCAMLR-XXVII/BG/17</td>
<td>Draft Memorandum of Understanding between CCAMLR and the Western Central Pacific Fisheries Commission (WCPFC) Secretariat</td>
</tr>
<tr>
<td>CCAMLR-XXVII/BG/19</td>
<td>Topic summary of CEP discussions on non-native species (NNS) in Antarctica CEP Observer to CCAMLR Rev. 1</td>
</tr>
<tr>
<td>Document Number</td>
<td>Title</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>CCAMLR-XXVII/BG/20</td>
<td>Report on CCAMLR Catch Documentation Scheme training conducted by Australia in Malaysia, June 2008</td>
</tr>
<tr>
<td>CCAMLR-XXVII/BG/22</td>
<td>The issue of non-compliance with CCAMLR tagging program</td>
</tr>
<tr>
<td>CCAMLR-XXVII/BG/23</td>
<td>Report of steps taken by New Zealand to implement the inspection, investigation and sanction provisions of Conservation Measure 10-02 during 2007/08</td>
</tr>
<tr>
<td>CCAMLR-XXVII/BG/24</td>
<td>A time for action in the management of Antarctic krill fisheries</td>
</tr>
<tr>
<td>CCAMLR-XXVII/BG/26</td>
<td>Furthering implementation of networks of MPAs in Antarctica and the Southern Ocean</td>
</tr>
<tr>
<td>CCAMLR-XXVII/BG/27</td>
<td>Impacts of climate change on Antarctic marine ecosystems: a call for action</td>
</tr>
<tr>
<td>CCAMLR-XXVII/BG/28</td>
<td>The need for trade measures in CCAMLR</td>
</tr>
<tr>
<td>CCAMLR-XXVII/BG/29</td>
<td>Protecting the Southern Ocean whale sanctuary: development of a management plan</td>
</tr>
<tr>
<td>CCAMLR-XXVII/BG/30</td>
<td>The Ross Sea: a candidate for immediate inclusion in a network of marine protected areas</td>
</tr>
</tbody>
</table>

CCAMLR-XXVII/BG/33 Report of the CCAMLR Observer (United States) to the Seventh Informal Consultation of States Parties to the UNFSA (11 to 12 March, 2008, New York, USA) CCAMLR Observer (USA)

CCAMLR-XXVII/BG/34 Report of the CCAMLR Observer (United States) to the Ad Hoc Open-Ended Informal Working Group to Study Issues Relating to the Conservation And Sustainable Use of Marine Biological Diversity Beyond Areas of National Jurisdiction (28 April to 2 May, 2008, New York, USA) CCAMLR Observer (USA)

CCAMLR-XXVII/BG/35 SCAR-Marine Biodiversity Information Network 2010 and beyond Delegation of Belgium

CCAMLR-XXVII/BG/36 Biological prospecting in the Southern Ocean, a role for CCAMLR Submitted by IUCN

CCAMLR-XXVII/BG/37 The use of trade-related measures in fisheries management Submitted by IUCN

CCAMLR-XXVII/BG/38 Continuing CCAMLR’s fight against IUU fishing for toothfish Executive summary of the report by TRAFFIC International and WWF Australia Submitted by IUCN

CCAMLR-XXVII/BG/39 CCAMLR Performance Review Report: summary for discussion Secretariat

CCAMLR-XXVII/BG/40 International Maritime Organisation activities of potential interest to CCAMLR Secretariat
Calendar of meetings of relevance to the Commission in 2008/09
Secretariat

Report on the activities of the Scientific Committee on Antarctic Research (SCAR) 2007/08
SCAR Observer to CCAMLR
(G. Hosie, Australia)

The Southern Ocean Observing System (SOOS) Meeting Report
(St Petersburg, 5 to 7 July 2008)
Submitted by SCAR Observer to CCAMLR
(G. Hosie, Australia)

Report of IUCN – The International Union for the Conservation of Nature
Submitted by IUCN

Summary of the outcomes of the 4th IUCN World Conservation Congress, of relevance to CCAMLR
Submitted by IUCN

Heard Island and McDonald Islands Exclusive Economic Zone 2007/08 IUU catch estimate for Patagonian toothfish
Delegation of Australia

Report of the CCAMLR Observer to the 11th Session of the COFI Subcommittee on Fish Trade
(Bremen, Germany, 2 to 6 June 2008)
CCAMLR Observer (EC)

IUU vessel sightings on BANZARE Bank (Statistical Division 58.4.3b)
Delegation of Australia

Status of four Chinese fishing vessels
Delegation of China
AGENDA DE LA VIGÉSIMO SÉPTIMA REUNIÓN
DEL COMITÉ CIENTÍFICO
AGENDA DE LA VIGÉSIMO SÉPTIMA REUNIÓN
DEL COMITÉ CIENTÍFICO

1. Apertura de la reunión
 i) Aprobación de la agenda
 ii) Informe del Presidente
 iii) Preparación del asesoramiento para SCAF y SCIC

2. Progreso en materias de estadísticas, evaluaciones, modelación y métodos de prospección
 i) Recomendaciones de WG-SAM
 ii) SG-ASAM
 iii) Taller mixto CCAMLR-IWC
 iv) Asesoramiento a la Comisión

3. Seguimiento y ordenación del ecosistema
 i) Recomendaciones del WG-EMM
 ii) Ordenación de zonas protegidas
 iii) Interacciones entre el WG-EMM y el WG-FSA
 iv) Asesoramiento a la Comisión

4. Especies explotadas
 i) Recurso kril
 a) Estado y tendencias
 b) Recomendaciones del WG-EMM
 c) Asesoramiento a la Comisión
 ii) Recurso peces
 a) Estado y tendencias
 b) Recomendaciones del WG-FSA
 c) Asesoramiento a la Comisión
 iii) Pesquerías nuevas y exploratorias
 a) Pesquerías nuevas y exploratorias en la temporada 2007/08
 b) Pesquerías nuevas y exploratorias propuestas en la temporada 2008/09
 c) Revisión de los límites geográficos
 d) Asesoramiento a la Comisión
 iv) Recursos calamar y centolla
 a) Estado y tendencias
 b) Recomendaciones del WG-FSA
 c) Asesoramiento a la Comisión
 v) Captura secundaria de peces e invertebrados
 a) Estado y tendencias
 b) Recomendaciones del WG-FSA
 c) Asesoramiento a la Comisión
vi) Pesca de fondo en aguas de altura del Área de la Convención
 a) Identificación y protección de los ecosistemas marinos vulnerables
 b) Asesoramiento a la Comisión

5. Mortalidad incidental
 i) Mortalidad incidental de aves y mamíferos marinos ocasionada por la pesca
 ii) Asesoramiento a la Comisión

6. Sistema de Observación Científica Internacional de la CCRVMA
 i) Observaciones científicas
 ii) Asesoramiento a la Comisión

7. Gestión de la pesca y conservación en condiciones de incertidumbre

8. Exención por investigación científica

9. Colaboración con otras organizaciones
 i) Cooperación con el Sistema del Tratado Antártico
 ii) Informes de los observadores de otras organizaciones internacionales
 iii) Informes de los representantes en reuniones de otras organizaciones internacionales
 iv) Colaboración en el futuro

10. Evaluación del Funcionamiento de la CCRVMA

11. Presupuesto para 2009 y previsión del presupuesto para 2010

12. Recomendaciones a SCIC y SCAF

13. Actividades apoyadas por la Secretaría
 i) Administración de datos
 ii) Publicaciones

14. Actividades del Comité Científico
 i) Coordinación de la labor del Comité Científico y de sus grupos de trabajo
 ii) Actividades durante el período entre sesiones
 iii) Proyectos de CCAMLR-API
 iv) Invitación de observadores a la próxima reunión
 v) Invitación de expertos a las reuniones de los grupos de trabajo
 vi) Próxima reunión

15. Elección del Presidente y el Vicepresidente del Comité Científico

16. Asuntos varios

17. Aprobación del informe de la vigésimo séptima reunión del Comité Científico

18. Clausura de la reunión.
INFORME DEL GRUPO DE TRABAJO DE SEGUIMIENTO
Y ORDENACIÓN DEL ECOSISTEMA
(San Petersburgo, Rusia, 23 de julio al 1 de agosto de 2008)
ÍNDICE

INTRODUCCIÓN .. 187
 Apertura de la reunión .. 187
 Aprobación de la agenda y organización de la reunión .. 187
 Información obtenida de reuniones previas de la Comisión, del Comité Científico y de los grupos de trabajo .. 188

TEMA DE DISCUSIÓN: EVALUACIÓN DEL RIESGO EN LA ETAPA 1
DE LA SUBDIVISIÓN DEL LÍMITE DE CAPTURA PRECAUTORIO
EN UNIDADES DE ORDENACIÓN EN PEQUEÑA ESCALA EN EL ÁREA 48 189
 Subdivisión del límite de captura precautorio de kril entre las UOPE del Área 48 189
 Estrategias de pesca propuestas para la subdivisión del límite de captura 190
 Condiciones de la etapa 1 .. 192
 Índices de rendimiento ... 192
 Evaluación del riesgo de las condiciones de la etapa 1 .. 193
 Provisión de asesoramiento en la etapa 1 ... 193
 Asesoramiento de WG-SAM ... 193
 Instrumentos para modelar poblaciones, redes alimentarias y ecosistemas 194
 Evaluación de las estrategias de ordenación ... 195
 Marco para las evaluaciones de la etapa 1 ... 195
 Índices de rendimiento ... 196
 Resúmenes de riesgo ... 196
 Análisis y evaluación del riesgo ... 197
 Índices de rendimiento de la pesquería de kril .. 198
 Evaluación del riesgo de las condiciones de la etapa 1 .. 199
 Examen de las estrategias de pesca propuestas ... 200
 Evaluación del riesgo ... 201
 Interpretación de los resultados del modelo ... 204
 Evaluación de las propuestas de pesca 2, 3 y 4 ... 204
 Consecuencias para las poblaciones de depredadores .. 205
 Consecuencias para la pesquería .. 206
 Consideración de la incertidumbre ... 207
 Condicionamiento de modelos ... 207
 Resultados de los modelos .. 210
 Asesoramiento al Comité Científico ... 211

TEMA DE DISCUSIÓN: PROGRESO DE LA IMPLEMENTACIÓN
DE MEDIDAS DE ORDENACIÓN DE ESPACIOS
CON MIRAS A FACILITAR LA CONSERVACIÓN
DE LA BIODIVERSIDAD MARINA .. 213
 Antecedentes .. 213
 Identificación de ecosistemas marinos vulnerables ... 215
 Definición de áreas marinas a las que se podría otorgar protección 220
 Desarrollo de una estrategia armonizada ... 223
 Plan de trabajo .. 224
Puntos clave para la consideración del Comité Científico y de sus grupos de trabajo .. 224

ESTADO Y TENDENCIAS DE LA PESQUERÍA DE KRIL .. 225
Actividades de pesca ... 225
Descripción de la pesquería .. 228
Observación científica .. 230
Observadores designados .. 230
Factores de conversión ... 231
Captura incidental .. 231
Grupo técnico de operaciones en el mar ... 232
Manual del Observador Científico ... 233
Cobertura de observación en la pesquería de kril ... 234
Asuntos normativos .. 235
Requisitos pertinentes a la recopilación de datos de investigación de la pesquería exploratoria de kril .. 236
Puntos clave a ser considerados por el Comité Científico y sus grupos de trabajo 242

ESTADO Y TENDENCIAS DEL ECOSISTEMA CENTRADO EN EL KRIL 243
Informe de WG-EMM-STAPP .. 243
Estado de los depredadores, recurso kril y factores medioambientales 247
Depredadores ... 247
Kril .. 251
Observaciones a más de 200 m de profundidad .. 251
Prospecciones de kril ... 252
Prospecciones en la Subárea 48.6 ... 252
Prospecciones en la zona del Mar de Ross .. 253
Series de datos multianuales ... 253
Georgia del Sur .. 253
Zona del archipiélago de las Islas Shetland del Sur .. 254
Islas Orcadas del Sur ... 255
Distribución y abundancia de E. superba en gran escala .. 255
Parásitos del kril ... 257
Medio ambiente y efectos climáticos ... 257
Otras especies presa .. 260
Métodos ... 261
Métodos estándar del CEMP ... 261
Métodos para el muestreo del zooplancton ... 261
Métodos acústicos para la estimación de TS y la identificación de E. superba 261
Recomendaciones a SG-ASAM .. 264
Prospecciones futuras .. 264

EFECTOS DE LAS PESQUERÍAS DE PECES EN EL ECOSISTEMA 265
Perspectiva histórica .. 265
Mar de Ross ... 266
Discusión general .. 270
Asesoramiento al Comité Científico ... 273
Labor futura .. 274
ESTADO DEL ASESORAMIENTO DE ORDENACIÓN .. 274
Áreas protegidas ... 274
Unidades de explotación ... 274
Unidades de ordenación en pequeña escala ... 274
Modelos analíticos ... 274
Medidas de conservación en vigor .. 275
Puntos clave a ser considerados por el Comité Científico y sus grupos de trabajo 275

LABOR FUTURA ... 277
Segundo taller sobre pesquerías y modelos de ecosistemas en la Antártida (FEMA2) ... 277
Agenda revisada y plan de trabajo a largo plazo del WG-EMM 279
Taller conjunto CCAMLR–IWC .. 281
Otros puntos clave a ser considerados por el Comité Científico y sus grupos de trabajo .. 281

ASUNTOS VARIOS ... 283
Taller conjunto SC-CAMLR–CPA .. 283
Revisión de SCAR sobre el cambio climático .. 284
Taller Centinela del Océano Austral (Southern Ocean Sentinel Workshop) .. 284
CCAMLR Science .. 284

APROBACIÓN DEL INFORME Y CLAUSURA DE LA REUNIÓN 285

REFERENCIAS .. 286

TABLAS ... 289

FIGURAS .. 292

APÉNDICE A: Lista de participantes .. 301
APÉNDICE B: Agenda .. 307
APÉNDICE C: Lista de documentos .. 309
APÉNDICE D: Evaluación del rendimiento basada en índices normalizados estándar (CSI) .. 318
INFORME DEL GRUPO DE TRABAJO DE SEGUIMIENTO
Y ORDENACIÓN DEL ECOSISTEMA
(San Petersburgo, Rusia, 23 de julio al 1 de agosto de 2008)

INTRODUCCIÓN

Apertura de la reunión

1.1 La décimo cuarta reunión del WG-EMM, convocada por el Dr. G. Watters (EEUU) tuvo lugar del 23 de julio al 1 de agosto de 2008, en el Instituto Estatal de Investigación y Diseño para el Desarrollo y Operación de Flotas de Pesca (Giprorybflot), en San Petersburgo (Rusia).

1.2 El Dr. Watters inauguró la reunión y dio la bienvenida a los participantes (apéndice A). Agradeció a Giprorybflot por la organización de la reunión con el respaldo del Comité de Pesquerías del Estado.

1.3 El Dr. V. Bizikov (Rusia) dio la bienvenida a los participantes a San Petersburgo y les deseó éxito en sus deliberaciones. Indicó que Rusia tenía una larga historia de investigaciones científicas y pesca comercial en la Antártida y apreciaba el papel de la CCRVMA y del WG-EMM en el desarrollo de estrategias para la conservación del ecosistema marino antártico.

1.4 El grupo de trabajo observó un momento de silencio en memoria de la Dra. Edith Fanta quien falleció en mayo de 2008. La Dra. Fanta será recordada por su contribución a las ciencias antárticas y a la labor de WG-EMM, por su dedicación y mesura en la dirección del Comité Científico, que presidió desde 2005 hasta la fecha de su muerte, así como por la orientación que proporcionó a los grupos de trabajo.

Aprobación de la agenda y organización de la reunión

1.5 El grupo de trabajo examinó la agenda provisional y decidió incorporar un nuevo punto 6 para considerar los efectos de las pesquerías de peces en el ecosistema. La agenda fue aprobada con esta modificación (apéndice B).

1.6 WG-EMM observó los cambios en la estructura de su reunión de 2008, con la adición de dos temas centrales de discusión:

i) evaluación del riesgo en la etapa 1 de subdivisión del límite de captura precautorio de kril entre las UOPE del Área 48 (punto 2);

ii) progreso en la implementación de medidas de gestión de espacios para facilitar la conservación de la biodiversidad marina (punto 3).

1.7 El Dr. P. Trathan (RU) dirigió la discusión del tema 2: subdivisión del límite de captura precautorio de kril por UOPE en el Área 48.
1.8 La Dra. P. Penhale (EEUU) dirigió la discusión del tema 3: medidas de gestión de espacios para facilitar la conservación de la biodiversidad marina.

1.9 El grupo de trabajo examinó los resultados del debate de tres reuniones efectuadas durante el período entre sesiones:

i) Taller del WG-EMM sobre prospecciones de depredadores, convocado por el Dr. C. Southwell (Australia);

ii) WG-SAM, convocado por el Dr. A. Constable (Australia);

iii) grupo especial TASO, convocado por el Dr. D. Welsford (Australia) y el Sr. C. Heinecken (Sudáfrica).

1.10 Los documentos presentados a la reunión, incluidos aquellos presentados al taller de prospecciones de depredadores, figuran en el apéndice C.

1.11 El informe fue preparado por D. Agnew (RU), A. Constable (Australia), S. Fielding (RU), M. Goebel (EEUU), S. Grant (RU), S. Hanchet (Nueva Zelanda), S. Hill (RU), J. Hinke (EEUU), R. Holt (EEUU), C. Jones (EEUU), S. Kawaguchi (Australia), É. Plagányi (Sudáfrica), D. Ramm (Administrador de Datos), K. Reid (Funcionario Científico), C. Reiss (EEUU), P. Trathan (RU), W. Trivelpiece (EEUU), J. Watkins (RU) y D. Welsford (Australia).

Información obtenida de reuniones previas de la Comisión, del Comité Científico y de los grupos de trabajo

1.12 El Dr. Watters indicó que se había utilizado la información obtenida de reuniones previas de la Comisión, del Comité Científico y de los grupos de trabajo para estructurar la agenda de WG-EMM, y que había resumido esta información revisando la agenda y destacando los puntos más importantes de las reuniones previas:

i) La Comisión aprobó el desarrollo por etapas de la pesquería de kril en el Área 48, con asesoramiento sobre la etapa 1 de la subdivisión del límite de captura precautorio de kril entre las UOPE basado en una evaluación del riesgo (CCAMLR-XXVI, párrafos 4.18 y 4.19; véase además SC-CAMLR-XXVI, párrafo 2.14). La labor necesaria para brindar asesoramiento sobre la etapa 1 de la asignación por UOPE fue considerada de primera prioridad para el WG-EMM en 2008 (SC-CAMLR-XXVI, párrafo 3.40), y se estableció un tema central de discusión (punto 2) para facilitar esta labor y considerar el asesoramiento pertinente proporcionado por WG-SAM.

ii) La Comisión sigue aplicando una serie de medidas de gestión de espacios en el Área de la Convención, y el Comité Científico ha solicitado asesoramiento sobre algunos aspectos científicos como la biorregionalización (SC-CAMLR-XXVI, párrafos 3.85 al 3.87 y 3.93), y métodos para seleccionar y designar las AMP (SC-CAMLR-XXV, párrafo 3.33). Además, a la luz de los requerimientos

1 En adelante, “Etapa 1 de la asignación por UOPE”.

188
urgentes dispuestos en la Resolución 61/105 de la AGNU, el Comité Científico había alentado a sus grupos de trabajo a que colaboraran en el tema de los EMV (SC-CAMLR-XXVI, párrafo 14.9). Se estableció un tema de discusión (punto 3) para facilitar el examen de estas cuestiones.

iii) El Comité Científico pidió información sobre el estado y las tendencias de las pesquerías de kril, incluido, *inter alia*, el método para cuantificar el esfuerzo en la pesquería de kril (SC-CAMLR-XXVI, párrafo 4.17), los requisitos pertinentes a la recopilación de datos biológicos de la pesquería de kril (SC-CAMLR-XXVI, párrafo 3.51), la recopilación de datos por los observadores científicos (incluida una revisión del informe de TASO (SC-CAMLR-XXVII/BG/6)), y requisitos con relación a los datos requeridos de las pesquerías exploratorias de kril (SC-CAMLR-XXVI, párrafo 3.53). Estos temas fueron debatidos bajo el punto 4.

iv) El Comité Científico pidió asesoramiento con relación a algunos aspectos del ecosistema centrado en el kril. El grupo de trabajo estuvo de acuerdo, entre otras cosas, en examinar el informe del Taller de prospecciones de depredadores (WG-EMM-08/8), el trabajo necesario para revisar las estimaciones del rendimiento de kril (SC-CAMLR-XXVI, párrafo 3.40) y el asesoramiento del WG-SAM relacionado con la aplicación de métodos de ordenación para presentar las tendencias de los índices del CEMP (SC-CAMLR-XXVI, anexo 4, párrafos 5.75 y 5.76). Estos temas fueron considerados bajo el punto 5.

v) El Comité Científico reconoció la necesidad de que el WG-EMM evalúe las interacciones entre las especies objetivo de peces y otros depredadores tope (SC-CAMLR-XXVI, párrafo 3.99). Este tema fue considerado bajo el punto 7.

vi) El Comité Científico pidió que WG-EMM y WG-FSA colaboraran en el establecimiento del cometido preliminar para un segundo taller de FEMA (SC-CAMLR-XXVI, párrafo 3.100). También se necesita trabajar para avanzar en los preparativos del taller conjunto CCAMLR-IWC que será celebrado próximamente (WG-EMM-08/15). Estos temas fueron considerados bajo el punto 8.

1.13 El grupo de trabajo también aceptó examinar la contribución de la CCRVMA a la agenda y al plan de trabajo del taller conjunto SC-CAMLR-CPA propuesto para 2009 (véase el punto 9).

TEMA DE DISCUSIÓN: EVALUACIÓN DEL RIESGO EN LA ETAPA 1 DE LA SUBDIVISIÓN DEL LÍMITE DE CAPTURA PRECAUTORIO EN UNIDADES DE ORDENACIÓN EN PEQUEÑA ESCALA EN EL ÁREA 48

Subdivisión del límite de captura precautorio de kril entre las UOPE del Área 48

2.1 El Dr. Trathan, que dirigió este tema de discusión, presentó al grupo de trabajo una reseña sobre el progreso alcanzado en este tema. El grupo de trabajo recordó que en el pasado
el Comité Científico le había pedido que considerara y desarrollara modelos para la subdivisión del límite de captura precautorio para el kril antártico (*Euphausia superba*) entre varias UOPE del Área 48.

2.2 Desde 2004 el WG-EMM ha estado desarrollando modelos para avanzar en esta tarea, en particular, a través de los siguientes talleres:

i) Siena, Italia (reunión de WG-EMM en 2004, conjuntamente con el Taller sobre Modelos Verosímiles del Ecosistema para Probar las Propuestas Referentes a la Ordenación de Kril) – La discusión abarcó una amplia gama de estructuras de modelos y relaciones funcionales (SC-CAMLR-XXIII, anexo 4, apéndice D, párrafo 3.16) y en general se estuvo de acuerdo en que sería conveniente examinar varias estructuras de modelos que representaran los posibles efectos de la pesca en el ecosistema. Se convino en que se requerirían modelos de las poblaciones de kril estructurados en una escala espacial tal que permitiera el estudio de interacciones (SC-CAMLR-XXIII, anexo 4, apéndice D, párrafo 7.6), especialmente las interacciones asociadas con:

a) las poblaciones de kril
b) los límites espaciales de la captura y la pesquería
c) los depredadores de kril
d) el transporte de kril.

ii) Yokohama, Japón (en la reunión de 2005 del WG-EMM y en el Taller sobre Procedimientos de Ordenación), donde se acordó que por lo menos tres aspectos clave adicionales debieran ser incorporados en los modelos (SC-CAMLR-XXIV, anexo 4, párrafo 2.11). Estos son:

a) períodos de tiempo más cortos y/o estaciones (temporadas)
b) otras hipótesis sobre el movimiento, o flujo, de kril
c) una densidad umbral de kril, por debajo de la cual no se podrá llevar a cabo una pesquería.

iii) Walvis Bay, Namibia (en la reunión de 2006 de WG-EMM y en el Segundo Taller sobre Procedimientos de Ordenación), donde se refinó aún más la definición de los modelos.

Estrategias de pesca propuestas para la subdivisión del límite de captura

2.3 El grupo de trabajo recordó que tres modelos de relevancia para la subdivisión del límite de captura precautorio de kril habían sido considerados anteriormente; EPOC, FOOSA y SMOM\(^2\). Estos modelos han sido utilizados para examinar seis propuestas presentadas a WG-EMM sobre la mejor manera de subdividir el límite de captura precautorio de kril:

1. la distribución espacial de las capturas históricas de la pesquería de kril;
2. la distribución espacial del consumo de los depredadores;
3. la distribución espacial de la biomasa de kril;
4. la distribución espacial de la biomasa de kril menos el consumo de los depredadores;
5. índices espacialmente explícitos de la disponibilidad de kril que pueden ser controlados o estimados regularmente;
6. estrategias de pesca estructuradas que contemplan la rotación de la explotación tanto dentro de las UOPE como entre ellas.

2.4 En 2007, WG-SAM examinó los trabajos realizados hasta ahora con el fin de identificar un programa de la labor requerida para formular asesoramiento sobre la subdivisión del límite de captura de kril entre las UOPE (SC-CAMLR-XXVI, anexo 7, párrafos 5.7 al 5.51).

2.5 En ese entonces, WG-SAM acordó proceder en etapas en lo que se refiere al asesoramiento de ordenación y su implementación para la subdivisión del límite de captura de kril por UOPE. El proceso gradual incluiría una evaluación de los riesgos de cada propuesta de subdivisión de la captura de kril tanto para el recurso mismo, como para los depredadores y la pesquería, dadas las incertidumbres de la estructura de los modelos, de nuestro entendimiento de la dinámica del ecosistema centrado en el kril, y de las futuras interacciones de la pesquería con el ecosistema. Este enfoque gradual fue aprobado por SC-CAMLR el año pasado (SC-CAMLR-XXVI, párrafo 3.36).

2.6 WG-SAM había propuesto que la etapa 1 inicial de la subdivisión podría basarse esencialmente en las propuestas 2, 3 ó 4, ya que anteriormente se había encontrado que la propuesta 1 proporcionaba el peor equilibrio entre los objetivos de la pesquería y el ecosistema, y que el desarrollo de los enfoques de las propuestas 5 y 6 serían útiles en las etapas posteriores. Dicho desarrollo deberá tener mayor prioridad a partir de 2009. Esto también fue ratificado por SC-CAMLR el año pasado (SC-CAMLR-XXVI, párrafo 3.36).

2.7 WG-SAM también había propuesto que la utilización de datos empíricos en los modelos ayudaría en su desarrollo, incluido un conjunto a priori de normativas acordadas (SC-CAMLR-XXVI, anexo 7, párrafos 5.24 al 5.26). WG-SAM desarrolló una lista inicial de posibles normativas para que fueran consideradas por WG-EMM – el “calendario” de WG-SAM de cambios conocidos o inferidos del ecosistema. Este calendario cubre el periodo desde 1970 a 2007. La frecuencia y las fechas de los acontecimientos descritos en el calendario son sólo aproximaciones, no se proporciona una medida de la abundancia ni de la variabilidad, y no se incluyen observaciones de referencia para los peces.
Condiciones de la etapa 1

2.8 WG-SAM recomendó que los modelos simularan ocho condiciones esenciales al evaluar las propuestas para la asignación de la captura por UOPE (SC-CAMLR-XXVI, anexo 7, párrafos 5.37 y 5.38):

i) las condiciones iniciales fijadas en el modelo deben ser justificables, en lo posible utilizando los datos disponibles;

ii) el período base abarcado por el modelo debe ser congruente con la estrategia de ordenación o los requisitos de la simulación;

iii) las simulaciones deberán incluir un período de 20 años de pesca seguido por uno de 20 años de recuperación en el cual no hay explotación;

iv) los resultados de los modelos durante esta etapa deberían utilizarse para comparar las propuestas 2, 3 y 4 para la asignación por UOPE;

v) las simulaciones deberán comprender distintas tasas de recolección a fin de proporcionar asesoramiento sobre el riesgo, dada la incertidumbre inherente del modelo y del ecosistema de que la combinación de las capturas y la estrategia de subdivisión sean perjudiciales para las poblaciones de kril, de depredadores o para la pesquería en las distintas etapas de su desarrollo;

vi) el papel del flujo en la dinámica de kril debe ser considerado mediante otras simulaciones, como situaciones en las cuales el flujo está limitado por las matrices del movimiento estacional basadas en los resultados de OCCAM, y situaciones en que no hay movimiento;

vii) se deberá investigar una gama de funciones de interacción a fin de representar la incertidumbre de la relación entre la disponibilidad de kril y las respuestas de las poblaciones de depredadores;

viii) se estima que las siguientes situaciones serían convenientes, pero son optativas:

 a) situaciones que representan la incertidumbre de las estimaciones de la tasa de supervivencia de los depredadores;

 b) situaciones que incluyen los efectos del cambio climático;

 c) situaciones que consideran la dinámica de la flota (dependiendo de la flexibilidad de las opciones).

Índices de rendimiento

2.9 Se han desarrollado modelos de ecosistema con el fin de simular y comparar el rendimiento de las propuestas para repartir el límite de captura precautorio de kril entre las UOPE; el rendimiento relativo se evalúa determinando el grado en que las propuestas cumplen los objetivos del artículo II de la Convención de la CCRVMA. WG-SAM
recomendó que se determinaran índices del rendimiento aplicables al estado del recurso, a las poblaciones de depredadores y a la pesquería, en relación con las escalas espaciales apropiadas (SC-CAMLR-XXVI, anexo 7, párrafos 5.39 al 5.47).

Evaluación del riesgo de las condiciones de la etapa 1

2.10 WG-SAM sugirió que el asesoramiento se basara en una evaluación del riesgo utilizando los elementos de los índices de rendimiento (SC-CAMLR-XXVI, anexo 7, párrafo 5.48).

2.11 Se acordó considerar los siguientes elementos:

 i) los índices de rendimiento apropiados para la pesquería podrían ser específicos para el modelo siempre que representasen el rendimiento y la variabilidad a largo plazo;

 ii) los índices apropiados del rendimiento de los depredadores deben reflejar la probabilidad de cambios en las poblaciones;

 iii) los índices de rendimiento de kril deberán basarse en los criterios de decisión existentes para fijar el rendimiento de kril;

 iv) se deberá presentar una matriz del riesgo de los resultados de las diferentes propuestas en relación con estos índices.

Provisión de asesoramiento en la etapa 1

2.12 WG-SAM reconoció que a fin de progresar en el desarrollo del asesoramiento de ordenación para la subdivisión del límite de captura de kril por UOPE durante 2008, sería necesario atenerse a un plan acordado de trabajo intersesional. El plan propuesto por WG-SAM fue aprobado por SC-CAMLR en 2007 (SC-CAMLR-XXVI, párrafo 3.36).

Asesoramiento de WG-SAM

2.13 Se han elaborado tres enfoques de modelado (FOOSA, SMOM y EPOC) para evaluar la subdivisión de la captura de kril por UOPE en el Área 48, a la que se hará referencia de aquí en adelante como “asignación por UOPE”. El Dr. Constable (coordinador de WG-SAM) resumió el asesoramiento de WG-SAM en relación con estos diferentes enfoques de modelado, en base a la discusión centrada en:

 i) instrumentos para modelar poblaciones, redes alimentarias y ecosistemas (anexo 7, párrafo 5.9);

 ii) evaluación de las estrategias de ordenación (anexo 7, párrafo 6.21).
Instrumentos para modelar poblaciones, redes alimentarias y ecosistemas

2.14 El Dr. Constable resumió las discusiones sobre:

i) el uso del calendario de WG-SAM y el calendario numérico de acontecimientos para refinar los modelos de la trama alimentaria centrados en el kril y su posible desarrollo (anexo 7, párrafos 5.12 a 5.16);

ii) la capacidad de FOOSA y SMOM de representar las tendencias de las poblaciones de depredadores especificadas en el calendario, considerando al kril como factor condicionante en el ecosistema (anexo 7, párrafos 5.21 y 5.30);

iii) cómo una implementación de EPOC, similar a FOOSA, podría proporcionar una comparación útil con los enfoques de modelado de FOOSA y SMOM (anexo 7, párrafos 5.28 y 5.30);

iv) la propuesta de que WG-EMM revise las pruebas (y la incertidumbre asociada) que apoyan la tendencia del kril presentada en el calendario de WG-SAM (anexo 7, párrafo 5.16).

2.15 El Dr. Constable informó que WG-SAM había indicado que tanto FOOSA como SMOM eran capaces de reproducir el calendario numérico (WG-EMM-08/10) ante lo cual WG-EMM no tuvo más preguntas técnicas sobre la estructura de los modelos, pero sí consideró varios problemas ecológicos y algunas interpretaciones asociadas con los modelos.

2.16 En primer lugar, el Dr. Kawaguchi preguntó si las condiciones simuladas en FOOSA que consideran el movimiento de kril (WG-EMM-08/13) eran verosímiles, y cómo se comparaban los valores de la tasa de renovación de kril para cada simulación con los valores ecológicos conocidos. El Dr. Watters respondió que las condiciones iniciales de FOOSA habían sido fijadas para asegurar que las tasas iniciales de aumento de las poblaciones de depredadores correspondieran con el calendario numérico. El Dr. Watters añadió que era posible proporcionar un índice para ilustrar la razón simulada entre la tasa de renovación de kril y el grado en que el sistema era sostenido por el movimiento de kril de las áreas vecinas. Indicó que al considerar los resultados de las simulaciones, habían tendencias descendientes del kril que podrían ser el resultado de un defecto en la implementación del modelo, pero que estas tendencias no se observaban en las estadísticas de los resultados del modelo al comparar las pruebas que consideran la pesca con las pruebas que no la consideran.

2.17 El Dr. Constable indicó que era importante evaluar hasta qué punto los pronósticos del modelo de ecosistema coincidían con los pronósticos del modelo de rendimiento que sólo considera el kril, y cómo podría uno tratar las incongruencias observadas como las que podrían resultar de una parametrización incorrecta del movimiento de kril. El Dr. Constable expresó que esto era importante porque actualmente sólo se han estudiado muy pocas condiciones para investigar qué sucedería en el caso de que la pesquería redujese la abundancia de kril a 75% de su nivel antes de la explotación.

2.18 En segundo lugar, el Dr. T. Ichii (Japón) comentó que el control de arriba hacia abajo puede ser demasiado fuerte y poco realista en FOOSA, ya que en muchas UOPE el consumo de los depredadores excedió la biomasa de kril de tal forma que el modelo pronosticó que no habría un excedente de kril en muchas UOPE de la costa. El Dr. Ichii cuestionó además la
veracidad del elevado consumo de kril por los peces representado por el modelo, indicando que esto redundaría en una recomendación de limitar la pesca a las zonas pelágicas solamente evitando las zonas costeras.

2.19 El Dr. Watters confirmó que los resultados de FOOSA indicaron que había mayor riesgo de una disminución de los depredadores en las simulaciones con mayor pesca en las zonas costeras, y mayor riesgo de que la pesquería no pueda extraer su cuota cuando la pesca se concentra en las UOPE pelágicas. Explicó que las estimaciones del excedente de kril en las UOPE deben calcularse en el contexto del flujo de kril y no tomando en cuenta la biomasa instantánea solamente. Se refirió además a ejemplos proporcionados en el documento WG-EMM-08/13 (vg. figura 10 del documento) que demostraban que el control de abajo hacia arriba era muy fuerte en FOOSA ya que la abundancia de kril estaba limitando significativamente la dinámica de los depredadores. El Dr. Watters indicó que si es necesario, se dispone de índices para analizar los resultados de las simulaciones y evaluar la fuerza relativa del control de abajo hacia arriba. Finalmente, el Dr. Watters estuvo de acuerdo en que la incertidumbre del modelo de los peces era bastante grande, especialmente dado que los peces mesopelágicos no estaban bien representados en muchos programas de muestreo de campo. Más aún, el calendario de WG-SAM no especificó la variabilidad en la abundancia de peces desde 1970 a 2007; en consecuencia, FOOSA no estaba ajustado para el componente peces, y en su lugar utilizó una parametrización basada en una compilación de información de las publicaciones. La información disponible indica que los peces son importantes consumidores de kril en el ecosistema antártico.

2.20 El Dr. V. Siegel (Alemania) añadió que el excedente de kril depende no sólo del flujo sino también de la producción local de kril.

Evaluación de las estrategias de ordenación

2.21 El Dr. Constable resumió el asesoramiento proporcionado por WG-SAM acerca de la evaluación de las estrategias de ordenación (anexo 7, párrafos 9.6 y 9.7); esto se consideró bajo tres subtítulos:

i) Marco para las evaluaciones de la etapa 1

ii) Índices de rendimiento

iii) Evaluaciones del riesgo.

Marco para las evaluaciones de la etapa 1

2.22 El asesoramiento general de WG-SAM sobre la asignación por UOPE se proporciona en el anexo 7, párrafos 6.5 al 6.25. WG-SAM indicó que se podía utilizar FOOSA o SMOM para recomendar una asignación por UOPE, pero que WG-EMM debía considerar la verosimilitud relativa de cada simulación.
Índices de rendimiento

2.23 El Dr. Constable resumió las discusiones de WG-SAM en relación con:

i) las desviaciones de las normas básicas indicadas por las pruebas que no consideran la pesca (anexo 7, párrafo 6.26);

ii) las dudas en cuanto a la inclusión de peces en los índices de rendimiento, dada la escasez de datos sobre este componente (anexo 7, párrafo 6.27);

iii) la necesidad de que WG-EMM considere la escasez de datos sobre los peces al examinar los resultados de los modelos (anexo 7, párrafo 6.28);

iv) la utilización de índices CSI (anexo 7, párrafos 6.29 y 6.30).

2.24 El Dr. Hill explicó que las estimaciones del consumo de kril por los mictófidos se basaban en extrapolaciones de prospecciones en pequeña escala que indicaban que los mictófidos eran importantes consumidores de kril. El British Antarctic Survey (BAS) ha corroborado recientemente estas conclusiones, a través de análisis adicionales de los datos sobre la dieta de los mictófidos obtenidos de prospecciones en gran escala realizadas en el Mar de Escocia. El Dr. Hill señaló que se ha parametrizado el componente peces lo mejor que se ha podido, dada la información disponible y las publicaciones como se presenta en Hill et al. (2007).

2.25 El Dr. Constable indicó que los modelos representan de manera general la dinámica de las respuestas del sistema a la pesca, pero subrayó que no se puede esperar que los resultados reflejen individualmente la dinámica de un depredador en una UOPE en particular, aunque describen el comportamiento de depredadores genéricos y por consiguiente es necesario incluir a los peces para representar la dinámica de ese tipo de depredador.

Resúmenes de riesgo

2.26 El Dr. Constable informó que WG-SAM había examinado varios instrumentos que podrían utilizarse para formular asesoramiento sobre la asignación por UOPE, entre los cuales había nuevos instrumentos (CSI – WG-SAM-08/16) y una implementación de los resúmenes de riesgo (WG-EMM-08/44) descritos por WG-SAM en 2007. El Dr. Constable informó que WG-SAM había recomendado que WG-EMM considerara la utilización de estos instrumentos al hacer sus recomendaciones. El informe de WG-SAM proporciona recomendaciones generales sobre los resúmenes de riesgo (anexo 7, párrafos 6.31 al 6.44).

2.27 Las discusiones del grupo de trabajo sobre los posibles aspectos ecológicos de las evaluaciones de riesgo se concentraron en el papel del cambio climático y su inclusión en los enfoques de modelado. Se señaló que estas consideraciones fueron examinadas por WG-SAM en 2007, estimándose opcionales para la evaluación de la asignación por UOPE en la etapa 1. El Dr. Siegel recomendó que, dada la labor ya realizada de identificación de los distintos regímenes climáticos y oceanográficos, estas distintas condiciones podían ser modeladas en las etapas subsiguientes.
2.28 El Dr. Kawaguchi indicó que en general se cree que el cambio climático produce efectos en cascada en el ecosistema, y que algunos de estos efectos se potencian entre sí de manera no lineal. Por lo tanto, es importante considerar estos efectos sinergísticos al modelar los futuros efectos del cambio climático en un ecosistema.

2.29 El Dr. M. Naganobu (Japón) y el Dr. Kawaguchi indicaron que es difícil pronosticar los efectos del cambio climático pero que algunos pescadores habían informado que han detectado algunos cambios en el ecosistema que pensaban podrían estar relacionados con el cambio climático. El Dr. Constable indicó que una forma de facilitar la evaluación de esto era la utilización de un enfoque de ordenación interactivo, como el presentado en el documento WG-SAM-08/16, que propone una metodología para incluir datos de las pesquerías para representar la dinámica cambiante del ecosistema, y produciéndose de esta manera información de utilidad para la ordenación. El Dr. Holt subrayó la posible utilidad de correlacionar estos datos derivados de las pesquerías con los datos de la pesquería de kril, para adquirir más conocimiento sobre varios aspectos del cambio climático.

2.30 El grupo de trabajo reconoció que el asesoramiento de la etapa 1 sobre la asignación por UOPE podía ser proporcionado este año, pero que en las etapas subsiguientes se tendrían que considerar varias otras posibles condiciones relativas al cambio climático, como parte de una evaluación más amplia y a más largo plazo del riesgo.

Análisis y evaluación del riesgo

2.31 El grupo de trabajo indicó que la estimación de la asignación por UOPE en la etapa 1, requería:

i) Utilizar los mejores datos existentes para estimar las proporciones asignadas a las UOPE por cada una de las propuestas, siguiendo los métodos descritos por Hewitt et al. (2004a) y el documento WG-EMM-08/12:

a) la propuesta 2: estimaciones del consumo de depredadores en cada UOPE derivadas de los datos existentes de la abundancia de depredadores y de las tasas de consumo;

b) la propuesta 3: estimaciones de la proporción de kril en cada UOPE derivadas de los datos de la prospección CCAMLR-2000;

C) la propuesta 4: utiliza la diferencia entre la estimación de la biomasa instantánea de kril y la estimación del consumo de depredadores.

ii) Evaluar los riesgos relativos asociados a las distintas propuestas utilizando los modelos disponibles (FOOSA, SMOM, EPOC). Las evaluaciones de riesgo se basan en factores de multiplicación del rendimiento, que llevan su valor desde cero pasando por el nivel crítico de activación actual hasta $1.25 \times \text{el valor del límite de captura precautorio}$.

iii) Calcular las asignaciones por UOPE utilizando las proporciones descritas anteriormente en (i), multiplicando por el factor de multiplicación del rendimiento descrito en (ii), multiplicando por el rendimiento derivado de GYM.
Índices de rendimiento de la pesquería de kril

2.32 El grupo de trabajo discutió aspectos del rendimiento de la flota en las UOPE de áreas costeras y pelágicas (ver más adelante). En los párrafos 2.45 y 2.49 se comenta la discusión sobre el rendimiento de la población de kril, de los depredadores y de la flota obtenidos con los modelos FOOSA y SMOM.

2.33 WG-EMM-08/55 informó sobre los análisis de los datos de 22 prospecciones oceanográficas efectuadas en la Subárea 48.2 entre 1962 y 1997. Sobre la base de un análisis de la circulación geoestrófica, los autores identificaron cuatro modalidades en el movimiento de las masas de agua, siendo la más común el Tipo I, que consiste en una circulación anti-cíclica alrededor de las Islas Orcadas del Sur de aguas que se originan en el Mar de Weddell. La modalidad Tipo II no consiste en una circulación anti-ciclónica, pero masas de agua provenientes del Mar de Weddell siguen moviéndose hacia el oeste cruzando el límite norte del archipiélago. Ambos movimientos producen una concentración de kril en los caladeros de pesca principales de las UOPE SOW y SONE. Las modalidades Tipo III y IV consisten en el movimiento del agua hacia el este y no se arrastra alrededor de las Islas Orcadas del Sur. La modalidad Tipo III fue observada durante la prospección CCAMLR-2000 y resultó en la presencia de una gran biomasa de kril al noreste de SOPA, y una biomasa relativamente pequeña en las áreas de pesca tradicionales de las UOPE costeras. La alta biomasa del área pelágica no es por lo tanto típica de la modalidad que ha sido explotada con éxito por la pesquería.

2.34 WG-EMM-08/24 presentó datos de muestras tomadas durante la 29a campaña del BP Konstruktor Koshkin en la Subárea 48.2, efectuada en marzo y abril de 2008. El documento examinó la distribución de las concentraciones comerciales de kril, su biomasa explotable en los distintos periodos de observación, el estado biológico del recurso, y las condiciones hidrometeorológicas y del hielo marino. El documento indicó que para que la pesca fuese rentable para los barcos ucranianos, se requerían concentraciones de kril de 250 g m$^{-2}$ de densidad. Estas concentraciones raramente se observan en la UOPE pelágica y son extremadamente inestables. El documento informó que es muy probable que la pesca en las áreas pelágicas no sea rentable en un futuro próximo, y propuso otra asignación para las UOPE en la Subárea 48.2.

2.35 WG-EMM-08/16 utilizó el conjunto de datos acústicos de la prospección CCAMLR-2000 para comparar las UOPE pelágicas con las UOPE de la plataforma, en términos del número de unidades de integración de 1 milla náutica con una densidad de kril mayor y menor de varios valores umbrales. En general, la frecuencia de las unidades de integración explotables de las UOPE pelágicas fue mucho menor cuando el valor umbral de la densidad para la pesca se fijó en 100 g m$^{-2}$ según Kasatkina e Ivanova (2003). La probabilidad contrastante de encontrar concentraciones explotables en las UOPE pelágicas y de la plataforma sugiere que la pesquería será menos eficiente y quizás, menos rentable, en las UOPE pelágicas. Esto a pesar de que tanto la abundancia absoluta del recurso como de las concentraciones explotables del mismo es más alta en las UOPE pelágicas que en las UOPE de la plataforma. El documento también proporciona una relación empírica a nivel de UOPE entre la densidad de kril y la frecuencia de unidades de integración explotables para el rango completo de valores umbrales. Estas relaciones podrían ser útiles para correlacionar las escalas representadas en los modelos operacionales con las escalas de los factores que afectan el comportamiento y el rendimiento de la pesquería.
2.36 El Dr. V. Spiridonov (Rusia) recordó que en la década de los ochenta la antigua Unión Soviética había expresado preocupación ante los efectos que la pesca de kril efectuada en regiones costeras podría tener en los depredadores. Sin embargo, los esfuerzos realizados en ese entonces por dirigir las flotas a las áreas pelágicas no tuvieron éxito debido a que no se encontraron concentraciones adecuadas de kril. Expresó además que la formación de concentraciones de kril se relacionaba, entre otros factores, con la estación, ocurriendo a fines de otoño en las zonas costeras en particular, aunque aún poco se sabía de este comportamiento.

2.37 El Dr. Watters indicó que los registros de captura de kril de la CCRVMA (WG-EMM-08/5) indican que a principios de la década de 1980 se extrajeron grandes capturas de las UOPE pelágicas. Sin embargo, el Dr. Spiridonov indicó que la ubicación de estas capturas puede no haber sido registrada con precisión a principios de la pesquería. El Dr. Kawaguchi señaló además que la estrategia inicial de pesca de la Unión Soviética puede haber requerido una densidad de kril menor que la necesaria para las operaciones de pesca actuales.

2.38 El grupo de trabajo indicó que estos estudios eran importantes porque ayudaban a entender los efectos de las propuestas presentadas para la asignación de la captura por UOPE en la pesquería, y que esto había sido solicitado específicamente en 2007 (SC-CAMLR-XXVI, anexo 4, párrafo 6.41). Los trabajos podrían ser utilizados de varias maneras, a saber:

i) para facilitar la parametrización del comportamiento de la pesquería en los modelos actuales utilizando la relación indicada en WG-EMM-08/16, entre la densidad de kril a nivel de UOPE y la densidad umbral para la pesca del recurso;

ii) para proporcionar la información necesaria para la interpretación del rendimiento de las distintas propuestas de asignación de captura en distintas condiciones de modelado, por ejemplo, cuando dos propuestas tienen resultados idénticos en relación con los depredadores pero difieren en la proporción de kril extraída de las UOPE pelágicas y costeras.

2.39 Sería conveniente seguir trabajando en la determinación de la relación entre la densidad de kril a nivel de UOPE y la densidad umbral requerida para la pesca de kril. La Dra. S. Kasatkina (Rusia) indicó que esto se podría lograr con la obtención de datos acústicos de barcos de pesca comercial, y señaló que un taller reciente de ICES (ICES, 2007) había establecido los protocolos para la obtención y utilización de tales datos. El Dr. Kawaguchi sugirió que el análisis más a fondo del comportamiento de la pesquería de kril (como se describe en el documento WG-EMM-08/40) también sería de utilidad en este contexto.

Evaluación del riesgo de las condiciones de la etapa 1

2.40 El grupo de trabajo discutió las evaluaciones del riesgo efectuadas para proporcionar asesoramiento sobre la asignación de la captura por UOPE, como fuera solicitado por la Comisión (CCAMLR-XXVI, párrafos 4.18 y 4.19; véase también SC-CAMLR-XXVI, párrafo 2.14) bajo este punto de la agenda. Los requerimientos específicos y los temas de importancia pertinentes a la evaluación de riesgo se proporcionan en SC-CAMLR-XXVI,
anexo 7, párrafos 5.37 al 5.48 y en SC-CAMLR-XXVI, anexo 4, párrafos 6.39 al 6.46. En base a estas guías, se acordó que el asesoramiento de la etapa 1 fuera proporcionado al Comité Científico en 2008.

2.41 En esta sección, se estimó que el límite de captura precautorio está dado por γB_0. Las evaluaciones de riesgo aquí consideradas se basan en factores de multiplicación del rendimiento que lo llevan de cero a un valor de por lo menos $1.25 \times \text{el límite de captura precautorio}$, pasando por el valor del nivel crítico de activación actual (equivalente a $0.15 \times \text{el límite de captura precautorio}$).

Examen de las estrategias de pesca propuestas

2.42 WG-EMM-08/12 examinó las seis estrategias de pesca identificadas por Hewitt et al. (2004a). Desde la presentación original de estas propuestas en 2004, se han presentado datos y análisis adicionales con los cuales se puede determinar si las estrategias de pesca propuestas aún podrían satisfacer las necesidades de la pesquería, cumpliendo a la vez con los principios del artículo II de la Convención de la CCRVMA. Los autores indicaron que las propuestas 5 y 6 aún están en desarrollo y que la propuesta 1 ya ha sido eliminada por este grupo de trabajo. En lo que se refiere a las propuestas 2 (distribución espacial del consumo de kril por los depredadores) y 4 (biomasa de kril menos el consumo de los depredadores), la información limitada sobre el consumo de kril – en particular por aves voladoras, calamar y peces – crea una incertidumbre significativa en el conocimiento actual sobre la distribución espacial del consumo. En lo que se refiere a las propuestas 3 (distribución espacial de la biomasa de kril) y 4 (distribuye anteriormente), la incertidumbre emana de la estimación de la biomasa de kril. Los autores indicaron que la prospección CCAMLR-2000 proporciona los mejores datos, pero que los diversos métodos analíticos no han producido resultados coherentes en lo que se refiere a una estimación más precisa de la biomasa. Además, existen pocos datos sobre la relación entre el kril del Mar de Escocia y el giro de Weddell o la CCA. Sin embargo, se considera que los datos de la biomasa de kril son más completos que los datos sobre el consumo de kril por los depredadores. Los autores indicaron que existen razones de peso para eliminar la estrategia 4, que probablemente representaría un riesgo mayor para el ecosistema debido a que las estimaciones subyacentes del consumo son poco precisas, y en especial si están sesgadas. El documento sugiere que los datos sobre la distribución de la biomasa instantánea de kril probablemente son más fiables que los datos de la distribución del consumo de los depredadores, favoreciendo la propuesta 3 para la provisión de asesoramiento en la etapa 1. Finalmente los autores indicaron que la demora en la subdivisión de la captura podría conllevar a riesgos para el ecosistema, ya que el status quo equivale a la propuesta 1.

2.43 El grupo de trabajo señaló que la incertidumbre asociada con el consumo de los depredadores puede ser eliminada a través de una mejor evaluación de la abundancia de los depredadores. Recordó que el Taller de Prospecciones de Depredadores (WG-EMM-08/8) inició la labor de compilación de datos de la región del Mar de Escocia con el fin de actualizar las estimaciones de la abundancia y formular métodos que den cuenta de la incertidumbre de estas estimaciones. Se consideró que las prospecciones recientes de focas del campo de hielo (WG-EMM-PSW-08/6) y estimaciones preliminares de la abundancia de pingüinos en la
2.44 En términos de una evaluación de riesgo, el grupo de trabajo preguntó si sería posible identificar subconjuntos de datos sin sesgos o mayor incertidumbre que sirvieran para hacer estimaciones más precisas del consumo de depredadores. El Dr. Trathan señaló que el Taller sobre Prospecciones de Depredadores trató de compilar estos subconjuntos de datos, que solamente consideran los principales consumidores de kril identificados por Croxall et al. (1985). De los conjuntos considerados (véase WG-EMM-08/8), las focas cangrejeras (*Lobodon carcinophagus*) fueron identificadas como los consumidores principales de kril en la región del Mar de Escocia y Weddell. El grupo de trabajo indicó también que la incertidumbre sobre el consumo de kril puede ser considerada en las simulaciones con modelos utilizados en la evaluación de riesgo. Se propuso que esto se hiciera en el curso de la formulación de asesoramiento en las etapas subsiguientes.

Evaluación del riesgo

2.45 El grupo de trabajo consideró el documento WG-EMM-08/30, que presentó evaluaciones del riesgo de las propuestas de pesca 2, 3 y 4 utilizando el modelo FOOSA. Se presentaron ejemplos de índices del riesgo para el kril, los depredadores y la pesquería que podrían ser utilizados para la provisión de asesoramiento. Para el kril y los depredadores, se evaluó el riesgo en relación con una abundancia de referencia determinada por una condición inicial del modelo o por una prueba comparable que no contempla la explotación. Se presentó el riesgo para cada grupo de depredadores a nivel de UOPE, y en base a parametrizaciones individuales o a promedios ponderados del riesgo de todas las parametrizaciones. El promedio ponderado del riesgo se basó en ponderaciones de la verosimilitud para cada parametrización del conjunto de referencia y los autores asignaron ponderaciones desiguales con el fin de ilustrar el riesgo promedio del modelo. Para todos los grupos, se presentó el riesgo como la probabilidad de exceder un umbral del rendimiento en función de tasas crecientes de explotación, desde 0.15γ (el nivel crítico de activación actual) a 1.25γ (25% más que el límite de captura precautorio).

2.46 El grupo de trabajo indicó que los índices del riesgo presentados en el documento WG-EMM-08/30 se basan en los criterios de decisión vigentes para el kril. En el documento, los cambios de la biomasa de kril fueron referidos a: (i) condiciones iniciales del modelo (en lugar de la mediana de la biomasa de kril durante un periodo previo al comienzo de la pesca); y (ii) las medianas de pruebas comparables que no contemplan la explotación. A efectos de presentación, se evaluó el riesgo para el kril en una escala regional, en lugar de una UOPE en particular.

2.47 El riesgo para los depredadores se midió en términos de (i) la probabilidad de una reducción a una fracción de la abundancia básica, y (ii) la probabilidad de que la abundancia no retorne a una fracción de la abundancia básica luego de un periodo sin explotación.

3 El segundo índice del riesgo para el kril presentado en WG-EMM-08/30 fue calculado como la probabilidad de que, al final del periodo de pesca, la abundancia de kril descienda a menos del 75% de la mediana de la abundancia calculada para el mismo periodo por pruebas con el método de Monte Carlo que simulan las condiciones sin explotación, es decir en ausencia de la pesca.
WG-EMM-08/30 presentó los resultados con referencia a un 75% de la abundancia básica a nivel de una UOPE específica y en escala regional. Es posible presentar los resultados con referencia a otras fracciones de la abundancia básica.

2.48 El riesgo para la pesquería se evaluó mediante el logaritmo del promedio de la captura, el CV del promedio de la captura y la probabilidad de que durante el período de la pesca, la densidad de kril disminuya a menos de un nivel umbral que provocaría un cambio involuntario en la pesquería. A efectos de este último índice de riesgo, el documento WG-EMM-08/30 presentó umbrales de la densidad de kril de 10, 15 y 20 g m\(^{-2}\). Es posible presentar los resultados con referencia a otras densidades umbrales. El grupo de trabajo pidió que el rendimiento de la pesquería fuese medido también mediante una comparación de la captura con la captura total asignada para cada factor de multiplicación del rendimiento.

2.49 El grupo de trabajo consideró asimismo los resultados de las evaluaciones del riesgo efectuadas con el modelo SMOM producidos por la Dra. Plagányi durante las reuniones de WG-SAM. WG-SAM recomendó que estos resultados fuesen considerados por WG-EMM. El grupo de trabajo sólo dispuso de resultados para depredadores, y la presentación del riesgo fue hecha en el mismo formato que para el modelo FOOSA, como se describe en el párrafo 2.47.

2.50 El grupo de trabajo consideró un método que utiliza índices combinados estándar (CSI) para la evaluación del riesgo, descrito en WG-SAM-08/16 (véase el apéndice D). WG-SAM recomendó que los métodos presentados en este documento fuesen considerados por WG-EMM. El riesgo puede ser evaluado mediante un índice combinado del rendimiento de todos los depredadores a nivel de una UOPE específica y en escalas regionales, de un conjunto de resultados de uno o más modelos de simulación. El CSI se utiliza para medir el rango de variabilidad de la respuesta del ecosistema y el riesgo se evalúa observando si la pesca afecta el valor del CSI de modo que se desvíe significativamente del rango de la variabilidad registrada durante un período de referencia. Los umbrales que definen una desviación significativa podrían ser especificados nombrando un cuartíl de la distribución del índice derivada del período de referencia, por ejemplo, el percentil 10 inferior. El riesgo se evalúa a continuación como la probabilidad de que la pesca ocasione valores del CSI por debajo del percentil designado.

2.51 La utilización del CSI para evaluar el riesgo se basa en la suposición de que los cambios de la abundancia de kril ocasionarán cambios en el rendimiento de los depredadores, según el grado en que los depredadores dependen del kril para satisfacer los requerimientos de su ciclo de vida. Un enfoque precautorio requeriría que la probabilidad de que el CSI se desvíe en exceso de su variabilidad básica no aumente en demasiada medida que el factor de multiplicación del rendimiento aumenta. El Dr. Constable sugirió que hasta que no se disponga de más datos para describir cómo responden los grupos individuales de depredadores a la pesca de kril, el CSI sirve para medir la respuesta general del ecosistema a la pesca.

2.52 La utilización del CSI no es específica para un modelo dado; los resultados de un conjunto de modelos como SMOM y FOOSA pueden ser combinados para sumar las incertidumbres de cada modelo. El grupo de trabajo indicó que la combinación de resultados de los modelos podría facilitarse ponderando las condiciones según su verosimilitud. El Dr. Watters advirtió, sin embargo, que la suma de resultados de distintos modelos podría ser inadecuada en ciertos casos. Por ejemplo, el modelo básico utilizado para obtener resultados
con SMOM es muy similar a la parametrización “nst” utilizada en FOOSA (es decir, sin incluir movimiento de kril y con hiperestabilidad). La creación de un conjunto de resultados a partir de condiciones duplicadas implicitamente ponderaría más esas condiciones y podría introducir un sesgo en los resultados agregados.

2.53 El grupo de trabajo se preguntó cómo se podrían ponderar los resultados de distintos modelos cuando se compila un conjunto de resultados. El Dr. Watters indicó que la ponderación podría basarse en consideraciones cuantitativas y cualitativas de la verosimilitud tanto estadística como ecológica. Por ejemplo, WG-EMM-08/30 presentó resultados con ponderaciones desiguales basadas en la experiencia de los autores durante la estimación de parámetros y en la dinámica resultante de los grupos de depredadores. Se asignó una menor ponderación a algunas parametrizaciones que no representaron del todo bien la dinámica pertinente especificada en el calendario de WG-SAM y que fueron difíciles de ajustar a los datos. Otras parametrizaciones no se pudieron distinguir de esta manera y por lo tanto se les asignó igual ponderación. La Dra. Plagányi explicó que se asignó igual ponderación a los resultados de las simulaciones con SMOM porque las 12 parametrizaciones del conjunto de referencia descrito en WG-SAM-08/17 se ajustaron igualmente bien al calendario de WG-SAM y son igualmente verosímiles. El Dr. Constable propuso que se podría evaluar la verosimilitud del modelo en relación con las dinámicas observadas en pruebas de simulación en el futuro. El grupo de trabajo acordó que sería más apropiado ponderar por igual todas las condiciones modeladas si no se pueden acordar otros métodos justificables de ponderación.

2.54 El grupo de trabajo acordó además que la ponderación desigual de los resultados de distintos modelos sería difícil, en particular si hay sesgos desconocidos o sin cuantificar en los modelos. El grupo de trabajo indicó que el sesgo en los modelos podría emanar de distintas parametrizaciones o estructuras de los modelos, y que podría ser imposible evaluar la dirección y magnitud del sesgo dentro de un conjunto de resultados de los modelos. El grupo de trabajo identificó tres posibles fuentes de sesgo en los resultados de los modelos FOOSA y SMOM:

i) En primer lugar, la relativa capacidad competitiva de los depredadores y de la pesquería podría resultar en sesgos. Los resultados de FOOSA presentados en WG-EMM-08/30 representan a los depredadores y a la pesquería como competidores iguales por el recurso kril. Los resultados de SMOM presentados al grupo de trabajo representan a la pesquería como de menor capacidad competitiva que los depredadores. En esos casos, la pesquería no siempre extrae la cuota completa que le fue asignada, aunque en realidad esto podría ocurrir en el futuro (párrafos 2.86 al 2.88).

ii) Un segundo sesgo podría haber sido introducido por la tendencia en la biomasa de kril, como fuera especificado en el calendario de WG-SAM. Las tendencias negativas en la abundancia de kril podrían generar una probabilidad más alta de violar los criterios de decisión relativos al kril para las distintas estrategias de pesca.

iii) Una tercera posible fuente de sesgos emana de la utilización de “bañeras” (bathtubs) y de la forma en que se modela el flujo de kril. El grupo de trabajo propuso que el flujo podría sostener los stocks locales de kril a pesar de las extracciones de la pesquería.
2.55 El grupo de trabajo estuvo de acuerdo en que el sesgo negativo emanaría de las tres fuentes, y que este sesgo disminuiría el riesgo supuesto para el ecosistema para un factor dado de multiplicación del rendimiento. El grupo de trabajo estuvo de acuerdo en que este sesgo podría resultar en una recomendación menos precautoria para la asignación por UOPE que la que se pretende alcanzar. En este caso, se deberá considerar que los riesgos identificados por una evaluación son los riesgos mínimos para el ecosistema derivados de una tasa de explotación dada.

2.56 Las discusiones anteriores acerca del sesgo de los modelos y las ponderaciones de FOOSA y SMOM, y la utilización de los resultados de FOOSA para compilar un conjunto de CSI, condujo a varias propuestas de análisis que serían llevados a cabo durante la reunión. En primer lugar, dados los sesgos posibles en los resultados de los modelos, el grupo de trabajo pidió que los resultados de las evaluaciones de riesgo presentadas en el documento WG-EMM-08/30 se calculen nuevamente utilizando ponderaciones iguales para todas las parametrizaciones. En segundo lugar, el grupo de trabajo pidió que el rendimiento de la pesquería sea evaluado también como la proporción de la captura en relación con la asignación.

2.57 Los resultados principales de la evaluación de riesgo figuran en los párrafos 2.58 al 2.74.

Interpretación de los resultados del modelo

Evaluación de las propuestas de pesca 2, 3 y 4

2.58 El grupo de trabajo tomó nota del asesoramiento contenido en WG-SAM-08 (anexo 7, párrafo 9.6) en el sentido de que si bien hay diferencias entre los modelos, tanto FOOSA como SMOM podían ser considerados como una aplicación adecuada de los enfoques metodológicos especificados en WG-SAM-07 y WG-EMM-07. En el curso de WG-EMM-08 se volvieron a ejecutar pasadas de los modelos en condiciones tales que permitirían hacer comparaciones más estrictas de sus resultados. Se acordó que los resultados de las simulaciones con FOOSA deberían ser combinados con igual ponderación, y que la parametrización de SMOM se asemeja más a la condición “nst” de FOOSA.

2.59 El grupo de trabajo tomó nota de cómo los CSI podían ser interpretados como indicadores de los efectos indirectos de la pesca de kril en los depredadores del recurso, a través de la trama alimentaria. Acordó que los CSI servían para entender los efectos totales de la pesca en toda la región pero expresó preocupación por la posibilidad de que se enmascare la variabilidad espacial de los efectos, es decir, la posibilidad de que se manifiesten efectos mayores individualmente en las UOPE. En el curso de WG-EMM-08, el Dr. Constable utilizó el software desarrollado y examinado en WG-SAM (anexo 7, párrafos 6.37 al 6.42) para presentar los resultados relativos al CSI de las simulaciones con FOOSA para las propuestas 2 a la 4, incluidos gráficos para la propuesta 3 que muestran una comparación del CSI de toda una región con un CSI para una UOPE determinada.

2.60 Los resultados para los diversos modelos fueron presentados por el Dr. Watters (FOOSA), la Dra. Plagányi (SMOM) y el Dr. Constable (gráficos de CSI de los resultados de FOOSA). Los resultados fueron presentados en las figuras 1 a la 11 de acuerdo con la
evaluación gráfica de la probabilidad de riesgo sugerida en WG-EMM-08/30 y el enfoque relativo a los CSI descrito detalladamente en el apéndice D. Los resultados de los modelos muestran que hay concesiones recíprocas inherentes en la elección de las propuestas 2, 3 ó 4, y estas concesiones se expresan como el riesgo para las poblaciones de depredadores y para la distribución y rendimiento de la pesquería.

Consecuencias para la población de kril

2.61 Los efectos en la población de kril pronosticados por FOOSA y SMOM se muestran en las figuras 1 y 7.

2.62 En la evaluación de todas las propuestas con FOOSA, la probabilidad de que la abundancia mínima de kril durante el período de la pesca disminuya a <20% de la abundancia en pruebas comparables que no contemplan la explotación permanece inalterable (en 0.00) a medida que el factor de multiplicación del rendimiento aumenta hasta 1.0 (figura 1).

2.63 Los valores de la abundancia de kril al final del período de pesca son similares para las propuestas de pesca 2 y 3 en las simulaciones con FOOSA y SMOM. El riesgo de que la abundancia de kril medida a fines del período de pesca sea menor del 75% del valor de la mediana de la abundancia en las pruebas comparables que no contemplan la explotación aumenta para la Subárea 48.3 a medida que el factor de multiplicación del rendimiento aumenta a más de 0.15 (equivalente al nivel crítico de activación actual), y en las Subáreas 48.1 y 48.2 y Área 48 entera a medida que el factor de multiplicación de rendimiento aumenta a más de 0.5. Sin embargo, para la propuesta 4 el riesgo está circunscrito a la Subárea 48.3.

2.64 Para las propuestas 2 y 3, hay una variación significativa del riesgo para cada UOPE de que la abundancia de la población local de kril disminuya a menos de 75% de la abundancia en pruebas comparables que no contemplan la explotación (figura 7).

Consecuencias para las poblaciones de depredadores

2.65 Los resultados de FOOSA y de SMOM indican que, para factores de multiplicación del rendimiento hasta 0.15, las propuestas 2 y 3 no representan un riesgo significativo de que las poblaciones de depredadores disminuyan a menos de 75% de la abundancia que tendrían cuando no se efectúa la pesca (figuras 2, 3 y 8).

2.66 Los riesgos para los depredadores bajo la propuesta 4 son mucho más altos que los de las propuestas 2 y 3 en las simulaciones de SMOM y FOOSA. La implementación de la propuesta 4 aumentaría el riesgo de que las poblaciones de depredadores se reduzcan a menos de 75% de la abundancia cuando no hay explotación, en comparación con las propuestas 2 y 3. Estos resultados coinciden para FOOSA y SMOM (figuras 2, 3 y 7), y son causados por la limitación creciente de la distribución espacial de la pesquería a las UOPE de la costa en la propuesta 4. La proporción de la captura total asignada a las UOPE costeras en las propuestas 2, 3 y 4 en FOOSA fue de 30, 38 y 66% respectivamente (WG-EMM-08/30, tabla 1). Los
resultados de FOOSA indican que los riesgos para los depredadores asociados al nivel crítico de activación (0.15× rendimiento) son mayores para la propuesta 4 que para las propuestas 2 y 3.

2.67 Cuando el factor de multiplicación del rendimiento es más alto, los resultados de FOOSA y de SMOM difieren en relación con los depredadores. El riesgo de que las poblaciones de los depredadores disminuyan a menos de 75% de la abundancia que existiría si no se realiza la explotación aumenta marcadamente, a medida que el factor de multiplicación del rendimiento se aproxima a 0.5, tanto para la propuesta 2 como para la propuesta 3 evaluadas con SMOM (figura 8), pero sólo aumenta para la propuesta de pesca 3 con FOOSA (figura 3). La probabilidad de una disminución significativa de la abundancia de los depredadores sigue siendo baja para la propuesta 2 evaluada con FOOSA hasta que el factor de multiplicación se aproxima a 1.0. Por lo tanto, aparentemente la estrategia de pesca de la propuesta 2 presenta un menor riesgo de ejercer un efecto negativo en las poblaciones de depredadores que la propuesta 3 dada la estructuración del modelo FOOSA, pero en SMOM las dos propuestas presentan un riesgo similar para los depredadores. Esto se atribuye en parte a las condiciones relativas al movimiento representadas en FOOSA pero no en SMOM, resultando en mayor riesgo para la propuesta 3.

2.68 En ambos modelos los pingüinos y peces sufren efectos negativos a niveles de explotación menores, existiendo una baja probabilidad de que las focas sean afectadas significativamente, y en el caso de las ballenas, los efectos son insignificantes en todo el rango de explotación simulado. Una diferencia significativa entre los modelos es el riesgo mayor para los peces en SMOM comparado con FOOSA (figura 8 comparada con la simulación “nst” de la figura 2). La Dra. Plagányi indicó que esto podría deberse a la inclusión de las capturas históricas de peces en SMOM que no son incluidas en FOOSA. Una tasa de captura moderada en SMOM afecta relativamente más a los peces que la propuesta que no considera la pesca, ya que se supone que en el último caso, los peces se encuentran en fase de recuperación.

2.69 La figura 10 presenta el análisis de los CSI descrito en WG-EMM-08/16 (véase el apéndice D). Los resultados son similares a los presentados en la figura 2, y demuestran en particular los distintos riesgos resultantes de simulaciones que contemplan y que no contemplan el flujo de kril. El grupo de trabajo estuvo de acuerdo en que este análisis representa las propiedades generales de los cambios dentro de las UOPE y resume bien la magnitud de los cambios que pueden esperarse aún a nivel de UOPE (se da un ejemplo en la figura 11).

Consecuencias para la pesquería

2.70 La implementación de las propuestas 2 y 3 requeriría que la pesquería operase en su mayor parte lejos de las zonas costeras, asignándose 70 y 62% de la captura asignada respectivamente por los modelos a las UOPE pelágicas. Si bien la biomasa disponible puede ser mayor en las UOPE pelágicas (porque el área de estas UOPE es mucho mayor que el área de las UOPE costeras), el riesgo de que la densidad de kril disminuya a menos de un umbral que provocaría cambios involuntarios en el comportamiento de la flota de pesca aumenta significativamente en las UOPE pelágicas (figura 4). Sin embargo, tanto SMOM como FOOSA indican que las capturas serían mayores en las UOPE pelágicas (figuras 5 y 9).
Además, es más probable que la pesquería no pueda extraer el límite de captura de kril asignado a algunas UOPE (figura 6). De los resultados de FOOSA, el rendimiento de la pesquería es mucho peor para la propuesta 4 que para las estrategias 2 y 3, y ligeramente peor con la estrategia 3 que con la estrategia 2.

2.71 El grupo de trabajo indicó que en la figura 5 muchas de las capturas promedio modeladas para UOPE específicas bajo la estrategia 4 fueron bajas en comparación con las de las demás estrategias porque todas las parametrizaciones del conjunto de referencia describen implícitamente condiciones iniciales que prohibirían la pesca en muchas de las UOPE. Recordó que la asignación por UOPE de las pruebas de los modelos serían diferentes a las que se observarían en la realidad. Esto se debe a que el modelo simula la estimación de la biomasa de kril o el consumo de los depredadores para que represente el proceso que ocurriría en la realidad, que se describe en detalle en el párrafo 2.31.

2.72 El Dr. Watters señaló que el rendimiento relativamente menor de la pesquería a niveles de captura mayores se debía a que, a medida que el factor de multiplicación del rendimiento aumenta, la pesquería compite más intensamente con los depredadores y se llega a un punto en que no puede extraer la captura que le fue asignada. Aún en el nivel crítico, la pesquería no puede extraer toda la captura asignada en algunas UOPE.

2.73 La Dra. Plagányi indicó la menor pendiente de la tendencia en el logaritmo del promedio de las capturas mostrada en la figura 9, en comparación con la figura 5. Ella conjunturó que esto se debía al hecho de que en SMOM la pesquería era un competidor inferior a los depredadores (la pesca se lleva a cabo solamente cuando los depredadores ya han capturado y consumido lo que necesitan) mientras que en FOOSA son competidores por igual, de manera que a medida que la tasa de captura aumenta, la pesquería puede extraer una mayor proporción de la captura asignada.

2.74 El Dr. Agnew señaló que las trayectorias planas mostradas en la figura 6 indican que hay algunas UOPE donde la flota no sería capaz de conseguir los niveles de captura asignados, aún cuando sean muy bajos. El Dr. Constable señaló que esto se podría examinar mediante un análisis de los datos de la pesquería actual en combinación con un modelo de la dinámica de la flota.

Consideración de la incertidumbre

2.75 El grupo de trabajo discutió las consecuencias de varias fuentes de incertidumbre en los modelos FOOSA y SMOM.

Condicionamiento de modelos

2.76 El grupo de trabajo examinó la información sobre la magnitud y fechas especificadas para el cambio radical en la abundancia de kril propuesto por WG-EMM-08/10, señalando que la tendencia descrita del kril podría generar un sesgo negativo en los modelos. El cambio radical se basa en un análisis de los resultados de FIBEX y de la prospección CCAMLR-2000, que indicó una reducción de 50% de la densidad de kril en el Mar de Escocia ocurrida entre principios de la década de los 80 y la temporada 1999/2000. La
disminución de esta magnitud fue apoyada por los datos de captura con redes de arrastre que han sido publicados (Atkinson et al., 2004; WG-EMM-08/P4). La coherencia de la densidad de kril observada a nivel regional en las prospecciones AMLR indica que la reducción de 50% de la biomasa de kril podría ser aplicable a todas las UOPE.

2.77 El grupo de trabajo indicó que la comparación de los datos de las prospecciones FIBEX y CCAMLR-2000 podría no ser adecuada y que los datos de lances de la red podrían ser un mejor indicador de los cambios de la densidad con el tiempo. En general, el grupo de trabajo estuvo de acuerdo en que se desconoce la verdadera magnitud de cualquier cambio radical de la biomasa de kril, pero éste no proporcionó otras estimaciones a ser consideradas en el futuro.

2.78 El grupo de trabajo examinó la información para discernir si había ocurrido un cambio radical en la abundancia de kril. El calendario de WG-SAM especifica que este cambio ocurrió a fines de la década de los 80. El grupo señaló que los pingüinos son particularmente sensibles a los cambios en la disponibilidad de kril y que los datos existentes sobre pingüinos apoyaban un cambio de ese tipo en la abundancia de kril. El Dr. Trivelpiece señaló que la abundancia de los pingüinos adelia (Pygoscelis adeliae) en Bahía Almirantazgo sufrió una disminución muy marcada a fines de la década de los 80, coincidiendo con el primer año de una serie de años libres de hielo. La disminución probablemente se debió a una reducción en la supervivencia de juveniles durante el invierno, y no a una disminución de la supervivencia de los adultos.

2.79 El Dr. Kawaguchi barajó la posibilidad de que hubiera ocurrido un cambio en la disponibilidad local de kril para los pingüinos en vez de un cambio en la densidad total de kril en la región. El Dr. Trivelpiece explicó que a nivel de las zonas de alimentación durante la época de reproducción, no se evidenció un cambio en la disponibilidad de kril. Las concentraciones de kril que se considera necesarias para el éxito de la reproducción de los pingüinos en la Subárea 48.1 aparentemente continúan apoyando la constante producción de polluelos. El grupo de trabajo indicó que aparentemente existe coherencia de las respuestas de los pingüinos de las Islas Orcadas del Sur y Geogías del Sur, lo que apoya la teoría de que se produjo un cambio en la densidad de kril a nivel regional.

2.80 Algunos miembros del grupo de trabajo indicaron que hay muchas pruebas de que se han producido cambios en la región de la Península Antártica causados por el cambio climático, y se preguntaron si también las poblaciones de otros depredadores habían disminuido. Específicamente, la noción de un cambio radical de la biomasa de kril conlleva a preguntarse si ha ocurrido un cambio de régimen. La gran variabilidad medioambiental observada en el Mar de Escocia indica que algunos grupos de depredadores experimentarán cambios correlacionados estrechamente con el kril. Otros depredadores que son menos dependientes de kril pueden mostrar una menor correlación con los índices medioambientales. Sin embargo, si ha ocurrido un cambio radical, será difícil aceptar que otros depredadores dependientes de kril no hayan respondido al cambio. El Dr. Goebel señaló que el reclutamiento del lobo fino antártico en Cabo Shirreff había disminuido casi totalmente en los últimos años, pero señaló que estos datos no cubren todo el período cuando se produjo el cambio radical en los stocks de kril.
2.81 El grupo de trabajo estuvo de acuerdo en que los indicios disponibles de cambios en los depredadores dependientes de kril apoyan la conclusión de que es muy probable que haya ocurrido un cambio radical en la abundancia de kril, aunque se considera que la magnitud de dicho cambio es más dudosa.

2.82 Los Dres. P. Gasyukov (Rusia), Bizikov y Kasatkina señalaron que el grupo de trabajo no había considerado el calendario de WG-SAM detalladamente. Asimismo, indicaron que este calendario no da ninguna indicación sobre la dinámica de las poblaciones de peces. El papel de los peces en el ecosistema sigue siendo una fuente importante de incertidumbre en esta labor.

2.83 El grupo de trabajo estuvo de acuerdo en que los datos existentes podrían ser útiles para actualizar el calendario en el futuro, a fin de que incluya las expectativas generales en lo que se refiere a la dinámica de los peces (anexo 7, párrafos 5.14 y 5.15).

2.84 Los Dres Gasyukov, Bizikov y Kasatkina señalaron también dos puntos referentes a la utilización de datos de la prospección CCAMLR-2000 en las estimaciones de la densidad de kril a nivel de UOPE (Hewitt et al., 2004a; WG-EMM-08/30) incluidas en el calendario de WG-SAM, a saber:

i) la biomasa total de kril en las Subáreas 48.1, 48.2 y 48.3 calculada multiplicando la densidad de kril en cada UOPE por el área de cada UOPE (tabla 1 de Hewitt et al., 2004a) es 150% de la estimación de B_0 de la prospección;

ii) el análisis de la prospección CCAMLR-2000 proporcionó estimaciones de la densidad para cada estrato de la prospección (Hewitt et al., 2004b). En el calendario de WG-SAM estas densidades fueron asignadas a las UOPE, según Hewitt et al. (2004a). Esto podría encubrir la heterogeneidad de la densidad de kril a nivel de UOPE. Los Dres. Gasyukov, Bizikov y Kasatkina opinan que las densidades utilizadas en el calendario no reflejan la biomasa real de kril a nivel de UOPE. Más aún, se debe estimar la densidad a nivel de UOPE directamente a partir de los datos de la prospección CCAMLR-2000 para su aplicación ulterior en los modelos. Esto podría basarse en el nuevo análisis de los datos de la prospección con los métodos más actualizados convenidos por SG-ASAM y compatibles con la evaluación del límite de captura precautorio.

2.85 El Dr. Hill señaló que:

i) la diferencia entre la estimación de la biomasa a partir de los datos de la prospección y la biomasa total sugerida por Hewitt et al. (2004a, Tabla 1) es atribuible a las distintas áreas consideradas. Es necesario extrapolar a la totalidad de las Subáreas 48.1, 48.2 y 48.3 a fin de avanzar en la labor de la asignación por UOPE. Sin embargo, a fin de observar el principio de precaución, la estimación de B_0 debe delimitarse al área de prospección;

ii) a pesar de que la densidad de kril por UOPE puede ser más heterogénea de lo que sugiere Hewitt et al. (2004a), este es el único análisis disponible que proporciona información sobre la densidad de kril en esta escala. Los resultados
del modelo debieran ser considerados en el contexto de esta fuente de incertidumbre junto con las otras fuentes mencionadas en los párrafos 2.52 al 2.56 y 2.75 al 2.81.

iii) FOOSA y SMOM han sido diseñados para evaluar la asignación por UOPE de las capturas determinadas por los modelos. No es necesaria una estricta correspondencia entre las estimaciones de la biomasa utilizadas para establecer el límite de captura precautorio y las utilizadas para inicializar los modelos. Sin embargo, la labor aquí presentada hace uso de la estimación actual de \(\gamma \) (esto es, \(\gamma = 0.093 \)) (SC-CAMLR-XXVI, anexo 4).

Resultados de los modelos

2.86 El Dr. Constable comentó sobre la respuesta relativamente moderada de la dinámica de las poblaciones de kril al aumento del factor de multiplicación del rendimiento en FOOSA y SMOM (Figuras 1 y 7). Indicó que el hecho de que los modelos pronosticaron una probabilidad menor de 50% de que la población de kril disminuya a fines del periodo de pesca a 75% de la mediana de la abundancia de su stock desovante en las pruebas que no contemplan la pesca, indicaba que la población de kril no estaba respondiendo como se esperaba al aumento de los niveles de captura. En su opinión, esto estaría indicando que si los modelos estuviesen errados, y si en la realidad emergiese una probabilidad más alta de una reducción de la población de kril, entonces la tasa de explotación elegida no habría sido precautoria y el efecto en los depredadores sería mayor de lo previsto. Por lo tanto, se requeriría un enfoque precautorio commensurable con esta incertidumbre para disminuir la tasa de explotación recomendada por las pasadas de los modelos a una tasa con un nivel aceptable de riesgo (párrafo 2.55).

2.87 Los Dres. Plagányi y Watters declararon que en sus modelos la población de kril respondió apropiadamente al aumento del nivel de los factores de multiplicación del rendimiento. La respuesta aparentemente moderada de las Figuras 1 y 7 fue causada por: (i) el hecho de que en algunas áreas, la pesquería, actuando en calidad de competidor equivalente (FOOSA) o inferior (SMOM) a los depredadores, no está extrayendo los niveles de captura asociados con el factor de multiplicación del rendimiento, y hay una alta probabilidad de que la densidad de kril se reduzca a niveles que limitarán el rendimiento de la pesquería, en particular dentro de las UOPE pelágicas; y (ii) en los modelos que contemplan el movimiento de kril, este movimiento permitiría una redistribución del recurso entre las UOPE reduciendo el grado de disminución de la población de kril.

2.88 El Dr. Agnew recordó las discusiones descritas en los párrafos 2.32 a 2.39 que indican que la pesquería posiblemente no será capaz de extraer eficazmente los límites de captura asignados a las UOPE pelágicas en el futuro inmediato. El Dr. Constable señaló que debido a que podría ser factible que en el futuro la pesquería de kril desarrolle técnicas que la hagan económica y tecnológicamente viable, permitiendo extraer la captura asignada aún dentro de las UOPE pelágicas, es necesario desarrollar simulaciones en condiciones que permitan investigar qué sucedería si la pesquería pudiera extraer el límite de captura total. Por ahora, las condiciones simuladas no han estudiado esta posibilidad, aún para las UOPE costeras.
2.89 La Medida de Conservación 51-01 limita la captura de kril en las Subáreas 48.1, 48.2, 48.3 y 48.4 a 620 000 toneladas hasta que la Comisión haya determinado la asignación por UOPE, y, a la inversa, no requiere la determinación de dicha asignación mientras la captura sea inferior a que este nivel crítico de activación. El grupo de trabajo indicó que en todas las condiciones simuladas en cada modelo los depredadores solamente corrían un riesgo muy pequeño cuando el factor de multiplicación del rendimiento se fijaba a una tasa que correspondiera con el nivel crítico de 620 000 toneladas (0.15 × el rendimiento) y la asignación por UOPE estaba determinada por las estrategias de pesca propuestas 2 ó 3. Los pronósticos de FOOSA indican que la implementación de la propuesta 4 podría presentar riesgos para los depredadores.

2.90 El grupo de trabajo recordó su asesoramiento anterior (SC-CAMLR-XXV, anexo 4, párrafo 5.24) de que la propuesta de pesca 1 perjudicaría en mayor grado al ecosistema en comparación con las otras estrategias de pesca. El análisis preliminar efectuado por el grupo de trabajo indica que esto posiblemente tenga un riesgo mayor para los depredadores cuando el factor de multiplicación del rendimiento es de 0.15, en comparación con el riesgo insignificante identificado anteriormente para las propuestas de pesca 2 y 3. Es posible por lo tanto que el ecosistema sufra algún daño si la modalidad de pesca no cambia a medida que la captura total se aproxima a 620 000 toneladas.

2.91 El Dr. Holt subrayó que el peor de los casos (para los depredadores) podría ser que las capturas se concentraran en solamente en un lugar y sumaran un nivel próximo a 620 000 toneladas, por ejemplo si la captura total fuese extraída de una sola o de unas pocas UOPE. El Dr. Bizikov señaló que el nivel crítico de activación no debiera ser un obstáculo para el desarrollo de la pesquería ni debiera conllevar riesgo significativo para el ecosistema.

2.92 El grupo de trabajo reconoció que, si se aplican las asignaciones derivadas de las propuestas 2 a 4 a la pesquería actual, esto limitaría la captura en varias UOPE aún cuando la captura total anual sólo equivalga a un 17% del nivel de activación crítico.

2.93 El grupo de trabajo indicó que las decisiones pertinentes al actual nivel crítico de activación le corresponden a la Comisión.

2.94 El Dr. Bizikov recordó que se habían extraído capturas muy grandes de kril a mediados de la década de los ochenta (400 835 toneladas en 1986/87, principalmente de la Península Antártica, Isla Elefante, y las UOPE SOW y SGE) y que no se había observado efectos significativos en el ecosistema. El Dr. Trathan indicó que podría haber habido efectos que pasaron desapercibidos en las UOPE que no contienen un sitio de seguimiento de CEMP, o donde el sistema de seguimiento del CEMP no estaba completamente desarrollado en ese entonces.

Asesoramiento al Comité Científico

2.95 El grupo de trabajo estuvo de acuerdo en que las conclusiones generales de los análisis de modelado fueron:

i) los resultados de la propuesta 4 son mucho peores que los de las propuestas 2 y 3, según todos los índices del rendimiento;
ii) las propuestas 2 y 3 parecen tener igualmente buenos resultados bajo varias condiciones; la diferencia entre los resultados obtenidos para las propuestas 2 y 3 con los modelos se debió a la distinta estructuración de los modelos, por ejemplo la inclusión de movimiento, la parametrización de la dinámica de los depredadores y el tratamiento del componente peces;

iii) para las propuestas 2 y 3 el riesgo de un efecto perjudicial en los depredadores fue insignificante cuando se multiplicó el rendimiento con un factor de 0.15 (la tasa de explotación que equivale al nivel crítico de activación);

iv) para las propuestas 2 y 3 el riesgo de un efecto perjudicial en los depredadores aumentó cuando se multiplicó el rendimiento por factores de 0.25 a 0.5, siendo los pingüinos y los peces los componentes más afectados, los pinnípedos en menor grado, y las ballenas no fueron afectadas;

v) las propuestas 2 y 3 incluyen una asignación de una proporción de la captura total (70 y 62% respectivamente) a las UOP E pelágicas, en las cuales según los resultados de los modelos y el contenido de los párrafos 2.32 a 2.39, el rendimiento de la pesca disminuirá significativamente.

2.96 El grupo de trabajo recordó su discusión acerca de los resultados de las simulaciones en lo que se refiere a las capturas de las pesquerías y la variabilidad del rendimiento de las mismas bajo las condiciones de las distintas propuestas (párrafos 2.70 al 2.74).

2.97 Asimismo, el grupo tomó nota de las discusiones sobre los sesgos (párrafos 2.52 al 2.56) y la incertidumbre (párrafos 2.75 al 2.94).

2.98 El grupo de trabajo señaló la discusión relativa al nivel crítico de activación descrita en los párrafos 2.92 y 2.93.

2.99 Se acotó que la distribución espacial actual de las capturas no sigue el patrón supuesto en las propuestas 2 y 3, sino que más bien refleja la modalidad de pesca de la propuesta 1, la distribución histórica de la pesca. El grupo de trabajo no pudo proporcionar asesoramiento explícito al Comité Científico sobre los riesgos asociados con la distribución de las capturas de la propuesta 1, que podrían ser evidentes a medida que la captura total se aproxima al nivel crítico de activación. Sin embargo, indicó que su asesoramiento previo había sugerido que las asignaciones efectuadas en base a la distribución histórica de la pesca tendrían efectos perjudiciales mayores en el ecosistema que los efectos de las otras propuestas (SC-CAMLR-XXV, párrafo 3.11).

2.100 El grupo de trabajo indicó que el desarrollo de modelos para proporcionar asesoramiento en la etapa 1 de la asignación por UOPE había sido técnicamente difícil, y que el desarrollo de los modelos necesarios para proporcionar asesoramiento en las etapas subsiguientes también lo sería, y quizás aún más. Por lo tanto, WG-EMM deseaba subrayar esto al Comité Científico y a la vez destacar que requeriría de suficiente tiempo e información para desarrollar modelos de manera que fueran estructurados correctamente.

2.101 Los participantes de WG-EMM estuvieron de acuerdo en que se había logrado un progreso significativo en la evaluación del riesgo presentado por las distintas propuestas para
la asignación de la captura por UOPE (véase el párrafo 2.31(iii)) y que esto bastaba para la segunda tarea de la etapa 1 de la labor de asignación por UOPE, como se describe en el párrafo 2.31.

2.102 El grupo de trabajo indicó que las estimaciones del consumo de los depredadores son inciertas, principalmente debido a las estimaciones incompletas de la abundancia de los depredadores (WG-EMM-08/8 y 08/12). Señaló también que la densidad de kril a nivel de UOPE no se estimó adecuadamente en los análisis existentes de los datos de la prospección CCAMLR-2000 y que seguirán siendo inciertas hasta que los problemas relacionados con los métodos de estimación de la abundancia de kril a partir de datos acústicos sean resueltos (párrafo 5.111).

TEMA DE DISCUSIÓN: PROGRESO DE LA IMPLEMENTACIÓN DE MEDIDAS DE ORDENACIÓN DE ESPACIOS CON MIRAS A FACILITAR LA CONSERVACIÓN DE LA BIODIVERSIDAD MARINA

Antecedentes

3.1 La Dra. Penhale, quien presidió el debate sobre este tema, presentó al grupo de trabajo una reseña del avance en las discusiones de la CCRVMA sobre la protección de áreas y el establecimiento de posibles AMP.

3.2 El grupo de trabajo recordó que a principios de la década del 2000 el trabajo del subgrupo de designación y protección de localidades del CEMP había ampliado su ámbito de competencia para incluir el examen de los planes de ordenación de áreas que incluyen espacios marinos presentados a la CCRVMA para su aprobación. En 2002 este grupo cambió de nombre a “Subgrupo consultivo sobre áreas protegidas” (CCAMLR-XXI, párrafo 4.17). En 2003 la Comisión aprobó el cometido revisado de este grupo (CCAMLR-XXII, párrafo 4.26), e incluyó la provisión de asesoramiento con respecto al establecimiento de AMP que se podrían proponer en virtud de las disposiciones del artículo IX.2(g) de la Convención.

3.3 En 2004 la Comisión trató el tema de las AMP y exhortó al Comité Científico a iniciar este trabajo a la mayor brevedad. Y reafirmó la necesidad de formular asesoramiento sobre las AMP compatible con los artículos II y IX de la Convención (CCAMLR-XXIII, párrafo 4.13). Luego en 2005 se celebró en Estados Unidos un taller de la CCRVMA sobre Áreas Marinas Protegidas (SC-CAMLR-XXIV, anexo 7). Uno de los objetivos de este taller fue considerar el establecimiento de un sistema de áreas protegidas para ayudar a la consecución de los objetivos de la CCRVMA que contemplan la conservación y el uso racional de los recursos.

3.4 En 2005 la Comisión respaldó el asesoramiento del Comité Científico surgido del taller de la CCRVMA de ese año, y estuvo de acuerdo en que el objetivo principal era establecer un sistema armonizado para la protección del medio ambiente marino antártico en todo el área del Sistema del Tratado Antártico (CCAMLR-XXIV, párrafo 4.12). Se reconoció que tanto la CCRVMA como el CPA (a través del artículo V del Protocolo para la Protección ambiental del Tratado Antártico), se interesan en la protección de áreas. La Comisión
también aprobó el plan de trabajo del Comité Científico de llevar a cabo un taller para hacer recomendaciones sobre una biorregionalización del Océano Austral, incluida una subdivisión en escala fina de provincias biogeográficas (CCAMLR-XXIV, párrafo 4.17).

3.5 En 2006 se avanzaron los planes para celebrar un taller de biorregionalización, estableciéndose un grupo directivo compuesto por miembros de la CCRVMA y del CPA (CCAMLR-XXV, párrafo 6.1). Además, la Comisión indicó que el Taller de Biorregionalización sería un importante paso adelante en sus actividades para desarrollar una red representativa de áreas marinas protegidas (CCAMLR-XXVI, párrafos 6.1 al 6.6). En 2007 se llevó a cabo el taller de biorregionalización del Océano Austral en Bruselas (SC-CAMLR-XXVI, anexo 9).

3.6 El grupo de trabajo indicó que este taller había examinado los datos disponibles sobre batimetría, oceanografía física y biología y que los sistemas béticos y pelágicos habían sido considerados por separado. El grupo de trabajo acotó que el Comité Científico había apoyado el resultado del taller, indicando que puede ser utilizado para la gestión de espacios y como base fundamental para entender la heterogeneidad biológica y física del Océano Austral (SC-CAMLR-XXVI, párrafo 3.71 al 3.89). La Comisión aprobó las recomendaciones para el trabajo futuro sobre biorregionalización y tomó nota de la opinión del Comité Científico de que el trabajo futuro debería ser realizado dentro del contexto del WG-EMM, dado el foco que este grupo de trabajo da a los temas relacionados con los ecosistemas del Océano Austral y la gestión de espacios (CAMLRL-XXVI, párrafos 7.18 y 7.19).

3.7 El grupo de trabajo tomó nota del asesoramiento del Comité Científico con respecto a la aplicación del método BRT para refinrar aún más la biorregionalización del Océano Austral (SC-CAMLR-XXVI, párrafo 14.4(iv)), que fue tratada nuevamente durante WG-SAM-08.

3.8 El Dr. Hanchet resumió las discusiones del WG-SAM con respecto al método BRT, (anexo 7, párrafos 4.13 al 4.19). El grupo de trabajo llamó a seguir refinando la aplicación de este método, que podría ser aplicado en las siguientes etapas de la biorregionalización.

3.9 El Dr. Constable expresó preocupación porque la utilización de especies comunes con el enfoque BRT podría no resultar, y porque la extrapolación fuera del rango geográfico podría ser inapropiada debido a los problemas asociados con el endemism.

3.10 El Dr. Grant preguntó si las capas de datos del análisis BRT debieran ser incorporadas en los mapas actuales de la biorregionalización, o utilizadas como capas separadas con información sobre especies individuales cuando se disponga de ellas.

3.11 El grupo de trabajo estuvo de acuerdo en que la biorregionalización actual tanto del bentos como de la región pelágica eran adecuadas, si bien se podrán refinar a medida que se disponga de más capas de datos y productos.

3.12 El Dr. Holt indicó que los datos sobre el Océano Austral siguen siendo relativamente escasos, y que es importante reconocer la calidad y cantidad de los datos de las distintas regiones, en particular cuando se utilizan métodos de predicción para inferir información sobre áreas con pocos datos. El Dr. Siegel señaló la importancia de disponer de datos en escalas espaciales amplias.
3.13 Con respecto a la biorregionalización del bentos, el Dr. Constable indicó que hay un alto grado de endemismo y heterogeneidad, y que la biorregionalización actual probablemente sea adecuada para los propósitos de la CCRVMA. Con respecto al entorno pelágico, opinó que la labor ya realizada también era suficiente.

3.14 El grupo de trabajo indicó que era importante que la biorregionalización incluyera información no sólo sobre las especies, sino también sobre la estructura y función de las comunidades de especies.

3.15 El Dr. Grant indicó que hay algunos aspectos del funcionamiento del ecosistema que podrían ser difíciles de representar en una biorregionalización.

3.16 El grupo de trabajo estuvo de acuerdo en que es muy difícil incluir todos los aspectos en un solo mapa de biorregionalización, y que la información sobre la distribución de las especies y los procesos del ecosistema podría ser utilizada de manera más apropiada en la forma de capas separadas de datos, por ejemplo, como los utilizados en la planificación sistemática de la conservación.

3.17 El Dr. Naganobu estuvo de acuerdo en que el tema es muy complejo, y que actualmente está en sus albores en relación con los estudios de biorregionalización de zonas terrestres. Señaló que quedan por resolver grandes incertidumbres relacionadas con los índices medio ambientales básicos en el Océano Austral, y que los estudios adicionales deberían enfocarse en tareas básicas para elucidar mejor la naturaleza de estos índices.

3.18 El Dr. Constable señaló que los mapas de biorregionalización existentes podrían ser utilizados para facilitar la identificación de áreas de interés. Si bien el carácter de estas áreas de interés podría cambiar con el tiempo, probablemente no cambiarán significativamente en lo que se refiere a su ubicación. Por lo tanto, los mapas de la biorregionalización podrían utilizarse para subrayar áreas clave en las cuales se podría investigar más a fondo los patrones que se dan en escalas menores. El Dr. Holt señaló la importancia de establecer criterios para la identificación de las áreas de interés.

3.19 El Dr. Spiridonov indicó que otros esquemas de biorregionalización pueden ser interpretados en términos de límites oceanográficos. Señaló un libro escrito por un experto en oceanografía física publicado en ruso (Maslennikov, 2003). Indicó que podría ser muy útil en la estructuración de la biorregionalización del Océano Austral. Preguntó si habría posibilidades de traducir ese libro a fin de que pudiera servirle a todos los participantes del grupo de trabajo.

3.20 El grupo de trabajo estuvo de acuerdo en que esta publicación proporcionaría información adicional de mucho valor sobre los factores que afectan la biorregionalización y alentó a Rusia a encontrar los medios para facilitar su traducción al inglés.

Identificación de ecosistemas marinos vulnerables

3.21 El grupo de trabajo señaló la Medida de Conservación 22-06 y recordó que el Comité Científico había encargado a los grupos de trabajo que colaboraran en la tarea de encontrar
métodos para identificar los EMV, desarrollar definiciones operacionales de lo que constituye daño considerable para los EMV y mitigar estos efectos (SC-CAMLR-XXVI, párrafo 14.9). Se consideraron tres trabajos sobre estos temas.

3.22 WG-EMM-08/37 presentó un enfoque de gestión del riesgo para impedir los efectos negativos considerables de los artes de pesca de fondo en los EMV. Se propone implementar los requisitos de la Medida de Conservación 22-06 basándose en este enfoque y en la discusión sostenida por el Comité Científico el año pasado. Dicho enfoque es similar al utilizado por el grupo especial WG-IMAF para minimizar el riesgo de la mortalidad incidental de aves marinas en la pesca de palangre y consta de tres componentes:

i) Análisis del riesgo –

 Evaluación de
 a) actividades de pesca actuales y propuestas en áreas específicas incluidos los métodos y la huella (la extensión espacial y temporal, frecuencia);
 b) indicios de posibles EMV en las áreas de pesca propuestas, con la incertidumbre asociada;
 c) la magnitud prevista de las interacciones entre las actividades de pesca y los EMV, con la incertidumbre asociada;
 d) el posible efecto de las interacciones en los EMV, y la incertidumbre asociada;
 e) el potencial de recuperación de los EMV luego del impacto causado por la pesca, con la incertidumbre asociada.

ii) Estrategias para eliminar el riesgo –

 Se evaluarán las posibles estrategias de ordenación para determinar el grado de reducción de riesgo que consiguen. Éstas podrían incluir actividades específicas en el mar basadas en los índices operacionales y la captura secundaria o en la ordenación espacial. Se especificarán, cuando proceda, las actividades de investigación necesarias para facilitar la identificación de alternativas adecuadas para la eliminación del riesgo y/o para evaluar la eficacia de las estrategias específicas de ordenación.

iii) Revisión –

 Esto tiene como objeto determinar si las medidas para eliminar el riesgo deben ser actualizadas, modificadas y/o complementadas. Los planes de revisión deberán incluir calendarios (plazos) y los datos requeridos para realizar tales revisiones.

3.23 Para el análisis del riesgo, WG-EMM-08/37 propone utilizar una matriz de evaluación de riesgo, que relaciona la probabilidad cualitativa de una interacción con los EMV y las consecuencias cualitativas y semi-quantitativas del efecto de la pesca de fondo en los EMV. El documento señala que esta matriz permite la consideración de lo que podría ser vulnerable
en relación con artes y actividades de pesca específicas, sabiendo que los taxones y los hábitats tendrán distinta vulnerabilidad según el tipo de arte de pesca y la escala de las actividades de pesca. De importancia es el hecho que se debe considerar si las especies y los hábitats tienen una baja resistencia y/o una baja capacidad de recuperación en relación con los efectos de las actividades de pesca.

3.24 WG-EMM-08/37 también utilizó bases de datos a la disposición del público, incluida SCAR MarBIN, para comenzar el desarrollo de una guía específica de las categorías de EMV y las características cualitativas del ciclo de vida de los taxones del bentos del Área de la Convención para uso de la CCRVMA.

3.25 El grupo de trabajo convino en que el marco de análisis del riesgo representa un enfoque razonable para la implementación de la Medida de Conservación 22-06, y agradeció al autor por la presentación de este trabajo a la consideración de WG-EMM. Recomendó al autor que continuara refinando este enfoque, junto con otros miembros interesados, para que fuese utilizado por el WG-FSA.

3.26 El grupo de trabajo recordó que los objetivos aprobados para la ordenación de las interacciones con especies no explotadas son, en orden de prioridad (SC-CAMLR-XXII, párrafos 4.135 y 4.136 y anexo 5, párrafo 5.230):

1) prevención
2) mitigación
3) límites de captura.

3.27 El grupo de trabajo indicó que la gran mayoría de las especies antárticas de invertebrados del bentos tienen tasas de crecimiento más lentas y son de mayor longevidad que las especies similares en el resto del globo. Más aún, el bentos de distintas partes del Océano Austral probablemente tiene distintas características, procesos y regímenes de cambio, que deben ser considerados e integrados en el marco de evaluación de riesgo. En consecuencia, es posible que se requiera una precaución adicional en la ordenación de las pesquerías de fondo de las distintas áreas del Océano Austral.

3.28 El grupo de trabajo señaló que la configuración específica de los artes de palangre (es decir, el sistema español, los espineles o el palangre artesanal) posiblemente resulte en distintos niveles de interacción con el lecho marino, como fuera indicado por el grupo especial TASO (SC-CAMLR-XXVII/BG/6, párrafo 2.10). Estos factores deberán ser considerados en mayor profundidad en la reunión de 2008 del WG-FSA. El grupo de trabajo recomendó que las estrategias utilizadas para limitar el efecto de la configuración del arte de pesca en el bentos y sus comunidades, tales como el requisito de utilizar artes de palangre en algunas pesquerías exploratorias en aguas de profundidad mayor de 550 m, podrían ser investigadas más a fondo. El grupo de trabajo indicó que la información sobre la captura secundaria de los palangres extraída con artes de distinta configuración podría ser de utilidad para identificar los EMV.

3.29 El Sr. B. Weeber (Nueva Zelanda) informó al grupo de trabajo que este país celebró un taller sobre los EMV como parte del proceso de notificación de actividades de pesca en el Mar de Ross durante la temporada 2008/09. El informe del taller, junto con una definición
preliminar de EMV y una evaluación inicial de los posibles efectos de la pesquería de palangre neocelandes en Dissostichus spp. en el Mar de Ross, serán incluidos en su notificación y presentados a la próxima reunión de WG-FSA.

3.30 El grupo de trabajo estuvo de acuerdo en que el tema de los ecosistemas de invertebrados del bentos en la Antártida no había sido incluido en las agendas de WG-EMM y WG-FSA en el pasado.

3.31 El Dr. Jones señaló que es importante comenzar el proceso para disminuir el desconocimiento sobre los grupos taxonómicos y hábitats que podrían ser vulnerables a las pesquerías de fondo de la CCRVMA. Asimismo, indicó que existen varias publicaciones y bases de datos particulares que podrían facilitar este proceso, como los numerosos registros de comunidades de gorgonias y de antipatarios en el Océano Austral (Barry et al., 2003). Propuso celebrar un taller para compilar esta información, y para proporcionar guías sobre los siguientes temas, a fin de reducir la incertidumbre sobre la posibilidad de que las pesquerías de fondo de la CCRVMA causen efectos adversos considerables en los EMV:

i) vulnerabilidad de los taxones del bentos del Océano Austral a las pesquerías de fondo de la CCRVMA;

ii) caracterización de los hábitats y de los grupos taxonómicos que forman hábitats y de los taxones poco comunes habitualmente relacionados con los EMV, incluidos los métodos para facilitar la identificación de la extensión de los hábitats basados en la distribución y densidad de los grupos taxonómicos formadores de hábitats;

iii) métodos para identificar la posible ubicación de los taxones vulnerables;

iv) posibles indicadores a ser utilizados por los barcos de pesca para señalar que se encuentran pescando sobre un EMV;

v) calidad de los datos disponibles para este propósito como por ejemplo, los de la base de datos de SCAR MarBIN.

3.32 El Dr. Jones también propuso que el taller fuera celebrado bajo los auspicios de la CCRVMA e incluyera la participación de especialistas en invertebrados del bentos de la Antártida.

3.33 El grupo de trabajo estuvo de acuerdo en la urgente necesidad de celebrar un taller de esta naturaleza, que incluya la participación de especialistas en invertebrados del bentos, en artes de pesca, en la observación científica y otros científicos importantes de la CCRVMA. Este taller podría celebrarse conjuntamente con TASO, WG-FSA, o mediante otro tipo de arreglo. Además de la información recopilada por las expediciones de investigación en lugares donde podrían encontrarse EMV, el grupo de trabajo estuvo de acuerdo en que la información sobre la captura secundaria de invertebrados recopilada por los observadores ayudaría enormemente al taller en la evaluación del nivel de interacción entre los artes de la pesca de fondo y los hábitats del bentos en el Área de la Convención.

3.34 WG-EMM-08/38 notificó la presencia de dos EMV detectados en la UIPE 5841H. La notificación se basó en observaciones directas de filmaciones durante la campaña CEAMARC–CASO efectuada de diciembre de 2007 a enero de 2008. Los transectos
filmados estuvieron a <2 millas náuticas de distancia; por lo tanto existe cierta incertidumbre con relación a la extensión del EMV. El documento sugirió la instauración de una zona de protección de 5 millas náuticas alrededor del área observada para reducir el efecto de la incertidumbre relativa a la escala espacial. El documento WG-EMM-08/38 incluye un formulario tipo que podría ser utilizado para notificar la detección de un EMV al Comité Científico y a los grupos de trabajo. El formulario incluye elementos que detallan el tipo de EMV, los indicios tomados en cuenta para detectar el EMV, la situación de las observaciones y el depositario de los datos.

3.35 El Dr. Naganobu preguntó si la intención era traspasar directamente el contenido de la notificación incluida en WG-EMM-08/38 a una medida de conservación. Le preocupaba que el proceso de notificación de la presencia de un EMV en el Área de la Convención fuese demasiado simple, y opinó que las observaciones registradas en películas de video o fotografías no representan por sí solas pruebas de suficiente peso. Estimaba que la información contenida en el documento WG-EMM-08/38 era preliminar y que las observaciones debieran ser registradas como datos preliminares.

3.36 Algunos miembros indicaron que estas notificaciones forman parte de las obligaciones de los miembros estipuladas en la Medida de Conservación 22-06. El Dr. Constable comentó que las notificaciones proporcionan el detalle de la posición de dos EMV y una posible estrategia para asegurar que la pesca no cause efectos perjudiciales significativos en los mismos. El grupo de trabajo indicó también que la Comisión era responsable de decidir la estrategia de ordenación de los EMV.

3.37 El Dr. Jones señaló que hay tres posibles métodos para detectar la presencia de los EMV en el Océano Austral: directos, indirectos y de predicción (WG-EMM-08/37), siendo los métodos directos los que proporcionan las pruebas de mayor peso. Opinó que la información proporcionada en el documento WG-EMM-08/38 proporcionaba indicaciones claras y directas de la presencia de dos EMV en la UIPE 5841H.

3.38 El grupo de trabajo aprobó la idea de proporcionar información sobre posibles EMV descrita en el documento WG-EMM-08/38. Esta información podría ser utilizada para actualizar el registro de EMV que fue aprobado por el Comité Científico. El grupo de trabajo indicó que el método para aprobar la inclusión de un EMV en el registro descrito en la Medida de Conservación 22-06 deberá ser considerado más a fondo por el Comité Científico.

3.39 WG-EMM-08/18 presentó una reseña de la prospección API-CAML efectuada por Nueva Zelanda en el Mar de Ross dentro de la Subárea 88.1 en febrero–marzo de 2008. El documento describe los datos de prospección relativos a la distribución y abundancia de las comunidades del bentos en la plataforma, montes marinos y sitios abisales en la región del Mar de Ross obtenidos con trineos de recolección, arrastres de vara, filmaciones de video a lo largo de transectos y dispositivos sacacristegos múltiples (multicorers) para obtener muestras del sedimento. El documento indica que los resultados del muestreo del bentos servirá para entender mejor la distribución y la abundancia de los invertebrados del bentos presentes en los EMV. Los autores indicaron que, junto con los datos físicos, esto podría servir para pronosticar dónde podrían encontrarse otras áreas con EMV. Se preparará un resumen de la distribución de los invertebrados del bentos encontrados en los EMV en ésta y otras prospecciones para presentarlo en la reunión de WG-FSA en 2008.
3.40 El Dr. Jones señaló que los enfoques de modelación, como el método BRT, podrían servir para pronosticar la posible posición de EMV en la región del Mar de Ross, fuera de las áreas muestreadas por la prospección.

3.41 El Dr. Constable subrayó la urgencia de adoptar y refinar métodos para asegurar la reducción del riesgo para los EMV de que las actividades de pesca futuras no tengan un efecto negativo considerable en los mismos, dado que la recuperación de un EMV dañado tomaría largo tiempo, y que los efectos acumulativos de la pesca aumentarán el riesgo de que los EMV sufran daño. El grupo de trabajo estuvo de acuerdo en que los efectos acumulativos son muy importantes, y que la tasa de regeneración de los taxones que componen los EMV es tal que probablemente se dé en una escala temporal muy grande.

3.42 El Dr. Spiridonov indicó que se conoce muy poco sobre el efecto de la pesca de palangre de fondo, y que si bien la documentación de la captura secundaria es importante, el grupo de trabajo debiera preocuparse también por la calidad de la información. Propuso que los observadores tomaran fotografías de la captura secundaria del bentos como parte de sus obligaciones.

3.43 El grupo de trabajo acotó que la información sobre la captura secundaria de invertebrados contenida en la base de datos de la CCRVMA por lo general varía en relación con su resolución a nivel de grupo taxonómico y podría ser de escaso valor en la identificación de posibles EMV.

3.44 El grupo de trabajo estuvo de acuerdo en que era necesario establecer niveles apropiados con respecto a grupos taxonómicos, incluidos los que se considera vulnerables, con el fin de instruir a los observadores científicos sobre el nivel apropiado de muestreo. El grupo de trabajo señaló que se están desarrollando guías para el uso de los observadores científicos que operan en el Océano Austral, y que algunas de éstas debieran estar listas para ser revisadas por el WG-FSA.

Definición de áreas marinas a las que se podría otorgar protección

3.45 El grupo de trabajo recordó que discusiones recientes sostenidas en la CCRVMA y el CPA han concluido que el tema de dónde y cómo establecer un sistema de áreas marinas para conservar la biodiversidad del Océano Austral debiera ser tratado a la mayor brevedad (CCAMLR-XXIII, párrafo 4.13; CPA, 2006, párrafos 94 al 101).

3.46 Trabajos recientes sobre este tema han examinado varios aspectos teóricos, incluido el análisis de la biorregionalización (SC-CAMLR-XXVI, anexo 9), la posibilidad de utilizar medidas de conservación para otorgar protección a la biodiversidad marina (SC-CAMLR-XXV/19/BG/19), y la definición de criterios para seleccionar áreas que necesitan protección (SC-CAMLR-XXVI/19/BG/24).

3.47 El grupo de trabajo señaló que se podría utilizar varios métodos para diseñar un sistema representativo de AMP, incluido, inter alia, la biorregionalización, y la “planificación sistemática de la conservación”.

3.48 El grupo de trabajo consideró las características de un proceso basado en la planificación sistemática de la conservación. En 2007 el taller de biorregionalización había
subrayado que la planificación sistemática de la conservación era un proceso apropiado para seleccionar y diseñar las áreas que debieran ser protegidas (SC-CAMLR-XXVI, anexo 9). Este proceso requiere la definición de los objetivos de conservación y utiliza información espacial de la distribución de la biodiversidad, de los procesos ecológicos y de las actividades antropogénicas para identificar las áreas que podrían ser incluidas dentro de un sistema de áreas protegidas para conseguir los objetivos definidos.

3.49 El Dr. Trathan presentó el documento WG-EMM-08/49 que proporcionó un ejemplo práctico de la forma en que se podría aplicar la metodología de planificación sistemática de la conservación para identificar áreas de importancia para la conservación en el medio ambiente pelágico, utilizando la Subárea 48.2 (Islas Orcadas del Sur) como área de estudio piloto. El objetivo de WG-EMM-08/49 en esta etapa no fue identificar áreas a ser protegidas u ordenadas, sino más bien probar la utilidad de esta metodología, y demostrar los tipos de datos y el rango de decisiones que se requerirían para llevar a cabo este análisis.

3.50 WG-EMM-08/49 demostró que la planificación sistemática de la conservación es una metodología objetiva y transparente que ayuda a la identificación de posibles estrategias para la protección espacial de la biodiversidad y otros rasgos de importancia. El proceso de planificación sistemática de la conservación se resume en seis etapas:

i) definir la región sometida a una planificación (un área amplia de interés en la cual se efectuará el estudio), y dividirla en una red de “unidades de planificación”;

ii) compilar datos ecológicos sobre la biodiversidad de la región sometida a una planificación;

iii) fijar los objetivos de conservación;

iv) revisar las áreas de conservación existentes dentro de la región sometida a una planificación;

v) escoger otras áreas de conservación;

vi) implementar medidas de conservación.

3.51 WG-EMM-08/49 utilizó el programa informático MARXAN para concentrarse en las etapas (i) a (v) del proceso anterior, y proporcionó una ilustración de cómo se podría identificar las áreas marinas importantes desde el punto de vista de la conservación utilizando los datos disponibles. La etapa (vi) no fue considerada en este estudio.

3.52 El grupo de trabajo señaló que el programa MARXAN ha sido utilizado ampliamente en la planificación sistemática de la conservación para una amplia gama de hábitats mundiales.

3.53 El grupo de trabajo acotó que, para utilizar el programa MARXAN, es importante considerar una combinación de objetivos, y no simplemente una especie o hábitat individuales. Señaló que la utilización de MARXAN tiene como objetivo optimizar todos los objetivos de conservación con un coste mínimo y los costes pueden ser evaluados de acuerdo con una serie de unidades métricas; éstas podrían incluir medidas tales como el área del hábitat, el coste financiero o la CPUE. El análisis descrito en WG-EMM-08/49 trató de
conseguir todos los objetivos de conservación determinados en el estudio piloto en el área más pequeña posible, y por ende buscó las áreas en las cuales se puede cumplir con más de un objetivo de conservación.

3.54 El grupo de trabajo indicó que los resultados descritos en WG-EMM-08/49 son muy similares a los resultados esperados de acuerdo con la información que se tiene de los procesos ecológicos en la región estudiada. Por lo tanto, concluyó que era posible identificar áreas pelágicas importantes para la conservación mediante la metodología descrita en este estudio piloto, y basándose en la información disponible.

3.55 El grupo de trabajo indicó que el enfoque de planificación sistemática de la conservación requiere de datos sobre una gama de especies y procesos ecológicos, y que se necesita el aporte de expertos científicos para definir cuáles conjuntos de datos, y cuáles parámetros son más apropiados para el análisis. Si es necesario, se podría incorporar datos sobre actividades antropogénicas, pesca y turismo. Sin embargo, el grupo de trabajo reconoció que la distribución espacial de las actividades antropogénicas que se realizan actualmente podría cambiar en el futuro y por lo tanto la red estratégica de AMP representativas no debiera considerar simplemente aquellas áreas donde se desarrollan actividades antropogénicas progresivas.

3.56 El grupo de trabajo expresó que una etapa crítica de la planificación sistemática de la conservación era la formulación de objetivos de conservación relevantes, y que esto debe hacerse sobre una base científica con el aporte de los expertos pertinentes en la medida de lo posible. El grupo de trabajo estuvo de acuerdo en que, si se utiliza la planificación sistemática de la conservación, los objetivos de conservación deberán ser determinados a la luz de los objetivos establecidos por el taller de la CCRVMA efectuado en 2005 (SC-CAMLR-XXIV, anexo 7). Estos objetivos también deberán considerar los criterios descritos por el anexo V del Protocolo de Protección del Medio Ambiente.

3.57 WG-EMM-08/49 se concentró en el medio ambiente pelágico a modo de ejemplo, pero el grupo de trabajo convino en que sería conveniente realizar análisis similares para el medio ambiente del bentos. Una vez llevado a cabo este análisis, los resultados pertinentes al medio ambiente pelágico y bentónico podrían ser considerados en conjunto, a fin de identificar las áreas en ambos ambientes que podría ser importante conservar.

3.58 El grupo de trabajo señaló que los resultados del proceso de planificación sistemática de la conservación podrían ser utilizados para complementar los instrumentos de ordenación existentes como las UOPE. MARXAN es una de las herramientas que podría ser utilizada para facilitar la identificación de áreas importantes para la conservación, pero no puede ser utilizada por sí sola. Los resultados de MARXAN no proporcionan una “respuesta” definitiva a la interrogante de ¿dónde se encuentran las áreas de importancia para la conservación?, pero sí podrían facilitar el proceso de la toma de decisiones.

3.59 El grupo de trabajo por lo tanto aprobó la utilización de MARXAN como uno de los métodos viables para llevar a cabo la planificación sistemática de la conservación.

3.60 El grupo de trabajo indicó que los resultados principales del taller de biorregionalización de 2007 fueron los mapas primarios y secundarios de las biorregiones pelágicas (SC-CAMLR-XXVI, anexo 9, figuras 3 y 4), y que algunos de estos datos habían sido utilizados en el análisis descrito en el documento WG-EMM-08/49. El mapa de la
regionalización secundaria muestra que la Subárea 48.2 es muy heterogénea, y el grupo indicó que existen áreas heterogéneas similares en otras partes del Océano Austral (figura 12). El grupo de trabajo reconoció que muchas de estas áreas heterogéneas están en regiones de batimetría compleja donde los procesos ecológicos supuestamente también son complejos. Estuvo de acuerdo en que estas áreas debieran tener prioridad al examinar más a fondo el problema de cómo identificar un sistema representativo de AMP.

3.61 El grupo de trabajo por lo tanto acordó que se debía dar prioridad al inicio de un proceso para establecer sistemas de AMP representativos en estas áreas. Por ende, se pidió a los miembros que utilicen las metodologías apropiadas para avanzar en esta labor, por ejemplo, la biorregionalización y/o la planificación sistemática de la conservación.

3.62 El grupo de trabajo señaló que la labor adicional contribuirá al desarrollo de guías de las “mejores prácticas” que podrían ser utilizadas posteriormente para seleccionar áreas de importancia para la conservación de la biodiversidad marina, y la implementación de las medidas de conservación necesarias.

Desarrollo de una estrategia armonizada

3.63 El grupo de trabajo acotó que tanto la CCRVMA como el CPA tienen obligaciones en lo que se refiere a la protección de la biodiversidad marina. El anexo V del Protocolo sobre la Protección del Medio Ambiente dispone un sistema para establecer áreas protegidas, y un mecanismo para que la CCRVMA apruebe la protección de áreas con componentes marinos. La CCRVMA ha iniciado también un proceso para identificar y establecer áreas para la protección de la biodiversidad marina.

3.64 El grupo de trabajo estuvo de acuerdo en que la cooperación entre la CCRVMA y el CPA era importante, a fin de mejorar las estrategias de protección de áreas de ambos organismos y para desarrollar otros medios para fomentar la cooperación práctica.

3.65 El documento WG-EMM-08/52 resumió las discusiones del CPA sobre la propuesta de celebrar un taller conjunto SC-CAMLR-CPA en 2009, justo antes de la reunión CPA-XII en Baltimore (EEUU). El CPA ha nombrado a su presidente y sus dos vicepresidentes como representantes en el comité mixto de dirección, y recomendó que este comité se reuniese tan pronto como fuera posible.

3.66 WG-EMM estuvo de acuerdo en que los temas identificados por el CPA para la posible consideración del taller conjunto eran de importancia y de interés mutuo. Se reconoció que el tema de la protección de áreas y las medidas de gestión de espacios era de particular importancia. El grupo indicó que hay sinergias entre la labor de biorregionalización de la CCRVMA y el análisis de dominios ambientales para el continente antártico efectuado por el CPA.

3.67 El grupo de trabajo también decidió que el taller conjunto propuesto no debería tratar en detalle estos temas, sino que debería concentrarse en el desarrollo de mecanismos para fomentar la cooperación práctica.
3.68 Se decidió prestar apoyo a la propuesta de celebrar un taller conjunto, y a la participación de los coordinadores de los grupos de trabajo del Comité Científico en el mismo. Se alentó a los miembros a considerar la asistencia de otras personas que pudieran aportar a estas discusiones.

3.69 El grupo de trabajo recomendó que el Comité Científico discutiera los distintos tipos de información que sería más útil presentar al taller en nombre del Comité Científico y de la CCRVMA, y que proporcionara sus recomendaciones a los coordinadores de sus grupos de trabajo para que pudieran prepararse para el taller. La discusión adicional sobre la redacción de una agenda y los arreglos prácticos para el taller se describe en los párrafos 8.19 y 9.1 al 9.5.

Plan de trabajo

3.70 El grupo de trabajo estuvo de acuerdo en que la labor adicional para avanzar en la implementación de medidas de gestión de espacios con el fin de conservar la biodiversidad marina debiera incluir:

i) refinamiento del método BRT;

ii) celebración de un taller auspiciado por la CCRVMA para reunir datos sobre los grupos taxonómicos y hábitats que podrían ser vulnerables a las pesquerías de fondo de la CCRVMA, y para proporcionar guías sobre maneras como se podría reducir la incertidumbre para determinar el potencial de que las pesquerías de fondo de la CCRVMA causen un daño considerable en los EMV (párrafo 3.31);

iii) comienzo de los procesos necesarios para desarrollar sistemas de AMP representativos en las áreas prioritarias identificadas en la figura 3.1, utilizando, inter alia, la biorregionalización y/o la planificación sistemática de la conservación;

iv) identificación de los tipos de información más útiles, para ser presentados al taller conjunto SC-CAMLR–CPA en nombre de SC-CAMLR, y consideración de las personas que podrían asistir y contribuir a las discusiones del taller.

Puntos clave para la consideración del Comité Científico y de sus grupos de trabajo

3.71 De las discusiones recientes sostenidas por la CCRVMA y el CPA, se ha concluido que es necesario dar alta prioridad al problema de cómo proceder para establecer, y dónde, un sistema de áreas marinas protegidas con el fin de conservar la biodiversidad del Océano Austral (CCAMLR-XXIII, párrafo 4.13; informe final de CPA-IX, párrafos 94 al 101) (párrafo 3.45).

3.72 El grupo de trabajo estuvo de acuerdo en que la biorregionalización del bentos y de las áreas pelágicas desarrollada por el Taller de Biorregionalización celebrado en 2007 era adecuada, pero que se podría mejorar. Se alentó la realización de trabajo adicional para perfeccionar el método BRT (párrafos 3.7 y 3.8).
3.73 Se convino en que la utilización de un marco para la evaluación del riesgo es un enfoque acertado para la implementación de la Medida de Conservación 22-06, y el grupo de trabajo recomendó seguir desarrollándolo para que sea utilizado por el WG-FSA.

3.74 El grupo decidió que se debería realizar un taller auspiciado por la CCRVMA para reunir datos sobre los tipos de grupos taxonómicos y hábitats potencialmente vulnerables a las pesquerías de fondo de la CCRVMA, y discernir lo que se debe hacer para aumentar nuestro conocimiento sobre los efectos perjudiciales significativos que podrían tener las pesquerías de fondo de la CCRVMA en los EMV (párrafo 3.31).

3.75 WG-EMM aprobó la iniciativa de proporcionar información sobre los ecosistemas marinos potencialmente vulnerables descrita en el documento WG-EMM-08/38. Señaló que la aprobación para registrar una notificación de EMV al inventario de los mismos tendría que ser otorgada por el Comité Científico.

3.76 El grupo de trabajo señaló que se podrían utilizar varios métodos para diseñar un sistema representativo de AMP, por ejemplo, inter alia, la biorregionalización y/o la planificación sistemática de la conservación (párrafos 3.48 al 3.58). Se apoyó la utilización del programa MARXAN, como un posible método para efectuar una planificación sistemática de la conservación (párrafo 3.59).

3.77 Se estuvo de acuerdo en que WG-EMM debería dar prioridad al inicio de un proceso para desarrollar sistemas representativos de AMP en las áreas más importantes identificadas en la figura 12 (párrafos 3.60 y 3.61). Por lo tanto, se alentó a los miembros a utilizar las metodologías necesarias para avanzar en esta labor, utilizando, inter alia, la biorregionalización y/o la planificación sistemática de la conservación.

3.78 Asimismo, el grupo de trabajo coincidió en la importancia de la cooperación entre la CCRVMA y el CPA y acordó apoyar la propuesta de celebrar un taller conjunto SC-CAMLR–CPA, para tratar temas relacionados con las áreas protegidas y las medidas de gestión de espacios.

ESTADO Y TENDENCIAS DE LA PESQUERÍA DE KRIL

Actividades de pesca

4.1 El documento WG-EMM-08/5 informó sobre la pesquería de kril en la temporada 2007/08. Hasta ahora, seis barcos de cinco países miembros han pescado kril, exclusivamente en el Área 48. La captura total del recurso hasta fines de mayo era de 84 110 toneladas. Las proyecciones basadas en esta captura indican que la captura total de la temporada será aproximadamente de 108 000 toneladas. Este valor es menor que la captura anual máxima más reciente (129 026 toneladas en 2004/05) y en un plazo más largo (400 835 toneladas en 1986/87) para el Área 48, y dentro del 4% de la captura total de las dos últimas temporadas. Sin embargo, las capturas extraídas individualmente por los miembros en años recientes han variado bastante; por ejemplo, las capturas de Noruega han aumentado radicalmente. Las estadísticas de captura muestran un tipo de acumulación mensual relativamente similar entre temporadas (figura 9 del documento WG-EMM-08/5), aunque también podría indicar una disminución inusual en mayo de 2008, lo que indicaría que la captura total final de la temporada 2007/08 podría ser menor que la estimada. El documento también proporcionó
detalles de la designación de observadores científicos en la pesquería de kril de 1999/2000 a 2006/07, de conformidad con el Sistema de Observación Científica Internacional de la CCRVMA.

4.2 El grupo de trabajo agradeció a la Secretaría por la presentación del documento WG-EMM-08/5 y subrayó la importancia de esta información para su labor.

4.3 El grupo de trabajo indicó que Polonia aún no había presentado los datos de lance por lance correspondientes a la temporada 2006/07, y que los datos de Corea para 2004/05 seguían incompletos. El Dr. Ramm informó que las autoridades polacas habían tenido dificultades con sus sistemas informáticos para la pesquería, y que presentarían los datos pendientes tan pronto como sea posible. Corea había avisado que algunos datos de lance por lance de la temporada 2004/05 no fueron recopilados y que por lo tanto no pueden ser presentados a la CCRVMA.

4.4 El grupo de trabajo tomó nota de las distintas configuraciones de redes notificadas por los observadores científicos (WG-EMM-08/5). La amplia gama de configuraciones de la red, incluido el tamaño de la boca, probablemente afecta en gran medida la selectividad del arte y su capturabilidad. El grupo de trabajo estuvo de acuerdo en que la información sobre la configuración de la red con toda seguridad será importante para entender el rendimiento de la pesquería.

4.5 El grupo de trabajo también instó a los observadores científicos a incluir datos sobre los dispositivos de exclusión de focas en sus informes de observación (SC-CAMLR-XXVII/BG/6, párrafo 2.7).

4.6 El documento WG-EMM-08/6 resumió las notificaciones de pesca de kril en la temporada 2008/09. Nueve países presentaron notificaciones para 23 barcos. Todas las notificaciones expresaron la intención de pescar en el Área 48, y la notificación de Rusia expresa la intención de pescar en la Subárea 58.4. Además, Noruega y Rusia notificaron la intención de pescar kril en las Subáreas 48.6 y 88.3 respectivamente. La Secretaría fue informada de que Rusia había retirado su propuesta de participar en la pesquería exploratoria de kril en la Subárea 88.3.

4.7 La captura total de kril prevista en las notificaciones fue de 879 000 toneladas (sin incluir la notificación de la pesquería exploratoria de Noruega). Esto excede el nivel crítico de activación para el Área 48 (Subáreas 48.1, 48.2, 48.3 y 48.4) por segundo año consecutivo, pero las capturas reales han permanecido relativamente constantes en los últimos años (y han disminuido en proporción a las notificaciones, véase el documento WG-EMM-08/6). Las notificaciones de pesquerías incluyen cuatro tipos de artes de pesca, entre ellos, las redes de arrastre de vara.

4.8 En relación con las notificaciones de Rusia y de Estados Unidos, el grupo de trabajo señaló que la intención de pescar en la Subárea 48.3 durante el verano austral no concuerda con las prácticas anteriores.

4.9 El posible efecto de la utilización de redes de arrastre de vara para pescar kril es incierto, como lo indica la notificación rusa. El Dr. Bizikov informó que las redes de arrastre de vara serán utilizadas en la pesca pelágica, en combinación con el método de bombeo, y que seguramente no tendría un efecto mayor que el de otros métodos de pesca de kril en el bentos.
4.10 El grupo de trabajo pidió que los detalles de las características de los artes de pesca y tipos de utilización fuesen incluidos en futuras notificaciones. Alentó a los miembros que notificaron su intención de pescar kril en 2008/09 a que proporcionen esta información antes de la reunión del Comité Científico de este año.

4.11 También se solicitó que en el futuro los observadores científicos notificaran los detalles de los artes de pesca utilizados, por lance o por alcance del lance (por ejemplo, configuración de la red, número de redes utilizadas, frecuencia de intercambio de redes) (véase SC-CAMLR-XXVII/BG/6, párrafo 2.7).

4.12 Se indicó que se planea utilizar 12 nuevos barcos en la pesquería, y el grupo de trabajo estuvo de acuerdo en que si la pesquería fuese llevada a cabo en su mayor parte por nuevos barcos, su labor sería bastante más difícil. Por lo tanto, el grupo de trabajo decidió que era importante contar con un programa estructurado de recopilación de datos, para poder adquirir rápidamente un perfil de los nuevos barcos.

4.13 Asimismo, se señaló a la atención del Comité Científico la discrepancia entre las capturas notificadas y las capturas reales, indicando que actualmente no se puede evaluar cuán serios son los planes de pesca de la mayoría de las notificaciones. Anteriormente WG-EMM había pedido que las partes fueran más precisas en sus notificaciones de la captura prevista, pero la discrepancia ha aumentado drásticamente en los últimos años. Se debía reiterar el llamado para que las notificaciones sean más precisas.

4.14 WG-EMM indicó que los detalles de los barcos que se proyecta utilizar en la pesca de kril en la temporada 2008/09 según las notificaciones indican que su capacidad de pesca es tal que se podría exceder el nivel crítico de activación. Esto subraya la necesidad de avanzar rápidamente en la labor de asignación por UOPE.

4.15 Se informó que Noruega había notificado su intención de realizar una pesquería de kril exploratoria en la Subárea 48.6 (CCAMLR-XXVII/13). La pesca será llevada a cabo por el barco Thorshøvdi utilizando redes de arrastre tradicionales y el método de bombeo continuo, y la captura prevista es de 15 000 toneladas de kril. La notificación declara la intención de cumplir con todas las medidas de conservación pertinentes, y dice relación con estimaciones de la densidad de kril, con información sobre la estructura de los stocks y la captura secundaria de la pesquería. Estos aspectos fueron notificados en los documentos WG-EMM-08/28 y 08/29.

4.16 El grupo de trabajo indicó que actualmente se observa que la capacidad de los barcos que participan en la pesca de kril está aumentando, y los miembros del grupo de trabajo no tienen claro cómo se podría utilizar esta capacidad (por ejemplo, para almacenar el producto transbordado de la captura procesada en otros barcos, o para almacenar captura extraída por el mismo barco, o como planta de procesamiento). Por ejemplo, la capacidad del Thorshøvdi (7 720 m³) es mucho mayor que la de otros barcos que figuran en las notificaciones de este año.

4.17 El grupo de trabajo indicó que es necesario suplir la falta de detalles prácticos en ciertas notificaciones que le fueron presentadas, a fin de facilitar la provisión de asesoramiento sobre el posible curso de la pesquería de kril en la temporada próxima, y estimó conveniente que el Comité Científico examinara la posibilidad de que se le proporcionara:
i) información actualizada sobre la condición de los barcos que se proyecta utilizar por primera vez en la pesquería en 2008/09, y las fechas en que se prevé que los barcos entrarán en operaciones (Chile, Islas Cook, Noruega, Rusia, Ucrania, Estados Unidos) (párrafos 4.12 y 4.13);

ii) detalles sobre la configuración y la utilización de redes de arrastre de vara (Rusia) (párrafo 4.9).

Descripción de la pesquería

4.18 El documento WG-EMM-08/32 examinó los registros de pesca del recurso kril disponibles en la base de datos de la CCRVMA (datos C1) para el periodo de 1973 a 2008. En total, 94% de las capturas históricas fueron extraídas del estrato de profundidad entre 0 y 200 m, con un máximo en los 50 m. Los caladeros de pesca productivos y estables estaban distribuidos en un área angosta, con gradientes meridionales empinados con un promedio de la temperatura entre –1.0° y 1.0°C desde la superficie hasta 200 m de profundidad (MTEM-200). La temperatura de las aguas en los caladeros de pesca principales frente a la costa este de la Antártida, en el Mar de Escocia y al norte de Georgia del Sur, donde se extrajeron grandes capturas, fueron menores de –0.5°, 0.0° y 1.0°C respectivamente. Dos capturas excepcionalmente grandes en el Mar de Escocia y al norte de Georgia del Sur indicaron dos máximos de temperatura –0.5°~0.1°C y 0.5°~0.8°C, respectivamente. MTEM-200 aparentemente proporciona información sobre los hábitats de especies de distribución circumpolar tanto de kril como de otros organismos.

4.19 El Dr. Naganobu añadió algunos puntos a la reseña del párrafo 4.18. La distribución histórica de kril, basada en los informes del muestreo con redes del Discovery, también coincide con los resultados de este estudio y cada una de las isópletas de MTEM-200 corresponden en gran parte con cada frente oceánico del Océano Austral. MTEM-200 puede ser empleado en el análisis más a fondo de la variabilidad estacional y/o anual.

4.20 WG-EMM-08/39 caracterizó el comportamiento de la pesquería de kril utilizando los datos del formulario C1 de la pesquería de kril de la CCRVMA de los 10 años más recientes, estudiando la distancia recorrida por los barcos en relación con el nivel de la captura. Esto reveló un patrón que indicó que el promedio de la distancia recorrida aumenta después de que se obtienen tasas mínimas de captura, y que la distancia recorrida disminuye a medida que la captura aumenta hasta un cierto nivel, para luego aumentar nuevamente cuando el nivel de la captura sobrepasa ese nivel en el caso de los barcos japoneses. El documento indica la necesidad de actualizar algunos de los parámetros utilizados en el modelo de la dinámica de la flota de pesca de kril publicado a fines de la década de los 80, a fin de reflejar los cambios en la eficiencia y en la escala de las operaciones de la flota de barcos de pesca de kril. La probabilidad de que se repitan las operaciones de pesca en el mismo lugar año tras año varía considerablemente. Los barcos de pesca tendieron a cambiar frecuentemente de caladero de pesca. El análisis indica que la disponibilidad de kril para la pesquería en 2000 aparentemente fue la más baja de los últimos 10 años (WG-EMM-08/40). El comportamiento de la pesquería distingue entre las consideraciones relacionadas con el mercado (que a menudo ocasionan el cambio del comportamiento de pesca), y los requisitos relativos a la eficiencia operacional/de captura en un área. Subraya la importancia de contar con datos de
observación de alta calidad para todos los meses del año de todos los barcos que participan en
la pesquería de kril, con el fin de facilitar la interpretación de los resultados anuales de la
pesca (WG-EMM-08/39).

4.21 El grupo de trabajo recibió complaci do este análisis porque contribuye al
conocimiento de la dinámica de la pesquería, y pidió a su autor que continuara desarrollando
el análisis: (i) agregando operaciones de pesca en escalas espaciales y temporales con el fin de
identificar cualquier patrón en una escala temporal o espacial mayor; (ii) comparando el
comportamiento en las áreas costeras y pelágicas para distinguir posibles diferencias de las
operaciones en estas áreas; y (iii) tomando en cuenta la experiencia del capitán en el análisis
para comprender el proceso de aprendizaje de los principiantes. También se propuso el
análisis del comportamiento de la pesca en relación con la posición de las colonias de
depredadores y la utilización de la distribución de la frecuencia de tallas para evaluar el estado
de la población de kril. Se indicó que los datos C1 no incluyen datos sobre la frecuencia de
tallas del kril.

4.22 La Dra. Kasatkina señaló la importancia de incluir el número de barcos que operan en
un caladero de pesca al mismo tiempo en el análisis del comportamiento de los barcos, ya que
esto podría afectar la disponibilidad de kril para cada barco y en consecuencia, el
comportamiento operacional de los barcos.

4.23 WG-EMM-08/24 resumió las observaciones científicas realizadas durante 42 días por
un observador nacional a bordo de un arrastrero ucraniano en la Subárea 48.2 en marzo–abril
de 2008. Se realizaron 565 arrastres en total. La CPUE promedio fue de 18.3 toneladas de
kril por hora, y la captura promedio de 208.5 toneladas de kril por día. La distribución de
tallas de kril en marzo y abril fue similar (entre 23 y 61 mm) pero el porcentaje de kril de gran
tamaño (>48 mm) y pequeño (<40 mm) disminuyó a un 20% en abril. La captura secundaria
de peces juveniles (Champsocephalus gunnari) solamente fue registrada para un arrastre,
teniendo los peces un largo total promedio de 14.3 cm y un peso promedio de 13.0 g. No se
registró la captura de ninguna foca. Durante las observaciones se vieron ballenas de gran
tamaño en repetidas ocasiones frente a las Islas Orcadas del Sur.

4.24 El grupo de trabajo señaló que las dos modas observadas en la distribución de la
frecuencia de tallas de kril concordaban con las tallas observadas en el programa AMLR de
EEUU efectuado en la misma región durante la misma temporada, si bien las proporciones
fueron diferentes (WG-EMM-08/26).

4.25 WG-EMM-08/57 informó sobre la captura secundaria de peces del Niitaka Maru al
norte de Georgia del Sur en el período del 6 al 30 de agosto de 2007. Se observó la presencia
de captura secundaria de peces en 26 de 87 arrastres de la red (29.9%). Entre las siete
especies de peces observadas (tres Myctophidae, una Zoarcidae, una Nototheniidae y dos
Channichthyidae), Krefftichthys anderssoni (Myctophidae) fue la observada con mayor
frecuencia (38.5% de los arrastres examinados). Debido al pequeño tamaño de la captura
secundaria, no se pudo confirmar en este estudio una clara relación entre la CPUE de kril y la
captura secundaria de peces.

4.26 El Dr. Naganobu informó que el programa japonés de observación de la captura
secundaria de peces ha estado funcionando por más de 10 años, y que se ha creado una hoja
de identificación de peces para uso de los observadores embarcados (WG-EMM-07/32).
4.27 El grupo de trabajo indicó que la especie más abundante de la captura secundaria eran los mictófidos, siendo las larvas de dracos la captura secundaria más abundante comúnmente notificada en el área. El grupo de trabajo comentó que esto podría reflejar la diferencia de los protocolos de selección de la captura en alta mar, ya que esta observación fue hecha antes de que se actualizara el protocolo para diferenciar peces y larvas de peces en el cuaderno electrónico de registro de las observaciones (párrafo 4.43). La diferencia en la profundidad de los arrastres de la red, como también la variabilidad interanual de la composición de especies, también podrían constituir una razón. Se reiteró la importancia de utilizar un protocolo estándar en todos los barcos.

Observación científica

Observadores designados

4.28 Se presentaron seis cuadernos de observación científica a la Secretaría para la temporada de 2006/07 de los observadores a bordo del Saga Sea (Noruega), Niitaka Maru (Japón) y Dalmor II (Polonia).

4.29 Además, la Secretaría ha recibido cinco notificaciones de la designación de observadores científicos internacionales de la CCRVMA a bordo de barcos de pesca de kril en el Área de la Convención dentro del Área 48 durante 2007/08.

4.30 A pedido de WG-EMM (SC-CAMLR-XXVI, anexo 4, párrafo 4.58), la Secretaría proporcionó un resumen de los datos de observación que le han sido presentados de 1999/2000 a 2006/07 (WG-EMM-08/5). El grupo de trabajo indicó que el porcentaje de arrastres observados varía enormemente según el observador, la temporada y el barco. Por ejemplo, en 2006/07 se observó entre 20 y 86% de los arrastres en cada campaña, tanto los arrastres efectuados con el sistema de pesca tradicional como con el sistema de pesca continua (WG-EMM-08/5, tabla A1).

4.31 El grupo de trabajo indicó que la cobertura de observación mencionada en el documento WG-EMM-08/5 fue notificada como la proporción de arrastres observada mientras el observador estuvo embarcado. El grupo pidió a la Secretaría que indicara la proporción total de arrastres observada en los informes futuros.

4.32 El grupo de trabajo tomó nota de la presentación de algunos datos de observación científica por parte de observadores nacionales que trabajaron de conformidad con el Sistema de Observación Científica Internacional de la CCRVMA, y alentó a todos los miembros que designan observadores nacionales a recopilar y presentar los datos a la Secretaría de conformidad con este sistema.

4.33 El grupo de trabajo convino en que la información presentada en el documento WG-EMM-08/5 era de mucho valor para evaluar el alcance de las información suministrada por los observadores científicos que se encuentra archivada en la Secretaría.
Factores de conversión

4.34 Desde 2001/02 se ha notificado regularmente los factores de conversión de los barcos, pero los factores de conversión calculados por los observadores son menos comunes debido a las dificultades experimentadas por los mismos en la obtención de datos precisos o en procurar acceso a la factoría donde se procesa la captura (SC-CAMLR-XXVII/BG/6, párrafo 3.14). El grupo de trabajo destacó la necesidad de desarrollar un conjunto de protocolos y guías para los observadores que les ayuden en la recopilación de datos exactos sobre los factores de conversión (WG-EMM-08/6).

4.35 WG-EMM-08/46 examinó la incertidumbre de los datos de captura de kril emanada del uso de factores de conversión a producto derivados de los datos de observación científica, y una cantidad limitada de datos en escala fina (C1) notificados en los últimos cinco años. Los factores de conversión oscilaron entre 1 y 26 considerando todos los tipos de producto. Dada esta variabilidad en los factores de conversión, una captura nominal notificada de 600 000 toneladas podría representar una captura de 2.5 millones de toneladas en un caso extremo, suponiendo que toda la captura se convirtió a producto hervido. La información sobre los factores de conversión a productos específicos, como también sobre la proporción de los productos derivados de la captura es de gran importancia para cuantificar el grado de incertidumbre en la captura notificada de kril.

4.36 En el sistema de notificación actual, los productos específicos de la captura y los factores de conversión no se registran y por lo tanto, no es posible determinar si la captura notificada se basó en factores de conversión, o en una medida directa del peso en vivo.

4.37 El grupo de trabajo tomó nota además de la gama de nuevos productos elaborados por la pesquería de kril y reconoció que la estimación de factores de conversión de estos nuevos productos podría resultar poco práctica.

4.38 El Dr. T. Knutsen (Noruega) indicó que este país ha implementado un sistema con balanza de flujo y ahora notifica datos en escala fina basados en una medición del “peso en vivo” de kril antes de ser procesado.

4.39 El grupo de trabajo expresó grave preocupación ante la falta de coherencia en la manera de registrar la cantidad de kril extraída del ecosistema, lo que está causando incertidumbre en la captura notificada a la Secretaría. El grupo de trabajo recomendó al Comité Científico que alentase a los miembros a considerar la posibilidad de notificar con precisión la captura sobre la base del peso en vivo, y les recuerde que este asunto debe ser resuelto con urgencia.

Captura incidental

4.40 No se observó la captura incidental de aves marinas ni de pinnípedos durante las campañas de observación científica en 2006/07 (WG-EMM-08/5, tabla A5).
Grupo técnico de operaciones en el mar

4.41 El Dr. Welsford presentó el informe del grupo especial TASO (SC-CAMLR-XXVII/BG/6). El grupo de trabajo tomó nota de las discusiones de TASO sobre el diseño y el funcionamiento de los artes de pesca de kril en el Área de la Convención (SC-CAMLR-XXVII/BG/6, párrafos 2.1 al 2.8). El grupo de trabajo estuvo de acuerdo con la recomendación de TASO de que se estableciera un formato estándar para notificar la configuración del arte en el informe de observación.

4.42 El grupo de trabajo también tomó nota de las discusiones de TASO sobre las prioridades relativas a la recopilación de datos en la pesquería de kril (SC-CAMLR-XXVII/BG/6, párrafos 3.1 al 3.16). Señaló que las prioridades de observación en el Manual del Observador Científico actual de la CCRVMA no concordaban con las convenidas por SC-CAMLR (SC-CAMLR-XXVI, párrafo 3.6). El grupo de trabajo pidió que se hicieran los cambios necesarios para asegurar que las prioridades con respecto a los datos sean consecuentes.

4.43 El grupo de trabajo también tomó nota de que los observadores consideraron los nuevos protocolos de la CCRVMA relativos a la captura secundaria de larvas de peces (formulario K11 del cuaderno de observación), que representa un aumento de la cobertura y de la recopilación de datos, y la utilización más eficiente del tiempo disponible para recolectar estos datos. El grupo de trabajo aceptó la propuesta de TASO (SC-CAMLR-XXVII/BG/6, párrafo 3.5) de que se celebrara un pequeño taller de expertos para evaluar las imágenes digitales de larvas de peces archivadas a través del nuevo protocolo relativo a la captura secundaria de larvas de peces, como una forma de evaluar la identificación en alta mar efectuada por los observadores.

4.44 El grupo de trabajo estuvo de acuerdo con la recomendación de TASO de que todos los datos que deben recopilar los observadores en la pesquería de kril sean evaluados en términos de su utilidad para contribuir al asesoramiento proporcionado al Comité Científico, sin que representen una carga excesiva de trabajo para los observadores.

4.45 El grupo de trabajo examinó el cometido desarrollado por el grupo TASO, y aceptó que le correspondía a WG-EMM especificar los requisitos relativos a los datos que deben ser recopilados por los observadores, y que el papel de TASO es proporcionar asesoramiento sobre cómo podrían cumplirse estos requisitos.

4.46 El grupo de trabajo agradeció al grupo TASO por su informe. Estuvo de acuerdo en que la información compilada por los expertos de TASO había contribuido enormemente a la capacidad del grupo de trabajo y del subgrupo de observadores para entender las operaciones de los barcos pesqueros y los aspectos prácticos de la recolección de datos en alta mar. El grupo de trabajo esperaba con interés los resultados de las futuras reuniones de TASO y alentó especialmente a los miembros que participan en la pesquería de kril a enviar observadores, coordinadores técnicos y representantes de la industria pesquera a estas futuras reuniones.
Manual del Observador Científico

4.47 WG-EMM-08/45 examinó la cantidad y calidad de los datos presentados por los observadores científicos de la CCRVMA. Este análisis consideró la cobertura espacial y también la talla, sexo y madurez del kril.

4.48 El grupo de trabajo aceptó la propuesta de WG-EMM-08/45 de que se midieran 200 ejemplares de kril de cinco lances cada 30 días, y que si el barco se traslada una distancia de 50 millas náuticas (de acuerdo con el análisis presentado en WG-EMM-08/39) o a una nueva UOPE, se deberá iniciar un nuevo período de muestreo.

4.49 El grupo convino también, de acuerdo con el análisis presentado en WG-EMM-08/45, que se debían simplificar las instrucciones actuales para que los observadores puedan determinar el sexo y los estadios de madurez.

4.50 El grupo de trabajo también deliberó sobre las dificultades en la utilización de la guía de colores incluida en el manual para identificar el verdor del kril. Sin embargo, el grupo de trabajo estuvo de acuerdo en que no se deben modificar los protocolos de observación sin una evaluación apropiada de la utilidad del protocolo actual y de los resultados que produce. El grupo de trabajo recomendó revisar los datos recopilados sobre la coloración del kril, para contestar las siguientes preguntas:

- ¿Se dispone de un análisis antiguo o reciente, o hay intenciones de realizar un análisis de estos datos?
- ¿Qué nivel de detalle requieren estos análisis?
- ¿Se recopila o dispone actualmente de este tipo de información de otras fuentes, o que pudiera ser recopilada con mayor eficacia que los datos sobre la coloración del kril (por ejemplo, información sobre productos o decisiones del capitán)?

4.51 El grupo de trabajo recordó también que había referido al WG-FSA el tema del refinamiento de las guías actuales para identificar larvas de peces en la captura secundaria de la pesquería de kril (SC-CAMLR-XXVI, anexo 4, párrafo 4.37). A continuación, WG-FSA había pedido a la Secretaría que tradujera al inglés la guía publicada por VNIRO en 1986 (SC-CAMLR-XXVI, anexo 5, párrafo 10.10). WG-EMM señaló que ahora se dispone de una versión preliminar en inglés de esta guía.

4.52 WG-EMM informó al Comité Científico que se deben modificar las instrucciones del Manual del Observador Científico a fin de que reflejen los cambios en las prioridades de recopilación de datos (párrafo 4.66) y también los cambios en los datos requeridos:

i) medir 200 ejemplares de kril de cinco lances elegidos al azar cada 30 días (o de una muestra de 200 kril tomada cada cinco días cuando se utiliza el método de pesca continua). Todos los ejemplares de kril deberán medirse desde el ojo a la punta del telson con una precisión de un milímetro;

ii) la información sobre el estadio del ciclo de vida y la madurez gonadal de todos los ejemplares de kril a los cuales se les determinó la talla deberá ser notificada de acuerdo con cinco categorías (juvenil, macho, hembra, macho maduro y hembra grávida);
iii) se comenzará un nuevo período de notificación de la talla de kril si el barco se traslada una distancia mayor de 50 millas náuticas, o si se traslada a otra UOPE;

iv) la captura secundaria de peces deberá ser observada dos veces al día, de conformidad con el protocolo existente para la observación de dicha captura, incluido el protocolo de muestreo de larvas de peces.

4.53 El grupo de trabajo estuvo de acuerdo en que los protocolos de observación de la mortalidad incidental de aves y mamíferos marinos deberán ser revisados de conformidad con la aclaración del grupo especial WG-IMAF sobre la aplicación del protocolo de la CCRVMA referente a las colisiones con el cable de la red, incluso en las operaciones con el método de pesca continua.

4.54 El grupo de trabajo indicó que se debería desarrollar un protocolo para el muestreo de peces de todos los tamaños en la captura secundaria (y que concordara con el protocolo existente de muestreo aplicable a las larvas de peces).

Cobertura de observación en la pesquería de kril

4.55 Japón presentó un plan para proporcionar una cobertura sistemática de observación científica (WG-EMM-08/34) a pedido del Comité Científico (SC-CAMLR-XXVI, párrafo 3.13). Japón propuso que la designación de observadores gubernamentales con capacitación adecuada para proporcionar una cobertura de 50% días-barco, consiguiéndose una cobertura de 100% (espacial y temporal) cada dos años, con una pronta presentación de datos a la Secretaría.

4.56 El grupo de trabajo acogió la propuesta de Japón y apoyó su intención de formalizar la cobertura sistemática de observación a bordo de los barcos de pesca de kril.

4.57 El grupo de trabajo recordó el enfoque de dos etapas presentado por el Comité Científico en 2007, subrayando el alto nivel de cobertura necesaria para entender el comportamiento general de la pesquería y sus efectos durante la etapa inicial, y para recopilar suficientes datos para evaluar el régimen de seguimiento rutinario de la pesquería necesario para proporcionar los datos requeridos para los modelos demográficos y del ecosistema (SC-CAMLR-XXVI, párrafos 3.7 al 3.12).

4.58 Se acordó que se deberá cubrir el 100% de los barcos (es decir, cada barco deberá llevar a bordo por lo menos un observador durante todo el período que se encuentre en el Área de la Convención), lo antes posible con observadores nacionales designados por sus respectivos gobiernos, o internacionales. En la etapa inicial de la implementación de una observación total (100%) se podría requerir la notificación mensual de algunos datos (talla de kril, captura secundaria y colisiones con el cable de la red) para la gestión retroactiva en tiempo real. El volumen del trabajo requerido de la Secretaría y del WG-EMM sería mayor, ya que se debe asegurar la evaluación y los comentarios necesarios para el funcionamiento del programa de observación en la pesquería de kril.
4.59 El grupo de trabajo pidió al Comité Científico que considerara la manera más práctica de iniciar una cobertura tal (por ejemplo, para ponerlo en marcha en diciembre de 2009), a fin de disponer de suficiente tiempo para buscar y capacitar observadores, y poder proporcionar cobertura durante toda una temporada de pesca.

4.60 El grupo estuvo de acuerdo en que todos los observadores deben ser capacitados y acreditados por el gobierno, y que se debe alentar a los miembros a entrar en acuerdos bilaterales para designar observadores científicos internacionales cuando sea posible.

4.61 Se convino que una vez que el programa de 100% de cobertura haya estado funcionando durante un período de dos años, el grupo de trabajo estaría en posición de proporcionar asesoramiento al Comité Científico sobre el nivel de cobertura que se requiere mantener, dado que se espera poder lograr una cobertura sistemática de 50% días-barco como mínimo en la pesquería de kril.

4.62 WG-EMM convino en que cualquier nuevo participante en la pesquería (miembro o barco), y cualquier barco que utilice nuevos métodos de pesca, deberá cumplir por dos años con el programa de 100% de cobertura de observación de horas-barco, ya sea a través de observadores internacionales o designados por el Estado, indicando que esto podría ser revisado al cumplirse dos años a fin de determinar la cobertura en años subsiguientes.

4.63 El grupo de trabajo indicó que los barcos con mayor capacidad de captura y procesamiento podrían requerir más de un observador para asegurar la recopilación de una cantidad de datos equivalente a la proporción de la captura observada en otros barcos.

4.64 El grupo de trabajo reiteró que para cualquier nivel de cobertura, los datos deben ser de alta calidad, coherentes para todos los barcos y métodos de pesca, y recopilados de conformidad con el Sistema de Observación Científica Internacional de la CCRVMA, siguiendo las instrucciones del Manual del Observador Científico.

4.65 Se señaló que había una falta de congruencia entre las prioridades descritas por el Comité Científico y las del Manual del Observador Científico, y se propuso revisar este último para que reflejara las nuevas prioridades.

4.66 El grupo de trabajo convino en que las prioridades para la recopilación de datos de la pesquería de kril deberían ser:

• captura secundaria de peces y de larvas de peces
• distribución de la frecuencia de tallas, estadio de vida y madurez sexual del kril
• colisiones con el cable de la red
• mortalidad incidental de aves y mamíferos marinos
• dinámica de la pesquería y de sus operaciones.

Asuntos normativos

4.67 El grupo de trabajo examinó las medidas de conservación aplicables a las pesquerías de kril (WG-EMM-08/5), y acordó hacer recomendaciones al Comité Científico sobre las Medidas de Conservación 21-03 y 21-02.
4.68 En relación con la Medida de Conservación 21-03, WG-EMM recordó que era necesario registrar información que describiera la técnica de pesca utilizada por los barcos de pesca de kril (anexo 21-03/A). El grupo estuvo de acuerdo con TASO en recomendar al Comité Científico la necesidad de que los miembros incluyeran información sobre detalles específicos de la configuración del arte de pesca cuando notifiquen su intención de participar en la pesca de kril (SC-CAMLR-XXVII/BG/6, párrafo 2.16). La información incluiría el tamaño de la luz de malla y de la apertura del copo de la red, si se proyecta utilizar o no un dispositivo para excluir pinnípedos y su diseño, y cualquier cambio en la configuración de la red de arrastre durante la campaña. Se deberá considerar la adición de un diagrama apropiado en el cuaderno de observación científica de la CCRVMA para registrar esta información, y se recomendó elaborar un nuevo formulario de notificación con este fin.

4.69 El grupo de trabajo indicó que la Medida de Conservación 21-02 requiere que los miembros notifiquen a la Comisión su intención de participar en una pesquería exploratoria por lo menos tres meses antes de la próxima reunión ordinaria de la Comisión. Los participantes del grupo estuvieron de acuerdo en que este plazo de notificación podría llevar a situaciones en las cuales la notificación de la intención de un miembro de participar en la pesquería exploratoria de kril se presenta después de la reunión anual de WG-EMM, y que esto no le permitiría al grupo proporcionar el asesoramiento pertinente al Comité Científico. Por lo tanto, el grupo de trabajo recomendó que se revisara la Medida de Conservación 21-02 para que se asegure la presentación de las notificaciones de pesquerías exploratorias de kril antes de la reunión anual de WG-EMM.

4.70 WG-EMM reconoció que la notificación de los planes de Noruega de participar en una pesquería exploratoria de kril en la Subárea 48.6 (CCAMLR-XXVII/13) fue proporcionada a la Comisión con tiempo suficiente para que WG-EMM la considerara y para hacer recomendaciones al Comité Científico sobre aspectos relacionados con el plan de recopilación de datos requerido por la Medida de Conservación 21-02 (párrafo 3). WG-EMM agradeció a Noruega por la puntualidad de su notificación.

Requisitos pertinentes a la recopilación de datos de investigación de la pesquería exploratoria de kril

4.71 El grupo de trabajo recordó que en 2007 el Comité Científico pidió que WG-EMM considerara la información que se requería de las pesquerías exploratorias de kril (SC-CAMLR-XXVI, párrafo 3.29). Esto podría incluir la consideración del tamaño de los stocks y su definición, cualquier subdivisión de las áreas estadísticas que pudiera facilitar la exploración o la gestión, la necesidad de establecer unidades de ordenación en pequeña escala y niveles críticos de activación y los datos disponibles sobre el kril, depredadores y el medio ambiente que pudieran facilitar la ordenación de las pesquerías exploratorias.

4.72 Se señaló que Noruega ha notificado su intención de realizar una pesquería exploratoria de kril en la Subárea 48.6 durante la próxima temporada, y que se dispone de muy poca información sobre el kril o sus depredadores para esta área. Sin embargo, se acotó que tanto Alemania como Noruega habían realizado prospecciones científicas recientemente en esta subárea, y se pidió a estos países que llevaran a cabo análisis de los datos acústicos y de los arrastres de las prospecciones de kril efectuadas en la Subárea 48.6 y los pusieran a disposición del WG-EMM durante la reunión del 2009 (párrafo 5.51).
4.73 El grupo de trabajo indicó que no se dispone actualmente de una estimación oficial de la biomasa en la Subárea 48.6, y por lo tanto tampoco se ha establecido un límite de captura precautorio. Asimismo, se indicó que actualmente no existe un plan de recopilación de datos de investigación para las pesquerías exploratorias de kril, como los que existen para las pesquerías exploratorias de austromerluza (Medida de Conservación 41-01) y de centollas (Medida de Conservación 52-01).

4.74 El grupo de trabajo señaló que la Medida de Conservación 21-02 estipula que el desarrollo de la pesquería exploratoria de kril debe efectuarse de manera ordenada, y que deben recopilarse los datos necesarios para poder ir refinando las decisiones pertinentes a su ordenación. En lo que se refiere a la entrada de un barco a la pesquería exploratoria de kril, se necesita determinar un conjunto de requisitos pertinentes a la investigación y un plan de recopilación de datos, similar a lo exigido de las pesquerías exploratorias de austromerluza. El grupo de trabajo acordó que sería mejor que los requisitos pertinentes a la investigación fuesen generales y aplicables a toda notificación de pesquería exploratoria de kril en cualquier subárea o división.

4.75 El grupo de trabajo recordó el párrafo 3 de la Medida de Conservación 21-02, que especifica que el plan de recopilación de datos deberá incluir, cuando corresponda:

- una descripción de la captura, esfuerzo y datos biológicos, ecológicos y ambientales que sean necesarios para efectuar las evaluaciones descritas en el párrafo 1(ii) de la medida, junto con la fecha límite para la presentación anual de dichos datos a la CCRVMA;
- un plan para guiar el esfuerzo pesquero durante la fase exploratoria con el fin de adquirir los datos pertinentes para la evaluación del potencial de la pesquería y las relaciones ecológicas entre las poblaciones explotadas, dependientes y afines, y los posibles efectos adversos;
- un plan para la adquisición de cualquier otra información científica obtenida por los barcos de pesca, incluidas las actividades que puedan requerir la colaboración entre los observadores científicos y la tripulación del barco, necesarias para que el Comité Científico pueda evaluar el potencial de la pesquería y las relaciones ecológicas entre las poblaciones explotadas, dependientes y afines y los posibles efectos adversos;
- una evaluación de las escalas temporales en juego para determinar la respuesta de las poblaciones explotadas, dependientes y afines a las actividades pesqueras.

4.76 El grupo de trabajo reconoció que el desarrollo de este tipo de plan de investigación debe considerar cuatro puntos importantes:

- Cualquier requisito de investigación deberá incluir una estrategia para recolectar datos adicionales fuera de la región específica donde el barco está activamente extrayendo kril o navegando. El grupo de trabajo estuvo de acuerdo en que probablemente se necesitará una medida para distribuir el esfuerzo necesario para recopilar esta información, ya que esto proporcionará datos sobre la distribución demográfica y la biomasa, necesarios para las evaluaciones.
ii) Los datos acústicos proporcionan valiosa información para determinar la distribución y abundancia de *E. superba*, y por lo tanto, serían un componente importante de cualquier plan de recopilación de datos de investigación.

iii) Se deberá recolectar información de los arrastres comerciales.

iv) Se podría utilizar un sistema de unidades de investigación en pequeña escala (UIPE) a fin de acumular conocimiento sobre la distribución espacial del stock de kril explotado. El grupo de trabajo indicó que ya se ha utilizado este enfoque, tanto en la investigación requerida de la pesquería exploratoria de australmerluza (Medida de Conservación 41-01) como en la pesquería experimental de centolla (Medida de Conservación 52-02).

4.77 El grupo de trabajo estuvo de acuerdo en aplicar un enfoque jerárquico al plan de recopilación de datos de investigación. Este enfoque consistirá en aplicar distintos niveles de esfuerzo en la recopilación de datos, que corresponderían a las distintas etapas del asesoramiento de ordenación. Esto podría proporcionar una indicación de las ventajas de los objetivos de ordenación y la probabilidad de que éstos se cumplan, en relación con cada nivel de esfuerzo.

4.78 Las tablas 1 y 2 describen detalladamente los enfoques jerárquicos. Cada tabla describe primero las principales preguntas requeridas para la evaluación que conllevarán a recomendaciones para la ordenación basada en el ecosistema de la pesquería de kril (columna a la izquierda). En la hilera superior de la tabla 1 se presentan cuatro niveles de investigación basados en la recopilación de datos de la pesquería. Para cada plan de investigación basado en datos de la pesquería, la tabla describe en detalle la eficacia de esa estrategia de recolección de datos en particular para responder a cada una de las principales preguntas relacionadas con la evaluación.

4.79 El grupo de trabajo señaló que las dos primeras estrategias de investigación, la pesca comercial y los datos acústicos registrados durante las operaciones no exigen tiempo ni navegación adicional de parte de los barcos pesqueros. De esta manera, todos los datos de investigación para estas dos estrategias son recolectados mientras los barcos desempeñan sus actividades de pesca estrictamente comerciales, teniendo instalados los instrumentos acústicos necesarios. Por el contrario, las dos estrategias de muestreo acústico y con redes de arrastre a lo largo de transectos requieren de esfuerzo adicional de los barcos de pesca en términos del tiempo y la navegación.

4.80 Con respecto a la recopilación de datos dependientes de la pesquería, el grupo de trabajo acordó que la estrategia de muestreo acústico sistemático durante la pesca de arrastre a lo largo de un transecto proporcionaría más rápidamente la mejor información necesaria para estimar el nivel de rendimiento precautorio. A continuación se describe a grandes rasgos el plan propuesto para aplicar los elementos de esta estrategia:

Las UIPE para el kril (equivalente a cuadriculas en escala fina) se definen como rectángulos de 0.5° de latitud por 1° de longitud a lo largo de las áreas más extensas de la CCRVMA. Esta definición previa es casi inaceptable dadas las grandes extensiones pelágicas:
1. La “pesca” se define como cualquier momento en que el arte de pesca – arrastres tradicionales, con vaciamiento de copos o con otros artes más nuevos como los utilizados para el bombeo continuo – permanece en el agua.

2. Un lance de investigación se define como un lance oblicuo dirigido con una red de diseño aprobado por la CCRVMA, a una profundidad de 200 m con una duración total de 0.5 h desde que toca la superficie hasta que se sube nuevamente a la superficie.

3. Un conjunto de lances de investigación se define como tres lances de investigación efectuados a 10 millas náuticas de distancia entre sí, como mínimo.

4. Un transecto acústico se define como un recorrido continuo manteniendo constante la velocidad y el rumbo del barco, y cubriendo una distancia mínima de 30 millas náuticas desde el punto de partida hasta el final del recorrido. Estos transectos pueden incluir operaciones de pesca continuas.

5. Estrategia de investigación requerida –
 i) al entrar en una UIPE para el kril y, antes de comenzar la pesca propiamente tal, se deberá realizar (a) un transecto acústico a través de esta UIPE y (b) una serie de lances de investigación;
 ii) si después de cinco días de pesca (continua o discontinua) en la UIPE para el kril el barco decide permanecer en dicha UIPE, deberá realizar otro transecto acústico y una nueva serie de lances de investigación;
 iii) antes de dejar la UIPE para el kril, el barco de pesca deberá realizar otro transecto acústico a través de la UIPE y una nueva serie de lances de investigación.

En general se reconoce que el comportamiento de los barcos cuando entran a una UIPE en búsqueda de concentraciones comercialmente explotables de kril puede coincidir con muchos aspectos de esta estrategia. De modo similar, se reconoce que las técnicas de pesca continua también pueden proporcionar datos similares.

4.81 Algunos miembros del grupo de trabajo estuvieron de acuerdo en que este tipo de estrategia de investigación exigiría relativamente poco tiempo adicional de navegación, pero produciría una gran cantidad de datos que podrían ser utilizados en la evaluación del recurso.

4.82 Otros miembros estimaron que el sistema era demasiado complejo y que el barco podría tener dificultades en su realización.

4.83 El grupo de trabajo indicó que cualquier pesquería de kril exploratoria debería incluir alguna forma de salvaguarda para asegurar que la Comisión pueda lograr sus objetivos según el artículo II. Una salvaguarda de este tipo podría ser la “regla del traslado”, así como la limitación de la captura dentro de ciertas áreas. El grupo de trabajo estimó que la pesca cerca
de islas o en las plataformas continentales tiene más probabilidades de afectar a los depredadores con colonias terrestres, y por lo tanto tales regiones deben contar con protección adicional.

4.84 Con respecto a la observación científica, el grupo de trabajo reconoció que en algunas pesquerías exploratorias se exige llevar dos observadores científicos en cada barco. El Dr. Welsford indicó que TASO había concluido que la carga de trabajo para un observador en un barco de kril es manejable, pero si se requieren más datos, es muy probable que se necesiten más observadores. En la tabla 1 se presentan los requisitos con respecto a los distintos niveles de recolección de datos dependientes de la pesquería, y por ende los requisitos pertinentes a los observadores.

4.85 El grupo de trabajo reconoció que era esencial contar con una cobertura de observación adecuada para asegurar que cualquiera que sea el plan de recolección de datos aprobado, éste produzca buenos resultados.

4.86 Con respecto al sistema acústico, el grupo de trabajo estimó conveniente que se especificara un conjunto de directrices con respecto a la frecuencia óptima para detectar concentraciones de kril. Se indicó que los informes anteriores de SG-ASAM y el informe de ICES “Recolección de datos acústicos de los barcos de pesca” (ICES, 2007) podrían brindar directrices o recomendaciones en cuanto a la frecuencia o frecuencias óptimas, para el análisis subsiguiente de los datos.

4.87 El grupo de trabajo reconoció que el análisis de los datos acústicos requiere de cierta experiencia, que esto tiene un alto coste en términos de tiempo y esfuerzo y que no todos los miembros cuentan con estos recursos. El grupo de trabajo indicó que una posible manera de subsanar estas limitaciones sería que los miembros que recopilan los datos hagan los arreglos necesarios para que el análisis de los mismos sea efectuado por otros miembros u otras Partes. El grupo de trabajo pidió que el Comité Científico considere este asunto en más profundidad.

4.88 Con respecto a la notificación de datos, el grupo de trabajo acordó los requisitos de notificación mínimos para una pesquería de kril exploratoria cuando se realiza la pesca comercial:

i) sistema de notificación de datos de captura y esfuerzo cada 10 días, de conformidad con la Medida de Conservación 23-02;

ii) datos de captura y esfuerzo de cada lance, de conformidad con la Medida de Conservación 23-04, incluido el plazo mensual;

iii) datos de observación científica, de conformidad con el Sistema de Observación Científica Internacional de la CCRVMA;

iv) si se presentan datos acústicos, el barco deberá cumplir con requisitos específicos y el formato de registro acordados por la Comisión teniendo en cuenta el párrafo 4.86.

4.89 El grupo de trabajo convino en que cualquier plan de recopilación de datos de investigación también deberá incluir los lance de investigación, pues los lances comerciales dan muy poca información que puede ser utilizada para resolver cuestiones básicas relacionadas con la evaluación.
4.90 El grupo de trabajo consideró que se debían identificar los requisitos específicos relativos a los datos de los lances de investigación, incluido el tipo de datos necesarios, la época de recolección y la persona que debe recolectarlos.

4.91 Los datos requeridos de cada lance de investigación debieran incluir:

i) datos de posición inicial y final;

ii) estimación de la captura total de kril (peso en vivo);

iii) muestreo aleatorio de 200 ejemplares de kril en un lance, a ser realizado por el observador, quien deberá determinar la talla, sexo y estadio de madurez de acuerdo con el Manual del Observador Científico;

iv) composición de especies de la captura secundaria.

4.92 El grupo de trabajo reconoció que la estrategia de recolección de datos de investigación de la pesca comercial propuesta en el párrafo 4.80 es sólo un ejemplo de cómo se puede ejecutar un plan de recolección de datos de investigación, y que es posible que otros planes sean igual de efectivos. Por ejemplo, en lo que respecta al momento en que se deben efectuar los lances de investigación, algunos miembros consideraron que éstos deben efectuarse cada cinco días, como figura en la estrategia propuesta, lo que resultará en dos muestreos para cada período de notificación de 10 días. Otros miembros indicaron que era más adecuado efectuar lances de investigación cada 10 días. También hubo dudas con respecto al tamaño óptimo de cada UIPE explorada.

4.93 El grupo de trabajo estuvo de acuerdo en que sería muy conveniente que los ars utilizados durante los lances de investigación fueran estandarizados para todos los barcos que participan en las pesquerías exploratorias, reduciéndose así considerablemente la incertidumbre al comparar los resultados de todos los ars. No obstante, el grupo de trabajo no contó con tiempo suficiente para considerar en detalle las especificaciones de una red de arrastre estándar para la investigación. El grupo de trabajo pidió que TASO le asesorara con respecto al tipo de arte estandarizado que podría ser utilizado, dado que es posible que este arte tenga que ser intercambiado con la red de arrastre principal que se usa en la pesquería comercial, y por ende el intercambio debe hacerse rápidamente y con un mínimo de esfuerzo.

4.94 El grupo de trabajo recalcó que cualquier plan de recolección de datos de investigación que utiliza las mismas estrategias de recolección de datos utilizadas para la pesca comercial debiera ser estandarizado para todas las pesquerías exploratorias de kril.

4.95 El grupo de trabajo reconoció que también se podría recolectar datos con estrategias de recolección independientes de las utilizadas en las pesquerías comerciales. Por ejemplo, mediante un programa de seguimiento de depredadores de kril que se alimentan en el área donde se realiza la pesca exploratoria, o una campaña de estudio del kril independiente de la pesquería. La primera estrategia tiene el potencial de suministrar datos que pueden utilizarse para determinar si el rendimiento de los depredadores ha sido afectado por la pesquería exploratoria. La última podría ser utilizada directamente para estimar \(B_0 \), y para una evaluación del recurso. La tabla 2 contiene los detalles de las estrategias de seguimiento independientes de la pesquería.
Puntos clave a ser considerados por el Comité Científico y sus grupos de trabajo

4.96 Pesquería de kril:

i) quedan por presentar los datos de lance por lance de Polonia de 2006/07 (párrafo 4.3);

ii) tendencias en la pesquería de kril (párrafos 4.1 y 4.6 al 4.8);

iii) notificaciones de los planes de pesca de kril en la temporada 2008/09 (párrafos 4.6 al 4.17).

4.97 Observación científica en la pesquería de kril:

i) la falta de datos sobre los productos específicos derivados de la captura y los factores de conversión están creando dificultades en la verificación de la precisión del “peso en vivo” del kril capturado (párrafo 4.36);

ii) la petición para que los miembros evalúen la posibilidad de notificar con precisión la captura sobre la base de estimaciones directas del “peso en vivo” para resolver el problema de la notificación incorrecta de la captura (párrafo 4.39);

iii) la aprobación del papel de TASO por el WG-EMM (párrafo 4.45);

iv) revisiones requeridas del Manual del Observador Científico (párrafos 4.52, 4.65 y 4.66);

v) la necesidad de contar con un protocolo para muestrear la captura secundaria de peces, que concuerde con el protocolo existente para la toma de muestras de larvas de peces (párrafo 4.54);

vi) la estrategia convenida para implementar un programa de observación científica a fin de obtener una cobertura sistemática de la pesquería de kril (párrafos 4.58 al 4.63).

4.98 Asuntos normativos:

i) la necesidad de registrar información que describa la técnica de pesca empleada por los barcos de pesca de kril (párrafo 4.68);

ii) la consideración de las notificaciones de las pesquerías exploratorias de kril y los requisitos relativos a los planes de recopilación de datos necesarios para la implementación de la Medida de Conservación 21-02 (párrafos 4.69 al 4.95).
ESTADO Y TENDENCIAS DEL ECOSISTEMA CENTRADO EN EL KRIL

Informe de WG-EMM-STAPP

5.1 El Dr. Southwell presentó el informe del Taller de Prospecciones de Depredadores (WG-EMM-08/8), realizado del 16 al 20 de junio de 2008 en la sede de la CCRVMA, en Hobart (Australia). El cometido del taller se presenta en el párrafo 1.5 de WG-EMM-08/8. En el taller participó la Sra. D. Patterson-Fraser y el Dr. B. Raymond (expertos de SCAR) y la Dra. R. Fewster, quien fue invitada como experto independiente. En WG-EMM-08/9 se presenta un informe de la Dra. Fewster sobre sus conclusiones del taller.

5.2 Se acordó que el taller concentraría sus deliberaciones en 11 especies de más importancia que se reproducen en el Área 48 (1 foca que se reproduce en el campo de hielo, 1 foca que se reproduce en tierra, 4 especies de pingüinos y 5 de aves voladoras) y cuyo consumo de kril había sido estimado anteriormente en unas 100 000 toneladas o más al año (WG-EMM-08/8, tabla 1). De las especies con colonias terrestres de reproducción, se considera que las especies que figuran en la tabla 1 de WG-EMM-08/8 son las especies consumidoras de kril más importantes en el Mar de Escocia (Croxall et al., 1985).

5.3 A los participantes del taller se les había solicitado que presentaran los resultados de nuevas prospecciones, revisiones y resúmenes de los datos actuales, datos brutos y nuevos métodos de estimación para las especies de más importancia. Antes del taller se había construido una base de datos para facilitar la presentación de datos sobre la abundancia de pingüinos. Se presentó la siguiente información:

i) resultados de nuevos estudios sobre la foca cangrejera (WG-EMM-PSW-08/6), el lobo fino antártico (*Arctocephalus gazella*) (WG-EMM-PSW-08/14), el pingüino macaroni (*Eudyptes chrysolophus*) (WG-EMM-PSW-08/4) y el petrel de mentón blanco (*Procellaria aequinoctialis*) (WG-EMM-PSW-08/5);

ii) una revisión bibliográfica de las prospecciones y estimaciones de abundancia de las aves voladoras (WG-EMM-PSW-08/10);

iii) conteos de pingüinos de estudios no publicados (ASI), del material bibliográfico (BAS) y del CEMP;

iv) dos nuevos métodos para estimar la abundancia de pingüinos (WG-EMM-PSW-08/11 y 08/15).

5.4 Se estableció un esquema general para la estimación de la abundancia, y se diferenció entre los datos de conteos y aquellos datos requeridos para ajustar estos conteos y que consideran cuestiones como la capacidad de detección, la disponibilidad y el muestreo (en su conjunto denominados “datos para el ajuste”). Luego se revisaron los datos de los recuentos y los datos para el ajuste para cada una de las especies identificadas como de mayor prioridad en cada UOPE (WG-EMM-08/8, apéndice 4, tablas 4.1 a la 4.11):

i) Para la foca cangrejera se consideró que tanto los datos de conteos como los datos para el ajuste eran de buena calidad, si bien los datos de disponibilidad se basaron en los puntos de acceso o salida a tierra de las focas en zonas fuera del Área 48, lo que podría generar un sesgo.
ii) Los datos de los recuentos de lobos marinos en la Subárea 48.1 fueron recientes y proporcionaron una buena cobertura espacial. En la Subárea 48.3, la cobertura espacial de los datos de conteos fue buena, pero los datos son relativamente antiguos; sin embargo, las prospecciones que se están realizando actualmente están programadas para finalizar en 2009.

iii) Para las cuatro especies de pingüinos, la cobertura espacial de los datos de los recuentos en general fue buena, pero la contemporaneidad de los datos varió de recientes a relativamente antiguos. En general se supone que los datos de ajuste de la capacidad de detección y muestreo no son necesarios para la estimación de la abundancia de pingüinos ya que se supone, o se sabe, que la mayoría de los conteos provienen de censos donde se cuentan todos los ejemplares. Sin embargo, los datos de ajuste de la disponibilidad en general fueron limitados para las cuatro especies de pingüinos.

iv) En general los datos de conteos de las aves voladoras fueron de mala calidad o antiguos, excepto para el petrel de mentón blanco en Georgia del Sur, donde se llevó a cabo un estudio reciente. No existe ningún tipo de datos para el ajuste con respecto al petrel-paloma antártico (*Pachyptila desolata*), al petrel plateado (*Fulmarus glacialis*) y al petrel damero (*Daption capense*), mientras que los datos para el ajuste del petrel de mentón blanco y el yunco de Georgia del Sur (*Pelecanoides georgicus*) son buenos pero podrían mejorarse.

5.5 Luego el taller revisó los métodos de estimación aplicados en el pasado y en la actualidad:

i) los métodos de estimación aplicados a los datos de la foca cangrejera fueron considerados de última generación;

ii) los métodos de estimación utilizados para calcular la abundancia total de lobos finos en Georgia del Sur no han sido descritos en detalle. La estimación de la abundancia de las nuevas prospecciones programadas para 2009 incluirá el modelado de los datos demográficos y de los puntos de salida a tierra de los pinnípedos;

iii) se han utilizado una serie de métodos diferentes para hacer el ajuste de la disponibilidad estimada de los datos de conteos de pingüinos. El taller reconoció la necesidad de uniformar los métodos para el ajuste de la disponibilidad siempre que sea posible;

iv) la descripción de los métodos para estimar la abundancia de aves voladoras en general ha sido insuficiente. El taller indicó que una de las mayores limitaciones en la estimación de la abundancia de las aves voladoras basada en las prospecciones de colonias terrestres es la falta de mapas de los hábitats.

5.6 Dos nuevos métodos para estimar la abundancia de pingüinos fueron presentados al taller. WG-EMM-PSW-08/15 describió un modelo bayesiano jerárquico de tres etapas para corregir los conteos efectuados fuera del período de mayor abundancia, y hacerlos comparables con los conteos realizados de acuerdo con los métodos estándar del CEMP.
WG-EMM-PSW-08/11 describió un método paramétrico bootstrap desarrollado en lenguaje R. El grupo de trabajo aplaudió estos nuevos métodos de estimación e hizo un llamado a continuar refinándolos y aplicándolos.

5.7 El grupo de trabajo estuvo de acuerdo en que podría brindar información y recomendaciones al WG-EMM en distintas escalas temporales:

i) Recomendaciones/información inmediatas –

a) el trabajo de prospección realizado recientemente en el Área 48 ha mejorado enormemente el conocimiento sobre la abundancia de la foca cangrejera, la producción de cachorros de lobo fino en las Islas Shetland del Sur, el pingüino macaroni en Georgia del Sur y el petrel de mentón blanco en Georgia del Sur;

b) se prevé que las prospecciones aéreas del lobo fino antártico serán finalizadas en la temporada de campo 2008/09;

c) continuar el desarrollo de una nueva base de datos que contenga los datos disponibles de conteos de pingüinos que pueden utilizarse para basar la estimación de abundancia en gran escala;

d) el desarrollo de dos nuevos métodos para tomar en cuenta los sesgos y la incertidumbre en los datos brutos de los conteos utilizados en las estimaciones de abundancia total que sirven además para estimar la abundancia por UOPE;

e) existe una laguna considerable de datos de abundancia de las especies de aves voladoras de mayor prioridad en toda el Área 48, excepto de los petreles de mentón blanco en Georgia del Sur. Dada la falta de datos obtenidos de estudios en tierra para este grupo de especies, el taller recomendó que WG-EMM pidiera que se presentaran los datos de estudios marinos de las aves voladoras en el Área 48 para su consideración en WG-EMM-09. El taller identificó los siguientes programas como posibles fuentes de conjuntos de datos: el programa AMLR de Estados Unidos que efectúa campañas estivales, el programa LTER de EEUU que realiza campañas en invierno y verano, y las campañas de BAS en Georgia del Sur y a lo largo del Mar de Escocia.

ii) A corto plazo (período entre sesiones inmediatamente antes de WG-EMM-08) –

La realización de estimaciones de abundancia de pingüinos a nivel de UOPE, como ejemplo del uso de la base de datos compilada en WG-EMM-08/53. Estas estimaciones son preliminares ya que sólo toman en cuenta la incertidumbre en la precisión de los datos de los conteos, y sólo se hacen ajustes aproximados para tomar en cuenta la disponibilidad.
iii) Mediano plazo (período entre sesiones antes de WG-EMM-09) –

a) de ser posible, estimar la abundancia de la foca cangrejera por UOPE, basándose en el enfoque de la simulación del hábitat presentado en WG-EMM-PSW-08/6;

b) la finalización de la prospección del lobo fino antártico en Georgia del Sur prevista para inicios de 2009 proporcionará una importante actualización de las estimaciones de abundancia de 1991;

c) seguir refinando y probando los nuevos métodos de estimación de la abundancia de pingüinos, y aplicación de estos métodos para calcular el sesgo y la incertidumbre en el ajuste de los datos brutos de los conteos.

iv) Labor futura. El taller identificó varias lagunas en los datos que sólo podrán subsanarse mediante un plan de trabajo a largo plazo –

a) datos de conteos recientes de pingüinos al oeste de las Islas Shetland del Sur y este de la Península Antártica;

b) datos de conteos de aves voladoras en toda el Área 48;

c) datos para el ajuste de la mayoría de las especies y de la mayoría de las áreas. De especial importancia es la recopilación estratégica de datos para el ajuste a fin de mejorar la estimación de la abundancia de pingüinos;

d) desarrollo de otros métodos para la prospección de grandes colonias de pingüinos.

5.8 El grupo de trabajo agradeció al Dr. Southwell por su informe y por la convocación del taller de prospecciones de depredadores. El trabajo de WG-EMM-STAPP representa una contribución considerable al trabajo de la CCRVMA y a la estimación de la abundancia de los depredadores por UOPE.

5.9 En particular, el grupo de trabajo indicó que una base de datos que combine los conteos de pingüinos, los datos del programa CEMP, los datos de ASI y los datos históricos disponibles en la literatura representaba una contribución fundamental al trabajo de la CCRVMA.

5.10 El Dr. Trathan indicó que con el tiempo la CCRVMA dispondría de una base de datos de este tipo. El acceso a tales datos estaría regido por las normas de acceso y utilización de datos de la CCRVMA.

5.11 La presentación de información de BAS acerca de la distribución y abundancia de las focas cangrejeras por sí sola representa un importante y considerable progreso en la estimación de la abundancia de consumidores importantes de kril.

5.12 Uno de los objetivos del taller de prospecciones de depredadores fue identificar lagunas en nuestro conocimiento de la abundancia de depredadores, y con esto en mente
como también figura en WG-EMM-08/53), se identificaron áreas geográficas con baja cobertura (vg. UOPE al este de la Península Antártica). Las futuras prospecciones podrían concentrar su trabajo en estas zonas geográficas.

5.13 El grupo de trabajo también apreció los esfuerzos del taller de prospecciones de depredadores encaminados a cuantificar la incertidumbre en las estimaciones de abundancia de los depredadores, e indicó que esto será de especial importancia para las estimaciones de los modelos.

5.14 Uno de los problemas identificados por el taller de depredadores y por el grupo de trabajo en la utilización de los datos disponibles para estimar la abundancia de pingüinos a una escala regional era que el año del conteo de colonias individuales más reciente varía considerablemente, de modo que se tendrá que efectuar algún tipo de normalización o ajuste con respecto al año. Los datos recopilados en localidades donde se efectúa el seguimiento a largo plazo son importantes para este tipo de ajuste. De ser posible, también sería importante notificar el año al que corresponde cada estimación de abundancia. La consideración de estas cuestiones deberá incorporarse al plan de trabajo a largo plazo del grupo.

5.15 El Dr. Southwell indicó que la estimación de la abundancia de los depredadores es un proceso que se realiza en etapas, y que el trabajo del taller era simplemente la primera de múltiples etapas de un proceso cuyo objetivo final es la estimación de la abundancia regional.

5.16 El grupo de trabajo indicó que la labor futura deberá incluir los depredadores de peces. En consecuencia, el primer paso sería, al igual que para el taller de depredadores, identificar las especies que consumen kril y también son grandes consumidores de peces.

Estado de los depredadores, recurso kril y factores medioambientales

Depredadores

5.17 El Dr. Ramm presentó un resumen de los índices CEMP (WG-EMM-08/4). Se ha continuado procesando y convalidando los datos presentados por los países miembros, con especial énfasis en asegurar que los datos sean presentados de acuerdo con los métodos estándar. Siete países presentaron datos de 11 sitios en 2008.

5.18 La figura 3 de WG-EMM-08/4 presentó un resumen de los parámetros del CEMP y la tabla 1 proporcionó un resumen de los índices CEMP en la base de datos. Se observó una disminución del número de sitios de los cuales se notificaron datos y del número de parámetros presentados de otros sitios. Se notificó a la Secretaría que no se efectuó el seguimiento del sitio en Punta Edmondson en 2007/08; se tomaron fotografías aéreas de las colonias de pingüinos en el sitio de Isla Ross en 2007/08, y las fotografías tomadas desde 2003/04 están siendo analizadas para presentar los datos A3 a su debido tiempo.

5.19 El grupo de trabajo tomó nota de que algunos datos del programa CEMP de Australia estaban prontos para ser analizados y serán presentados a la Secretaría en el futuro.

5.20 El grupo de trabajo indicó también que se recolectaron datos CEMP del sitio en Isla Bouvet en 2007/08 (WG-EMM-08/28).
5.21 El Dr. Trivelpiece presentó los documentos WG-EMM-08/P12, 08/50, 08/51 y 08/P11 al grupo de trabajo.

5.22 WG-EMM-08/P12 presentó un análisis de los datos obtenidos en alta mar sobre el petrel damero, el pingüino de barbijo (*P. antarctica*) y la distribución de kril cerca de Isla Elefante durante enero en los veranos de 2004 a 2006. La dinámica de las manchas de kril afectó en gran medida la abundancia local y la distribución de las aves marinas, sugiriendo que el modelado debe incorporar el efecto de las manchas de kril en el consumo de alimento requerido por los depredadores. Los autores indican que la información sobre la distribución de las aves podría ayudar a entender las decisiones tomadas en el curso de la pesca, dados los cambios en las manchas de kril, el tiempo empleado en la búsqueda y la distribución de los depredadores en el mar. Esta información podría utilizarse para deducir las posibles interacciones entre las aves marinas y las pesquerías de kril. Los efectos negativos, como la competencia de los barcos por las manchas cuando éstas disminuyen su abundancia, podrían afectar las poblaciones de depredadores en una escala local. Otros estudios han propuesto restringir la pesca de kril a 50–100 km de distancia de las colonias de reproducción de los pingüinos; este estudio refuerza esta premisa.

5.23 El grupo de trabajo aprobó la propuesta del Taller sobre Prospecciones de Depredadores (WG-EMM-08/8, párrafo 6.9) de que convendría investigar si la observación en el mar de las aves marinas podría representar otro método para estimar la abundancia y el consumo de estas especies por UOPE. El grupo de trabajo instó a los miembros que tengan datos pertinentes a que preparen trabajos para ser revisados en la reunión de 2009 de WG-EMM.

5.24 WG-EMM-08/50 examinó los cambios interanuales de las estrategias para buscar alimento y la dieta de los pingüinos en las Islas Shetland del Sur de la Antártida durante cinco años (2002–2005 y 2008). *Euphausia superba* fue el componente principal de la dieta, seguido por los peces. El número de polluelos que sobrevivieron hasta la época de cría se mantuvo relativamente constante a través de los años, pero la composición de la dieta y los hábitos de buceo variaron considerablemente. Los resultados indican que los pingüinos papúa (*P. papua*) se alimentan de varios tipos de presa, y a distintas profundidades sin comprometer su capacidad para proveer de alimento a sus polluelos. Los autores sugieren que esta flexibilidad puede contribuir a mantener la estabilidad de las poblaciones del pingüino papúa, o a su aumento en la región, mientras que las poblaciones de sus congéneres con estrategias de alimentación menos flexibles han disminuido. El seguimiento de varias especies de depredadores simultáneamente proporciona mayor información sobre cómo los cambios en la abundancia de kril pueden afectar la dinámica de las poblaciones de depredadores, y debiera representar una consideración de importancia para los científicos que trabajan en modelos de las interacciones kril–pesquería–depredadores en el Océano Austral.

5.25 El grupo de trabajo señaló que si bien los pingüinos papúa exhibían flexibilidad en la búsqueda de alimento, el kril fue el componente predominante de su dieta todos los años. Aparentemente los pingüinos papúa no serían capaces de reemplazar totalmente su dieta con peces si se diera una reducción más drástica de kril – como lo demuestran las poblaciones de pingüinos papúa en Georgia del Sur, que fracasaron casi totalmente en sus esfuerzos de reproducción en los años en que la biomasa de kril se redujo significativamente en la región.

5.26 El grupo de trabajo indicó que los pingüinos papúa, si bien tienen estrategias más flexibles de alimentación que sus congéneres, siguen respondiendo a los cambios de la
biomasa de kril cambiando de presa. Además, proporcionan oportunidades importantes para hacer estudios comparativos con los pingüinos de barbijo y adelia en lo que se refiere a sus respuestas a los cambios y variabilidad ambiental.

5.27 WG-EMM-08/51 informó sobre el progreso logrado en la aplicación preliminar de FOOSA a nivel de las interacciones entre las tres especies de poblaciones de pingüinos en reproducción, el kril y la variabilidad ambiental en Bahía Almirantazgo, Isla Rey Jorge.

5.28 Esta labor en curso sirve dos propósitos:

i) La reducción de la escala de FOOSA permitirá estimar parámetros, incluido los parámetros del reclutamiento del stock y los parámetros de forma que describen la sensibilidad de la supervivencia de los depredadores a los cambios en la densidad de kril. Se dispone de muy poca información sobre estos parámetros a escala regional (por ejemplo, Mar de Escocia), pero a escala local se dispone de información detallada. La capacidad de FOOSA de pronosticar los cambios observados en la abundancia de pingüinos en la pequeña escala de este estudio podría ser útil para avanzar en la implementación de los objetivos de ordenación del ecosistema para la región del Mar de Escocia en su totalidad.

ii) Los resúmenes de distintos datos de Bahía Almirantazgo han identificado otras hipótesis sobre la supervivencia de los pingüinos juveniles que podrían ser incorporadas en FOOSA. Estas hipótesis pueden ser probadas formalmente en la forma de modelos alternativos utilizando criterios estándar de selección. Al probar las posibles hipótesis los autores esperan obtener información sobre los principales factores determinantes de cambio en las poblaciones estudiadas y mejorar el realismo biológico de FOOSA.

5.29 Los autores indicaron que la importancia relativa de los procesos que operan de abajo hacia arriba (disponibilidad de kril y cambios en la trama alimentaria) en relación con los que operan de arriba hacia abajo (depredadores) en el control de las poblaciones de pingüinos podría estar cambiando en condiciones de una baja abundancia de reproductores. La presión de la depredación podría acelerar las tendencias descendientes de las poblaciones cuando éstas alcanzan un tamaño pequeño, reduciendo aún más el período de tiempo en que se podría implementar medidas de conservación para mitigar estas disminuciones en los depredadores.

5.30 WG-EMM-08/P11 presentó datos de un programa de seguimiento a largo plazo de los depredadores en Georgia del Sur junto con un modelo demográfico de kril con el fin de simular la variabilidad natural y la inducida por las pesquerías en la abundancia de kril y examinar el poder del modelo para detectar los efectos de los distintos niveles de pesca. Los resultados indican que si bien la capacidad del programa de seguimiento ha sido comprobada para detectar los efectos de la variabilidad natural en la abundancia de kril, su capacidad para detectar los efectos de la pesca puede ser limitada si la significación estadística requerida es de 95%.

5.31 Al cambiar la probabilidad de que ocurra un error Tipo I (α) de 0.05 a 0.2 el poder estadístico aumentó marcadamente. Los autores indicaron que cuando se considere métodos que utilizan los datos de las respuestas de los depredadores para detectar los efectos de la pesca, podría ser preferible fijar α a un nivel más alto que el nivel utilizado en las pruebas normales de la significación estadística de una hipótesis, reduciendo el riesgo de que ocurra
un error Tipo II (es decir, que no se detecte un efecto real) pero aumentando el riesgo de que ocurra un error Tipo I (la detección de un efecto falso). Los autores consideraron que esto concordaba con el enfoque precautorio.

5.32 Los autores propusieron que el desarrollo de un mejor entendimiento del papel de los procesos ambientales en la variabilidad de la abundancia de kril permitiría incluir al medio ambiente como covariable en el análisis de los datos de seguimiento. Esto controlaría de manera efectiva el componente de la variabilidad ocasionada por el medio ambiente y aumentaría el poder para detectar los cambios que se originan específicamente del impacto de la pesquería de kril.

5.33 El grupo de trabajo señaló que es importante identificar correctamente las variables medioambientales que ocasionan la variabilidad cuando se estudie este enfoque.

5.34 El grupo de trabajo indicó también que los análisis presentados en WG-EMM-08/P11 ilustran las compensaciones tomadas en cuenta en la toma de decisiones de ordenación. El entendimiento de las consecuencias relativas de cometer errores Tipo I y II para las medidas de ordenación podría conllevar a un enfoque más dinámico de la ordenación.

5.35 El Dr. Goebel presentó los documentos WG-EMM 08/25, 08/31 y 08/35 al grupo de trabajo.

5.36 WG-EMM-08/25 presentó datos sobre la dieta del rorcual aliblanco (*Balaenoptera acutorostrata*) obtenidos de expediciones de caza de ballenas durante cuatro años, de 1982/83 a 1985/86, en las Áreas 1–4 y 6. Un 65% de la caza de ballenas ocurrió en el Área 48 de la CCRVMA. Se capturó más de 12 000 rorcuales aliblancos y se analizaron los estómagos de más de 11 000 (N = 11 652). De éstos, 46% (N = 5 354) contenían presas. Todos los estómagos con presas contenían *E. superba* y 94% solamente contenían *E. superba*. Otros componentes secundarios de la dieta fueron el kril glacial (*E. crystallorophias*) y el diablillo antártico (*Pleuragramma antarcticum*). La mayor parte de los *Pleuragramma* se encontró en las ballenas provenientes del Área 2. Se agrupó el kril presente en los estómagos de acuerdo a su sexo y madurez de conformidad con el protocolo estándar. No se proporcionó datos de la frecuencia de tallas, pero el autor notificó la mediana de la talla de kril, la madurez y la razón entre los sexos. Si bien no se presentaron análisis estadísticos, el autor notificó diferencias en la composición de kril por área y temporada.

5.37 Tanto WG-EMM-08/31 como 08/35 presentaron información sobre un estudio oceanográfico efectuado por múltiples barcos en el Mar de Ross durante la temporada 2004/05. En muchos aspectos, se trata de estudios oceanográficos similares relativos a la distribución de kril y de ballenas en partes de las Subáreas 88.1 y 88.2. Sin embargo, hay diferencias importantes. El área de estudio de WG-EMM-08/31 cubrió de 160°E a 160°W y de 78°S a 60°S. El muestreo se efectuó más al norte que en el estudio notificado en WG-EMM-08/35 e incluyó aguas de la CCA. El área de estudio de WG-EMM-08/35 cubrió de 165°E a 155°W, y de 69°S hasta el continente antártico. La cobertura temporal fue mayor en WG-EMM-08/31 y cubrió de fines de diciembre hasta la mayor parte de febrero. El estudio notificado en WG-EMM-08/35 duró un mes, de mediados de enero a mediados de febrero.

5.38 Ambos estudios encontraron resultados similares en cuanto a la distribución de *E. superba* y *E. crystallorophias*. Esta última especie se dio en mayor abundancia en aguas
más frías sobre la plataforma continental, mientras que *E. superba* se encontró en aguas más cálidas y profundas. Ambos documentos presentaron la distribución de *Euphausia superba* y de *E. crystallorophias*.

5.39 WG-EMM-08/31 informó sobre la distribución de tres especies de ballenas, la ballena jorobada (*Megaptera novaeangliae*), la ballena azul (*B. musculus*) y el rorcual aliblanco. WG-EMM-08/35 solamente se refirió a la distribución del rorcual aliblanco. En ambos estudios, la distribución del rorcual aliblanco fue similar en aguas frías (en relación con la ballena jorobada) y se encontraron en mayor abundancia en la región de la pendiente de la plataforma y en el borde del hielo, y se alimentaron principalmente de *E. superba*. Por otro lado, la ballena jorobada sólo se encontró en aguas más tibias de la CCA. Sólo se tomaron muestras de la dieta del rorcual aliblanco.

5.40 El Dr. Naganobu indicó que estos documentos proporcionan pruebas de la fuerte relación entre la variabilidad oceanográfica de las masas de agua y los patrones de circulación de la capa superficial (MTEM-200), y la distribución y abundancia del kril y de las ballenas de barbas. Expresó que esta estrecha relación permitiría aplicar los resultados de esta prospección localizada a toda la región.

Kril

Observaciones a más de 200 m de profundidad

5.41 La mayoría de las observaciones a la fecha indican que la mayor parte de la población de kril post-larval se encuentra exclusivamente y de manera característica en los 150 m superiores de la columna de agua. Por ejemplo, WG-EMM-08/32 describió como el 94% de todas las capturas de kril de la pesquería ocurren a menos de 200 m de profundidad, mientras que el análisis de los datos de la prospección CCAMLR-2000 (Demer, 2004) indicaron que la biomasa acústica de kril se encontraba esencialmente localizada en los 150 m superiores.

5.42 Por el contrario, WG-EMM-08/P1 presentó información sobre observaciones efectuadas con un vehículo operado por control remoto en aguas profundas durante el verano austral en 2006/07 que reveló la presencia de ejemplares adultos de *E. superba*, incluso hembras grávidas hasta 3 500 m de profundidad en la región de Bahía Margarita en el oeste de la Península Antártica. El kril adulto se encontró cerca del lecho marino en todas las profundidades pero no en los fiordos cerca de la costa. En todos los lugares donde se detectó kril, se encontraba alimentándose activamente, y en muchos lugares habían exuvias (restos de exoesqueleto).

5.43 Otros dos documentos presentados en la reunión se refirieron al kril presente en profundidades mayores de 200 m. WG-EMM-08/P10 informó sobre la distribución vertical de eufaüsidos en el Mar de Ross y aguas adyacentes en 2004/05. En muestras obtenidas de diversos estratos de profundidad con redes RMT8, *E. superba* juvenil se encontró distribuido en los 200 m superiores en la región frente a la costa cerca de SACCB, pero las hembras grávidas predominaron en la región de la pendiente y su abundancia fue mayor en el estrato de profundidad de 400–600 m.

5.44 De manera similar, WG-EMM-08/28 proporcionó un informe preliminar sobre los datos acústicos y de arrastre recolectados durante la campaña de estudios del kril antártico y
del ecosistema (AKES) realizada en la Subárea 48.6 a bordo del BI G.O. Sars. Si bien los datos acústicos demostraron que *E. superba* se encontraba en su mayoría a menos de 150 m de profundidad, las capturas de las redes de arrastre indicaron que una pequeña parte del stock reside en aguas a más de 500 m de profundidad.

5.45 El grupo de trabajo recordó que existe una gran cantidad de datos de la pesquería realizada en invierno alrededor de Georgia del Sur que muestran que el kril probablemente se encuentra en aguas más profundas que en el verano. Sin embargo, el grupo de trabajo estuvo de acuerdo en que las observaciones presentadas en el documento WG-EMM-08/P1 eran originales y se contradecían con el concepto de que el kril es un organismo esencialmente pelágico.

Prospecciones de kril

Prospecciones en la Subárea 48.6

5.46 WG-EMM-08/28 proporcionó una reseña de la prospección noruega AKES efectuada en 2008 alrededor de Georgia del Sur en la Subárea 48.3 y a lo largo de los transectos en la región del meridiano 0° de la Subárea 48.6. Los resultados preliminares indicaron algunas diferencias en la estructura de las poblaciones de las dos subáreas. Los grandes ejemplares de *E. superba* adulto encontrados en la región de Georgia del Sur eran más jóvenes que los encontrados en las muestras de la Subárea 48.6. Los autores indicaron también que el kril pigmeo (*E. frigida*) y el kril espinudo (*E. triacantha*) fueron más abundantes en la región de Georgia del Sur que en la Subárea 48.6.

5.47 WG-EMM-08/28 también presentó una estimación preliminar de la biomasa de ~14 millones de toneladas de *E. superba* en la parte de la Subárea 48.6 cubierta por los dos transectos efectuados durante la segunda parte de la campaña AKES. Dado que el área explorada cubrió 302 000 millas náuticas–2 esto equivale a una densidad de la biomasa de kril de ~13.6 g m–2.

5.48 El grupo de trabajo agradeció a Noruega por sus esfuerzos en la realización de esta campaña en un área para la cual había muy poca información previa y expresó que esperaba con interés los resultados del análisis completo y la publicación de los mismos.

5.49 WG-EMM-08/7 informó sobre una contribución de Alemania a CCAMLR-API llevada a cabo durante el verano austral de 2007/08: una prospección estándar de kril con muestreo de redes efectuada en el Mar de Lazarev (al sur de 60°S) (parte de la Subárea 48.6). Se encontró *Euphausia superba* en 49 de 52 muestras tomadas con redes RMT pero su densidad fue solamente de 0.87 g m–2, el segundo valor más bajo en una serie de cuatro prospecciones. El kril ojigrande (*Thysanoessa macrura*) ha sido encontrado en gran número en la prospección veraniega en curso y su densidad es cinco veces mayor que la de *E. superba*. Al sur de 62°S, la composición de tallas de *E. superba* mostró una predominancia de kril de 1 y 2 años de edad, pero la proporción de la clase de edad 1+ fue menor que la de la clase 2+, indicando que la clase anual de 2007 es moderada. Entre los 60° y 62°S, las clases de mayor edad y de 4 más de 35 mm de talla predominaron en el stock de kril. La población de kril estaban madurando y las larvas de kril fueron escasas. Una comparación con los datos de 2006 reveló que el desove ocurrió por lo menos tres semanas más tarde en la temporada de
2008 comparado con el estudio de 2006. Euphausia crystallorophias solamente fue observado en unas pocas estaciones neríticas costeras de la Antártida y su número fue relativamente bajo.

5.50 El grupo de trabajo indicó que además de *E. superba*, hay otras especies importantes de eufaúsidos en el Subárea 48.6 son importantes, que proporcionarán otras vías en la trama alimentaria y tendrán consecuencias para las relaciones entre las especies explotadas y las especies dependientes.

5.51 El grupo de trabajo indicó también que los datos de la prospección acústica recopilados por el barco alemán proporcionaría información importante sobre la biomasa de kril en la Subárea 48.6 y alentó la presentación de una evaluación apropiada de la biomasa a la próxima reunión de WG-EMM.

Prospecciones en la zona del Mar de Ross

5.52 El documento WG-EMM-08/P10 informó sobre la distribución y estructura de la población de eufaúsidos en el Mar de Ross y aguas adyacentes durante el verano de 2004/05. Entre las especies de eufaúsidos, *E. triacantha* predominó en biomasa al norte de SACC, hubo una amplia distribución de *Thysanoessa* spp. al norte de la pendiente continental, mientras que *E. superba* estaba distribuido desde SACC hasta la pendiente. *Euphausia crystallorophias* se encontraba en el estrato de profundidad de 200–300 m en aguas más frías de la plataforma continental. Predominaron los ejemplares de *Euphausia superba* de talla entre 40–51 mm. Si bien los ejemplares de 26–40 mm fueron muy escasos en la prospección, los autores sugieren que esta probable clase anual de edad 2+ estaba distribuida separadamente de otras clases anuales al norte del área de la pendiente y no fue capturada debido al gran tamaño de las cuadrículas de muestreo.

5.53 WG-EMM-08/31 y 08/35 proporcionaron estimaciones de la biomasa de kril en el Mar de Ross. WG-EMM-08/35 describió una campaña realizada con dos barcos en la cual cada uno siguió un diseño de prospección distinto pero cubriendo la misma área. Se identificó el kril mediante dos frecuencias con una diferencia dB de 2–16 dB y el TS se calculó de conformidad con el método de Greene et al. (1991). El promedio de las densidades de la biomasa de *E. superba* fue 5.13 (±7.11 g m⁻²) y 2.53 (±2.25 g m⁻²) para los dos barcos. Esto resultó en una biomasa combinada de 1.4 millones de toneladas (CV 0.32) para un área de ~110 000 millas náuticas². Se estimó la biomasa de *E. crystallorophias* en 0.6 millones de toneladas.

Series de datos multianuales

Georgia del Sur

5.54 WG-EMM-08/48 presentó datos sobre las múltiples escalas temporales de variabilidad en las poblaciones de kril en Georgia del Sur. Los datos acústicos de la densidad de kril de las prospecciones realizadas al comienzo, mediados y fines de los veranos de 2001 a 2005, junto con la composición de tallas de la población de kril para el mismo periodo obtenida de datos de la dieta de depredadores, fueron utilizados en un modelo de la dinámica demográfica.
de kril para evaluar los posibles mecanismos que originan los cambios en la biomasa de kril. La abundancia más alta de kril se dio a mediados del verano en tres años (2001, 2002 y 2005) y a fines de verano en dos años (2003 y 2004); en estos últimos hubo indicios de que el reclutamiento de kril se atrasó varios meses. Una simulación con estimaciones empíricas de la magnitud y fecha del reclutamiento anual mostró que la mayor correlación existía con la serie de datos acústicos. Los resultados concuerdan con la existencia de una población de kril de reclutamiento externo (alóctona) que se incorpora a una población adulta retenida. Los resultados subrayan la importancia de la fecha del reclutamiento, en especial cuando esto podría introducir un desequilibrio entre el máximo de la abundancia de kril y el máximo consumo de los depredadores, que puede exacerbar los efectos resultantes del cambio climático en las poblaciones de kril.

5.55 El grupo de trabajo deliberó sobre la magnitud del flujo de kril y la migración en la región de Georgia del Sur. Reconoció que la población de kril encontrada en la plataforma de Georgia del Sur exhibe gran retención y estabilidad espacial, siendo muy previsible. Sin embargo, se subrayó que la población de kril de Georgia del Sur no es autosuficiente y depende totalmente del reclutamiento de kril proveniente de las regiones en que predomina el hielo al suroeste de la isla.

5.56 El grupo de trabajo reconoció que los resultados de WG-EMM-08/48 tenían implicaciones importantes para la ordenación de kril, en especial si se supone que la separación temporal entre la pesca y el periodo de mayor demanda y consumo por los depredadores podría reducir la competencia entre las pesquerías y los depredadores por el kril en Georgia del Sur.

Zona del archipiélago de las Islas Shetland del Sur

5.58 WG-EMM-08/41 presentó datos actualizados del reclutamiento de kril para la región de la Isla Elefante en las Islas Shetland del Sur, de 2002 a 2008. Todos los índices del reclutamiento mostraron un alto reclutamiento (R1) en 2003 y 2007/08, y bajo reclutamiento en los años intermedios. Hubo diferencias significativas entre los índices del reclutamiento proporcional entre los distintos viajes efectuados en un año, lo que apunta a una variación en el patrón de reclutamiento de kril en la región de la Isla Elefante.

5.59 WG-EMM-08/P12 informó sobre la influencia de la variabilidad espacial de E. superba en el comportamiento de las aves que buscan alimento cerca de la Isla Elefante (párrafo 5.22). Al describir el estado del kril, el documento presentó mediciones de la discontinuidad de las manchas en relación con la abundancia de kril y demostró que cuando la abundancia de kril es significativamente menor, la distribución de las manchas se hace más irregular.
5.60 El grupo de trabajo tomó nota de la clara tendencia interanual en el reclutamiento de la población observada en estos datos y subrayó la intensa relación establecida entre el reclutamiento de kril, la dinámica del hielo marino y los procesos climáticos globales, como ENSO, que afectan al Mar de Escocia.

Islas Orcadas del Sur

5.61 WG-EMM-08/26 comparó la biomasa de *E. superba* alrededor de las Islas Shetland y Orcadas del Sur en 1999, 2000 y 2008. La distribución de la frecuencia de tallas de kril en 2000 y 2008 en Isla Elefante y en las Islas Orcadas del Sur fue similar. Sobre la base de esta similitud observada en la estructura de las poblaciones, se derivó una estimación de la biomasa utilizando los datos acústicos recopilados como parte de las prospecciones de peces AMLR de EEUU realizadas en 1999 y la distribución de tallas de kril derivada de la Isla Elefante el mismo año. En 2008 una prospección especializada de la biomasa de kril la estimó en ~2.7 millones de toneladas en la región de las Orcadas del Sur. En general, la comparación de la biomasa de estos tres años indica que la biomasa de kril en las Islas Orcadas del Sur es similar a la biomasa del recurso en las Shetland del Sur, especialmente en la región de Isla Elefante.

5.62 El grupo de trabajo aplaudió este método para derivar la biomasa de kril a partir de datos acústicos recopilados como parte de una prospección de peces e indicó que este tipo de datos, derivados de estudios similares, pueden ser utilizados para explicar las tendencias temporales de la biomasa de kril en la región.

5.63 El grupo de trabajo indicó que si bien a veces la estructura de la población en las Islas Orcadas del Sur es muy variable, aparentemente gran parte de esta variabilidad puede deberse al muestreo en relación con las masas de agua que se originan en el Mar de Weddell. Además, la detección de clases reclutadas de kril similares en los datos de la dieta de depredadores recopilados en las Islas Orcadas del Sur y Shetland del Sur también apoyan la relación que existe en las poblaciones de kril de ambas regiones.

5.64 En resumen, el grupo de trabajo subrayó la importancia de los conjuntos de datos a largo plazo sobre la abundancia de kril que ahora se obtienen de los programas nacionales efectuados en el Mar de Escocia e hizo un llamado a continuar estos programas en el futuro.

Distribución y abundancia de *E. superba* en gran escala

5.65 La pesquería de kril tiende a concentrar sus actividades en las regiones de la plataforma y del borde de la misma (vg. WG-EMM-08/55 y 08/32), a pesar de que, históricamente, el esfuerzo de pesca ha sido considerable en las regiones oceánicas tanto en el suroeste del Atlántico como en el área entre 30° y 150°E.

5.66 WG-EMM-08/P4 presentó un mapa cuantitativo de la distribución circumpolar de *E. superba* basado en una base de datos de muestras de la red (8 137 muestras) recogidas entre 1926 y 2004. La densidad numérica se estandarizó refiriéndola a un método de muestreo común. De este análisis, el 70% de la población total está concentrada entre 0° y 90°W y en general, 87% del stock habita en aguas oceánicas profundas (>2 000 m) y ocupa
regiones donde hay una cantidad moderada de alimento (0.5–1.0 mg chl-α m⁻³). Los modelos de advección sugieren que se pierde parte del stock que se mueve hacia el norte, a las zonas de baja clorofila de la CCA. Los autores encontraron indicios plausibles de que existe una migración compensatoria hacia el sur, encontrándose una proporción creciente de kril al sur de la CCA al paso de la estación. Los autores indicaron que la retención de kril en hábitats de producción moderada del océano es un factor clave para su alta producción total. Si bien las tasas de crecimiento son más bajas que las tasas observadas sobre las plataformas, el océano protege al kril de los depredadores que habitan en la plataforma. La distribución circumpolar asimétrica poco común del kril por lo tanto refleja un equilibrio entre las fuerzas de advección, la migración y los procesos que operan de arriba hacia abajo y de abajo hacia arriba.

5.67 WG-EMM-08/17 evaluó nuevamente la biomasa total y producción anual de *E. superba*. A partir de datos de la densidad y frecuencia de tallas obtenidos de bases de datos de muestras de la red (KRILLBASE) se obtuvo un área de distribución de ~19 × 10⁶ km² en el verano con una abundancia promedio total de 8 × 10¹⁴ ejemplares post-larvales, y una biomasa circumpolar de 379 millones de toneladas. Para el área de la prospección CCAMLR-2000, esto equivale a una biomasa de kril de 106 millones de toneladas. Estos valores se basan en una metodología estandarizada de muestreo de la red pero integran datos del período 1926–2004, durante el cual la abundancia de kril ha fluctuado.

5.68 En WG-EMM-08/17 se estimó de manera conservadora la producción bruta post-larval en 342–536 millones de toneladas y⁻¹, de acuerdo con tres métodos independientes. Estos valores se sitúan en el límite superior de las estimaciones recientes, pero concuerda con el concepto de alta producción de energía para una especie de este tamaño. La similitud entre las tres estimaciones de la producción refleja la concordancia a grandes rasgos entre los tres modelos de crecimiento utilizados, además del hecho de que, para un tamaño dado de la población, la producción es relativamente insensible a la distribución de tallas de kril al comienzo de la época de crecimiento. Estos valores de producción están dentro de lo que puede sostener el sistema de producción primaria del Océano Austral y lo que se requiere para sostener un consumo estimado de los depredadores de 128–470 millones de toneladas y⁻¹.

5.69 El grupo de trabajo reconoció que estos grandes resúmenes globales obtenidos de una combinación de muchos conjuntos de datos distintos representaban un aporte muy valioso a nuestro entendimiento sobre el funcionamiento del ecosistema oceánico. Además, el grupo de trabajo indicó que las estimaciones de la biomasa de kril de muestras de la red podrían servir para hacer una comparación con las estimaciones obtenidas de prospecciones acústicas.

5.70 El grupo de trabajo reconoció también que las pautas de variabilidad en pequeña escala en la biomasa de kril (anualmente o por décadas) a menudo eran enmascaradas debido al requisito de obtener promedios en escalas temporales muy grandes a fin de poder obtener una cobertura circumpolar. El grupo de trabajo concluyó que sería conveniente recibir evaluaciones adicionales de las tendencias temporales en estos conjuntos de datos, y señaló que se podría continuar la discusión del tema en el próximo taller mixto CCAMLR–IWC.
Parásitos del kril

5.71 WG-EMM-08/P9 presentó datos sobre la histopatología de *E. superba* con manchas negras. Desde enero de 2001 se han estado observando estas manchas negras en el cefalotórax del kril. Las observaciones histológicas del kril muestreado en los inviernos de 2003, 2006 y 2007 en la región de Georgia del Sur revelaron que estas manchas eran nódulos con melanina compuestos de hemocitos agrupados alrededor de bacterias o de material amorfo. En las muestras de 2007, 42% del kril tenía estos nódulos. Se observaron parásitos no identificados en algunos ejemplares de kril que tenían nódulos con melanina. Los autores indicaron la posibilidad de que el kril haya sido inicialmente afectado por una infección parasitaria, y luego de la salida del parásito estos focos fueron objeto de una infección secundaria por bacterias presentes en el medio ambiente.

5.72 El grupo de trabajo recordó su pedido de que los observadores científicos a bordo de barcos de kril registrasen datos sobre el número de ejemplares de kril con manchas negras (SC-CAMLR-XXVI, anexo 4, párrafo 4.67) para poder considerar las posibles ramificaciones en el rendimiento reproductor y en la mortalidad de kril (SC-CAMLR-XXVI, anexo 4, párrafos 5.52 al 5.56). Dado el efecto negativo de ciertas manchas negras en el éxito de la reproducción del camarón del Atlántico norte (*Pandalus borealis*), el grupo de trabajo pidió seguir trabajando para estudiar la posibilidad de que estos efectos se observen en *E. superba*.

Medio ambiente y efectos climáticos

5.73 Se presentaron seis documentos sobre este tema a la consideración del grupo de trabajo. Cuatro de ellos han sido publicados (WG-EMM-08/P2, 08/P3, 08/P5 y 08/P6) y dos fueron presentados como documentos de trabajo (WG-EMM-08/32 y 08/33).

5.74 En WG-EMM-08/32 los autores explicaron el mejor conocimiento de la importancia del índice MTEM-200 en relación con la distribución de kril y la escala global. Los autores utilizaron los datos de la pesquería comercial de kril de 1973 a 2008 para documentar la distribución vertical del esfuerzo y encontraron que la mayoría del kril se captura en el intervalo de profundidad entre 0–50 m. Los autores utilizaron el resumen global de la temperatura de la columna de agua del World Ocean Atlas (Locarinni et al., 2005) para calcular el índice de temperatura integrado y derivar un índice global de MTEM-200. Los autores muestran que las capturas de kril coinciden con un estrecho rango de temperaturas (–0.5° a 0.5°C), con máximos más definidos asociados con ciertas áreas. Los autores también concluyeron que aún si se usan los datos históricos de las prospecciones *Discovery* se puede ver que esta asociación es substancial, lo que estaría sugiriendo que es una característica constante del entorno del kril.

5.75 En WG-EMM-08/P3 los autores utilizaron los datos de temperatura compilados de varios conjuntos de datos históricos recolectados alrededor de Georgia del Sur para examinar las tendencias estacionales y a largo plazo de la temperatura en esta región desde mediados de la década de 1920 hasta principios de la década del 2000.

5.76 Los autores utilizaron un modelo mixto de máxima verosimilitud con algunas restricciones (REML) para examinar las tendencias temporales de la temperatura del agua. El modelo incluyó un modelo sinusoidal sencillo para simular el calentamiento y el enfriamiento
estacional, y un modelo espacial para tomar en cuenta la variabilidad geográfica de la distribución de la temperatura en esta área. Los autores encontraron un calentamiento significativo en los 100 m superiores de la columna de agua durante este período. Una conclusión importante fue que la velocidad de calentamiento fue mayor durante el invierno que durante el verano. Estos cambios (0.9° en verano y 2.3°C en invierno) son mayores que los observados en otros estudios (vg. Gille, 2002). Los autores concluyeron además que este calentamiento había provocado un desplazamiento del borde de hielo promedio unos 150 km hacia el sur. Por último, los autores mostraron que las temperaturas mínimas habían cambiado (subiendo el mínimo del invierno de –0.5° a unos 0.25°C durante dicho período), y han inferido que esto podría tener un efecto en el zooplancton, en el fitoplancton y en el crecimiento, reproducción y estructura de las concentraciones de kril.

5.77 En WG-EMM-08/33 los autores proporcionaron una actualización de sus continuos esfuerzos por documentar la importancia del índice de oscilación del estrecho Drake (DPOI) que se define como la diferencia de presión a nivel del mar entre Río Gallegos (Argentina), y la Base Esperanza situada en la Península Antártica. Este índice refleja la fuerza de los vientos del oeste, y ha sido utilizado para correlacionar la abundancia de kril en estudios anteriores (Naganobu et al., 1999). Los autores utilizaron datos de CTD de dos transectos efectuados frente a la Península Antártica para determinar el índice MTEM-200 y correlacionar estos dos índices. Los autores encontraron una correlación muy significativa y estrecha entre los dos índices. Este análisis ha seguido contribuyendo a elaborar índices localizados de importancia global para determinar la distribución de kril (WG-EMM-08/32), y que pueden estar correlacionados con ciertos tipos de fenómenos atmosféricos que se dan en gran escala y afectan el clima.

5.78 El Dr. Naganobu indicó que los datos CTD habían sido proporcionados por el programa AMLR de Estados Unidos, reconociendo la importancia de dicho programa para el trabajo de la CCRVMA. El Dr. Naganobu agradeció este aporte a la investigación a la vez que les alentó a seguir recopilando este tipo de datos.

5.79 El grupo de trabajo indicó que el trabajo presentado en WG-EMM-08/33 vinculaba claramente el fenómeno de forzado ambiental en gran escala con la variabilidad medible en el ecosistema, y que los mayores efectos se aprecian durante la manifestación de ENSO (vg. 1997/98). El grupo de trabajo llamó a seguir refinando este enfoque.

5.80 En WG-EMM-08/P2 y 08/P6 se examinó la importancia de los distintos tipos de oscilación climática que se dan a nivel global (principalmente la oscilación de tipo ENSO), en el ambiente del Océano Austral, en las poblaciones de kril y de depredadores.

5.81 En WG-EMM-08/P2 los autores examinaron cómo la variabilidad de ENSO afecta la abundancia derivada de los arrastres y la biomasa de kril derivada de las prospecciones acústicas en la región de Georgia del Sur de Mar de Escocia. Se elaboró un índice de la anomalía de SST para el período de 1990 a 2004 para determinar los períodos de temperaturas más altas y más bajas de lo normal. También examinaron la importancia del hielo marino para estas relaciones.

5.82 Los autores de WG-EMM-08/P2 correlacionaron estas temperaturas anómalas con distintos retrasos en la manifestación de ENSO, a fin de considerar los efectos directos (cero retraso) y retardados (2–3 años de retraso) de los fenómenos atmosféricos y los efectos localizados en todo el Mar de Escocia. Los autores utilizaron los datos derivados de Atkinson
et al. (2004) que describen la disminución a largo plazo de la abundancia de kril. Utilizando las series de datos sin tendencias, demostraron cómo las anomalías de SST y del hielo marino se relacionan con los cambios en la abundancia y biomasa de kril. También examinaron estos efectos en los depredadores tope de la trama alimentaria.

5.83 El grupo de trabajo deliberó sobre la proyección a largo plazo de WG-EMM-08/P2 que estima una disminución del 95% de kril en los próximos 100 años, y señaló que es posible que el modelo no tome en cuenta las áreas fuera de la región de Georgia del Sur/Mar de Escocia, dado el enfoque regional del modelo y el ciclo de vida del kril. El grupo de trabajo también indicó que la dependencia de las fluctuaciones de kril en Georgia del Sur podría reflejar lo que ocurre corriente arriba. Las discusiones también se centraron en las consecuencias de que esto tendría en la recopilación de datos para separar los efectos del clima de los efectos de la pesca dada esta variabilidad.

5.84 WG-EMM-08/P6 examinó la influencia del forzado ambiental, específicamente el rol de los factores condicionantes del clima como ENSO en la dinámica de las poblaciones de depredadores y presas en el Océano Austral. Los autores listaron 10 maneras en que el ambiente puede influir en los grupos de depredadores y presas. Desde simplemente un cambio de la distribución de los animales hasta interacciones más complejas que incluyen comunidades enteras de grupos de animales y de especies. Los autores identificaron diversas variables de confusión, como por ejemplo, extracciones previas y exterminio localizado de los depredadores superiores que afectarían la capacidad de detectar la respuesta del ecosistema al cambio climático. Los autores indicaron que la detección de señales climáticas más duraderas en la dinámica de los depredadores será difícil pues las series cronológicas son relativamente cortas, aún las series cronológicas más extensas que existen de datos biológicos.

5.85 El último documento considerado en esta sección (WG-EMM-08/P5) trató de modelar el efecto de cambios en el ecosistema y del clima en una variedad de especies alrededor de la Antártida. Los autores emplearon un modelo matricial estocástico para simular la dinámica de las poblaciones de una variedad de depredadores, incluido el lobo fino, para examinar la sensitividad de las características de los estadios del ciclo de vida y de las estadísticas demográficas durante el ciclo de vida de los animales. Los autores probaron la hipótesis de que las características de los estados del ciclo de vida están protegidos y demuestran baja variabilidad ante los cambios del ambiente.

5.86 Los autores de WG-EMM-08/P5 escogieron la anomalía del SST descrita anteriormente para la región de Georgia del Sur como el factor condicionante ambiental representativo en el modelo. Ellos también utilizaron las relaciones descritas en WG-EMM-08/P5 – incluido el efecto de cambios en la disponibilidad de alimento en la abundancia de kril – para examinar la capacidad de protección ante las condiciones ambientales. Los autores encontraron que el estado físico del lobo fino en la región de Georgia del Sur empeoró con un aumento en las anomalías de SST, a partir de la década de 1990. Otras especies (otras focas, pingüinos y algunas aves voladoras) no sufrieron el mismo deterioro de su estado físico en estas simulaciones, lo que apunta a que la disminución de la condición física de los lobos finos fue un problema más bien regional que global. Los autores concluyeron que, a medida que la variabilidad ambiental aumenta con el cambio climático, las especies con ciclos de vida más limitados sufrirían efectos negativos considerables en respuesta a dicho cambio y variabilidad.
5.87 El grupo de trabajo señaló que este enfoque era de interés para examinar la sensibilidad de las tasas vitales y las respuestas de las especies a la variabilidad del medio ambiente.

5.88 WG-EMM-08/36 examinó la estructura de la comunidad de copépodos en el Mar de Ross. Se encontraron tres comunidades: una en la CCA, otra en el Mar de Ross y otra ubicada entre estas áreas. Los autores concluyeron que la comunidad de copépodos en el Mar de Ross se caracteriza por una baja densidad de animales. Sugieren que las agrupaciones de copépodos dentro de las comunidades se relacionaban con distintas condiciones físicas. Además de las asociaciones relacionadas con la masa de agua, sugieren que los ambientes de mezcla pueden afectar la estructura de las comunidades. Los autores presentaron la hipótesis de que a largo plazo, las condiciones medio ambientales podrían desplazar la estructura de la comunidad en el espacio.

5.89 El grupo de trabajo indicó que este estudio era interesante ya que se han realizado muy pocos estudios sobre la estructura de las comunidades de zooplancton en el Mar de Ross y llamó a seguir estudiando estos temas.

5.90 WG-EMM-08/P8 comparó la estructura de la comunidad de zooplancton alrededor de Georgia del Sur en el Atlántico Sur con los datos históricos. Los autores utilizaron datos físicos recopilados en cada período de tiempo para caracterizar el medio ambiente físico, y para examinar los cambios temporales del ambiente que podrían afectar la estructura de las comunidades de fitoplancton y zooplancton durante este período. El indicador ambiental examinado en mayor detalle fue el posible efecto de la temperatura asociada con el factor determinante de forzado ENSO. Debe tomarse nota de que ENSO y otras modalidades del clima pueden afectar la productividad del sistema. Los autores resolvieron varios problemas asociados con la nomenclatura taxonómica requerida para comparar datos recopilados a largo plazo. A pesar de haberse efectuado una revisión muy completa, los autores no encontraron pruebas firmes de un cambio en la estructura de la comunidad de zooplancton.

5.91 El grupo de trabajo discutió las razones por las cuales la comunidad de zooplancton alrededor de Georgia del Sur parece ser relativamente insensible a los cambios en el medio ambiente, dado que en el mismo período se observaron cambios en la temperatura de la columna de agua. Se concluyó que esto podría deberse a la falta de una serie continuada de datos, pero también podría reflejar la amplia, y relativamente común, distribución del zooplancton en el Mar de Escocia en general.

5.92 El grupo de trabajo indicó que a pesar de que no se detectaron tendencias de un cambio a largo plazo en las comunidades, la estructura de las mismas fue afectada por ENSO, y por lo tanto sería sensible a los cambios cuando éstos son de gran escala.

5.93 Se señaló que el análisis de la comunidad de zooplancton también se llevó a cabo para reforzar el programa CPR reciente que ha sido iniciado en el suroeste del Atlántico por BAS.

5.94 El Dr. Fielding informó que se recopilaron datos sobre los mictófidos durante la prospección efectuada por el BI Tangaroa (WG-EMM-08/18) y que estos datos serían útiles.
en el futuro, dada la incertidumbre sobre la magnitud de la abundancia de los peces pelágicos con relación a varios problemas de importancia para WG-EMM. Se pidió a los autores que continúen analizando estos datos.

Métodos

Métodos estándar del CEMP

5.95 El subgrupo de trabajo sobre métodos (convenido por el Dr. Goebel) se reunió y consideró dos temas concernientes a los métodos estándar del CEMP. El primero fue el método estándar A7 (peso de los polluelos de los pingüinos papúa al emplumarse). El subgrupo había indicado en discusiones anteriores que el pingüino papúa, a diferencia del pingüino adelia y de barbijo, no “dejan el nido” en el sentido de que no dejan una vez y para siempre la colonia sino que experimentan un período de “emplumaje” de una a dos semanas en el cual hacen varios viajes al mar y vuelven a la colonia, y siguen siendo alimentados por sus progenitores. Por ende, la metodología actual para registrar el peso de los polluelos emplumados del pingüino adelia y de barbijo no es aplicable al pingüino papúa, y debe considerarse un nuevo método por el subgrupo. Ya que no se propuso una revisión este año, se decidió aplazar la consideración de este problema hasta que se complete un cambio propuesto y se lo presente al subgrupo para su consideración.

5.96 El segundo problema se refiere al método estándar A3 (tamaño de la población reproductora de pingüinos (número de parejas)), y la fecha en que se realizan los conteos de nidos para estimar la población de pingüinos adultos reproductores. El motivo de preocupación surgió durante el taller sobre prospecciones de depredadores, cuando un documento que informaba sobre dichos conteos notificó erróneamente que se habían realizado conteos históricos en una fecha fija del calendario. Sin embargo, luego de ciertas discusiones, el subgrupo de métodos determinó que el método estándar A3 ya requiere que se cuenten los nidos en base a la fenología anual de cada especie (es decir, que se cuenten los nidos en la mediana de la fecha de la postura de huevos).

Métodos para el muestreo del zooplancton

5.97 WG-EMM-08/19 informó sobre un error en el cálculo del volumen de agua filtrada por el dispositivo IKMT utilizado para obtener la serie de datos a largo plazo sobre el zooplancton (desde fines de la década de los 80 hasta ahora) del programa AMLR de EEUU. Este error afectó la estimación de la densidad de todas las especies del zooplancton, incluido el kril, desde 2000. El programa AMLR de EEUU advirtió a los miembros que deberán contactarse con dicho programa en relación con los datos proporcionados previamente por AMLR que podrían contener errores.

Métodos acústicos para la estimación de TS y la identificación de E. superba

5.98 WG-EMM-08/29 describió la utilización de cámaras estereoscópicas montadas en una sonda desplegada para detectar el TS y observar kril in situ alrededor de Georgia del Sur y la
Isla Bouvet. Se fotografiaron varios comportamientos del kril, por ejemplo, la formación de agregaciones o enjambres, agregaciones poco densas y movimiento sincronizado del kril dentro de las agregaciones.

5.99 El grupo de trabajo reconoció la importancia de la orientación in situ como variable clave en la estimación de TS de kril con el modelo SDWBA. Indicó que había escasa información sobre la orientación de kril y que aguardaba con interés los resultados de los análisis de las mediciones hechas durante esta prospección.

5.100 WG-EMM-08/54 presentó los resultados del nuevo análisis del conjunto de datos utilizado para evaluar la identificación de *E. superba* con el método de dos frecuencias (120 y 38 kHz) con una ventana de identificación fija (2–12 dB). Los autores ampliaron el método de identificación a fin de incluir la ventana de identificación adoptada por la CCRVMA de tres frecuencias y la ventana variable de dos frecuencias propuesta por SG-ASAM, utilizando siempre el modelo SDWBA con una orientación fija de 11° (SD 4°). Se identificó con mucha precisión las concentraciones de kril (convalidadas con muestras de la red) con la ventana variable de identificación con dos frecuencias. Los autores indicaron que, en comparación con la ventana fija, la ventana variable podría reducir la magnitud de las señales acústicas ocasionadas por otros blancos presentes cuando se utilizan métodos acústicos para identificar al kril. Sin embargo, la ventana de identificación variable con tres frecuencias, tal como está configurada ahora, no siempre pudo identificar enjambres de kril y esto puede resultar en una subestimación de la biomasa de kril.

5.101 El grupo de trabajo recibió complacido estas convalidaciones independientes de la técnica de identificación de kril adoptada por la CCRVMA en 2007. Sin embargo, se reconoció que debido a la naturaleza técnica del documento, se debería remitir la consideración adicional de los problemas a la próxima reunión de SG-ASAM. El grupo de trabajo apoyó la noción de que la recopilación de datos acústicos a nivel internacional de blancos de kril conocidos permitiría una evaluación exhaustiva de las técnicas de identificación de kril actuales.

5.102 El grupo de trabajo tomó nota de la conclusión de WG-EMM-08/54 de que el desarrollo de la capacidad de utilizar conjuntos de datos a largo plazo para generar asesoramiento de ordenación mediante el seguimiento de la variación de la abundancia relativa de kril también debería ser un objetivo importante para la CCRVMA.

5.103 Otras variables importantes en la estimación del TS de *E. superba* son el contraste de la densidad y velocidad del sonido. WG-EMM-08/56 Rev. 1 describió en detalle estas mediciones del kril de las Islas Shetland del Sur y el Mar de Ross. Los contrastes de densidad y velocidad de sonido medidos concordaron con el rango de valores previamente publicados, si bien los valores para el Mar de Ross fueron mayores que en las Islas Shetland del Sur y los valores publicados anteriormente. Se calculó el TS de kril de una “talla estándar” con estos valores mediante el modelo SDWBA y se demostró que varió en ~6 dB.

5.104 El grupo de trabajo discutió la importancia de la labor descrita en WG-EMM-08/56 Rev.1 y 08/28 para obtener valores con un intervalo razonable para el contraste de la densidad y de velocidad del sonido para los modelos de TS. Se señaló que estos valores probablemente variarían de acuerdo con la estación, la ubicación geográfica y la ontogénesis.
5.105 El grupo de trabajo observó que los tres trabajos, WG-EMM-08/29, 08/54 y 08/56 Rev. 1, trataron de evaluar incertidumbres importantes de la estimación acústica de la biomasa de kril. Esto provocó una discusión sobre la medición de la incertidumbre en las estimaciones acústicas y el nivel en que debería ser revisada. Se acordó que, con el tiempo, estas variables serían clasificadas y relacionadas con variables más simples de medir como por ejemplo, la talla y el estadio de madurez.

5.106 WG-EMM-08/26 presentó estimaciones de la biomasa del kril alrededor de las Islas Orcadas del Sur (discusiones en los párrafos 5.61 y 5.62) a partir de los datos acústicos recopilados durante las prospecciones de peces. Se utilizó un método simple de bootstrap para generar los intervalos de confianza.

5.107 El grupo de trabajo recibió complacido este enfoque que podría ser utilizado para derivar estimaciones de la biomasa de kril de prospecciones que no han sido diseñadas específicamente para ello. Se recomendó que SG-ASAM investigue la aplicabilidad de otras técnicas que usan distintos diseños de prospección en los estudios acústicos.

5.108 El grupo de trabajo indicó que los datos acústicos recopilados por los barcos de pesca comercial podrían ser valiosos para la derivación de estimaciones de la biomasa de kril (los detalles se proporcionan en el párrafo 4.76). En este contexto, el grupo de trabajo señaló el informe de ICES recientemente publicado titulado *Collection of acoustic data from fishing vessels* (ICES, 2007).

5.109 WG-EMM-08/28 presentó los resultados de la prospección AKES realizada en el marco de API en enero y marzo de 2008 por el BI G.O. Sars. Uno de los objetivos de esta prospección fue establecer los valores de TS del kril in situ utilizando ecoondas sumergibles y montados en el casco, investigar la distribución de kril mediante un sonar cuantitativo Simrad MS70, y estudiar la identificación de los blancos de kril con un ecoonda de múltiples frecuencias montado en el casco (18, 38, 70, 120, 200 y 333 kHz).

5.110 El grupo de trabajo indicó que este proyecto era muy interesante porque podría proporcionar mucha información sobre las técnicas acústicas aplicadas en el Océano Austral, en particular la técnica de identificación con seis frecuencias que fue notificada.

5.111 El grupo de trabajo indicó también que varios métodos acústicos distintos para estimar la biomasa de kril fueron utilizados en estudios descritos en WG-EMM-08/26, 08/28, 08/31, 08/35, 08/54 y 08/P2. Pidió que en el informe de SG-ASAM se incluyera un apéndice con la técnica de identificación aprobada y los coeficientes actuales utilizados en los modelos para estimar TS.

5.112 El grupo de trabajo reiteró la importancia de la estimación de la incertidumbre y de proporcionar medidas (p. ej. funciones de densidad de probabilidad) de la confianza en la estimación de B_0. El grupo de trabajo discutió las consecuencias que esto podría tener en la estimación de B_0 y aludió al párrafo 2.20(i) de WG-EMM-07 (SC-CAMLR-XXVI, anexo 4) que indica que:

“Se deberá mantener un conjunto estándar de protocolos por un período de cinco años. Al final de este período, cualquier mejora de los protocolos deberá ser acordada y
aplicada. Esto incluirá la revisión de los conjuntos de datos existentes. No obstante, se reconoció que las mejoras a los protocolos acústicos fuera del periodo establecido probablemente serían publicadas en su debida oportunidad en revistas de expertos”.

5.113 El grupo de trabajo indicó que esto se refiere específicamente al uso de protocolos para establecer el límite de captura precautorio, y que recibiría de buen grado las propuestas de revisión y actualización de los protocolos acústicos para que puedan ser examinados por SG-ASAM a la mayor brevedad.

Recomendaciones a SG-ASAM

5.114 SG-ASAM debería entregar asesoramiento que ayude a cuantificar la incertidumbre en las estimaciones de B_0 de kril. Concretamente, SG-ASAM debería:

i) convalidar las técnicas acústicas de identificación – compilando un conjunto de datos acústicos convalidados con los datos de los arrastres y evaluando si los métodos acústicos de identificación están sesgados;

ii) evaluar y considerar la información disponible y los métodos actuales para medir la orientación del kril y las propiedades físicas, y utilizar los análisis del ángulo de inclinación de las campañas científicas realizadas recientemente;

iii) proporcionar una función de densidad de probabilidad de la estimación de B_0 basada en el conocimiento actual de la incertidumbre de distintos valores de parámetros.

5.115 Para su próxima reunión SG-ASAM deberá documentar en un apéndice los protocolos vigentes acordados para la evaluación de B_0.

5.116 SG-ASAM deberá investigar el uso de datos acústicos auxiliares (vg. de las prospecciones de peces, los datos de las pesquerías exploratorias y de los ecosondas de las pesquerías comerciales) y los métodos analíticos requeridos con miras a:

i) obtener estimaciones de la biomasa de kril de áreas que normalmente no son exploradas

ii) documentar protocolos para el tratamiento e interpretación de los datos acústicos de las pesquerías exploratorias.

Prospecciones futuras

5.117 Un miembro informó al grupo de trabajo sobre prospecciones que se realizarían el año próximo. Como parte del programa de seguimiento AMLR de EEUU en las Islas Shetland del Sur, el programa estadounidense realizará una prospección de arrastre de fondo en las Islas Orcadas del Sur durante el segundo de dos viajes, en febrero y marzo de 2009. La prospección será la segunda de este tipo en el área, y se llevará a cabo una década después de
la última prospección realizada en 1999. Se realizarán algunos arrastres de kril y se registrarán datos acústicos a fin de ampliar la información proporcionada por esta prospección.

5.118 Luego de esta notificación, el grupo de trabajo discutió la importancia de ampliar las prospecciones efectuadas individualmente por algunos países, o de participar en una segunda prospección que cubra la totalidad del Mar de Escocia para estimar la biomasa de kril en el Área 48 con el fin de realizar evaluaciones. Varios miembros del grupo de trabajo indicaron que se había tratado de diseñar una prospección tal durante la celebración del API en 2007/08. Otros miembros indicaron que el desarrollo de una segunda prospección en gran escala requeriría de varios años, como fue el caso de la prospección CCAMLR-2000.

5.119 Consideraciones relativas al ecosistema:

i) los resultados de WG-EMM-STAPP relativos a la abundancia de los depredadores de kril, tomando nota del progreso considerable en la evaluación de la abundancia de los depredadores de kril y cómo podría guiar esta labor en el futuro con relación a otros depredadores (párrafos 5.1 al 5.16);

ii) la labor creciente que se está efectuando sobre los efectos del cambio climático en el Océano Austral, que podría ayudar a la Comisión a entender las consecuencias del cambio climático para el Área de la Convención de la CCRVMA (párrafos 5.74 al 5.86);

iii) el pedido de WG-EMM a SG-ASAM para que proporcionara asesoramiento en relación con la evaluación cuantitativa de la incertidumbre en la estimación de la biomasa de kril por métodos acústicos (párrafos 5.114 al 5.116);

iv) la importancia de continuar perfeccionando las metodologías acústicas para proporcionar asesoramiento sobre las estimaciones de B_0 (párrafos 5.112 y 5.113).

EFECTOS DE LAS PESQUERÍAS DE PECES EN EL ECOSISTEMA

Perspectiva histórica

6.1 WG-EMM-08/P7 presentó la hipótesis de que un cambio importante de la estructura ecológica de grandes extensiones del Océano Austral ocurrido a mediados de la década de los 80 se debía en parte a la progresiva reducción de las poblaciones de peces causada por las intensas actividades de la pesca comercial, y no solamente debido a los factores climáticos como se postuló anteriormente. En un período breve (1969–1973), varias poblaciones de peces se redujeron en promedio a <50%, y finalmente (a mediado de la década de los 80) a <20% de su tamaño original. Uno de los índices del clima, el Modo Anular del Sur, antaño oscilaba entre dos estados, pero ha permanecido en su “modalidad positiva” desde que se efectuó la extracción de peces. Los autores postularon que a medida que los stocks reproductores disminuyeron, la disponibilidad de los peces juveniles producidos cada año y consumidos por los depredadores de más importancia en la trama alimentaria, siguió siendo baja. Las correlaciones entre las poblaciones de depredadores y la biomasa de peces en las áreas de alimentación de los depredadores indican que el elefante marino (*Mirounga leonina*),
el lobo fino antártico, los pingüinos papúa y macaroni, y el cormorán imperial (*Phalacrocorax atriceps*) – que se alimentan casi exclusivamente de estos peces, y cuyo seguimiento se lleva a cabo en las Islas Marion, Crozet, Kerguelén, Heard, Georgia del Sur, Orcadas del Sur y Shetland del Sur (donde se concentró la pesca) – disminuyeron simultáneamente durante los dos períodos de pesca intensa. Los autores indicaron que estos resultados demuestran el importante papel que los peces demersales han tenido en el pasado como especie presa en los ecosistemas marinos de la Antártida.

6.2 El grupo de trabajo agradeció a los autores por su contribución, pero indicó que había ciertas incongruencias en las citas de los resultados de otros estudios y en el tratamiento e interpretación de los posibles efectos retardados entre la disminución de las presas y la disminución de depredadores. También consideró que las tendencias de las poblaciones de peces son un elemento importante de los modelos de ecosistema centrados en el kril y que los modelos futuros deberían investigar la inclusión de algunos de los resultados presentados en este trabajo.

Mar de Ross

6.3 WG-EMM-08/18 proporcionó detalles de una campaña importante de investigación realizada por Nueva Zelanda en el Mar de Ross en febrero y marzo de 2008, en apoyo de API-CAML. La campaña de 50 días del BI *Tangaroa* incluyó un extenso estudio de organismos marinos (desde virus a peces pelágicos y demersales y cefalópodos) presentes hasta una profundidad de 3 500 m, y desde la plataforma continental y la pendiente del Mar de Ross hasta los montes marinos y llanuras abisales hacia el norte. Se desplegó una variedad de dispositivos para la toma de muestras del entorno pelágico y del bentos, incluyendo redes de plancton, redes de arrastre pelágicas y demersales, cámaras para filmar el lecho marino, trineos y sacatestigos para obtener muestras de sedimento.

6.4 Los autores anticipan que los resultados de la prospección serán de relevancia directa para muchos aspectos de la labor de la CCRVMA y de sus grupos de trabajo. Un aspecto importante de la prospección fue la recopilación de datos cuantitativos (densidad y abundancia) de especies o grupos de especies principales, como *E. crystallorophias* y *P. antarcticum*, que proporcionarán datos cuantitativos para el modelo del ecosistema del Mar de Ross. Otros datos recopilados durante la prospección contribuirán a la labor en curso sobre la biodiversidad y la biorregionalización en el Océano Austral (párrafos 3.4 al 3.20), y sobre los EMV de la región del Mar de Ross (párrafos 3.21 al 3.44).

6.5 El Dr. Holt agradeció a Nueva Zelanda por la inclusión de científicos estadounidenses e italianos en su estudio, señalando la naturaleza internacional de la campaña. El grupo de trabajo agradeció a Nueva Zelanda por esta prospección tan completa y por proporcionar los datos a la CCRVMA para su consideración. Se subrayó que ésta era la primera prospección exhaustiva de la zona del Mar de Ross.

6.6 WG-EMM-08/42 informó sobre el desarrollo del modelo trófico del flujo de carbono con masa en equilibrio del Mar de Ross, como un paso hacia delante en el estudio de los efectos de la pesquería de austromerluza antártica (*D. mawsoni*) en el ecosistema. El modelo ya tiene 30 grupos tróficos que representan la principales grupos de la biota del Mar de Ross. Muchas de las especies de los niveles tróficos más bajos en el modelo han sido agrupadas de
acuerdo con su rol funcional porque no se dispone de información con una resolución taxonómica mayor. El modelo separa siete depredadores claves, por especie. Una revisión bibliográfica de información publicada e inédita proporcionó un conjunto de parámetros iniciales para describir la abundancia, el coste energético (crecimiento, reproducción, consumo) y los vínculos tróficos (dieta, principales depredadores) de cada grupo del modelo.

6.7 Los autores describieron el método utilizado para ajustar los parámetros a fin de obtener un modelo equilibrado, considerando la incertidumbre de los parámetros y el amplio rango de la magnitud del flujo trófico entre los distintos grupos de organismos. Se ajustó simultáneamente la biomasa, la producción, el consumo, la exportación y fracciones de la dieta. Los cambios necesarios del conjunto inicial de parámetros para llegar a un equilibrio fueron significativos, especialmente en lo que se refiere a las bacterias. Excluyendo las bacterias, los ajustes requeridos para equilibrar los parámetros estimados a priori fueron <46% (biomasa), <15% (producción, consumo) y <28% (fracciones de dieta). Los autores indicaron que el modelo equilibrado presentado aún no había sido convalidado y debe ser considerado como un proceso en desarrollo. La labor futura tiene como objetivo desarrollar un modelo verosímil minimamente realista para investigar y controlar los efectos de la pesquería de *D. mawsoni* en el ecosistema del Mar de Ross.

6.8 El Dr. Naganobu señaló los recientes informes sobre el enfriamiento de la capa superficial (Shelf Water) (Jacobs et al., 2002) y de las aguas antárticas del fondo (Antarctic Bottom Water) (Rintoul, 2007) en la región del Mar de Ross. Señaló que esto debe ser entendido al considerar el modelado del ecosistema del Mar de Ross.

6.9 El Dr. Southwell acotó que se disponía de nuevas estimaciones de la abundancia y distribución de las focas del campo de hielo en el Mar de Ross. El Dr. Watters puso en duda la elevada razón entre el consumo y la biomasa utilizada para los cachalotes (*Physeter catodon*) y orcas (*Orcinus orca*), y comentó que las nuevas estimaciones para estos parámetros, como también de la abundancia para otros depredadores tope, estarían disponibles con los resultados del taller conjunto CCAMLR–IWC. El grupo de trabajo agradeció a los autores por su contribución y alentó a Nueva Zelanda a continuar su labor de modelado del ecosistema del Mar de Ross.

6.10 WG-EMM-08/27 amalgamó más de 500 valores de isótopos estables de muestras de peces, calamares y octópodos obtenidas por barcos palangreros en cuatro UIPE de la CCRVMA (881C, H, I y J). Las muestras incluyeron seis especies de peces, incluidos *D. mawsoni* y *D. eleginoides*, y cuatro de sus especies presa principales (dracos cocodrilo (*Chionobathyscus dewitti*), mollera azul (*Antimora rostrata*), granadero ojísapo (*Macrourus whitsoni*) y una de las gadimorenas (*Muraenolepis spp.*)), cuatro calamares, incluido el calamar cosal (o cranquiluria antártica) (*Mesonychoteuthis hamiltoni*) y tres especies de octópodos del bentos.

6.11 La mayoría de los peces tenía un rango de δ15N mayor que 3.4‰ abarcando más de un nivel trófico, mientras que *D. mawsoni* exhibió un rango de 7‰ (9–16‰), que equivale a dos niveles tróficos. Esto indica que la dieta de todas las especies de las muestras es bastante variable y se analizó la variación con métodos de regresión. La talla y la UIPE fueron las variables explicativas más importantes de la variación de δ15N y δ13C. En general, *D. mawsoni* y *D. eleginoides* ocuparon un nivel trófico equivalente al de las orcas y focas de Weddell (*Leptonychotes weddellii*). Las cuatro especies de peces presa estaban, por lo menos, en un nivel trófico inferior al de esos depredadores.
6.12 La diferencia entre los valores de $\delta^{15}N$ y $\delta^{13}C$ de *D. mawsoni* del área norte, la pendiente del Mar de Ross y la cuenca de la Bahía de Terra Nova no fue significativa. Por el contrario, cada una de las especies presa de los peces principales capturadas en el área norte tenía valores mayores de $\delta^{13}C$ en comparación con las capturadas en la pendiente del Mar de Ross. Ya que este valor aumentado de $\delta^{13}C$ no se observa en *D. mawsoni*, esto indica que *D. mawsoni* se alimenta principalmente en la pendiente del Mar de Ross y los autores indicaron que es posible que residen por un corto período de tiempo en las otras dos áreas.

6.13 El Dr. Watters preguntó si se había efectuado un análisis de isótopos estables para *P. antarcticum*. El Dr. Hanchet contestó que las nuevas estimaciones para esta especie sugieren valores de $\delta^{15}N$ y $\delta^{13}C$ congruentes con otras presas de la austromerluza capturadas en la plataforma del Mar de Ross.

6.14 El Dr. Constable señaló que era importante examinar la variación temporal en la firma de los isótopos estables. El Dr. Hanchet señaló que los científicos neozelandeses tratarían de recolectar una variedad de tejidos (sangre, músculo, tejidos duros) de *D. mawsoni* en el futuro a fin de entender mejor la trayectoria histórica reciente de los isótopos estables en un pez individual.

6.15 Se presentaron los documentos WG-EMM-08/43, 08/22, 08/23, 08/21, 08/20 y 08/24 a la consideración del grupo. La discusión general de estos documentos se enfocó en la posible disminución de las poblaciones de *D. mawsoni* en el estrecho de McMurdo y la posibilidad de utilizar censos aéreos de las focas de Weddell para el seguimiento de los efectos que la pesquería de austromerluza en el Mar de Ross podría tener en el ecosistema.

6.16 WG-EMM-08/43 se refirió a la importancia del papel de *D. mawsoni* como presa de las focas de Weddell en el sur del Mar de Ross. Examinó el ciclo de vida de las focas de Weddell con referencia en particular a la región del Estrecho de McMurdo; información directa sobre la dieta de las focas de Weddell que incluye datos sobre la superposición de los hábitats, análisis del contenido estomacal, excremento y vómito; observaciones directas de buzos y científicos y datos obtenidos mediante cámaras montadas en animales. El documento presentó un análisis preliminar de los datos recientes de isótopos estables efectuado mediante el modelo de mezcla IsoSource. Finalmente, el documento comparó la tasa de mortalidad natural supuesta para *D. mawsoni* en la región del Estrecho de McMurdo con el consumo estimado de las focas de Weddell. Los autores proporcionaron varias estimaciones de la proporción de austromerluza en la dieta de las focas de Weddell, pero indicaron que dependen mucho de las suposiciones utilizadas en los cálculos.

6.17 Los autores concluyeron que si bien hay claros indicios de que la austromerluza es consumida por las focas de Weddell en el Estrecho de McMurdo entre los meses de octubre y enero, es posible, aunque no se tienen pruebas, de que sea una presa importante. Indican que la pesquería de *D. mawsoni* en el Mar de Ross podría tener un efecto perjudicial en las poblaciones de las focas de Weddell en la región del Estrecho de McMurdo si (i) la pesquería comercial reduce (directa o indirectamente) la abundancia de austromerluza en la región del Estrecho de McMurdo (ii) la magnitud del cambio en la abundancia de austromerluza es suficiente para cambiar el comportamiento y/o el éxito de la alimentación de las focas en esa región, y (iii) el cambio en el comportamiento o la alimentación tiene un efecto adverso en la población de focas. Los autores recomendaron seguir recopilando datos y efectuando análisis...
de isótopos estables de muestras de sangre, tejido muscular y pelaje de focas adultas reproductoras y no reproductoras en la región del Estrecho de McMurdo con el fin de determinar la posible superposición trófica.

6.18 WG-EMM-08/22 evaluó la importancia de D. mawsoni como presa de las focas de Weddell y orcas en el sur del Mar de Ross. Examinó aspectos de su ciclo de vida y comportamiento en el Estrecho de McMurdo, a partir de observaciones directas de buzos, científicos y cámaras montadas en animales, y los resultados de análisis bioquímicos (isótopos estables y ácidos grasos). Los autores concluyeron que los análisis bioquímicos no son concluyentes debido a la fecha y el lugar en que se tomaron las muestras de los animales, y que se debería dar mayor peso a las observaciones directas.

6.19 Los autores de WG-EMM-08/22 utilizaron observaciones directas efectuadas por científicos y de películas de video para derivar una estimación del consumo diario de alimento y la proporción de austromerluza que probablemente está presente en la dieta de las focas de Weddell. A continuación, estimaron que la proporción de la población de focas de Weddell no reproductoras en la región del Estrecho de McMurdo consume 52 toneladas de austromerluza durante la primavera y el verano. Además, indicaron que el consumo anual que toma en cuenta las focas reproductoras y otros meses del año probablemente sea mucho mayor. Concluyeron que hay pruebas fehacientes de que D. mawsoni es un componente importante de la dieta de los depredadores tope y se debe efectuar el seguimiento (es decir, inicio del programa CEMP para las pesquerías de austromerluza) para el control eficaz de los efectos de la pesquería de austromerluza en el ecosistema.

6.20 WG-EMM-08/23 informó sobre el censo aéreo de las focas de Weddell a lo largo de la costa de la Tierra de Victoria al este del Mar de Ross. El documento indicó que actualmente no existe un programa de seguimiento del ecosistema de la CCRVMA (CEMP) para la pesquería del Mar de Ross. En un documento anterior presentado a WG-EMM (WG-EMM-07/13), los autores describieron protocolos para un censo aéreo de las focas de Weddell de esta área. En este estudio, compararon el número obtenido contando las focas desde el aire con el número de las focas contadas en terreno en la Bahía Erebus, en el Estrecho de McMurdo, en noviembre de 2007, y también resumieron los resultados históricos de los censos aéreos efectuados a lo largo de la costa de la Tierra de Victoria. Los autores indicaron que la alta correlación ($r = 0.99$) entre los números contados desde el aire y en terreno demuestra que las fotografías aéreas pueden ser utilizadas para documentar los cambios en la distribución y abundancia de las focas de Weddell. Los censos anuales en terreno de las colonias de la Bahía Erebus, de 1974 a 2007, demuestran la sensibilidad de los resultados a la variabilidad medioambiental. Los autores concluyeron que, sobre la base de estos resultados y el documento de 2007, se puede ahora iniciar un programa de seguimiento en el marco del CEMP para las focas de Weddell, e indicaron que esto tendría que comenzar con la realización de una prospección excepcional para identificar todas las áreas importantes donde los animales salen del agua y que se prestan para el seguimiento aéreo.

6.21 WG-EMM-08/21 proporcionó un resumen preliminar de los datos registrados por científicos estadounidenses durante la pesca de D. mawsoni a través del hielo en la región del Estrecho de McMurdo. Indicaron que desde 1971, se había capturado casi 4 500 D. mawsoni, con capturas totales de 200–500 ejemplares al año. Señalaron que más recientemente, la captura fue insignificante cuando se aplicó un esfuerzo de pesca similar. Los autores presentaron datos de la captura y esfuerzo diarios para el año 1987 (un año típico según ellos en lo que se refiere a los resultados obtenidos antes del inicio de la pesquería exploratoria) y
para 2001 (justo después del comienzo de la pesquería exploratoria y después de haberse capturado cerca de 1 500 toneladas). Desde 2001 se ha proporcionado datos de la captura, pero no del esfuerzo correspondiente. Los autores indicaron que el conjunto entero de datos todavía no ha sido analizado mediante ordenadores, pero que el subconjunto de datos muestra claramente una disminución marcada en la CPUE en la región del Estrecho de McMurdo después de que la pesquería del Mar de Ross alcanzó un nivel estable en 2001/02.

6.22 WG-EMM-08/21 informó también sobre orcas observadas diariamente desde un mirador en Cabo Crozier (Isla Ross) en diciembre y enero cada año desde 2003 a 2007, y señaló que las observaciones de orcas han sido más infrecuentes desde enero de 2006. Por último, el documento presentó datos sobre la proporción de *P. antarcticum* en la dieta de pingüinos Adelia desde 2003/04, indicando que la proporción de *P. antarcticum* en su dieta en 2007/08 fue la más alta de la serie de datos de 5 años presentada, y similar a la de 1996/97. Sobre la base de estas observaciones los autores concluyeron que la pesquería ha causado una cascada trófica en el Estrecho de McMurdo. El papel recomendó que se redujera el límite de captura de la pesquería, con una moratoria en la plataforma, hasta que la población de austromerluza en la región del Estrecho de McMurdo se recupere y se implemente un programa para seguir y controlar los efectos de la pesquería en el ecosistema.

6.23 WG-EMM-08/20 es una carta redactada por 25 científicos expertos en la Antártida con relación al documento WG-EMM-08/21 sobre la disminución de *D. mawsoni* en el Estrecho de McMurdo. Expresaron preocupación porque este es el primer signo de que el ecosistema del Mar de Ross está experimentando cambios irreversibles, y porque varias extensas series cronológicas de datos sin igual en lo que se refiere a registros de clima y de las respuestas de la biota al cambio climático, están en peligro de verse afectadas. Declaran que cinco series cronológicas de datos cada una de más de 40 años fueron “impactadas” por los efectos de la pesca. Las series cronológicas incluyen censos anuales de pingüinos adelia y emperador (*Aptenodytes forsteri*), composición y crecimiento de las comunidades del bentos, demografía de las focas de Weddell, y preponderancia de la austromerluza como fuera indicado por las tasas de captura de prospecciones científicas. El documento recomendó reducir radicalmente el límite de captura de la pesquería, con una moratoria en la plataforma, hasta que la población de austromerluza en el Estrecho de McMurdo se reponga y se implemente un programa de seguimiento de los efectos de la pesquería en el ecosistema.

Discusión general

6.24 El grupo de trabajo identificó varias incongruencias en el documento WG-EMM-08/21 que requirieron una aclaración de parte de los autores:

i) Los autores indicaron que han capturado 4 500 peces en un período de más de 30 años (1971–2001), lo que indica que la captura anual promedio sería de 150 peces. Esto no concuerda con la aseveración de que las capturas totales en el pasado sumaron 200–500 peces al año antes de comenzar la explotación.

ii) Los autores también declararon que eligieron el año 1987 como el “un año típico representativo de la captura” para el período antes de la explotación. Sin
embargo, como se muestra en la figura 6 del documento, ese año la captura fue de 412 peces — y esto no representa un año típico si el promedio es solamente de 150 peces.

iii) Hay varias otras incongruencias en el texto. Por ejemplo, la leyenda de la figura 7 dice que en 2001 se hicieron 10 lance — sin embargo, para 2001 se notificaron 29 lances en el apéndice 2 del documento. Asimismo, el documento dice que en 1996/97, los barcos pescaron frente al Cabo Crozier por largos períodos de tiempo (página 12); sin embargo, ese año, el primer año de la pesquería exploratoria, la captura total de austromerluza fue de <1 tonelada, extraída a bastante distancia del Mar de Ross.

6.25 La disminución aparente de las capturas de austromerluza coincidió con un cambio de la zona de pesca de la prospección científica. Si bien los autores declaran que las tasas de captura fueron similares antes y después de cambiar la zona de pesca, no se presentó información suficiente para determinar si esto efectivamente fue así. Más aún, si bien el texto dice que el nuevo sitio estaba a sólo 0.5 km de lugar original, esto no concuerda con la escala del mapa mostrado en la figura 4 del documento, ni está a una distancia de 4 km de la Base McMurdo. Las características físicas y medioambientales de los dos sitios con respecto a la profundidad del fondo, corrientes, sustratos, temperatura, distancia desde el borde del hielo permanente, etc., también debieron ser proporcionadas. Las tasas de la captura comercial dependen bastante de la zona de pesca y por lo tanto sería muy extraño que fuesen distintas para un sitio de pesca de investigación.

6.26 Al considerar los temas descritos anteriormente, el grupo de trabajo no pudo evaluar de manera apropiada las conclusiones del documento en el tiempo disponible. Pidió a los autores que proporcionaran los siguientes datos históricos sobre:

i) la ubicación, número de lances, número de anzuelos, número de peces capturados, tiempo de inmersión y CPUE (número de peces por lance) por día, mes y año para todos los años desde que comenzó el muestreo en 1971. Otros detalles también serían útiles, como por ejemplo el peso de los peces capturados, el destino de los peces (es decir, retenido, liberado, marcado) y la carnada utilizada en cada año;

ii) la distribución de la frecuencia de tallas — agrupada quizás en intervalos de 2 ó 3 años;

iii) detalles específicos de los dos lugares en relación con la profundidad del fondo, corrientes, sustratos, temperatura del agua, distancia del borde del hielo permanente, etc.

6.27 El grupo de trabajo indicó también que las pruebas de una sustitución en la dieta del pingüino Adelia eran poco convincentes. Si bien el porcentaje más alto de *P. antarcticum* en la dieta se dio en 2007/08 (55%), el porcentaje más bajo de *P. antarcticum* en la dieta había ocurrido el año anterior (32%). El grupo de trabajo recordó además que la investigación realizada por Emison en la década de los 60 indica que la proporción anual de *P. antarcticum* en la dieta del pingüino adelia fue de 40–60% (Emison, 1968).
6.28 El grupo de trabajo consideró a continuación la propuesta de realizar un censo aéreo de la población de focas de Weddell en la forma de un índice CEMP como se presenta en WG-EMM-08/23. Recordó su asesoramiento sobre este asunto en la reunión del año pasado donde destacó que (i) el programa de seguimiento tendría que estar bien diseñado (basado en fundamentos sólidos y pragmáticos), (ii) con requisitos mínimos de recopilación de datos para que el programa fuera viable, y (iii) debía contar con financiación a largo plazo (SC-CAMLR-XXVI, anexo 4, párrafo 5.25).

6.29 Varios miembros recordaron el detallado proceso de desarrollo de los índices CEMP, que incluyó la identificación de objetivos, el acuerdo de metodologías estándar, la probabilidad de detectar cambios (análisis de potencia), la recolección de datos complementarios (por ejemplo, estudios de la dieta y seguimiento de otras especies presa), el riesgo de que el programa no sea capaz de detectar efectos, y la necesidad de comprometerse a largo plazo en la realización del programa.

6.30 El grupo de trabajo acordó que un censo aéreo sería el método más apropiado para realizar el seguimiento de la abundancia de las focas de Weddell. Sin embargo, indicó que por sí mismo, el censo aéreo podría no ser suficiente para determinar los posibles efectos de la pesquería de austromerluza. Consideró que: (i) el programa podría no ser capaz de detectar los efectos dentro de un plazo razonable, y (ii) sería difícil probar que cualquier cambio en la población de focas de Weddell se debe al impacto de la pesquería y no a otros factores, como el cambio climático o los cambios en otras presas de mayor importancia.

6.31 El grupo de trabajo tomó nota de la gran variabilidad en los recuentos de focas mostrados en la figura 1 de WG-EMM-08/23 y que, dada esta alta variabilidad, la potencia para detectar cambios en la abundancia de las focas de Weddell probablemente era bastante baja, a no ser que la variabilidad pueda ser explicada mediante covariables. El grupo de trabajo tomó nota también de la necesidad de recopilar datos suplementarios como parte del programa de seguimiento, como por ejemplo, datos sobre la distribución y abundancia de especies clave tales como *D. mawsoni*, *P. antarcticum* y *E. crystallorophias*, y la necesidad de obtener una estimación sin sesgos de los componentes de la dieta de las focas de Weddell.

6.32 El Dr. Watkins acotó que podría ser posible utilizar transductores acústicos orientados hacia arriba para medir la abundancia de kril y de diablillos antárticos en la región del Estrecho de McMurdo. Esto había dado resultado en Georgia del Sur y permitiría el registro de datos de la retrodispersión acústica y de otros datos auxiliares durante todo el año.

6.33 Si bien no se observaron restos sólidos de *D. mawsoni* en el excremento y vómitos de las focas de Weddell, el Dr. Welsford indicó que se podrían utilizar técnicas de ADN para determinar si las feces o los vómitos contienen trazas de tejido muscular de austromerluzas. Esto serviría para mejorar las estimaciones sobre la cantidad de austromerluza consumida por las focas de Weddell.

6.34 El grupo de trabajo también expresó preocupación porque las focas de Weddell podrían no ser la especie más indicada para efectuar el seguimiento de los efectos de la pesquería de austromerluza en el ecosistema. Esto se debe a que las focas de Weddell podrían cambiar de presa, de austromerluza a diablillo antártico o a calamar si se reduce la abundancia local de austromerluza. Este cambio de presa sería difícil de detectar porque la austromerluza también se alimenta de estas especies.
6.35 El grupo de trabajo consideró también la cuestión de la eficiencia relativa de la alimentación cuando las focas de Weddell se alimentan de diablillo antártico y austromerluza. Indicó que es necesario seguir evaluando las posibles ventajas y desventajas de una alimentación basada en cada una de estas dos especies, y cuáles serían los efectos en la fisiología y la condición de las focas reproductoras y no reproductoras en la población.

6.36 La Dra. Plagányi señaló que la relación entre las focas de Weddell y sus presas puede ser estudiada con simulaciones y modelado – que sería capaz de tomar en cuenta estos efectos directos competitivos y los efectos indirectos en la alimentación. El Dr. Constable estuvo de acuerdo, indicando que la falta de una superposición espacial y temporal entre la pesquería y la población de focas de Weddell haría muy difícil la interpretación de las tendencias demográficas, en especial cuando los efectos en la población de focas probablemente ocurren con cierto retraso.

6.37 El grupo de trabajo señaló que Nueva Zelanda está desarrollando un modelo espacial de poblaciones para incorporar el movimiento de la austromerluza dentro del Mar de Ross, y que el modelo podría ser utilizado para examinar los efectos de la pesca en el ecosistema (párrafo 6.7; anexo 7, párrafos 5.1 al 5.6). Expresó que existía una cantidad considerable de datos sobre el seguimiento por satélite de las focas de Weddell en el oeste del Mar de Ross y también sobre el movimiento de austromerluzas marcadas, que podrían servir para ser incorporados en el modelo.

6.38 El grupo de trabajo indicó que a falta de técnicas de seguimiento del ecosistema, podría ser más prudente tratar a la austromerluza como especie presa y no como un depredador. Esto implicaría el uso de la regla de escape de 75% y no la regla de escape de 50% utilizada actualmente para la austromerluza.

6.39 Sin embargo, el Dr. Hanchet señaló que la evaluación actual del stock sugiere que éste está a un nivel de 82% del valor de su biomasa antes de la explotación (SC-CAMLR-XXVI, anexo 5, Apéndice I). Si realmente ha habido una reducción de los depredadores de austromerluza a ese nivel de biomasa, entonces aún un nivel de escape de 75% sería demasiado bajo. El grupo de trabajo señaló que otra posibilidad sería tener una zona de protección libre de la explotación a lo largo de la costa del oeste del Mar de Ross – que eliminaría la presión de la pesca en áreas inmediatamente adyacentes a las colonias terrestres de depredadores.

6.40 El grupo de trabajo estuvo de acuerdo en que sería útil discutir estos temas con los miembros de WG-FSA en la futura reunión de FEMA (párrafo 8.6).

Asesoramiento al Comité Científico

6.41 El grupo de trabajo estuvo de acuerdo en que los censos aéreos son el mejor método para seguir la abundancia de las focas de Weddell en la región occidental del Mar de Ross, y reconoció la utilidad del trabajo propuesto para identificar todos los puntos importantes de sus salidas a tierra (párrafo 6.20). No obstante, declaró que en esta etapa no podía respaldar los censos aéreos como un índice del CEMP porque no estaba claro si un cambio en el índice podría atribuirse directamente a la pesquería de austromerluza (párrafo 6.30).
6.42 El grupo de trabajo recomendó que se siguiera trabajando en el diseño de un programa para seguir de cerca los efectos de la pesca. Indicó que se requerirían datos adicionales para desarrollar un programa de seguimiento, que incluiría datos de la distribución y abundancia de *D. mawsoni*, de las especies de peces demersales y diablillos antárticos, y estimaciones de la importancia de los componentes de la dieta para la producción de cachorros de la foca de Weddell (párrafo 6.31).

6.43 El grupo de trabajo también recomendó que se desarrollara un modelo de población espacial para investigar las interacciones entre *D. mawsoni* y las focas de Weddell en la región oeste del Mar de Ross (párrafo 6.37).

Labor futura

6.44 El grupo de trabajo recomendó que se recolectara material adicional para el análisis de isótopos estables, incluido una gama de tejidos de los peces y de las focas de Weddell en el área del Estrecho de McMurdo, a fin de determinar las interacciones tróficas (párrafos 6.14 y 6.17).

ESTADO DEL ASESORAMIENTO DE ORDENACIÓN

Áreas protegidas

7.1 Se remite al Comité Científico a los resultados de la discusión enfocada en las medidas de gestión de espacios que ayudarían en la conservación de la biodiversidad marina (párrafos 3.71 al 3.78).

Unidades de explotación

7.2 No se contó con nueva información sobre unidades de explotación para su consideración.

Unidades de ordenación en pequeña escala

7.3 WG-EMM-08/11 resumió los datos disponibles sobre los depredadores con colonias terrestres que podrían ser utilizados para subdividir la Subárea 48.4 por UOPE. Indicó que los pinguinos de barbijo son los depredadores predominantes que están presentes en todas las islas, mientras que los pinguinos papúa y macaroni y los lobos finos son menos abundantes y se concentran en las seis islas de más al norte. Se ha propuesto que la Subárea 48.4 sea subdividida en dos UOPE de acuerdo con el criterio para separar las UOPE pelágicas y costeras aplicado en las Subáreas 48.1, 48.2 y 48.3.

7.4 El grupo de trabajo indicó que, tomando en cuenta la densidad de la alimentación y la composición de especies, podría subdividirse aún más la UOPE de la costa en la Subárea 48.4 en una que abarque las seis islas situadas más al norte y otra que abarque las islas restantes del
sur. Se señaló además que se observó la presencia de pingüinos adelia a pesar de la ausencia de hielo marino en verano. En invierno, el hielo marino por lo general se extiende hacia el norte abarcando la cadena de islas.

7.5 El grupo de trabajo recomendó que se apruebe la propuesta presentada en WG-EMM-08/11 para dividir la Subárea 48.4 en una UOPE costera y otra pelágica, señalando que los análisis adicionales podrían indicar la necesidad de que la UOPE costera tenga que subdividirse en una UOPE del norte y otra del sur cuando se disponga de datos adicionales.

Modelos analíticos

7.6 Se señala a la atención del Comité Científico las discusiones sobre el progreso en el modelado que favorece la asignación por UOPE considerada en los párrafos 2.13 al 2.30.

Medidas de conservación en vigor

7.7 Se señala a la atención del Comité Científico las discusiones sobre cuestiones de orden normativo tratadas en los párrafos 4.67 al 4.95. En los párrafos 7.9, 7.10 y 7.12 se señalan puntos específicos que requieren ser considerados.

Puntos clave a ser considerados por el Comité Científico y sus grupos de trabajo

7.8 Asignación por UOPE:
 i) se finalizó la evaluación del riesgo para la etapa 1 de la asignación por UOPE y el asesoramiento al respecto figura en los párrafos 2.95 al 2.101;
 ii) se deberá considerar una variedad de casos de cambio climático como parte de una evaluación del riesgo más extensa y a más largo plazo en las etapas subsiguientes de la asignación por UOPE (párrafo 2.30).

7.9 Medidas de gestión de espacios para facilitar la conservación de la biodiversidad marina:
 i) desarrollo de un sistema representativo de áreas marinas protegidas mediante, *inter alia*, la biorregionalización y/o la planificación sistemática de la conservación (párrafos 3.71 al 3.73 y 3.76 al 3.78);
 ii) implementación de la Medida de Conservación 22-06 pertinente a los EMV, incluido un método para el análisis del riesgo (párrafo 3.73), un taller para guiar la identificación de grupos taxonómicos y hábitats y reducir la incertidumbre asociada con la identificación de los EMV (párrafo 3.74) y para el proceso de notificación de los EMV (párrafo 3.75).
7.10 Pesquería de kril:
 i) quedan por presentar los datos de lance por lance de Polonia de la temporada 2006/07 (párrafo 4.3);
 ii) tendencias en la pesquería de kril (párrafos 4.1 y 4.6 al 4.8);
 iii) notificaciones de la intención de participar en la pesca de kril en la temporada 2008/09 (párrafos 4.6 al 4.17).

7.11 Observación científica en la pesquería de kril:
 i) la falta de datos sobre ciertos productos específicos de la captura y sobre los factores de conversión está dificultando la verificación de la exactitud del “peso en vivo” del kril capturado (párrafo 4.36);
 ii) solicitud para incentivar a los miembros a que evalúen la posibilidad de notificar con más exactitud la captura basándose en estimaciones directas del “peso en vivo capturado”, para resolver el problema de la notificación incorrecta de la captura (párrafo 4.39);
 iii) acuerdo del WG-EMM en cuanto a la función del grupo especial TASO (párrafo 4.45);
 iv) revisiones requeridas del Manual del Observador Científico (párrafos 4.52, 4.65 y 4.66);
 v) la necesidad de desarrollar un protocolo de muestreo de los peces de la captura secundaria que sea compatible con el protocolo actual para la toma de muestras de larvas de peces (párrafo 4.54);
 vi) una estrategia común para implementar un programa de observación científica con el objeto de lograr una cobertura sistemática en la pesquería de kril (párrafos 4.58 al 4.63).

7.12 Cuestiones normativas:
 i) la necesidad de registrar información que describa la técnica de pesca utilizada por los barcos de pesca de kril (párrafo 4.68);
 ii) la consideración de las notificaciones de pesquerías exploratorias de kril y los requisitos pertinentes a los planes de recopilación de datos necesarios para la implementación de la Medida de Conservación 21-02 (párrafos 4.69 al 4.95).

7.13 Consideraciones relativas al ecosistema:
 i) los resultados de WG-EMM-STAPP en cuanto a la abundancia de los depredadores de kril, notando el progreso sustancial en la evaluación de la abundancia de los depredadores de kril y cómo se podrá utilizar para guiar la labor futura de evaluación de la abundancia de otros depredadores (párrafos 5.1 al 5.16);
ii) el aumento del trabajo relacionado con los efectos del cambio climático en el Océano Austral que podría ayudar a la Comisión a entender el efecto del cambio climático en el Área de la Convención (párrafos 5.74 al 5.86);

iii) asesoramiento sobre los estudios para detectar los efectos en el ecosistema causados por las actividades de pesca de austromerluza en el Mar de Ross (párrafos 6.41 al 6.43);

iv) la solicitud de WG-EMM a SG-ASAM para que le asesore en la cuantificación de la incertidumbre de la estimación acústica de la biomasa de kril (párrafos 5.114 al 5.116);

v) la importancia de continuar mejorando las metodologías acústicas para brindar asesoramiento sobre las estimaciones de B_0 (párrafos 5.112 y 5.113).

7.14 General:

i) consideración del programa de trabajo del WG-EMM en el futuro, incluidos:
 - el mandato propuesto para el taller FEMA2 para considerar los efectos de la pesquería de austromerluza en el Mar de Ross en el ecosistema (párrafos 8.1 al 8.6);
 - una propuesta para que se revise la agenda del grupo de trabajo (párrafos 8.8 al 8.10);
 - consideración de los temas de discusión y de los representantes de CCRVMA en el Comité de Dirección para el taller conjunto SC-CAMLR-CPA (párrafos 3.65 al 3.69 y 9.1 al 9.5).

LABOR FUTURA

Segundo taller sobre pesquerías y modelos de ecosistemas en la Antártida (FEMA2)

8.1 Los coordinadores de WG-EMM y WG-FSA presentaron una serie de temas para ser tratados durante el segundo taller sobre pesquerías y modelos de ecosistemas en la Antártida (FEMA2). Al proponer los temas, los coordinadores indicaron que:

i) existe mucho interés en considerar los efectos de la pesca de austromerluza en el ecosistema del Mar de Ross;

ii) las pesquerías de austromerluza en el Mar de Ross están clasificadas como pesquerías exploratorias;

iii) existe cierta semejanza entre las UIPE del Mar de Ross y las UOPE del Mar de Escocia;
iv) la experiencia adquirida del asesoramiento sobre estrategias para la ordenación de espacios en relación con kril en el Área 48 podría ser aplicada en el asesoramiento de ordenación de pesquerías en el Mar de Ross;

v) no siempre se necesitan modelos de ecosistemas para brindar asesoramiento de utilidad desde un punto de vista ecosistémico.

8.2 Dados los puntos descritos anteriormente, los coordinadores propusieron que el taller FEMA2 sea estructurado de manera que trate a las pesquerías de austromerluza en el Mar de Ross como un estudio de caso de cómo las consideraciones sobre el ecosistema pueden utilizarse para proporcionar asesoramiento sobre la ordenación de las pesquerías de peces.

8.3 Los coordinadores propusieron cuatro temas para ser considerados en el taller FEMA2:

 i) Evaluar si el nivel de escape actualmente propugnado en los criterios de decisión para la pesquería de austromerluza en el Mar de Ross es lo suficientemente precautorio cuando se considera a estos peces como importantes especies presa y como depredadores. Una evaluación tal debería incluir un análisis comparativo de la importancia de las austromerluzas como especies presa en todo el Océano Austral.

 ii) Evaluar si los límites existentes de las UIPE del Mar de Ross pueden ser revisados sobre la base de un solapamiento entre la distribución espacial de la pesquería, las áreas de alimentación de los depredadores de austromerluza, y otra información como por ejemplo, la presencia o densidad de EMV. Una evaluación tal debería incluir trabajos similares a los que fueron aplicados en la definición de las UOPE del Área 48 (SC-CAMLR-XXI, anexo 4, apéndice D).

 iii) Evaluar si los fundamentos actuales para la asignación de los límites de captura precautorios de austromerluza por UIPE en el Mar de Ross podrían ser revisados de acuerdo con la información considerada en (ii) supra.

 iv) Evaluar si los pasos para implementar las posibles revisiones evaluadas en (ii) y (iii) supra podrían afectar los resultados de los estudios de marcado en curso, que son importantes componentes del plan de investigación y del proceso de evaluación de stocks de las pesquerías exploratorias de austromerluza en el Mar de Ross.

8.4 El grupo de trabajo estuvo de acuerdo en que sería conveniente considerar el taller FEMA2 como un tema central (párrafo 8.11) durante su reunión de 2009. Se acordó también que los coordinadores del WG-EMM y WG-FSA presidan juntos el taller.

8.5 No obstante, se indicó que dado el poco tiempo disponible para realizar el taller FEMA2 (párrafo 8.11), probablemente no se podrían tratar los cuatro temas. Se propuso que FEMA2 tratara los dos primeros temas y que los restantes fueran considerados en una futura ocasión.

8.6 No obstante, se señaló que WG-FSA podría desear expresar su opinión en cuanto a la conveniencia de discutir los temas (iii) y (iv). El cuarto tema tiene más relevancia para WG-FSA que para WG-EMM. Por lo tanto, el grupo de trabajo estuvo de acuerdo en dar su
opción al WG-FSA en lo que respecta a los cuatro temas. Después de las deliberaciones del WG-FSA en cuanto a cuáles temas podrían ser considerados en el taller FEMA2, se propuso que los coordinadores del WG-EMM y del WG-FSA presentaran una propuesta con el mandato de FEMA2 al Comité Científico.

Agenda revisada y plan de trabajo a largo plazo del WG-EMM

8.7 El grupo de trabajo deliberó sobre la posible estructuración de su agenda para las próximas reuniones. Se reconoció que el objetivo de una agenda debía ser facilitar la consecución de objetivos a largo plazo manteniendo a la vez la flexibilidad necesaria para efectuar anualmente el examen científico y el asesoramiento requeridos por el Comité Científico y la Comisión en el futuro.

8.8 El grupo de trabajo estuvo de acuerdo en que hay por lo menos cuatro temas en los que se debe trabajar por largo tiempo, los cuales han sido ratificados previamente por el Comité Científico, o identificados como temas de interés para la Comisión.

i) El desarrollo y la evaluación de estrategias de ordenación retroactiva (con flujo de información) para la pesquería de kril, incluido el trabajo para estimar la abundancia y el consumo de alimento de parte de los depredadores (vg. SC-CAMLR-XXV, párrafo 3.25) y para respaldar el desarrollo secuencial de la pesquería de kril en el Área 48 (vg. SC-CAMLR-XXVI, párrafo 3.36(vii)).

ii) El desarrollo y la aplicación de métodos para facilitar la conservación de la biodiversidad marina en el Área de la Convención, incluido el trabajo para identificar EMV (vg. SC-CAMLR-XXVI, párrafo 14.5), definir las posibles AMP (vg. SC-CAMLR-XXVI, párrafo 3.87) y lograr una estrategia armonizada (vg. SC-CAMLR-XXV, párrafo 3.32) dentro del Sistema del Tratado Antártico y dentro de la CCRVMA.

iii) Consideración de los efectos de la pesca de peces en el ecosistema (vg. SC-CAMLR-XXVI, párrafo 3.99), incluida una mayor colaboración con WG-FSA.

iv) Consideración de los efectos del cambio climático en el ecosistema marino antártico (vg. CCAMLR-XXVI, párrafo 15.36).

8.9 El grupo de trabajo estuvo de acuerdo en que los temas centrales (de acuerdo con los puntos 2 y 3 de la agenda para esta reunión) proporcionaron un mecanismo para satisfacer los requisitos relativos al asesoramiento a corto plazo, y que los objetivos de trabajo a largo plazo debieran constituir los puntos más importantes de su agenda para el futuro. Se indicó que el cambio climático era un tema interrelacionado y podía ser considerado bajo muchos puntos de la agenda.

8.10 El grupo de trabajo estuvo de acuerdo en que el Comité Científico debía revisar la siguiente estructuración de la agenda, propuesta para las futuras reuniones del grupo de trabajo:
1. Introducción (inauguración de la reunión, aprobación de la agenda y nombramiento de los relatores, revisión de los aspectos requeridos para el asesoramiento y la interacción con otros grupos de trabajo).

2. Temas centrales de discusión (a ser determinados cada año dándolele prioridad a los temas que se relacionan con la necesidad de brindar asesoramiento a corto plazo).

3. Efectos de la pesca de kril en el ecosistema (kril, depredadores dependientes, la pesquería y la observación científica, prospecciones y seguimiento, efectos del clima y estrategias de ordenación retroactiva).

4. Efectos de la pesca de peces en el ecosistema (peces, depredadores dependientes, pesquería y observación científica, prospecciones y seguimiento, efectos del clima y colaboración con el WG-FSA).

5. Gestión de espacios para facilitar la conservación de la biodiversidad marina (EMV, áreas protegidas, y armonización de estrategias tanto dentro de la CCRVMA como dentro del STA).

6. Asesoramiento al Comité Científico y a sus grupos de trabajo

7. Labor futura

8. Otros asuntos

8.11 Con respecto al punto 2 de la agenda propuesta, el grupo de trabajo indicó que es posible que no se tenga que proponer un tema central de discusión cada año. Sin embargo, se reconoció que el taller FEMA2 es un asunto de prioridad para el Comité Científico y seguramente será un tema central en 2009 (otras discusiones con respecto a FEMA2 se presentan en forma resumida en los párrafos 8.1 al 8.6). Después de 2009, se espera que los temas de discusión sean acordados en la reunión precedente del Comité Científico de la CCRVMA, donde los coordinadores de los grupos de trabajo y el Presidente del Comité Científico podrán consultar con los miembros. También habrá oportunidad para considerar el tiempo necesario y el programa de los temas a ser tratados. Se señaló que, en general, la consideración de dichos temas no debiera ocupar más de dos o tres días de la agenda anual del WG-EMM.

8.12 El grupo de trabajo también subrayó la importancia de colaborar más con el WG-FSA para poder realizar con éxito el trabajo propuesto en el punto 4, que incluye la obtención de información de los informes anuales de pesquerías y de las prospecciones diseñadas para estudiar las poblaciones de peces. El grupo de trabajo se esforzará en proporcionar asesoramiento al WG-FSA que amplíe las evaluaciones de los stocks de peces en el contexto del ecosistema, de ser posible, incluyendo en última instancia el desarrollo de modelos operacionales del ecosistema que podrían ser utilizados para evaluar las estrategias de ordenación de las poblaciones de peces.
Taller conjunto CCAMLR–IWC

8.13 El Dr. Constable presentó los documentos disponibles para el WG-EMM sobre el taller conjunto CCAMLR–IWC que se celebrará en Hobart (Australia), del 11 al 15 de agosto de 2008. WG-EMM-08/16 proporcionó un resumen de los coordinadores sobre el progreso de los preparativos para el taller y señaló:

 i) que por ahora, los costes del taller se ajustan al presupuesto, quedando fondos para la comisión de trabajo a ser efectuado después del taller si fuera necesario;

 ii) todos los grupos de expertos estaban progresando bien, excepto por el grupo de expertos en aves voladoras, que está siendo desarrollado por los coordinadores y expertos relacionados con ACAP para producir una síntesis bibliográfica para fines de año;

 iii) el Dr. Constable participó en consultas con el SC-IWC cuando asistió a la reunión SC-IWC en Santiago, Chile, en mayo de 2008.

8.14 WG-EMM-08/15 es un documento de referencia para el taller que proporciona una introducción sobre los requisitos para el modelado en el ámbito de la CCRVMA y de la IWC. Fue generado en respuesta a muchos pedidos de los coordinadores de los grupos de expertos con el fin de proporcionar el contexto para la redacción de sus síntesis bibliográficas. El objeto es que si se va a publicar el contenido del mismo con el de otros documentos, se les pedirá a los expertos en modelado de la CCRVMA y de la IWC que participen en la redacción de un documento actualizado.

8.15 WG-EMM-08/47 proporcionó un resumen del progreso alcanzado por los grupos de expertos en la redacción de documentos de trabajo al cumplirse el plazo de presentación a WG-EMM. El Dr. Constable informó al grupo de trabajo sobre el progreso en los manuscritos, ya que éstos debían finalizarse una semana antes del taller. Indicó que, con la excepción de los manuscritos pertinentes a las aves voladoras, ballenas de barbas, protistas y la oceanografía, se han recibido los manuscritos de los expertos en todos los otros grupos de especies. El manuscrito sobre las ballenas de barbas había sido preparado a tiempo para la reunión de SC-IWC y se contaba con un documento preliminar sobre los protistas. Se alentó a los miembros del grupo de trabajo a leer los manuscritos y a proporcionar información al taller, entablando correspondencia con el Dr. Constable si no pudiesen asistir.

Otros puntos clave a ser considerados por el Comité Científico y sus grupos de trabajo

8.16 Convalidación de los modelos con recomendaciones sobre la asignación por UOPE, y acceso a los mismos:

 i) El grupo de trabajo indicó que se encuentra desarrollando tres modelos para asignar la captura por UOPE en el Área 48. No obstante, excepto por los autores, muy pocas personas que participan en el grupo de trabajo están familiarizadas con la operación de los modelos. De hecho, la preparación de los datos de entrada, la parametrización de los modelos, los cálculos proporcionados
en los modelos, y el análisis de los resultados no son procesos transparentes y su acceso no es fácil para los otros miembros de los grupos. En consecuencia, la convalidación de los resultados o conclusiones de los modelos es difícil.

ii) El grupo de trabajo indicó que todos los modelos aplicados para desarrollar un método de ordenación de kril son complejos y su implementación efectiva requiere de un enfoque independiente y crítico. Esto puede efectuarse estableciendo dentro del WG-EMM un subgrupo de expertos de los miembros interesados, capaces de verificar los cálculos y la aplicación de los modelos utilizados, incluidos la preparación de los datos brutos, los procedimientos de cálculo y el análisis de los resultados. El subgrupo podría asegurar que la aplicación de los modelos sea transparente y de que sean verificados.

iii) Se acordó que para realizar sus tareas, el subgrupo requerirá que se preparen descripciones detalladas de los modelos y manuales para los usuarios de los modelos, y confirmación a la Secretaría de que el software de los modelos está conforme con los requisitos de la CCRVMA, incluidos los casos de prueba.

iv) Los miembros interesados deberán nombrar científicos con suficiente experiencia en la verificación de la aplicación de los modelos para que integren este subgrupo.

v) El grupo de trabajo indicó que cuando sea necesario y de conformidad con los procedimientos descritos en el párrafo 6.3 del anexo 7 de SC-CAMLR-XXVI, WG-SAM podría continuar revisando la aplicación metódica de los modelos utilizados en la asignación por UOPE.

vi) El grupo de trabajo reconoció además que, para que los modelos puedan ser utilizados por el grupo de trabajo para brindar asesoramiento, deberán estar lo suficientemente desarrollados para ser utilizados por otros miembros del grupo de trabajo aparte de los modeladores. Esto favorecerá una mayor participación de los miembros del grupo de trabajo, en la medida que se necesite, en el desarrollo, convalidación y revisión de los resultados de las evaluaciones con respecto a la asignación por UOPE. El grupo de trabajo estuvo de acuerdo en que la participación de los miembros en el trabajo de evaluación, como se hace en WG-FSA, es altamente recomendable. A fin de facilitar la participación de otras personas en esta labor de evaluación, el grupo de trabajo recomendó que:

a) se entregue suficiente información junto con el modelo para instruir a otros acerca de su uso, como ha sido el caso para CASAL y GYM;

b) se proporcione el software, ejemplos de archivos de entrada y casos de prueba a la Secretaría para hacerlos disponibles a los miembros.

8.17 Se celebrará un taller sobre los ecosistemas de invertebrados del bentos de la Antártida, conjuntamente con las reuniones de TASO, WG-FSA o mediante otros arreglos (párrafos 3.31 a 3.33 y 3.74).

8.18 Se iniciará el proceso para desarrollar un sistema representativo de AMP que incluya áreas heterogéneas (párrafos 3.60 al 3.62).
8.19 El taller conjunto SC-CAMLR-CPA sobre oportunidades de cooperación y colaboración práctica entre el CPA y la CCRVMA (párrafos 3.63 al 3.70 y 9.1 al 9.5).

ASUNTOS VARIOS

Taller conjunto SC-CAMLR–CPA

9.1 El grupo de trabajo discutió la propuesta de un taller conjunto entre SC-CAMLR y el CPA (“Oportunidades de colaboración y cooperación práctica entre el CPA y SC-CAMLR”) (WG-EMM 08/52). Este taller está programado para realizarse a principios de abril de 2009, inmediatamente antes de la XII reunión del CPA en Baltimore (EEUU) (ver además párrafos 3.63 al 3.69).

9.2 Tomando nota de las sugerencias descritas en WG-EMM 08/52 y SC CIRC 08/31, el grupo de trabajo indicó que, en su opinión, sería apropiado que la CCRVMA estuviera representada en el Comité de Dirección del taller SC-CAMLR–CPA por los coordinadores de los grupos de trabajo y los vicepresidentes actuales del Comité Científico. El Comité de Dirección planificaría el cometido y la agenda del taller, brindando los participantes del Comité Científico de la CCRVMA una descripción de los posibles temas de interés para la CCRVMA a tiempo para su consideración por el Comité Científico en su reunión de 2008. El grupo de trabajo también tomó nota de que se espera que los dos vicepresidentes del Comité Científico serán reemplazados en el Comité de Dirección por el nuevo Presidente del Comité Científico cuando éste último sea elegido.

9.3 Al considerar los temas propuestos por el CPA para el taller, el grupo de trabajo subrayó la importancia de todos ellos. No obstante, notó que dos temas (“Áreas protegidas y medidas de gestión de espacios” y “Especies que requieren protección especial”) parecían ser de especial interés para SC-CAMLRLR. En el caso de la protección de especies, el grupo de trabajo acotó que se deberá considerar cómo se podría fomentar la interacción y la cooperación práctica entre SC-CAMLR y el CPA para facilitar el proceso de otorgar protección adicional a las especies de interés para SC-CAMLR y/o el CPA.

9.4 El grupo de trabajo prevé que el Comité de Dirección realizará su trabajo por vía electrónica, y que podría haber una oportunidad para que parte del grupo se reúna en octubre de 2008, durante SC-CAMLR-XXVII.

9.5 Dada la falta de tiempo para preparar el aporte de SC-CAMLR al taller, el grupo de trabajo estuvo de acuerdo en que la Secretaría circulara con urgencia las opiniones del grupo de trabajo a todos los miembros de SC-CAMLR para agilizar la organización de la participación de SC-CAMLR en el Comité de Dirección. Se supuso que esto tomaría en cuenta cualquier sugerencia efectuada por el Comité Mixto de Dirección e involucraría la preparación de una agenda preliminar y del plan de trabajo para ser considerados durante SC-CAMLR-XXVII.

283
Revisión de SCAR sobre el cambio climático

9.6 El Secretario Ejecutivo indicó que la circular SC CIRC 08/41 transmitió una invitación de SCAR para que la CCRVMA se pronunciara acerca de una revisión efectuada recientemente por SCAR (“Cambio climático y medio ambiente en la Antártida”), en la cual se trata exhaustivamente (495 páginas) el cambio climático en la Antártida. Esta invitación surgió de las discusiones sostenidas en XI-CPA, en junio de 2008.

9.7 El grupo de trabajo indicó que el tiempo disponible para hacer comentarios (antes del 1 de septiembre de 2008) era muy corto. Por lo tanto, no estaba capacitado para brindar asesoramiento consolidado al Comité Científico acerca de la revisión efectuada por SCAR. En consecuencia, también se indicó que, dado el intenso programa de reuniones de la CCRVMA durante el periodo de julio a agosto de 2008, y la fecha en que se recibió la solicitud de comentarios de SCAR, no se contó realmente con una oportunidad para que el Comité Científico respondiera en nombre de la CCRVMA.

Taller Centinela del Océano Austral (Southern Ocean Sentinel Workshop)

9.8 El Dr. Constable señaló a los participantes de la reunión la circular SC CIRC 08/37 que describe los planes para un taller (“Seguimiento del efecto del cambio climático – establecimiento del programa centinela del Océano Austral”) que será celebrado en Australia, en la sede de la CCRVMA, del 20 al 24 de abril de 2009. Los detalles adicionales del taller pueden solicitarse a la siguiente dirección de email: sos@aad.gov.au.

CCAMLR Science

9.9 En calidad de redactor jefe de la revista CCAMLR Science, el Dr. Reid reiteró que el objetivo de la revista es comunicar a la comunidad científica en general la labor científica llevada a cabo en el ámbito de la CCRVMA. La revista también representa un medio para publicitar la labor de la CCRVMA a nivel internacional y alentar a los científicos a participar en ella.

9.10 El grupo de trabajo reconoció que debiera haber una clara distinción entre los documentos de trabajo de los distintos grupos y los trabajos sometidos a revisión paritaria publicados en la revista CCAMLR Science. Estos últimos debieran tener una distribución más amplia en el público. Como tal, la revista CCAMLR Science da énfasis y describe claramente el contexto de la labor científica de la CCRVMA y tiene como objeto comunicar los resultados y las conclusiones a un público lector más allá del ámbito de la CCRVMA.

9.11 El Dr. Reid recordó a los posibles autores que se aseguraran de que se cumple con las Normas de acceso y utilización de los datos de la CCRVMA en relación con la información de la CCRVMA y de sus grupos de trabajo que se entrega al dominio público a través de la publicación en la revista CCAMLR Science. Para asegurar que se observen estas normas, se incluirá un casillero en el formulario de presentación de manuscritos a la revista CCAMLR Science para indicar que se cuenta con autorización de los autores y dueños de los datos para publicar dicha información y para citar documentos de trabajo de los diversos grupos de trabajo de la CCRVMA.
9.12 El grupo de trabajo tomó nota de que el Dr. Reid había solicitado comentarios de todos los grupos de trabajo del Comité Científico de la CCRVMA en relación con la presentación de manuscritos a la revista *CCAMLR Science* y al proceso editorial subsiguiente. La Secretaría presentará un documento de trabajo a SC-CAMLR-XXVII.

9.13 El grupo de trabajo preguntó si sería posible colocar los manuscritos listos para publicación en la revista *CCAMLR Science* en el sitio web, de manera similar al sistema utilizado por otras revistas que ofrecen una “vista preliminar”.

9.14 Al discutir la disponibilidad de los trabajos publicados en *CCAMLR Science* en el sitio web, el grupo de trabajo indicó que la Secretaría estaba finalizando la incorporación de un archivo de acceso protegido por contraseña con todas las publicaciones de la CCRVMA en la web, incluido los documentos de los grupos de trabajo. Actualmente el archivo existe en la forma de bibliografía, pero en la segunda etapa se proporcionará una base de datos que permite una variedad de búsquedas. El grupo de trabajo felicitó a la Secretaría por el desarrollo y acceso a una herramienta tan valiosa.

APROBACIÓN DEL INFORME Y CLAUSURA DE LA REUNIÓN

10.1 A la hora de aprobar el informe, el Dr. G. Skaret (Noruega) extendió una invitación de parte de Noruega para celebrar las reuniones del WG-EMM y WG-SAM en 2009. El grupo de trabajo agradeció al Dr. Skaret y a Noruega por esta invitación.

10.2 Se aprobó el informe de la decimocuarta reunión de WG-EMM.

10.3 Al clausurar la reunión, el Dr. Watters agradeció a todos los participantes por su valiosa contribución a la labor de WG-EMM. La reunión había finalizado varias tareas de importancia, incluidos la evaluación del riesgo de la etapa 1 de la asignación por UOPE, el acuerdo de una estrategia para designar observadores científicos en las pesquerías de kril, y la elaboración de un plan de investigación y de recopilación de datos basados en la pesquería comercial para las pesquerías exploratorias de kril. El grupo de trabajo había revisado también su agenda para las reuniones futuras para integrar mejor su labor con la del WG-FSA, y considerar más a fondo los efectos de la pesca de peces en el ecosistema y la gestión de espacios para facilitar la conservación de la biodiversidad marina.

10.4 El Dr. Watters agradeció a la Federación Rusa por la organización de la reunión y las excelentes instalaciones y servicios de apoyo proporcionados durante la reunión.

10.5 El Dr. Watters agradeció a la Dra. Penhale y al Dr. Trathan quienes guiaron los dos temas centrales de discusión, y a los relatores que compilaron los resultados y el asesoramiento de la reunión. Asimismo, agradeció al personal de la Secretaría por su apoyo durante la reunión.

10.6 El Dr. Watters reconoció la contribución del Dr. Holt a la labor de WG-EMM durante su larga trayectoria en la CCRVMA y agregó que el Dr. Holt se jubilaría antes de la próxima reunión del grupo de trabajo.
10.7 El Dr. Trathan, en nombre del grupo de trabajo, agradeció al Dr. Watters por la paciencia, el buen humor y la experiencia demostrada al coordinar, por primera vez una reunión del WG-EMM y por dirigir al grupo de trabajo en una nueva etapa de su labor.

10.8 El Dr. D. Miller (Secretario Ejecutivo) presentó a la Sra. L. Zaslavskaya un pequeño obsequio para demostrar el aprecio de la CCRVMA al gran apoyo prestado por su equipo en el Instituto.

10.9 Se clausuró la reunión.

REFERENCIAS

Tabla 1: Metodologías recolectadas para resolver preguntas específicas relativas a la evaluación derivadas de la Medida de Conservación 22-01 en relación con las pesquerías exploratorias de kril.

<table>
<thead>
<tr>
<th>Tipos de datos:</th>
<th>Recolección de datos dependientes de la pesquería</th>
<th>Transectos acústicos estándar efectuados sistemáticamente por los barcos de pesca</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se limita el lugar de la pesca. Datos recopilados por observadores y barcos, igual a los de las pesquerías establecidas.</td>
<td>Se requiere calibración y datos SST. Datos recopilados durante las operaciones de pesca y en tránsito entre concentraciones. Datos recopilados por observadores y barcos, igual a los de las pesquerías establecidas.</td>
<td>Se debe definir la ubicación y la extensión del transecto. Se requiere calibración de los equipos acústicos y de registro de la SST.</td>
</tr>
</tbody>
</table>

Principales preguntas de evaluación* ¿Sirve o no la estrategia de pesca / de recolección de datos para resolver las preguntas clave sobre la evaluación?

1. ¿Cuál es la distribución y la densidad de kril dentro de la unidad de ordenación?
 Es poco probable – la cobertura temporal y espacial estará probablemente limitada a las áreas de alta densidad de kril.
 En parte – cobertura temporal y espacial parcialmente independiente de las áreas de alta densidad mientras los barcos localizan las concentraciones de kril.
 Es probable – la cobertura temporal y espacial es independiente de las áreas de alta densidad de kril.
 Es probable – la cobertura temporal y espacial es independiente de las áreas de alta densidad de kril.

2. ¿Cuál es la estructura demográfica de kril dentro de la unidad de ordenación?
 Es poco probable – la cobertura temporal y espacial estará probablemente limitada a las áreas de alta densidad de kril.
 En parte – cobertura temporal y espacial parcialmente independiente de las áreas de alta densidad mientras los barcos localizan las concentraciones de kril.
 Es probable – la cobertura temporal y espacial es independiente de las áreas de alta densidad de kril.
 Es probable – la cobertura temporal y espacial es independiente de las áreas de alta densidad de kril.

3. ¿Cuál es la distribución y la densidad de las especies de la captura secundaria dentro de la unidad de ordenación?
 Es poco probable – la cobertura temporal y espacial estará probablemente limitada a las áreas de alta densidad de kril.
 Es poco probable – los análisis actuales basados en datos acústicos no proporcionan información sobre las posibles tasas de captura secundaria.
 Es probable – la cobertura temporal y espacial es independiente de las áreas de alta densidad de kril.
 Es poco probable – los análisis actuales basados en datos acústicos no proporcionan información sobre las posibles tasas de captura secundaria.

4. ¿Cuán próximas a las áreas de alimentación de los depredadores están las concentraciones de kril o las operaciones de la pesquería?
 Es posible – la pesca podría llevarse a cabo en ciertas partes de una concentración de kril que también es explotada por los depredadores.
 Es posible – la pesca podría llevarse a cabo en ciertas partes de una concentración de kril que también es explotada por los depredadores.
 Es probable – la cobertura temporal y espacial es independiente de las áreas de alta densidad de kril.
 Es poco probable – los análisis actuales basados en datos acústicos no proporcionan información sobre los depredadores.

5. ¿Cuál es la tasa de captura/selectividad de kril en las áreas para las cuales se cuenta con una evaluación?
 Es posible – se dispondría de datos si se utiliza el mismo barco/arte pesca en el área de exploración y áreas evaluadas, permitiendo la estandarización.
 Es posible – se dispondría de datos si se utiliza el mismo barco/arte pesca en el área de exploración y áreas evaluadas, permitiendo la estandarización.
 Es posible – se dispondría de datos si se utiliza el mismo barco/arte pesca en el área de exploración y áreas evaluadas, permitiendo la estandarización.
 Es posible – se dispondría de datos si se utiliza el mismo barco/arte pesca en el área de exploración y áreas evaluadas, permitiendo la estandarización.

6. ¿Cuál es la dinámica de la flota pesquera en el área de ordenación?
 Es posible – las estrategias de búsqueda y la decisión de trasladarse de un área en el contexto de la pesca comercial pueden ser registradas por observadores o barcos.
 Es posible – las estrategias de búsqueda y la decisión de trasladarse de un área en el contexto de la pesca comercial pueden ser registradas por observadores o barcos.
 Es posible – la pesca sistemática probablemente no refleja las estrategias de extracción de la pesca comercial.
 Es posible – la pesca sistemática probablemente no refleja las estrategias de extracción de la pesca comercial.

7. ¿Cuál es el efecto de la pesca en la biomasa instantánea de kril?
 Es poco probable – la cobertura temporal y espacial estará probablemente limitada a las áreas de alta densidad de kril.
 Es posible – se dispondría de datos si el mismo barco/arte de pesca se utiliza sistemáticamente por el área justo antes y después de pescar en una región.
 Es posible – se dispondría de datos si el mismo barco/arte de pesca se utiliza sistemáticamente por el área justo antes y después de pescar en una región.
 Es posible – se dispondría de datos si el mismo barco/arte de pesca efectúa transectos sistemáticamente justo antes y después de la pesca en una región.

(continúa)
Tabla 1 (continuación)

<table>
<thead>
<tr>
<th>Tratamiento y manejo de los datos antes y después de la recolección</th>
<th>Pesquería comercial</th>
<th>Datos acústicos recolectados durante las operaciones</th>
<th>Arrastres de investigación aleatorios/sistemáticos estándar de los barcos de pesca</th>
<th>Transectos acústicos estándar efectuados sistemáticamente por los barcos de pesca</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Secretaría debe compilar y resumir los datos a ser utilizados por los grupos de trabajo para las revisiones y evaluaciones.</td>
<td>Los miembros deben calibrar los equipos acústicos y recopilar y archivar un gran volumen de datos registrados por los sistemas acústicos de los barcos. Los miembros deben efectuar el tratamiento y el análisis posterior de los datos para producir una estimación de la biomasa/densidad. La Secretaría debe compilar y resumir los datos a ser utilizados por los grupos de trabajo para las revisiones y evaluaciones.</td>
<td>Los miembros deben efectuar el tratamiento y el análisis posterior de los datos para producir una estimación de la biomasa/densidad. La Secretaría debe compilar y resumir los datos a ser utilizados por los grupos de trabajo para las revisiones y evaluaciones.</td>
<td>Datos recopilados por los observadores y barcos. Los miembros deben calibrar los equipos acústicos y recopilar y archivar un gran volumen de datos registrados por los sistemas acústicos de los barcos. Los miembros deben efectuar el tratamiento y el análisis posterior de los datos para producir una estimación de la biomasa/densidad. La Secretaría debe compilar y resumir los datos a ser utilizados por los grupos de trabajo para las revisiones y evaluaciones.</td>
<td></td>
</tr>
</tbody>
</table>

* Las dos primeras preguntas se relacionan con el párrafo 1(ii)(a) de la Medida de Conservación 22-01, la tercera y la cuarta con el párrafo 1(ii)(b) y las restantes (5 a 7) con el párrafo 1 (ii)(c).
Tabla 2: Métodos de recolección de los datos independientes de la pesca, y utilidad de los tipos de datos recolectados para resolver preguntas específicas relativas a la evaluación planteadas por la Medida de Conservación 22-01 en relación con las pesquerías exploratorias de kril.

<table>
<thead>
<tr>
<th>Tipos de datos:</th>
<th>Seguimiento de los depredadores</th>
<th>Prospección científica efectuada por un barco de investigación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Datos sobre la abundancia, dinámica demográfica y alimentación de los depredadores, equivalentes al seguimiento del programa CEMP.</td>
<td>Datos científicos de muestreo acústico y con redes de arrastre, equivalente a prospecciones en gran escala, por ejemplo, BROKE-West, CCAMLR-2000.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Principales preguntas relativas a la evaluación*</th>
<th>¿Sirve o no la estrategia de pesca / de recolección de datos para resolver las preguntas claves sobre la evaluación?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ¿Cuál es la distribución y la densidad de kril dentro de la unidad de ordenación?</td>
<td>Es poco probable – la cobertura temporal y espacial posiblemente estará limitada a las áreas de alimentación de los depredadores. Es probable – la cobertura temporal y espacial es independiente de las áreas de alta densidad o del esfuerzo de pesca planificado.</td>
</tr>
<tr>
<td>2. ¿Cuál es la estructura demográfica de kril dentro de la unidad de ordenación?</td>
<td>Es poco probable – la cobertura temporal y espacial posiblemente estará limitada a las áreas de alimentación de los depredadores. Es probable – la cobertura temporal y espacial es independiente de las áreas de alta densidad o del esfuerzo de pesca planificado.</td>
</tr>
<tr>
<td>3. ¿Cuál es la distribución y la densidad de las especies de la captura secundaria dentro de la unidad de ordenación?</td>
<td>Es poco probable – la cobertura temporal y espacial posiblemente estará limitada a las áreas de alimentación de los depredadores. Es probable – la cobertura temporal y espacial es independiente de las áreas de alta densidad o del esfuerzo de pesca planificado.</td>
</tr>
<tr>
<td>4. ¿Cuán próximas están las concentraciones de kril/operaciones de la pesca a las áreas de alimentación de los depredadores?</td>
<td>Es probable – es el objetivo principal del seguimiento de los depredadores. Es probable – la cobertura temporal y espacial es independiente de las áreas de alta densidad o del esfuerzo de pesca planificado.</td>
</tr>
<tr>
<td>5. ¿Cuál es la tasa de captura/selectividad de kril en relación con las áreas para las cuales se cuenta con una evaluación?</td>
<td>Es poco probable – la selectividad de los depredadores probablemente no proporcionará datos sobre la selectividad del arte de pesca de todas las áreas. Es posible – se dispondría de datos si se utiliza el mismo barco/arte en el área de exploración y áreas evaluadas, permitiendo la estandarización.</td>
</tr>
<tr>
<td>6. ¿Cuál es la dinámica de la flota pesquera en el área de ordenación?</td>
<td>Es poco probable – la selectividad de los depredadores probablemente no proporcionará datos sobre la selectividad del arte de pesca de todas las áreas. Es poco probable – la pesca de prospección posiblemente no refleja las estrategias de extracción de la pesca comercial.</td>
</tr>
<tr>
<td>7. ¿Cuál es el efecto de la pesca en la biomasa instantánea de kril?</td>
<td>Es posible – las respuestas de los depredadores pueden dar una indicación del efecto a mediano y largo plazo de la pesquería de kril en el stock. Es posible – se dispondría de datos si el mismo barco/arte hace una prospección del área justo antes y después de la pesca en una región.</td>
</tr>
</tbody>
</table>

Tratamiento y manejo de los datos antes y después de la recolección

Requiere que los miembros se comprometan a efectuar el seguimiento a largo plazo de las poblaciones de depredadores que se alimentan en el área de la pesquería exploratoria.

Requiere que los miembros desarrollen un plan de investigación a ser revisado por los grupos de trabajo. Los miembros deben proporcionar al barco equipos acústicos calibrados y recopilar y archivar grandes cantidades de datos registrados por los sistemas acústicos de los barcos. Los miembros deben efectuar el tratamiento y el análisis posterior de los datos para producir una estimación de la biomasa/densidad y deben informar a los grupos de trabajo. La Secretaría debe compilar y resumir los datos a ser utilizados por los grupos de trabajo para las revisiones y evaluaciones.

* Las dos primeras preguntas se relacionan con el párrafo 1(ii)(a) de la Medida de Conservación 22-01, la tercera y la cuarta con el párrafo 1(ii)(b) y las restantes (5 a 7) con el párrafo 1 (ii)(c).
Figura 1*: FOOSA: efectos en la población de kril. Promedio de los resultados del modelo, probabilidad específica para cada propuesta de pesca de que la abundancia mínima de kril durante el periodo de pesca sea <20% de la abundancia obtenida de pruebas comparables que no contemplan la pesca (criterio de decisión 1 para el kril; cuadros superiores), y de que la abundancia de kril medida al final del periodo de pesca sea <75% de la abundancia obtenida de pruebas comparables que no contemplan la pesca (criterio de decisión 2 para el kril; cuadros inferiores). Las probabilidades se promediaron para todos los parámetros del conjunto de referencia utilizando idénticas ponderaciones para las cuatro situaciones (descritas en la figura 2). Los resultados de cada cuadro son los resultados agregados de todas las UOPE. El eje x es la tasa de extracción, llamada ‘factor de multiplicación del rendimiento’. La propuesta 2 es asignar a la UOPE una captura proporcional a la abundancia de los depredadores, la propuesta 3 es asignar a la UOPE una captura proporcional a la abundancia de kril determinada por la prospección CCAMLR-2000 y la propuesta 4 es asignar a la UOPE una captura proporcional a la abundancia de los depredadores menos la abundancia de kril. Las líneas punteadas verticales corresponden a un valor del factor de multiplicación del rendimiento de 0.15 (indicando la tasa de captura en el nivel crítico de activación) y 1.0 (indicando la tasa de captura al nivel del total del límite de captura precautorio).

* Esta figura ha sido publicada a todo color en el sitio web de la CCRVMA.
Figura 2*: FOOSA: efectos en los depredadores. Probabilidad específica para cada parametrización y cada propuesta de pesca de que la abundancia de los depredadores se reduzca al final del período de pesca a menos de 75% de la abundancia pronosticada por las pruebas comparables que no contemplan la pesca. Las líneas de las tendencias de cada grupo de depredadores son específicas para cada UOPE. Las líneas punteadas verticales corresponden a un valor del factor de multiplicación del rendimiento de 0.15 (indicando la tasa de captura en el nivel crítico de activación) y 1.0 (indicando la tasa de captura al nivel del total del límite de captura precautorio). Las cuatro situaciones son: sin movimiento de kril + respuesta lineal del depredador (nlt), sin movimiento de kril + respuesta estable del depredador (nst), con movimiento de kril + respuesta lineal del depredador (mlt) y con movimiendo de kril + respuesta estable del depredador (mst).

* Esta figura ha sido publicada a todo color en el sitio web de la CCRVMA.
Figura 3*: FOOSA: efectos en los depredadores. Promedio de los resultados del modelo, probabilidad específica para cada propuesta de pesca de que la abundancia de los depredadores al final del periodo de pesca se reduzca a menos de 75% de la abundancia obtenida con pruebas comparables que no contemplan la pesca. Los otros detalles son idénticos a los de la figura 1.

Figura 4*: FOOSA: efectos en la pesquería. Probabilidad específica para cada parametrización de todas las pruebas de la propuesta 3 de que la densidad de kril se reduzca a menos de un umbral especificado (T) de 10, 15 ó 20 g m⁻² durante la pesca. Las líneas de tendencias son especificas para cada UOPE. Las líneas punteadas verticales marcan valores del factor de multiplicación del rendimiento de 0.15 (la tasa de captura en el nivel crítico de activación) y 1.0 (la tasa de captura al nivel del total del límite de captura precautorio). Las cuatro situaciones se describen en la figura 2.

* Estas figuras han sido publicadas a todo color en el sitio web de la CCRVMA.
Figura 5*: FOOSA: efectos en la pesquería. Promedio de los resultados del modelo: logaritmo del promedio de la captura para cada propuesta de pesca. Las probabilidades se promediaron para todas las parametrizaciones del conjunto de referencia utilizando idénticas ponderaciones para las cuatro situaciones. Las líneas de las tendencias son específicas para cada UOPE. Las líneas punteadas verticales corresponden a un valor del factor de multiplicación del rendimiento de 0.15 (indicando la tasa de captura en el nivel crítico de activación) y 1.0 (indicando la tasa de captura al nivel del total del límite de captura precautorio). Nótese que muchas de las capturas promedio por UOPE del modelo pronosticadas de la implementación de la propuesta de pesca 4 fueron bajas en comparación con las de las otras propuestas de pesca porque todas las parametrizaciones del conjunto de referencia describen implícitamente condiciones iniciales que prohibirían la pesca en muchas de las UOPE.

Figura 6*: FOOSA: efectos en la pesquería. Rendimiento de la pesquería en todas las pruebas, expresado como la proporción de la asignación total extraída por la pesquería. Los índices del rendimiento se promediaron para todas las parametrizaciones del conjunto de referencia utilizando idénticas ponderaciones para las cuatro situaciones. Las líneas de las tendencias son específicas para cada UOPE. Las líneas punteadas verticales corresponden a un valor del factor de multiplicación del rendimiento de 0.15 (indicando la tasa de captura en el nivel crítico de activación) y 1.0 (indicando la tasa de captura al nivel del total del límite de captura precautorio).

* Estas figuras han sido publicadas a todo color en el sitio web de la CCRVMA.
Figura 7: SMOM: efectos en la población de kril. Probabilidad de que la abundancia de kril en
todas las UOPE medida al final del periodo de pesca se reduzca a <75% de la
abundancia obtenida de pruebas comparables que no contemplan la pesca. Los
resultados se presentan individualmente para cada UOPE y la línea indica el promedio
de todas las UOPE. Se presenta el promedio de la probabilidad, suponiendo idéntica
ponderación, para un conjunto de referencia que incluye 12 combinaciones de
parametrización distintas. Las propuestas de pesca se definen en la figura 1.
Figura 8*: SMOM: efectos en los depredadores. Probabilidad de que la abundancia de los depredadores en todas las UOPE medida al final del período de pesca sea ≤75% de la abundancia obtenida de pruebas comparables que no contemplan la pesca, presentándose los resultados individualmente para las UOPE y grupos de depredadores. Se presenta el promedio de la probabilidad, suponiendo idéntica ponderación, para un conjunto de referencia que incluye 12 combinaciones de parametrización distintas. Las propuestas de pesca se definen en la figura 1. Esta implementación de SMOM es la que más se parece a la situación ‘nst’ de FOOSA (véase la figura 2). (a) es un diagrama simplificado que muestra los resultados generales de las tres propuestas de pesca, (b) muestra los resultados detallados de las propuestas de pesca 2 y 3 al alinear la parametrización del modelo más estrechamente con la utilizada en FOOSA.

Figura 9*: SMOM: efectos en la pesquería. Promedio de los resultados del modelo: logaritmo natural del promedio de la captura para cada propuesta de pesca. Las líneas de las tendencias son específicas para cada UOPE. Las líneas rojas representan capturas en las UOPE pelágicas, las líneas negras representan capturas en las UOPE costeras.

* Estas figuras han sido publicadas a todo color en el sitio web de la CCRVMA.
Figura 10: Resultados de FOOSA para el rendimiento del depredador integrados con el índice CSI (WG-SAM-08/16). El rendimiento es la probabilidad de que el CSI sea mayor que un nivel de referencia, definido como el percentil 90 inferior de la distribución de CSI al final del período de pesca y sin explotación. Por ejemplo, cuando no hay pesca, hay una probabilidad del 90% de que el CSI sea mayor que el nivel de referencia al final del período de pesca prescrito; para la situación 'mlt' en la cual el esfuerzo de pesca es de 1.25 × rendimiento, hay una probabilidad aproximada de 85% de que el rendimiento sea mayor que este nivel de referencia.
Figura 11*: Resultados de FOOSA para el rendimiento de los depredadores integrados con el índice CSI para cada situación bajo la propuesta 3 de asignación por UOPE. Las líneas gruesas muestran los resultados proporcionados en la figura 10. Las líneas finas muestran el rendimiento por UOPE en base a los CSI correspondientes a cada UOPE.

* Esta figura ha sido publicada a todo color en el sitio web de la CCRVMA.
Figura 12*: Regionalización secundaria acordada por el taller de biorregionalización de la CCRVMA (2007) (el análisis se basó en la profundidad, SST, y en la concentración de silicato y nitrato, clorofila-a superficial y hielo). Los rectángulos rojos muestran las áreas de mayor heterogeneidad, que han sido identificadas por el grupo de trabajo como áreas prioritarias para identificar las AMP que formarán parte del sistema representativo (el número corresponde a la descripción del área, y no están en orden de prioridad). 1 = Oeste de la Península Antártica, 2 = Islas Orcadas del Sur, 3 = Islas Sándwich del Sur, 4 = Georgia del Sur, 5 = Meseta Maud, 6 = Este del Mar de Weddell, 7 = Bahía de Prydz, 8 = Banco BANZARE, 9 = Kerguelén, 10 = Norte del Mar de Ross /Este de la Antártida, 11 = plataforma del Mar de Ross.

* Esta figura ha sido publicada a todo color en el sitio web de la CCRVMA.
LISTA DE PARTICIPANTES

Grupo de Trabajo para el Seguimiento y Ordenación del Ecosistema
(San Petersburgo, Rusia, 23 de julio al 1 de agosto de 2008)

AGNEW, David (Dr.)
Division of Biology
Imperial College London
Prince Consort Road
London SW7 2BP
United Kingdom
d.agnew@imperial.ac.uk

AKIMOTO, Naohiko (Sr.)
Japan Overseas Fishing Association
NK-Bldg, 6F, 3-6, Kanda
Ogawa-cho, Chiyoda-ku
Tokyo
101-0052 Japan
naohiko@sol.dti.ne.jp

BIZIKOV, Viacheslav (Dr.)
VNIRO
17a V. Krasnoselskaya
Moscow 107140
Russia
bizikov@vniro.ru

CONSTABLE, Andrew (Dr.)
Antarctic Climate and Ecosystems Cooperative Research Centre
Australian Antarctic Division
Department of Environment, Water, Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
andrew.constable@aad.gov.au

COORDINADOR WG-SAM

FIELDING, Sophie (Dra.)
British Antarctic Survey
High Cross, Madingley Road
Cambridge CB3 0ET
United Kingdom
sof@bas.ac.uk
GASYUKOV, Pavel (Dr.)
AtlantNIRO
5 Dmitry Donskoy Street
Kaliningrad 236000
Russia
pg@atlant.baltnet.ru

GOEBEL, Michael (Dr.)
US AMLR Program
Southwest Fisheries Science Center
3333 N Torrey Pines Court
La Jolla, CA 92037-1508
USA
mike.goebel@noaa.gov

GRANT, Susie (Dra.)
British Antarctic Survey
High Cross, Madingley Road
Cambridge CB3 0ET
United Kingdom
suan@bas.ac.uk

HANCHET, Stuart (Dr.)
National Institute of Water and Atmospheric Research (NIWA)
PO Box 893
Nelson
New Zealand
s.hanchet@niwa.co.nz

HARALDSSON, Matilda (Sra.)
University of Gothenburg
PO Box 100
SE-405 30 Gothenburg
Sweden
gusharma@student.gu.se

HILL, Simeon (Dr.)
British Antarctic Survey
Natural Environment Research Council
High Cross, Madingley Road
Cambridge CB3 0ET
United Kingdom
sih@bas.ac.uk

HINKE, Jefferson (Sr.)
Marine Biology Research Division
Scripps Institution of Oceanography
UC San Diego
9500 Gilman Drive
La Jolla, CA 92093
USA
jefferson.hinke@noaa.gov
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Address</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOLT, Rennie (Dr.)</td>
<td>US AMLR Program</td>
<td>Southwest Fisheries Science Center</td>
<td>rennie.holt@noaa.gov</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8604 La Jolla Shores Drive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>La Jolla, CA 92037-1508</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>ICHII, Taro (Dr.)</td>
<td>National Research Institute of Far Seas Fisheries</td>
<td>2-12-4, Fukuura, Kanazawa-ku</td>
<td>ichii@affrc.go.jp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yokohama, Kanagawa</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>236-8648 Japan</td>
<td></td>
</tr>
<tr>
<td>JONES, Christopher</td>
<td>US AMLR Program</td>
<td>Southwest Fisheries Science Center</td>
<td>chris.d.jones@noaa.gov</td>
</tr>
<tr>
<td>(Dr.)</td>
<td></td>
<td>8604 La Jolla Shores Drive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Coordinadorr WG-FSA)</td>
<td>La Jolla, CA 92037-1508</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>KASATKINA, Svetlana</td>
<td>AtlantNIRO</td>
<td>5 Dmitry Donskoy Street</td>
<td>ks@atlant.baltnet.ru</td>
</tr>
<tr>
<td>(Dra.)</td>
<td></td>
<td>Kaliningrad 236000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Russia</td>
<td></td>
</tr>
<tr>
<td>KAWAGUCHI, So (Dr.)</td>
<td>Australian Antarctic Division</td>
<td>Department of the Environment, Water, Heritage and the Arts</td>
<td>so.kawaguchi@aad.gov.au</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Channel Highway</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kingston Tasmania 7050</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>KNUTSEN, Tor (Dr.)</td>
<td>Institute of Marine Research</td>
<td>Research Group Plankton</td>
<td>tor.knutsen@imr.no</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nordnesgaten 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PO Box 1870 Nordnes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5817 Bergen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>MILINEVSKY, Gennadi</td>
<td>National Taras Chevchenko University of Kiev</td>
<td>Building 1</td>
<td>genmilinevsky@gmail.com</td>
</tr>
<tr>
<td>(Dr.)</td>
<td></td>
<td>2 Acad Glushkova Ave</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>03680 MCP Kiev</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ukraine</td>
<td></td>
</tr>
</tbody>
</table>
NAGANOBU, Mikio (Dr.)
Southern Ocean Living Resources
Research Section
National Research Institute of Far Seas Fisheries
2-12-4, Fukuura, Kanazawa
Yokohama, Kanagawa
236-8648 Japan
naganobu@affrc.go.jp

PENHALE, Polly (Dra.)
National Science Foundation
Office of Polar Programs
4201 Wilson Blvd
Arlington, VA 22230
USA
ppenhale@nsf.gov

PLAGÁNYI, Éva (Dra.)
Department of Mathematics
and Applied Mathematics
University of Cape Town
Private Bag 7701
Rondebosch
South Africa
eva.plaganyi-lloyd@uct.ac.za

PSHENICHNOV, Leonid (Dr.)
YugNIRO
2 Sverdlov Street
Kerch 983000
Ukraine
lkp@bikent.net

REISS, Christian (Dr.)
US AMLR Program
Southwest Fisheries Science Center
8604 La Jolla Shores Drive
La Jolla, CA 92037-1508
USA
christian.reiss@noaa.gov

SIEGEL, Volker (Dr.)
Institut für Seefischerei
Palmaillle 9
D-22767 Hamburg
Germany
volker.siegel@vti.bund.de

SKARET, Georg (Dr.)
Institute of Marine Research
Nordnesgaten 50
PO Box 1870 Nordnes
5817 Bergen
Norway
georg.skaret@imr.no
SOUTHWELL, Colin (Dr.)
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
colin.southwell@aad.gov.au

SPIRIDONOV, Vasily (Dr.)
WWF-Russia
Nikolyamskaya 19(3)
Moscow 109260
Russia
vspiridonov@wwf.ru

TATARNIKOV, Viacheslav (Dr.)
VNIRO
17a V. Krasnoselskaya
Moscow 107140
Russia
fishing@vniro.ru
utat@mail.ru

TRIVELPIECE, Wayne (Dr.)
US AMLR Program
Southwest Fisheries Science Center
8604 La Jolla Shores Drive
La Jolla, CA 92037-1508
USA
wayne.trivelpiece@noaa.gov

TRATHAN, Phil (Dr.)
British Antarctic Survey
High Cross, Madingley Road
Cambridge CB3 0ET
United Kingdom
pnt@bas.ac.uk

WATKINS, Jon (Dr.)
British Antarctic Survey
High Cross, Madingley Road
Cambridge CB3 0ET
United Kingdom
jlwa@bas.ac.uk

WATTERS, George (Dr.)
(Coordinador WG-EMM)
Southwest Fisheries Science Center
Protected Resources Division
8604 La Jolla Shores Drive
La Jolla, CA 92037
USA
george.watters@noaa.gov
WEEBER, Barry (Sr.) Antarctic Marine Project
3 Finnimore Terrace
Vogeltown
Wellington
New Zealand
b.weeber@paradise.net.nz

WELSFORD, Dirk (Dr.) Australian Antarctic Division
Department of the Environment, Water,
Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
dirk.welsford@aad.gov.au

Secretaría:

Denzil MILLER (Secretario Ejecutivo) CCRVMA
David RAMM (Administrador de Datos) PO Box 213
Keith REID (Funcionario Científico) North Hobart 7002
Rosalie MARAZAS (Sitio web y Servicios de información) Tasmania Australia
Genevieve TANNER (Comunicaciones) ccamlr@ccamlr.org
AGENDA

Grupo de Trabajo para el Seguimiento y Ordenación del Ecosistema
(San Petersburgo, Rusia, 23 de julio al 1 de agosto de 2008)

1. Introducción
 1.1 Apertura de la reunión
 1.2 Aprobación de la agenda y organización de la reunión
 1.3 Información obtenida de reuniones previas de la Comisión, del Comité Científico y de los grupos de trabajo

2. Tema central de discusión: Evaluación del riesgo en la etapa 1 de la subdivisión del límite de captura precautorio en unidades de ordenación en pequeña escala en el área 48 – Presidido por el Dr. P. Trathan (RU)
 2.1 Asesoramiento de WG-SAM
 2.2 Análisis y evaluación del riesgo
 2.3 Puntos clave a ser considerados por el Comité Científico y sus grupos de trabajo

3. Tema central de discusión: Progreso en la implementación de medidas de gestión de espacios para facilitar la conservación de la biodiversidad marina – Presidido por la Dra. P. Penhale (EEUU)
 3.1 Antecedentes
 3.2 Identificación de ecosistemas marinos vulnerables
 3.3 Definición de áreas marinas que podrían requerir protección
 3.4 Desarrollo de una estrategia armonizada
 3.5 Plan de trabajo
 3.6 Puntos clave a ser considerados por el Comité Científico y sus grupos de trabajo

4. Estado y tendencias de la pesquería de kril
 4.1 Actividades de pesca
 4.2 Descripción de la pesquería
 4.3 Observación científica
 4.4 Temas relativos a la reglamentación
 4.5 Puntos clave a ser considerados por el Comité Científico y sus grupos de trabajo

5. Estado y tendencias del ecosistema centrado en el kril
 5.1 Informe de WG-EMM-STAPP
 5.2 Estado de los depredadores, del recurso kril y de las influencias ambientales
 5.2.1 Depredadores
 5.2.2 Kril
 5.2.3 Medio ambiente y efectos climáticos
 5.3 Otras especies presa
 5.4 Métodos
 5.5 Prospecciones futuras
 5.6 Puntos clave a ser considerados por el Comité Científico y sus grupos de trabajo
6. Efectos de las pesquerías de peces en el ecosistema

7. Estado del asesoramiento de ordenación
 7.1 Áreas protegidas
 7.2 Unidades de explotación
 7.3 Unidades de ordenación en pequeña escala
 7.4 Modelos analíticos
 7.5 Medidas de conservación en vigor
 7.6 Puntos clave a ser considerados por el Comité Científico y sus grupos de trabajo

8. Labor futura
 8.1 Segundo taller sobre pesquerías y modelos de ecosistemas en la Antártida
 8.2 Agenda revisada y Plan de trabajo a largo plazo de WG-EMM
 8.3 Taller conjunto CCAMLR-IWC
 8.4 Puntos clave a ser considerados por el Comité Científico y sus grupos de trabajo

9. Asuntos varios

10. Aprobación del informe y clausura de la reunión.
LISTA DE DOCUMENTOS
Grupo de Trabajo para el Seguimiento y Ordenación del Ecosistema
(San Petersburgo, Rusia, 23 de julio al 1 de agosto de 2008)

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>WG-EMM-08/1</td>
<td>Draft Preliminary Agenda for the 2008 Meeting of the Working Group on Ecosystem Monitoring and Management (WG-EMM)</td>
</tr>
<tr>
<td>WG-EMM-08/2</td>
<td>List of participants</td>
</tr>
<tr>
<td>WG-EMM-08/3</td>
<td>List of documents</td>
</tr>
<tr>
<td>WG-EMM-08/4</td>
<td>CEMP indices: 2008 update</td>
</tr>
<tr>
<td></td>
<td>Secretariat</td>
</tr>
<tr>
<td>WG-EMM-08/5</td>
<td>Krill fishery report: 2008 update</td>
</tr>
<tr>
<td></td>
<td>Secretariat</td>
</tr>
<tr>
<td>WG-EMM-08/6</td>
<td>Summary of notifications for krill fisheries in 2008/09</td>
</tr>
<tr>
<td></td>
<td>Secretariat</td>
</tr>
<tr>
<td>WG-EMM-08/7</td>
<td>Demography of Antarctic krill and other Euphausiacea in the Lazarev Sea – LAKRIS the German contribution to CCAMLR-IPY in summer 2008</td>
</tr>
<tr>
<td></td>
<td>V. Siegel, J. Edinger, M. Haraldsson, K. Stürmer, M. Vortkamp (Germany)</td>
</tr>
<tr>
<td>WG-EMM-08/8</td>
<td>Report of the Predator Survey Workshop</td>
</tr>
<tr>
<td></td>
<td>(Hobart, Australia, 16 to 20 June 2008)</td>
</tr>
<tr>
<td>WG-EMM-08/9</td>
<td>Report from Invited Expert to WG-EMM-PSW-08</td>
</tr>
<tr>
<td></td>
<td>R. Fewster (Invited Expert)</td>
</tr>
<tr>
<td>WG-EMM-08/10</td>
<td>Reference observations for validating and tuning operating models for krill fishery management in Area 48</td>
</tr>
<tr>
<td></td>
<td>S. Hill (United Kingdom), J. Hinke (USA), É. Plagányi (South Africa) and G. Watters (USA)</td>
</tr>
<tr>
<td>WG-EMM-08/11</td>
<td>Proposed small-scale management units for the krill fishery in Subarea 48.4 and around the South Sandwich Islands</td>
</tr>
<tr>
<td></td>
<td>P.N. Trathan, A.P.R. Cooper and M. Biszczuk (United Kingdom)</td>
</tr>
</tbody>
</table>
WG-EMM-08/12 Allocating the precautionary catch limit for krill amongst the small-scale management units in Area 48: the implications of data uncertainties
P.N. Trathan and S.L. Hill (United Kingdom)

WG-EMM-08/13 Developing four plausible parameterisations of FOOSA (a so-called reference set of parameterisations) by conditioning the model on a calendar of events that describes changes in the abundances of krill and their predators in the Scotia Sea
G.M. Watters, J.T. Hinke (USA) and S. Hill (United Kingdom)

WG-EMM-08/14 Developing models of Antarctic marine ecosystems in support of CCAMLR and IWC
A. Constable (Australia)

WG-EMM-08/15 CCAMLR-IWC Workshop to review input data for Antarctic marine ecosystem models: update on progress 2008
A. Constable and N. Gales (Co-conveners)

WG-EMM-08/16 Distribution of krill at threshold densities suitable for fishing in the Atlantic sector: analysis of the 2000 synoptic survey data
S. Hill and D. Agnew (United Kingdom)

WG-EMM-08/17 A re-appraisal of the total biomass and annual production of Antarctic krill
A. Atkinson (United Kingdom), V. Siegel (Germany), E.A. Pakhomov (South Africa), M.J. Jessopp (United Kingdom) and V. Loeb (USA)
(Deep-Sea Research, submitted)

WG-EMM-08/18 Preliminary report of the New Zealand RV Tangaroa IPY-CAML survey of the Ross Sea region, Antarctica, in February–March 2008
S.M. Hanchet, J. Mitchell, D. Bowden, M. Clark, J. Hall, R. O'Driscoll, M. Pinkerton and D. Robertson (New Zealand)

WG-EMM-08/19 Calibration error in the AMLR plankton time series
C. Reiss (USA)

WG-EMM-08/20 Letter to Drs Reid, Watters and Jones in regard to ‘disappearance of toothfish from McMurdo Sound’
D.G. Ainley, S.F. Ackley, K. Arrigo (USA), G. Ballard (New Zealand), J.P. Barry (USA), L. Blight (Canada), P. Broady, B. Davison (New Zealand), P. Dayton, A.L. DeVries, K. Dugger, J.T. Eastman, S.D. Emslie (USA), C. Evans (New Zealand), R.A. Garrott, G. Hofmann, S. Kim, G. Kooyman, S.S. Jacobs (USA), G. Lauriano (Italy), A. Lescroël (France), D.R. MacAyeal (USA), M. Massaro (New Zealand), S. Olmastroni (Italy), P.J. Ponganis (USA), E. Robinson (New Zealand), D.B. Siniff, W.O. Smith (USA), I. Stirling (Canada) and P. Wilson (New Zealand)
WG-EMM-08/21 Decline of the Antarctic toothfish and its predators in McMurdo Sound and the southern Ross Sea and recommendations for restoration
A.L. DeVries, D.G. Ainley and G. Ballard (USA)

WG-EMM-08/22 Addressing uncertainty over the importance of Antarctic toothfish as prey of seals and whales in the southern Ross Sea: a review
D. Ainley and D. Siniff (USA)

WG-EMM-08/23 Aerial surveys of Weddell seals during 2007/08, with notes on the history of aerial censuses in the Ross Sea and recommendations for continued count effort
D. Siniff and D. Ainley (USA)

WG-EMM-08/24 State of Antarctic krill (*Euphausia superba*) fisheries in Statistical Subarea 48.2 in 2008
V.A. Bibik and N.N. Zhuk (Ukraine)

WG-EMM-08/25 Data on feeding and food objects of southern minke whales
S.G. Bushuev (Ukraine)
(Previously submitted as SC-CAMLR-XXVI/BG/25 Rev. 1)

WG-EMM-08/26 Comparison of the biomass of Antarctic krill (*Euphausia superba*) around the South Shetland and South Orkney Islands in three years: 1999, 2000 and 2008
C. Reiss and A. Cossio (USA)

WG-EMM-08/27 Trophic study of Ross Sea Antarctic toothfish (*Dissostichus mawsoni*) using carbon and nitrogen stable isotopes
S.J. Bury, M.H. Pinkerton, D.R. Thompson, S. Hanchet, J. Brown and I. Vorster (New Zealand)

WG-EMM-08/28 The Antarctic krill and ecosystem survey with RV *G.O. Sars* in 2008

WG-EMM-08/29 *In situ* measurements of tilt angle distribution and target strength in Antarctic krill (*Euphausia superba*)
G. Skaret, S.A. Iversen, T. Knutsen, R.J. Korneliussen, E. Ona, R. Pedersen, A. Totland, T. Torkelsen (Norway) and X. Zhao (China)

WG-EMM-08/30 A risk assessment to advise on strategies for subdividing a precautionary catch limit among small-scale management units during stage 1 of the staged development of the krill fishery in Subareas 48.1, 48.2 and 48.3
G.M. Watters, J.T. Hinke (USA) and S. Hill (United Kingdom)
WG-EMM-08/31 Relationships between oceanographic environment and distribution of krill and baleen whales in the Ross Sea and adjacent waters, Antarctica in 2004/05
(CCAMLR Science, submitted)

WG-EMM-08/32 Relationship between distribution of Antarctic krill (*Euphausia superba*) and environmental index MTEM-200 in the Antarctic Ocean throughout the year
M. Naganobu, T. Kitamura and K. Hasunuma (Japan)
(CCAMLR Science, submitted)

WG-EMM-08/33 Time series of Drake Passage Oscillation Index (DPOI) during 1952–2008 and its possible influence on environmental variability
M. Naganobu, J. Kondo and K. Kutsuwada (Japan)

WG-EMM-08/34 Systematic coverage by scientific observers on krill fishing vessels Delegation of Japan

WG-EMM-08/35 Distribution patterns and biomasses of Antarctic krill (*Euphausia superba*) and ice krill (*E. crystallorophias*) with note on distribution of Antarctic minke whales (*Balaenoptera bonaerensis*) in the Ross Sea in 2005

WG-EMM-08/36 Community structure of copepods in epipelagic layers in the Ross Sea and neighbouring waters
Y. Watanabe, S. Sawamoto, T. Ishimaru and M. Naganobu (Japan)

WG-EMM-08/37 A risk management framework for avoiding significant adverse impacts of bottom fishing gear on vulnerable marine ecosystems
K. Martin-Smith (Australia)

WG-EMM-08/38 Notification of vulnerable marine ecosystems in Statistical Division 58.4.1
(Submitted by Australia)

WG-EMM-08/39 Krill fishery behaviour in the southwest Atlantic
S. Kawaguchi (Australia)
(CCAMLR Science, submitted)

WG-EMM-08/40 Krill fishery behaviour in the 1999/2000 season
S. Kawaguchi (Australia)
WG-EMM-08/41 Updated krill recruitment data for the Elephant Island region of the South Shetland Islands, Antarctica: 2002–2008
C. Reiss (USA)

WG-EMM-08/42 A preliminary balanced trophic model of the ecosystem of the Ross Sea, Antarctica, with emphasis on apex predators
M.H. Pinkerton, J.M. Bradford-Grieve and S.M. Hanchet (New Zealand)
(CCAMLR Science, submitted)

WG-EMM-08/43 Trophic overlap of Weddell seals (Leptonychotes weddelli) and Antarctic toothfish (Dissostichus mawsoni) in the Ross Sea, Antarctica
M.H. Pinkerton, A. Dunn and S.M. Hanchet (New Zealand)

WG-EMM-08/44 Conditioning SMOM using the agreed calendar of observed changes in predator and krill abundance: a further step in the development of a management procedure for krill fisheries in Area 48
É.E. Plagányi and D.S. Butterworth (South Africa)

WG-EMM-08/45 Potential requirements for scientific data from the krill fishery
Secretariat

WG-EMM-08/46 Catch uncertainty in krill fisheries
Secretariat

WG-EMM-08/47 Progress towards expert group manuscripts for the CCAMLR-IWC Workshop to review input data for Antarctic marine ecosystem models: update on progress 2008
A. Constable and N. Gales (Co-conveners)

WG-EMM-08/48 Multiple time scales of variability in the krill population at South Georgia
K. Reid, J. Watkins, E. Murphy, P. Trathan, S. Fielding and P. Enderlein (United Kingdom)
(Mar. Ecol. Prog. Ser., to be submitted)

WG-EMM-08/49 Proposed approach for the identification of important marine areas for conservation: using ‘MARXAN’ software to support systematic conservation planning
S.M. Grant, J. Tratalos and P.N. Trathan (United Kingdom)

WG-EMM-08/50 Flexible foraging strategies of gentoo penguins help buffer the impacts of interannual changes in prey availability
A.K. Miller and W.Z. Trivelpiece (USA)

WG-EMM-08/51 Down-scaling FOOSA to model the Admiralty Bay Pygoscelid penguin colonies: a work in progress
J.T. Hinke, G.M. Watters and W.Z. Trivelpiece (USA)
<table>
<thead>
<tr>
<th>Document Code</th>
<th>Title</th>
<th>Authors</th>
<th>Journal/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>WG-EMM-08/52</td>
<td>Proposal for a Joint CEP-SC-CAMLR Workshop in 2009 Secretariat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WG-EMM-08/53</td>
<td>Preliminary estimation of penguin breeding abundance at spatial-scales of relevance to CCAMLR: incorporating uncertainty in count data</td>
<td>H. Lynch, R. Naveen (USA), J. McKinlay, C. Southwell (Australia), P. Trathan (United Kingdom), W. Trivelpiece, S. Trivelpiece (USA) and D. Ramm (CCAMLR Secretariat)</td>
<td></td>
</tr>
<tr>
<td>WG-EMM-08/54</td>
<td>Net-based verification of acoustic techniques used to identify Antarctic krill</td>
<td>J. Watkins and S. Fielding (United Kingdom)</td>
<td>(CCAMLR Science, submitted)</td>
</tr>
<tr>
<td>WG-EMM-08/55</td>
<td>Properties of krill distribution in pelagic and coastal SSMUs of the South Orkney Islands subarea according to the data of scientific observations and fishery</td>
<td>S.M. Kasatkina and V.N. Shnar (Russia)</td>
<td>(CCAMLR Science, submitted)</td>
</tr>
<tr>
<td>WG-EMM-08/56</td>
<td>Measurements of sound-speed density contrasts of Antarctic krill (Euphausia superba) on board RV Kaiyo Maru</td>
<td>Y. Takao, H. Yasuma, R. Matsukura, K. Amakasu and M. Naganobu (Japan)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rev. 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WG-EMM-08/57</td>
<td>By-catch of fishes caught by the krill fishing vessel Niitaka Maru in the South Georgia area (August 2007)</td>
<td>T. Iwami and M. Naganobu (Japan)</td>
<td></td>
</tr>
</tbody>
</table>
WG-EMM-08/P4 Oceanic circumpolar habitats of Antarctic krill

WG-EMM-08/P5 Life history buffering in Antarctic mammals and birds against changing patterns of climate and environmental variation
J. Forcada, P.N. Trathan and E.J. Murphy

(Global Change Biology, in press)

WG-EMM-08/P6 Environmental forcing and Southern Ocean marine predator populations: effects of climate change and variability
P.N. Trathan, J. Forcada and E.J. Murphy

WG-EMM-08/P7 Ecological repercussions of historical fish extraction from the Southern Ocean
D. Ainley and L. Blight

(Fish and Fisheries, in press)

WG-EMM-08/P8 The summertime plankton community at South Georgia (Southern Ocean): comparing the historical (1926/27) and modern (post 1995) records
P. Ward, M.P. Meredith, M.J. Whitehouse and P. Rothery

(Progress in Oceanography, in press)

WG-EMM-08/P9 Histopathology of Antarctic krill, Euphausia superba, bearing black spots
S. Miwa, T. Kamaishi, T. Matsuyama, T. Hayashi and M. Naganobu

WG-EMM-08/P10 Horizontal and vertical distribution and demography of euphausiids in the Ross Sea and its adjacent waters in 2004/05
K. Taki, T. Yabuki, Y. Noiri, T. Hayashi and M. Naganobu

WG-EMM-08/P11 The power of ecosystem monitoring
K. Reid, J.P. Croxall and E.J. Murphy

WG-EMM-08/P12 Interannual spatial variability of krill (Euphausia superba) influences seabird foraging behaviour near Elephant Island, Antarctica
J.A. Santora, C.S. Reiss, A.M. Cossio and R.R. Veit

(Fish. Oceanogr., in press)

WG-EMM-08/P13 Retirado
A population estimate of macaroni penguins (*Eudyptes chrysolophus*) at South Georgia
P.N. Trathan (United Kingdom)

The white-chinned petrel (*Procellaria aequinoctialis*) on South Georgia: population size, distribution and global significance
A.R. Martin, S. Poncet, C. Barbraud, P. Fretwell and E. Foster (United Kingdom)

Abundance estimates for crabeater, Weddell and leopard seals at the Antarctic Peninsula and in the western Weddell Sea (90°–30°W, 60°–80°S)
J. Forcada and P.N. Trathan (United Kingdom)

Spatial and temporal variation in attributes of Adélie penguin breeding populations: implications for uncertainty in estimation of the abundance of breeding penguins from one-off counts
C. Southwell, J. McKinlay, R. Pike, D. Wilson, K. Newbery and L. Emmerson (Australia)

Estimating the number of pre- and intermittent breeders associated with the Béchervaise Island Adélie penguin population
L. Emmerson and C. Southwell (Australia)

Aspects of population structure, dynamics and demography of relevance to abundance estimation: Adélie penguins
L. Emmerson and C. Southwell (Australia)

Flying seabirds in Area 48: a review of population estimates, coverage and potential gaps in survey extent and methods
D. Wilson (Australia)

Seasonal estimation of abundance by bootstrapping inexact research data (seabird): a method for assessing abundance and uncertainty from historical count data using Adélie penguins as a case study
J.P. McKinlay and C.J. Southwell (Australia)

A brief summary of Adélie penguin count data from east Antarctica
C. Southwell and J. McKinlay (Australia)

Incomplete search effort as a potential source of bias in broad-scale estimates of penguin abundance derived from published count data: a case study for Adélie penguins in east Antarctica
C. Southwell, D. Smith and A. Bender (Australia)
WG-EMM-PSW-08/14 Antarctic fur seal pup production and population trends in the South Shetland Islands with special reference to sources of error in pup production estimates
M.E. Goebel (USA), D.E. Torres C. (Chile), A. Miller, J. Santora, D. Costa (USA) and P. Diaz (Chile)

WG-EMM-PSW-08/15 Timing of clutch initiation in Pygoscelis penguins on the Antarctic Peninsula: towards an improved understanding of off-peak census correction factors

WG-SAM-08/15 Implementation of FOOSA (KPFM) in the EPOC modelling framework to facilitate validation and possible extension of models used in evaluating krill fishery harvest strategies that will minimise risk of localised impacts on krill predators
A. Constable (Australia)

WG-SAM-08/16 An ecosystem-based management procedure for krill fisheries: a method for determining spatially-structured catch limits to manage risk of significant localised fisheries impacts on predators
A. Constable and S. Candy (Australia)

WG-SAM-08/17 An updated description and parameterisation of the spatial multi-species operating model (SMOM)
É.E. Plagányi and D.S. Butterworth (South Africa)

CCAMLR-XXVII/13 Notification of Norway’s intention to conduct an exploratory trawl fishery for Euphausia superba in the 2008/09 season
Delegation of Norway
EVALUACIÓN DEL RENDIMIENTO BASADA EN ÍNDICES NORMALIZADOS COMPUESTOS (CSI)

(Dr. A. Constable, Antarctic Climate and Ecosystems Cooperative Research Centre y Australian Antarctic Division)

El método para combinar muchas respuestas individuales de los depredadores en un índice fue propuesto por primera vez por de la Mare en 1997 (de la Mare, 1997; de la Mare y Constable, 2000), y más tarde fue denominado “Índice normalizado compuesto” (CSI) por Boyd y Murray (1999, 2001). Este apéndice describe cómo se puede utilizar este índice para medir la probabilidad de que una trama alimentaria se aparte de las normas observadas anteriormente y por lo tanto, proporcionar una medición del riesgo de que distintos factores de multiplicación del rendimiento causen una desviación significativa de esas normas.

AGREGACIÓN DE LAS RESPUESTAS DE LOS DEPREDADORES (POR EJEMPLO EL RECLUTAMIENTO) EN LOS CSI

2. Los indicadores de las respuestas de los depredadores incluidos en un CSI incluyen algunos índices cuya variabilidad supuestamente refleja cambios en la abundancia de kril. Se puede concebir con mayor facilidad los indicadores observados como aquellos que reflejan la productividad reproductiva de una población. El grado del cambio y la correlación entre el cambio de estas respuestas será diferente para los distintos depredadores. Ya que se desconoce la dependencia en el kril o los cambios en el kril, la intensidad de la respuesta de los depredadores, en la forma de un índice combinado de todos los depredadores depende de la correlación entre la respuesta de cada depredador con las otras respuestas. La figura 1 demuestra que si la correlación entre las respuestas es muy alta, el índice combinado será de valor muy alto. Si la correlación es débil, los cambios en un depredador pueden no coincidir con los cambios en otro depredador. De este modo, la respuesta combinada de los depredadores representada por el CSI proporciona una indicación de la proporción del cambio que es compartida por todas las respuestas.
Figura 1: Ilustración del CSI combinado cuando la correlación entre los depredadores es alta (izquierda – correlación = 1) y cuando la correlación es inversa (derecha – correlación = –1). En el caso de existir una correlación negativa con el kril, se propone invertir el signo de la respuesta del depredador de manera que los cambios de todas las respuestas de los depredadores ocurran en la misma dirección en relación con el cambio de la abundancia de kril.

UTILIZACIÓN DE LÍNEAS DE BASE PARA EVALUAR UNA DESVIACIÓN DE LAS NORMAS DE REFERENCIA

3. Es posible determinar la variabilidad natural del CSI de un período de línea de base, esto es, la norma de referencia. Esto puede ser antes del período de pesca (o algún periodo de interés) o, en el caso de las evaluaciones con modelos, durante un período sin pesca. La desviación de este rango de la variabilidad natural puede ser considerada como una anomalía (SC-CAMLR-XV, anexo 4; SC-CAMLR-XVI, anexo 4) cuando es de magnitud mayor que la determinada por un intervalo de confianza especificado. Esto se ilustra en la figura 2.

Figura 2: Desviación de un CSI más allá del rango de la variabilidad natural. La línea sólida representa el CSI durante el periodo de referencia, siendo el promedio la línea horizontal central e indicándose el límite superior e inferior del intervalo de confianza con las otras dos líneas. Se muestran otras dos series cronológicas de CSI en relación con la línea de base que indican un aumento de la variabilidad en este ejemplo, y el aumento consiguiente de la probabilidad de que se esté fuera del rango de la variabilidad natural. Se espera que una disminución de kril causaría una disminución del CSI por debajo del valor del límite inferior del intervalo de confianza.
PROBABILIDAD DE UNA DESVIACIÓN DE LAS NORMAS DE REFERENCIA

4. En el caso de una disminución esperada como resultado de una disminución de la abundancia de kril, se puede esperar que una desviación por debajo del límite inferior del intervalo de confianza. En las simulaciones con ordenador, se pueden realizar pruebas repetidas para determinar, para una condición de simulación dada, cuántas pruebas hacen que el CSI disminuya por debajo del nivel crítico. La figura 3 ilustra la variabilidad de los valores del CSI resultante de muchas pruebas. Los resultados corresponden a 100 pruebas de una simulación con el modelo FOOSA. Se indica también el percentil 10 inferior, que podría ser utilizado como el valor crítico inferior, por debajo del cual se consideraría que los valores se han desviado de la norma de referencia.

5. Se espera que el efecto indirecto de la pesca en los depredadores sea evidente al final del período de pesca (después de 20 años en el ejemplo de la figura 3). De este modo, la probabilidad de que ocurra una desviación de la norma de referencia bajo una de las estrategias de pesca puede determinarse como la proporción de simulaciones (pruebas) que contemplan la pesca con un CSI inferior al valor crítico (es decir, el percentil 10 inferior) obtenido de la prueba que no contemplan la pesca al final del último año de pesca (o algún otro periodo de referencia).

6. Esto se determina de la siguiente manera:

La distribución de los valores de CSI al final del período de pesca se determina a partir de las pruebas que no contemplan la pesca (figura 4). La distribución de la probabilidad acumulativa de las pruebas que contemplan la pesca y las pruebas sin pesca (figura 5) puede entonces ser utilizada para determinar la probabilidad de que una prueba que contempla la pesca se desvíe de las normas de referencia de la línea de
base. Esto se ilustra en la figura 6 para los resultados de FOOSA donde los gráficos de cajas han sido convertidos a valores de mediana y percentiles 10 y 90 tanto para las pruebas que no contemplan la pesca como para las pruebas con pesca.

![Figura 4: Distribución teórica de los valores de CSI al final de un período referencia (no siempre estas distribuciones son normales o gaussianas). La línea vertical indica el valor crítico de CSI correspondiente al percentil 10 inferior.](image)

La línea vertical representa el valor crítico de CSI, aproximadamente 0.4 en este ejemplo.

![Figura 5: Distribución de la probabilidad acumulativa de los valores de CSI. La distribución básica está a la derecha y la de una posible estrategia de pesca, a la izquierda. La línea vertical representa el valor crítico del CSI leído de la línea de base para el percentil 10 inferior (lnea horizontal inferior). La probabilidad de una desviación de la norma de referencia proporcionada por la n (variabilidad natural) está dada por la probabilidad de que la línea a la izquierda esté por debajo del valor crítico del CSI, aproximadamente 0.4 en este ejemplo.](image)
Figura 6: Medianas y percentiles 10 y 90 para 100 pruebas que no contemplan la pesca (línea negra) y 100 pruebas con pesca (líneas gris/roja) efectuadas con el modelo FOOSA. La línea horizontal indica el promedio del CSI de las pruebas que no contemplan la pesca durante el período de pesca. Las líneas verticales delimitan el período de pesca. El período a la izquierda de la línea más a la izquierda es el período del calendario y el período a la derecha de la línea más a la derecha es el período de recuperación. (Esta figura ha sido publicada a todo color en el sitio web de la CCRVMA).

EVALUACIÓN DEL RIESGO DE QUE SE PRODUZCA UNA DESVIACIÓN CON RESPECTO A LAS NORMAS DE REFERENCIA

7. La probabilidad de que se produzca una desviación puede entonces ser revertida (1 menos esa probabilidad) para indicar el rendimiento del marco hipotético con respecto a mantener la trama alimentaria dentro del rango de las normas de referencia. De este modo, una prueba que no contemple la pesca que utilice el percentil 10 inferior como el valor crítico de CSI tendría un rendimiento de 0.9. A medida que la captura de kril aumenta con un factor mayor de multiplicación del rendimiento, se espera que la población de kril disminuirá, y esto ocasionará una reducción de las respuestas de los depredadores. En este sentido, la probabilidad de que el CSI se aparte de las normas de referencia aumentará, con la consiguiente disminución del rendimiento. Esto se muestra en la figura 7.
Figura 7: Resultados de distintos factores de multiplicación del rendimiento aplicados a una estrategia de pesca de kril basada en la incorporación de todas las respuestas de los depredadores en el CSI (reclutamiento) en todas las UOPE.

REFERENCIAS

INFORME DEL GRUPO DE TRABAJO DE EVALUACIÓN
DE LAS POBLACIONES DE PECES
(Hobart, Australia, 13 al 24 de octubre de 2008)
ÍNDICE

APERTURA DE LA REUNIÓN ... 333

ORGANIZACIÓN DE LA REUNIÓN Y APROBACIÓN DE LA AGENDA 333

EXAMEN DE LA INFORMACIÓN DISPONIBLE ... 334
Datos requeridos en 2007 ... 334
 Desarrollo de la base de datos de la CCRVMA .. 334
 Tratamiento de datos .. 334
 Planes de pesca .. 335
Información de las pesquerías ... 335
 Datos de captura, esfuerzo, talla y edad notificados a la CCRVMA 335
 Estimaciones de captura y esfuerzo de la pesca INDNR 336
 Datos de captura y esfuerzo de las pesquerías de austromerluza
 en aguas adyacentes al Área de la Convención 337
 Datos de observación científica .. 337
Datos de entrada para la evaluación de los stocks 338
 Captura por talla y edad de las pesquerías .. 338
 Prospecciones de investigación .. 338
 Análisis de la CPUE .. 342
 Estudios de marcado ... 342
 Parámetros biológicos ... 345
 Depredación .. 347

PREPARACIÓN Y CALENDARIO DE LAS EVALUACIONES 348
Informe de WG-SAM ... 348
Examen de los informes de las evaluaciones preliminares de los stocks 348
Evaluaciones a realizarse y calendario de evaluaciones 352

EVALUACIONES Y ASESORAMIENTO DE ORDENACIÓN 352
Pesquerías nuevas y exploratorias en 2007/08 y notificaciones para 2008/09 352
 Notificación de una pesquería nueva de centollas en las Subáreas 48.2 y 48.4 353
 Subárea 48.2 .. 353
 Subárea 48.4 .. 354
Progreso en las evaluaciones de pesquerías exploratorias 355
 Elaboración del asesoramiento sobre límites de captura de Dissostichus spp. 355
 Divisiones 58.4.1 y 58.4.2 ... 355
 Dissostichus spp. en la División 58.4.1 .. 357
 Dissostichus spp. en la División 58.4.2 .. 358
 Dissostichus spp. en la División 58.4.3a .. 359
 Dissostichus spp. en la División 58.4.3b .. 360
 Dissostichus spp. en la Subárea 48.6 .. 362
 Dissostichus spp. en las Subáreas 88.1 y 88.2 362
Desarrollo de métodos de evaluación de las pesquerías
 exploratorias en el futuro .. 364
 Datos necesarios Para la evaluación de las pesquerías exploratorias 364
Diseño de investigación en las pesquerías exploratorias de austromerluza ... 366
Examen de la ordenación de *Dissostichus* spp. de las Subáreas 88.1 y 88.2 ... 367
Asesoramiento de ordenación .. 369
Notificaciones para llevar a cabo prospecciones de investigación utilizando barcos comerciales según la Medida de Conservación 24-01 ... 371
Propuesta de Nueva Zelandia para llevar a cabo estudios de investigación en la Subárea 88.1 durante el invierno 371
Propuesta de Japón para realizar una campaña de investigación en la División 58.4.4 .. 373
Principios generales para la realización de estudios de investigación patrocinados por la CCRVMA .. 374
Dissostichus eleginoides en Georgia del Sur (Subárea 48.3) .. 376
Asesoramiento de ordenación .. 376
Dissostichus eleginoides en las Islas Kerguelén (División 58.5.1) ... 376
Asesoramiento de ordenación .. 377
Dissostichus eleginoides en la Isla Heard (División 58.5.2) ... 377
Asesoramiento de ordenación .. 377
Dissostichus eleginoides en las Islas Crozet (Subárea 58.6) ... 377
Asesoramiento de ordenación .. 378
Dissostichus eleginoides en las Islas Príncipe Eduardo y Marion (Subáreas 58.6 y 58.7) ... 378
Asesoramiento de ordenación para *D. eleginoides* dentro de la ZEE de las Islas Príncipe Eduardo y Marion (Subáreas 58.6 y 58.7) ... 378
Asesoramiento de ordenación para *D. eleginoides* fuera de la ZEE de las Islas Príncipe Eduardo (Subáreas 58.6 y 58.7 y División 58.4.4) ... 379
Champsocephalus gunnari en Georgia del Sur (Subárea 48.3) ... 379
Asesoramiento de ordenación .. 379
Champsocephalus gunnari Isla Heard (División 58.5.2) ... 380
Asesoramiento de ordenación .. 380
Evaluación y asesoramiento de ordenación para otras pesquerías ... 380
Península Antártica (Subárea 48.1) e Islas Orcadas del Sur (Subárea 48.2) ... 380
Asesoramiento de ordenación .. 381
Islas Sándwich del Sur (Subárea 48.4) .. 381
Asesoramiento de ordenación .. 382
Centollas (*Paralomis* spp.) (Subárea 48.3) ... 382
Asesoramiento de ordenación .. 382
Calamar (*Martialia hyadesi*) (Subárea 48.3) ... 383
Asesoramiento de ordenación .. 383
CAPTURA SECUNDARIA DE PECES E INVERTEBRADOS ... 383
Estimación de la captura secundaria en las pesquerías de palangre Rayas ... 383
Granaderos ... 384
Otras especies ... 384
Estimación de la captura secundaria en las pesquerías de arrastre .. 385
Límites de captura precautorios para *M. whitsoni* en la Subárea 88.1 .. 385
Biología de las rayas ... 386
Medidas de mitigación para los granaderos ... 386
Año de la raya ... 387
Identificación de rayas ... 387
Captura y manipulación de las rayas 387
Cambios de los cuadernos de observación 388
Protocolo de marcado de rayas 388
Información biológica sobre las rayas 389
Guías de identificación de la captura secundaria de bentos ... 390

MORTALIDAD INCIDENTAL DE AVES Y MAMÍFEROS MARINOS
OCASIONADA POR LA PESCA (INFORME DEL GRUPO ESPECIAL WG-IMAF) . 390
Desechos marinos .. 391
Estimación de la mortalidad incidental ocasionada por la pesca INDNR 391
Métodos de pesca utilizados en el Área de la Convención 391
Temas compartidos por WG-FSA y WG-IMAF 392

EVALUACIÓN DE LAS AMENAZAS SURGIDAS
DE LAS ACTIVIDADES DE PESCA INDNR 392
Desarrollo de métodos para estimar las extracciones totales de austromerluza 392
Examen de las tendencias históricas de la pesca INDNR 393

BIOLOGÍA, ECOLOGÍA Y DEMOGRAFÍA DE LAS ESPECIES OBJETIVO
Y DE CAPTURA SECUNDARIA ... 393
Resumen de la información presentada a la reunión 393
Disostichus mawsoni ... 394
Disostichus eleginoides .. 395
Rayas ... 395
Dracos ... 396
Peces antárticos – general ... 396
Reseñas de especies ... 397
Red de otolitos de la CCRVMA .. 397

CONSIDERACIONES SOBRE LA ORDENACIÓN DEL ECOSISTEMA 397
Interacciones ecológicas .. 397
Actividades de pesca de fondo y los EMV 397
Hallazgos de EMV y efectos conocidos y previstos de la pesca de fondo en los mismos ... 400
Enfoques para evitar y mitigar efectos negativos considerables en los EMV 404
 Evaluaciones preliminares y medidas de mitigación presentadas por los miembros 404
 Asesoramiento sobre los posibles efectos de las actividades de pesca de fondo, las medidas de mitigación y los planes de recopilación de datos 405
 Efectos negativos considerables en los EMV 409
 Notificación de EMV ... 412
 Asesoramiento al Comité Científico 413
 Guías ... 413
 Identificación de EMV .. 413
 Medidas a tomar por los barcos de pesca que encuentran EMV 414
 Asesoramiento sobre las tareas de la Medida de Conservación 22-06 415
Asesoramiento sobre las evaluaciones preliminares y medidas de mitigación presentadas por los miembros 415
Asesoramiento sobre los procedimientos y normas para evaluar los posibles efectos de las propuestas y de posibles medidas de mitigación ... 415
Huella actual de las pesquerías de fondo ... 416
Estrategias de evaluación de riesgo .. 417
Medidas de mitigación ... 418
Asesoramiento sobre la identificación de EMV .. 419
Asesoramiento sobre efectos conocidos y previstos ... 420
Asesoramiento sobre las prácticas cuando hay indicios de la presencia de EMV ... 421
Asesoramiento sobre otras medidas de mitigación ... 421
Asesoramiento sobre planes de investigación y recopilación de datos 421
General .. 422
Interacciones con WG-EMM .. 423
Formulación de modelos de ecosistema ... 423
SISTEMA DE OBSERVACIÓN CIENTÍFICA INTERNACIONAL 424
Asesoramiento al Comité Científico .. 427
EVALUACIONES FUTURAS .. 428
Frecuencia de las evaluaciones ... 429
Consideraciones generales ... 429
LABOR FUTURA ... 429
Organización de las actividades intersesionales de los subgrupos 429
Segundo Taller sobre Pesquerías y Modelos de Ecosistema en la Antártida 431
Reuniones intersesionales ... 432
Reunión de WG-SAM ... 432
Reunión del grupo especial TASO .. 432
Reunión de SG-ASAM ... 432
Notificación de las actividades de investigación científica 432
OTROS ASUNTOS .. 433
Carta sobre D. mawsoni en el Estrecho de McMurdo .. 433
CCAMLR Science ... 434
Taller conjunto SC-CAMLR–CPA ... 434
APROBACIÓN DEL INFORME ... 435
CLAUSURA DE LA REUNIÓN .. 435
REFERENCIAS .. 435
Tablas ... 437
Figuras .. 459
Apéndice A: Agenda ... 468
Apéndice B: Lista de Participantes ... 471
Apéndice C: Lista de Documentos .. 477

Apéndice D: Informe de pesquería: Pesquería exploratoria de *Dissostichus* spp. en la División 58.4.1

Apéndice E: Informe de pesquería: Pesquería exploratoria de *Dissostichus* spp. en la División 58.4.2

Apéndice F: Informe de pesquería: Pesquería exploratoria de *Dissostichus* spp. en la División 58.4.3a

Apéndice G: Informe de pesquería: Pesquería exploratoria de *Dissostichus* spp. en la División 58.4.3b

Apéndice H: Informe de pesquería: Pesquería exploratoria de *Dissostichus* spp. en la Subárea 48.6

Apéndice I: Informe de pesquería: Pesquería exploratoria de *Dissostichus* spp. en las Subáreas 88.1 y 88.2

Apéndice J: Informe de pesquería: *Dissostichus eleginoides* Georgia del Sur (Subárea 48.3)

Apéndice K: Informe de pesquería: *Dissostichus eleginoides* Islas Kerguelén (División 58.5.1)

Apéndice L: Informe de pesquería: *Dissostichus eleginoides* Isla Heard (División 58.5.2)

Apéndice M: Informe de pesquería: *Dissostichus eleginoides* Islas Crozet dentro de la ZEE francesa (Subárea 58.6)

Apéndice N: Informe de pesquería: *Dissostichus eleginoides* Islas Príncipe Eduardo dentro de la ZEE de Sudáfrica (Subáreas 58.6 y 58.7)

Apéndice O: Informe de pesquería: *Champsocephalus gunnari* Georgia del Sur (Subárea 48.3)

Apéndice P: Informe de pesquería: *Champsocephalus gunnari* Isla Heard (División 58.5.2)

Apéndice Q: Informe de pesquería: *Dissostichus eleginoides* Islas Sándwich del Sur (Subárea 48.4)

INFORME DEL GRUPO DE TRABAJO DE EVALUACIÓN
DE LAS POBLACIONES DE PECES
(Hobart, Australia, 13 al 24 de octubre de 2008)

APERTURA DE LA REUNIÓN

1.1 La reunión del WG-FSA se llevó a cabo del 13 al 24 de octubre de 2008, en la ciudad de Hobart, Australia. La reunión fue inaugurada por su coordinador, Dr. C. Jones (EEUU), quien dio la bienvenida a todos los participantes.

1.2 El grupo de trabajo dio la bienvenida al Dr. X. Zhao, primer representante de la República Popular China en la labor de WG-FSA.

1.3 El grupo de trabajo está de acuerdo con el llamado urgente del Comité Científico a todos los miembros para que participen plenamente en su labor futura, y envíen más expertos a las reuniones de los grupos de trabajo. La labor del Comité Científico, incluido el WG-FSA, ha aumentado, y solamente podrá ser llevada a cabo con un mayor aporte y participación activa de los miembros (SC-CAMLR-XXVI, párrafo 14.10).

1.4 WG-FSA reconoció las dificultades que se podrían producir al efectuar discusiones muy técnicas en un solo idioma de trabajo, y subrayó la continua necesidad de contar con la colaboración de todos los miembros en su labor. Este tema se discute más a fondo bajo el punto Labor Futura (párrafos 13.1 al 13.4).

1.5 Al completar su labor, el grupo de trabajo observó un momento de silencio en memoria de la Dra. Edith Fanta, Presidenta del Comité Científico, fallecida en mayo de 2008. La Dra. Fanta, bióloga experta en temas antárticos, líder y contribuyente por muchos años a la labor de la CCRVMA, se hizo de muchos amigos entre los miembros del WG-FSA, quienes la echarán muchísimo de menos.

ORGANIZACIÓN DE LA REUNIÓN Y APROBACIÓN DE LA AGENDA

2.1 Se examinó la agenda de la reunión y se decidió considerar los requisitos de datos y protocolos de investigación cuando se utilizan barcos de pesca comercial bajo el punto 5.1. Se aprobó la agenda revisada (apéndice A).

2.2 El informe fue preparado por los participantes, e incluye la lista de participantes (apéndice B), la lista de documentos considerados en la reunión (apéndice C) y los informes de pesquerías (apéndices D a la Q).
EXAMEN DE LA INFORMACIÓN DISPONIBLE

Datos requeridos en 2007

Desarrollo de la base de datos de la CCRVMA

3.1 El Administrador de Datos, Dr. D. Ramm, presentó un informe sobre los últimos acontecimientos relacionados con la gestión de datos de la CCRVMA y con el trabajo de apoyo al WG-FSA y al grupo especial WG-IMAF. En respuesta a la petición de la Comisión y del Comité Científico y de sus grupos de trabajo, la Secretaría trabajó durante el período entre sesiones para mejorar los procedimientos, las bases de datos y los formularios de datos. Se resaltó el trabajo relacionado con el WG-FSA (WG-FSA-08/4) que incluyó:

i) una modificación del formulario C2 para registrar los datos de captura y esfuerzo en escala fina de las pesquerías de palangre a fin de permitir el registro del número de anzuelos que se pierden en secciones del palangre durante las operaciones de pesca, el uso de espíneles verticales y de palangres artesanales, y el uso de dispositivos de exclusión de cetáceos en los palangres artesanales (SC-CAMLR-XXVI, párrafo 13.12). Se hicieron los consiguientes cambios a la base de datos de la CCRVMA. El formulario de datos corregido fue colocado en el sitio web de la CCRVMA en noviembre de 2007, y fue utilizado en la temporada 2007/08;

ii) el desarrollo de un índice de la densidad local de barcos con licencia para pescar en los caladeros de pesca (CCAMLR-XXVI, párrafo 10.51(iii) y anexo 5, párrafo 6.21). El índice (presencia de barcos) fue elaborado de acuerdo con los datos notificados en escala fina sobre la posición diaria de los barcos de pesca. Las escalas espaciales y temporales de este índice pueden ser ajustadas según los análisis (vg. de intervalos de 5 días a un mes, y de cuadrículas a escala fina a la escala de una UIPE, subárea o división).

Tratamiento de datos

3.2 La Secretaría había procesado los datos de pesca y de observación de 2007/08 que habían sido presentados antes de la reunión y que por lo tanto estuvieron disponibles para los análisis durante la misma. Además, la Secretaría había procesado los datos de pesca y de observación disponibles de las pesquerías realizadas en las ZEE sudafricanas de las Subáreas 58.6 y 58.7 y en el Área 51 (Islas Príncipe Eduardo y Marion), y los datos de las pesquerías realizadas en las ZEE francesas en la División 58.5.1 (Islas Kerguelén) y en la Subárea 58.6 (Islas Crozet).

3.3 La Secretaría comenzó a convalidar los datos de 2007/08 antes de la reunión, y completará esta tarea durante el próximo período entre sesiones.

3.4 El año pasado WG-FSA cuestionó la frecuente presencia de Dissostichus eleginoides en las capturas declaradas por el barco entonces abanderado por Uruguay, Paloma V, que pescó en las Divisiones 58.4.1 y 58.4.3b en 2006/07. El Paloma V había notificado que la

2 El grupo de trabajo pidió que el Comité Científico determinara un término apropiado para este dispositivo.
mayor parte de su captura en estas divisiones estuvo compuesta de *D. eleginoides* (80% de la captura en la División 58.4.1 y 92% en la División 58.4.3b), mientras que la captura desembarcada declarada de acuerdo con el SDC indicó que ésta estuvo compuesta en su mayoría de *D. mawsoni*. También se señaló que los datos presentados por el observador científico indican que se observaron ambas especies.

3.5 En 2008 la Secretaría contactó a las autoridades uruguayas para obtener una aclaración e información acerca de los datos de pesca en escala fina de las Divisiones 58.4.1 y 58.4.3b en 2006/07 notificados por el *Paloma V*, y para confirmar la identidad de las especies de austromerluza notificadas. Uruguay confirmó que las capturas de *D. eleginoides* declaradas en los datos de pesca y de observación eran correctas, y que había una discrepancia en los datos del SDC, la cual fue subsanada. El grupo de trabajo pidió que el Comité Científico considerara este asunto en más profundidad.

Planes de pesca

3.6 La Secretaría ha mantenido la base de datos que contiene la información sobre los planes de pesca y ha agregado los datos de 2007/08 a la serie cronológica.

Información de las pesquerías

Datos de captura, esfuerzo, talla y edad notificados a la CCRVMA

3.7 En la temporada 2007/08 se realizaron 12 pesquerías dirigidas al draco rayado (*Champsocephalus gunnari*), a las austromerluzas (*D. eleginoides* y/o *D. mawsoni*) y al kril (*Euphausia superba*), de conformidad con las medidas de conservación en vigor (CCAMLR-XXVII/BG/15). Las actividades de las pesquerías exploratorias fueron resumidas en la tabla 2 del documento WG-FSA-08/4.

3.8 Además, se realizaron otras tres pesquerías de austromerluza en el Área de la Convención durante 2007/08:

- pesquería de *D. eleginoides*, en la ZEE francesa de la División 58.5.1
- pesquería de *D. eleginoides*, en la ZEE francesa de la Subárea 58.6
- pesquería de *D. eleginoides*, en las ZEE sudafricanas de la Subáreas 58.6 y 58.7; y en el Área 51, fuera del Área de la Convención.

3.9 En la tabla 1 se presenta el resumen de la captura declarada de especies objetivo, por región y arte de pesca, de las pesquerías realizadas en el Área de la Convención de la CRVMA durante la temporada 2007/08.

3.10 El grupo de trabajo tomó nota del seguimiento de las pesquerías efectuado por la Secretaría en 2007/08 (CCAMLR-XXVII/BG/15). Este resultó en el cierre de cuatro zonas de pesca y dos pesquerías. Todos los cierres fueron provocados cuando la captura de *Dissostichus* spp. se acercó a los respectivos límites de captura, y ningún límite fue excedido.
3.11 En la medida de lo posible, la Secretaría actualizó justo antes de la reunión de 2008 la información de las pesquerías y de los observadores científicos, incluidas las tablas y figuras en los informes de pesquerías del WG-FSA (WG-FSA-08/4, tabla 3). Los adelantos efectuados durante el periodo entre sesiones incluyeron: la aplicación de los parámetros talla-peso utilizados en las evaluaciones (WG-FSA-08/4, tabla 4), desarrollo de un lenguaje R para graficar las frecuencias de tallas ponderadas por la captura, y la elaboración de gráficos de las frecuencias de tallas ponderadas por la captura de D. eleginoides en la Subárea 48.3 en dos series cronológicas (1984/85 a 1996/97, y 1997/98 hasta ahora). Los Informes de Pesquerías se tratan en el punto 5.

Estimaciones de captura y esfuerzo de la pesca INDNR

3.12 El WG-FSA revisó las estimaciones de las capturas INDNR en el Área de la Convención preparadas por la Secretaría, sobre la base de la información presentada al 8 de octubre de 2008 (tabla 2 y WG-FSA-08/10 Rev. 2). Al igual que en años anteriores, el método determinístico convenido utilizado por la Secretaría para estimar el esfuerzo de la pesca INDNR se basó en la información del número de barcos avistados. La información adicional sobre las campañas de pesca y las tasas de captura fue derivada de los datos de los barcos con licencia de pesca, almacenados en la base de datos de la CCRVMA. En la tabla 3 y en la figura 1 se muestran las series cronológicas de captura de Dissostichus spp. de la pesca INDNR en el Área de la Convención, derivadas de las actividades de la pesca de palangre y con redes de enmalle. El grupo de trabajo aprobó la utilización de estas estimaciones en las evaluaciones de los stocks y por el grupo especial WG-IMAF (véanse los puntos 5, 7 y 8).

3.13 El grupo de trabajo indicó que probablemente la mayoría de los barcos de pesca INDNR avistados operan con redes de enmalle y que en la actualidad no se cuenta con información sobre las posibles tasas de captura de estos barcos (ver también el párrafo 8.4). Por lo tanto, el grupo de trabajo advirtió que la aplicación de tasas de captura de la pesca de palangre al método utilizado para estimar las extracciones INDNR podría haber resultado en una estimación conservadora de las capturas INDNR. Además, las redes de enmalle son menos selectivas que los palangres y por ende, tanto la captura secundaria como la captura incidental pueden ser mucho más abundantes. Esta cuestión fue referida a WG-IMAF y a SCIC para su consideración más detallada.

3.14 El grupo de trabajo estuvo de acuerdo en que el número de barcos avistados fue menor que en años anteriores, lo que en su opinión, puede deberse a varios factores como por ejemplo, aquellos relacionados con factores económicos, y al efecto de las medidas de la CCRVMA dirigidas a combatir la pesca INDNR.

3.15 Se consideró el caso de un barco que participó en operaciones de pesca autorizadas dentro del Área de la Convención en 2007/08, pero que posteriormente se notificó que había participado en operaciones de transbordo con varios barcos de pesca INDNR. WG-FSA indicó que esto puede tener consecuencias para las evaluaciones a ser efectuadas ya que los conjuntos de datos disponibles pueden haber sido comprometidos. No obstante, WG-FSA convino en que no estaba en condiciones de determinar si el barco estuvo involucrado en la pesca INDNR hasta que este caso sea considerado por SCIC. El grupo de trabajo por lo tanto decidió identificar los conjuntos de datos que podrían estar afectados y realizar evaluaciones en paralelo incluyendo y excluyendo los datos del barco en cuestión.
3.16 Si bien la incertidumbre con respecto a los incidentes de pesca INDNR en 2007/08 no fue significativa, la Secretaría aplicó la matriz de JAG al valor estimado con los métodos acordados para la consideración de WG-FSA. Todos los barcos avistados en 2007/08 eran barcos de pesca INDNR claramente identificados y todos fueron clasificados a un nivel levemente más bajo porque se supuso que estaban pescando con redes de enmalle. Tres de los barcos avistados fueron además ponderados por un factor de descuento porque no estaban pescando en el momento de ser avistados. Otros dos barcos avistados fueron ponderados por un factor adicional de descuento porque fueron avistados por barcos legítimos y no desde una plataforma de vigilancia. La aplicación de la matriz redujo en 81 toneladas (un 7%) la estimación total de las capturas INDNR, a 1 088 toneladas (WG-FSA-08/10 Rev. 2, tabla 2). La evaluación de la amenaza presentada por las actividades de pesca INDNR fue tratada bajo el punto 8.

Datos de captura y esfuerzo de las pesquerías de austromerluza en aguas adyacentes al Área de la Convención

3.17 En la tabla 4 se resumen las capturas de *Dissostichus* spp. extraídas en aguas de la CCRVMA que fueron declaradas a la Secretaría en formato STATLANT y de acuerdo con el sistema de notificación de datos de captura y esfuerzo; y las capturas realizadas fuera del Área de la Convención en las temporadas 2006/07 y 2007/08 notificadas a través del SDC. La captura total de *Dissostichus* spp. de la temporada 2007/08 declarada a través del SDC al mes de octubre de 2008 fue de 10 291 toneladas.

3.18 WG-FSA indicó que la mayor parte de la captura de *Dissostichus* spp. extraída fuera del Área de la Convención provino de las Áreas 41 y 87. El grupo de trabajo también indicó que el SDC sólo registra el peso del producto procesado y que los valores proporcionados por la Secretaría fueron convertidos a peso en vivo, estimado mediante un conjunto estándar de factores de conversión.

Datos de observación científica

3.19 Todos los barcos que participaron en la pesca de peces, y algunos barcos que participaron en la pesca de kril en 2007/08 en el Área de la Convención llevaron observadores científicos a bordo, de acuerdo con el Sistema de Observación Científica Internacional de la CCRVMA. A la fecha, un total de 60 campañas de pesca realizadas en la temporada 2007/08 llevaron observadores científicos a bordo: 52 campañas de pesca de austromerluza o *C. gunnari* (40 campañas de pesca de palangre; 9 campañas de pesca de arrastre y 3 campañas de pesca con nasas); y 8 campañas de pesca de *E. superba* (ver WG-FSA-08/5 Rev. 1 a 08/8 y SC-CAMLR-XXVII/BG/2). El tema de las observaciones científicas se trata bajo los puntos 7 y 11 de la agenda.
Datos de entrada para la evaluación de los stocks

Captura por talla y edad de las pesquerías

3.20 La pesquería exploratoria de *D. mawsoni* ha estado operando por 11 años en la Subárea 88.1 y por seis años en la Subárea 88.2. El documento WG-FSA-08/22 presentó resúmenes de la gran cantidad de datos recopilados sobre la captura de austromerluza y de especies de captura secundaria por todos los barcos que participan en la pesquería. Ya se han explotado todas las UIPE de las dos subáreas, menos las UIPE 881D y 882C. La captura de la temporada 2007/08 ocupó el cuarto lugar en orden de magnitud de las capturas registradas hasta la fecha, habiendo extraído un total de 2 666 toneladas de un límite de captura de 3 207 toneladas. Los datos de frecuencia de tallas de la pesquería del Mar de Ross han sido muy semejantes en las últimas tres a cuatro temporadas. No hay indicios de truncamiento alguno de la distribución general de frecuencias de tallas ni de que haya habido una reducción de la talla de los peces en ninguna de las UIPE a través del tiempo. Si bien en algunos años se ha capturado un número discreto de peces pequeños, estas clases anuales no son observadas en gran número en años posteriores. De manera que por ahora, no hay indicios de una gran variación en la abundancia de las clases anuales en la pesquería.

3.21 El grupo de trabajo indicó que en la temporada de 2007/08 se realizó un menor número de lances comparado con los últimos cinco años. Esto se atribuyó a una seria limitación causada por la presencia de una gran concentración de hielo en el Mar de Ross durante esta temporada.

3.22 Si bien se señaló que las distribuciones de las frecuencias de tallas eran estables, no quedó claro si la mediana era la mejor medida para detectar cambios en la distribución de tallas a través del tiempo. Se acordó que era necesario continuar investigando este tema.

3.23 El grupo de trabajo también discutió si la extensa cubierta de hielo afectó la distribución de los peces, o simplemente la distribución del esfuerzo de pesca. Se estuvo de acuerdo en que este tema debería ser investigado más a fondo.

Prospecciones de investigación

3.24 En abril de 2008, el Reino Unido llevó a cabo una prospección de arrastre de fondo en la Subárea 48.3 con el barco pesquero *Sil*, que realizó 70 arrastres de fondo en una extensa área geográfica (WG-FSA-08/28). La biomasa de *C. gunnari* se estimó utilizando 10 estratos y los valores actualizados del área de lecho marino, con un ajuste para compensar por la poca altura de la relinga superior del arrastrero británico (véase el documento SC-CAMLR-XXII, anexo 5). Las frecuencias de tallas ponderadas por la captura indicaron que la población de dracos estaba compuesta predominantemente de peces de edad 2+ y 3+, habiéndose observado diferentes tallas en Rocas Cormorán y en Georgia del Sur, y pocos peces pequeños en la región noroeste de Georgia del Sur. En la población de *D. eleginoides* predominó la misma cohorte que ha sido detectada en las prospecciones desde 2003, sin indicaciones de que haya habido nuevo reclutamiento desde entonces. Se notificaron estimaciones de la biomasa y frecuencias de tallas de otras especies secundarias. La realización de la prospección en
abril, y no en septiembre y enero como en campañ as anteriores, tuvo buenos resultados. Los dracos aparentemente estaban dispersos, lo que se presta a la realización de una prospección de arrastre aleatoria.

3.25 El grupo de trabajo tomó nota del efecto de la variabilidad de la altura de la relinga superior en las estimaciones de la biomasa. Se observó que a medida que la topografía del fondo se hace más rugosa y disminuye la longitud de los cables de arrastre, la distancia entre las puertas de la red disminuye y por consiguiente aumenta la altura de la relinga superior. Esto a su vez cambia la proporción de las poblaciones de peces vulnerable a este arte de pesca. Actualmente se utiliza una constante de 1.241 como factor de ajuste (SC-CAMLR-XXI, anexo 5).

3.26 El grupo de trabajo estuvo de acuerdo en que el factor de ajuste utilizado actualmente es subjetivo, y en particular, en lo que se refiere al draco, la proporción de la población que no es vulnerable a este arte de pesca probablemente varía según el año, y posiblemente, según el mes. Se acordó que se deberían realizar estudios adicionales con métodos acústicos.

3.27 El grupo de trabajo señaló que la cobertura de las zonas alrededor de Georgia del Sur fue mucho mejor que la del año pasado. Se reconoció que el muestreo en los sectores suroeste y sureste es difícil, de manera que se utilizan los datos de otras áreas para hacer una extrapolación para estas áreas (las cuadrículas 18, 19 y 23 no fueron muestreadas). Se sugirió que se podrían utilizar los datos acústicos de años anteriores (es decir, datos históricos de las prospecciones de Rusia/Unión Soviética y del Reino Unido) para facilitar la interpretación de la biomasa de dracos en estas áreas. Se indicó que, a pesar de que se han realizado algunas capturas en estas áreas en el pasado, en los dos últimos años no ha habido capturas.

3.28 Nueva Zelandia completó una prospección en el Mar de Ross con el barco de investigación **Tangaroa** de NIWA. La prospección fue realizada en febrero y marzo de 2008 como parte de las actividades del API (WG-FSA-08/31). El objetivo principal de la prospección fue efectuar un censo de la fauna antártica (CAML) en esta región. Se estratificó el área de la plataforma y el talud por intervalo de profundidad, y se efectuaron tres arrastres aleatorios como mínimo en cada estrato. El esfuerzo fue seriamente limitado por la gruesa capa de hielo durante el período de la prospección. Se presentaron las tasas de captura por estación para las ocho especies más abundantes, junto con las frecuencias de tallas ponderadas por la captura y estimaciones de la biomasa de las mismas.

3.29 Se reconoció que el área del Mar de Ross es muy extensa para ser cubierta por una prospección, y que las prospecciones en que se realizan tan pocos arrastres en cada estrato darán como resultado estimaciones muy inciertas de la biomasa. Sin embargo, el grupo de trabajo reconoció que esta prospección representaba una valiosa contribución porque era la primera vez que se hacía este tipo de esfuerzo con redes de arrastre comerciales de gran tamaño.

3.30 Australia completó una prospección estratificada aleatoria de **C. gunnari** en la División 58.5.2 cerca de la Isla Heard en julio de 2008, a fin de obtener datos para efectuar una evaluación del rendimiento anual a corto plazo en la temporada de 2009 (WG-FSA-08/56). Se reconoció que esta prospección representaba una gran contribución a la serie cronológica a largo plazo de prospecciones efectuadas en esta división. Se propició una evaluación preliminar del rendimiento para el área al oeste de 79°20'E de la División 58.5.2
efectuada con los métodos estándar de la CCRVMA (WG-FSA-08/56). La clase anual abundante detectada en la prospección del año pasado está ahora totalmente reclutada en la cohorte de edad 2+, y predomina en la población.

3.31 El grupo de trabajo señaló que el documento no incluyó la ubicación específica de las estaciones de muestreo, pero que estaban disponibles en la base de datos de la CCRVMA para completar la evaluación del stock. El grupo recordó que anteriormente se le había presentado un formulario que describe los datos requeridos al notificar los resultados de una prospección de arrastre (WG-FSA-SAM-06/15), pero que no se había llegado a un acuerdo con respecto a esto (WG-FSA-06/6). Se convino que, como mínimo, se debe proporcionar una descripción de cómo se recopilan los datos de la prospección y resúmenes de los datos de pertinencia para las evaluaciones. De esta manera, se podrá mantener un registro de cómo han sido obtenidos los datos archivados en la base de datos de la CCRVMA.

3.32 En mayo de 2008 Australia completó una prospección aleatoria con palangres utilizando el palangrero de pabellón australiano BP Janas, que efectuó 15 lance estándar en dos estratos que cubrieron caladeros de pesca comercial en el banco de BANZARE dentro de la División 58.4.3b (WG-FSA-08/57). Las tasas de captura fueron muy bajas, de entre 0 y 135 kg/mil anzuelos. Esto concuerda con la baja densidad de austromerluzas en la mayor parte del área explorada. Las capturas incluyeron ambas especies de Dissostichus. Los datos de la distribución de tallas y de la talla de madurez indican que la población de D. mawsoni se compone casi en su totalidad de peces maduros de gran tamaño, con una mayor proporción de machos.

3.33 El grupo de trabajo indicó que las dos especies de austromerluza se encontraban en distintas áreas y acotó que las masas de agua pueden ser una variable determinante de su distribución. El grupo de trabajo señaló que la medición de la temperatura del agua en el estrato de profundidad donde se encuentran las diferentes especies capturadas ayudaría mucho a entender los factores que determinan su distribución relativa.

3.34 Japón realizó una prospección de investigación de austromerluza en las UIPE A, B, C y D de la División 58.4.4 (bancos de Ob y Lena) a bordo del Shinsei Maru No.3, de julio a septiembre de 2008, utilizando palangres artesanales. Debido a que la prospección finalizó recién el 27 de septiembre de 2008, Japón no pudo presentar un informe formal de los resultados de la prospección a tiempo para la reunión de WG-FSA, pero presentó un breve informe preliminar e información oral al grupo de trabajo.

3.35 La información proporcionada por Japón indicó que el objetivo principal de la prospección era recopilar diversos datos biológicos de la austromerluza en la División 58.4.4 requeridos para la evaluación de estos stocks. No hay información relativa al tamaño actual del stock en esta división debido a la prohibición de la pesca dirigida que rige desde 2002. El barco llevó a bordo un observador internacional designado de conformidad con el sistema de observación internacional de la CCRVMA, y un observador nacional.

3.36 Para asegurar la cobertura de todas las UIPE y para obtener más información de las áreas de mayor densidad de austromerluzas, se realizó la prospección en dos etapas. En la etapa 1, se dividieron las UIPE B, C y D en cuatro áreas de prospección y se llevaron a cabo cinco lance en cada una de ellas. En la UIPE A se realizaron cinco lance. En la etapa 2 se realizó la investigación de la misma manera que en la etapa 1, excepto que no se espaciaron los lance cada cinco millas, como se hizo en la etapa 1. Se realizó el marcado de peces, a la
tasa indicada de tres peces por tonelada de peces capturados. Se recogieron muestras de ADN y de otolitos de ejemplares de austromerluza de cada UIPE. Durante las operaciones de la etapa 1 se realizaron 65 lances, y 53 lances en la etapa 2. Se capturó un total de 76.9 toneladas de austromerluza en ambas etapas.

3.37 El grupo agradeció la información proporcionada por Japón, a pesar del escaso tiempo disponible para su preparación.

3.38 WG-FSA indicó que el esfuerzo de pesca había sido realizado utilizando palangres artesanales diseñados en Japón. Acotó asimismo que su diseño probablemente era diferente al de los palangres de ese tipo utilizados por Rusia y otros países, y muy diferentes de los palangres utilizados en otras pesquerías de austromerluza. Estuvo de acuerdo en que sería difícil interpretar los datos de la CPUE de los palangres artesanales japoneses, en comparación con otras técnicas de pesca con palangres utilizadas en la explotación de la austromerluza. Se propuso examinar los datos de otras subáreas y divisiones donde se puedan haber utilizado palangres artesanales simultáneamente con otros artes de palangre. Además, se podría investigar la CPUE de la línea calada para comparar los diversos métodos. Hasta que no se adquiera mayor conocimiento de la CPUE de los palangres artesanales, será muy difícil interpretar el estado de los stocks a partir de estos datos.

3.39 El grupo de trabajo pidió que Japón proporcionara todos los detalles de los palangres artesanales en su informe de investigación, para poder entender mejor las diferencias entre su método y otros métodos. El grupo de trabajo indicó también que la tasa de captura secundaria de granaderos era aproximadamente 5% de la captura de austromerluza.

3.40 El Dr. D. Agnew (Reino Unido) indicó que la abundancia relativa de peces juveniles observada en la prospección japonesa podría indicar que el reclutamiento en el área es relativamente bueno.

3.41 El Dr. T. Ichii (Japón) comentó que si bien la eficacia de las operaciones de pesca que utilizan este arte de palangre artesanal es diferente de la eficacia de otros artes, la CPUE de la etapa 1 calculada durante la prospección de Japón fue el doble (60 kg/mil anzuelos en 2008, en comparación con 33 kg/mil anzuelos en 2001) de la observada cuando se estableció el límite de captura en 2001.

3.42 El Dr. Ichii indicó que no basta con los datos proporcionados por una sola prospección para determinar el estado de los stocks de peces en la División 58.4.4, y que se requerirían por lo menos tres años para detectar tendencias en el estado del stock.

3.43 Algunos miembros cuestionaron la necesidad de recopilar más datos ahora, dada la incertidumbre en la interpretación de los datos de la CPUE actuales. Además, preocupa el hecho de que las prospecciones anuales subsiguientes pudieran impedir la recuperación de los stocks en el área cerrada. Por lo tanto, se propuso que antes de proceder con la recopilación de más datos, se presentara un diseño experimental que demostrara cómo se utilizarían los datos y los análisis para evaluar los stocks, y de qué manera se recuperarían las poblaciones para permitir la ejecución de una pesquería comercial. Esto significaría que se tendría que contar con datos de la CPUE normalizados para compararlos con los datos de la austromerluza en otras subáreas/divisiones del Área de la Convención, y también con la CPUE histórica de esa subárea.
3.44 Se propuso que mientras tanto, la realización periódica de prospecciones cada largos periodos de tiempo podría proporcionar estimaciones de la abundancia relativa, de la abundancia de las cohortes, y datos de marcado. Esto eliminaría gran parte del riesgo asociado con las extracciones anuales realizadas en las pesquerías exploratorias.

Análisis de la CPUE

3.45 El grupo de trabajo recordó que en las reuniones del año pasado, el Comité Científico y la Comisión habían acordado que cuando fuera indicado se hicieran evaluaciones cada dos años. Por lo tanto, el grupo de trabajo indicó que algunas pesquerías de austromerluza (Subáreas 48.3, 88.1 y 88.2 y la División 58.5.2) no serían evaluadas este año. Sin embargo, se convino actualizar los Informes de Pesquerías cuando correspondiera, ya que son parte importante de la labor de evaluación del grupo de trabajo. Esto incluiría los resultados de los análisis de la CPUE disponibles.

Estudios de marcado

3.46 El documento WG-FSA-08/46 proporciona información sobre la continuación del experimento de marcado y captura en la Subárea 48.4 durante 2007/08, y resume el número de austromerluzas y rayas marcadas que han sido recuperadas, el desplazamiento y la mezcla de peces marcados, y las tasas de captura y de captura secundaria. El grupo de trabajo señaló que este documento incluía una propuesta para continuar con el experimento de marcado y captura, y esto se discute más a fondo en el punto 5.3.

3.47 El grupo de trabajo indicó que ambas especies de austromerluza se encontraban en la Subárea 48.4, a pesar de que algunas hipótesis previas sugerían que D. mawsoni se encontraría mucho más al sur. El grupo acotó que la oceanografía del área puede causar condiciones similares a las condiciones características de latitudes más altas.

3.48 El documento WG-FSA-08/15 describe el progreso de la Secretaría en la administración de los programas de marcado de austromerluzas para todas las pesquerías nuevas y exploratorias a partir de la temporada 2007/08. El grupo observó que aún había dificultades en reconciliar los datos sobre los peces recapturados con los registros pertinentes a su marcado y liberación, pero los observadores que presentaron fotografías de las marcas recuperadas a la Secretaría habían ayudado a resolver este problema.

3.49 El grupo consideró que la presentación de fotografías, el registro de los detalles de la recaptura en los cuadernos de observación, y la devolución de marcas a la Secretaría en conjunto involucra cierto grado de superfluidad, pero permitía mejorar la convalidación. Por ejemplo, el grupo de trabajo reconoció que las fotografías digitales pueden ser manipuladas y por lo tanto no debían por sí solas ser consideradas como pruebas de la devolución de una marca. Se convino en que la Secretaría debía asegurar que los miembros devolviesen las marcas mismas, y que comprobasen también la correcta transcripción de los detalles de las marcas devueltas, incluidos los caracteres alfanuméricos. El grupo manifestó su optimismo ante la posibilidad de que la centralización del programa de marcado de las pesquerías nuevas y exploratorias resolviera estos problemas en el futuro.
3.50 En respuesta a la solicitud del Comité Científico (SC-CAMLR-XXVI, párrafo 12.9) de que se presentara un análisis de las tasas de recuperación de marcas de cada barco, el Dr. K. Reid (Funcionario Científico de la CCRVMA) describió los problemas encontrados al tratar de analizar los datos almacenados en la base de datos de la CCRVMA. Esto incluyó un ejemplo de la falta de concordancia entre el número de marcas recuperadas según los datos del formulario C2 y los datos de observación de barcos individuales, como también la frecuente duplicación del número notificado de la marca (de varias pesquerías, en varios años, y por varios Estados del pabellón) en la base de datos. El Dr. Reid indicó que la notificación incompleta de los números de las marcas significaba también que muchas (>30%) marcas recuperadas no pueden ser relacionadas con un evento de liberación específico con 100% de precisión.

3.51 El grupo de trabajo estuvo de acuerdo en que hay dos tipos de error que se deben considerar – accidentales y de incumplimiento – y que sería útil poder separar la metodología para detectar y remediar cada tipo de error. El Sr. J. Fenaughty (Nueva Zelanda) observó que la falta de concordancia entre los datos del formulario C2 y los datos de observación ocurre porque los observadores trabajan en turnos mientras que los barcos operan las 24 horas del día, y por ende, las marcas detectadas cuando el observador no está presente podrían dar lugar a las discrepancias.

3.52 Se recordó que en el examen de los datos realizado por los analistas que trabajaron en la evaluación del Mar de Ross se pudo reconciliar los datos de casi todas las marcas (con la excepción de unas 10 ó 20 marcas), de manera que un nivel de discrepancia del 30% era motivo de preocupación, ya que cualquier marca recapturada que no pudiera ser incorporada a las evaluaciones basadas en estos datos tenía el potencial de crear un sesgo positivo en la estimación de la biomasa. El grupo de trabajo indicó que era necesario documentar el procedimiento para inferir una correspondencia satisfactoria entre un registro de recaptura y uno de liberación, y que debería consistir en un algoritmo, para minimizar la subjetividad. Además, cualquier alteración de los datos hecha por la Secretaría después de su presentación debería ser indicada en la base de datos, dándose la razón por la cual se hizo la corrección (párrafo 11.7).

3.53 WG-FSA indicó que existe un claro incentivo para que los barcos notifiquen la liberación de peces marcados, en vez de la recaptura, puesto que deben alcanzar tasas específicas de liberación de peces marcados para cumplir con las medidas de conservación. Sin embargo, no existe una comprobación formal de las tasas de recaptura, y es posible manipularlas al notificar datos incompletos, lo que hace más difícil, o imposible, reconciliarlas con un registro de liberación. Esto puede permitir que los datos de un barco que no cumple con los requisitos parezcan estar de acuerdo con los datos de otros barcos, y no se pueda incorporar las tasas de recaptura de marcas en las evaluaciones del stock.

3.54 El grupo de trabajo apoyó la presentación de resúmenes de las marcas recuperadas en los Informes de Pesquerías, y también de la frecuencia con la cual pueden ser reconciliadas con los registros de datos de la liberación. El grupo de trabajo también tomó nota de las discusiones de WG-SAM sobre la calidad de los datos y las tasas de recaptura en el Mar de Ross, y pidió al Comité Científico que considerase cómo conseguir el cumplimiento total de los requisitos del programa de marcado.

3.55 El grupo de trabajo estuvo de acuerdo en que la Secretaría deberá encargarse de las siguientes tareas en relación con todas las marcas recuperadas:
i) hacer una comparación directa de los detalles de recapitación notificados con los datos de la base de datos de marcado;

ii) utilizar fotografías digitales y las marcas mismas para comprobar la identificación de la marca;

iii) escribir a los miembros para aclarar las incertidumbres que aún subsisten.

3.56 WG-FSA estuvo de acuerdo en que a fin de facilitar la tarea de la Secretaría descrita en los puntos anteriores, se deberá pedir a los miembros que han efectuado programas de marcado en el pasado en áreas adyacentes o dentro del Área de la Convención que presenten inventarios de las marcas colocadas y recuperadas.

3.57 El grupo de trabajo convino en que la Secretaría sólo sería responsable de determinar el número de casos en que los datos relativos a la liberación del pez marcado con los datos de su recapitación concuerdan totalmente. La concordancia inferida por los miembros durante el proceso de convalidación de los datos para las evaluaciones no deberá ser utilizada para alterar los datos mantenidos por la Secretaría, no obstante el procedimiento deberá ser descrito claramente de manera que la Secretaría pueda recrear el conjunto de datos a la hora de convalidar las evaluaciones.

3.58 El grupo de trabajo recomendó que para evitar los sesgos, todas las marcas recuperadas sin correspondencia fuesen resumidas en los Informes de Pesquerías e incorporadas en las evaluaciones, y sugirió que una manera de hacer esto último sería prorrateando el número de peces examinados por la razón entre el número de recapitaciones concordantes y el número total de recapitaciones. El grupo de trabajo pidió a WG-SAM que considerara otras maneras de incorporar las tasas de recuperación de marcas sin correspondencia en las evaluaciones.

3.59 El grupo de trabajo felicitó a la Secretaría por su labor en el programa de marcado de las pesquerías nuevas y exploratorias, y alentó a todos los miembros a considerar la utilización del equipo de marcado proporcionado por la Secretaría. El Dr. A. Constable (Australia) señaló que ya que las marcas de la CCRVMA eran producidas por el mismo fabricante (Hallprint) y eran del mismo tipo que las utilizadas en los últimos 11 años en la pesquería de austromerluza de la División 58.5.2, Australia agotaría sus reservas de marcas antes de comenzar a usar las nuevas marcas de la CCRVMA.

3.60 El grupo señaló que la Secretaría había comprado marcas adecuadas para las rayas, de color contrastante y con el prefijo “s”, y recomendó que los miembros compraran estas marcas y participaran en el programa de marcado de rayas durante el Año de la Raya.

3.61 El documento WG-FSA-08/16 describe el marcado efectuado a bordo del barco Banzare en la División 58.4.1. Debido a la falta de peces que cumpliesen con los requisitos para ser marcados en la División 58.4.1, el barco no consiguió la tasa de marcado requerida de tres peces por tonelada. El barco procedió entonces a pescar en las Divisiones 58.4.3a y 58.4.3b, y marcó peces en exceso de la tasa requerida.

3.62 WG-FSA señaló que sería más apropiado que este asunto fuese considerado por SCIC. Sin embargo, indicó que el aumento de la tasa de marcado fuera de la División 58.4.1 no cumpla con los requisitos del programa de marcado, y expresó su preocupación ante la
posibilidad de que esto indicara que no se liberaron suficientes marcas a través de las operaciones de pesca, como fuera recomendado. Más aún, muchos barcos lograron marcar la tasa indicada de peces en el Mar de Ross, a pesar de la extensa cubierta de hielo presente durante la temporada 2007/08.

3.63 El grupo de trabajo señaló que la Secretaría actualmente controla la tasa de marcado en base a los informes de captura y esfuerzo cada 5 días, para que los barcos dispongan de información que les permita cumplir con las tasas de marcado requeridas por las medidas de conservación.

Parámetros biológicos

3.64 El documento WG-FSA-08/17 examinó los protocolos para la determinación de la edad y las características del crecimiento de *D. mawsoni* en base a edades derivadas del análisis de radioisótopos y estimaciones de la edad contando las zonas de crecimiento de los otolitos. El estudio confirma a grandes rasgos las hipótesis actuales referentes a las tasas de crecimiento y la edad máxima de *D. mawsoni*. Estos resultados se discuten nuevamente en el párrafo 9.7.

3.65 WG-FSA señaló las diferencias en los parámetros estimados para la curva de crecimiento de von Bertalanffy, y el hecho de que la *L_∞* estimada era mucho menor que la talla máxima notificada para *D. mawsoni*. Sin embargo, el grupo de trabajo indicó que era necesario tratar con cautela la interpretación de *L_∞* como la talla máxima alcanzable por la especie, ya que ésta podría haber resultado de la relativa escasez de ejemplares de mayor edad y tamaño en los conjuntos de datos de talla por edad analizados a la fecha.

3.66 El grupo consideró la hipótesis presentada en el documento WG-FSA-08/17, de que el valor más bajo de *L_∞* obtenido en este estudio, en comparación con el valor de Horn (2002), proporcionaba una prueba de que la pesca ha ocasionado un truncamiento de las distribuciones por talla y edad. Sin embargo, el grupo de trabajo indicó que las estimaciones de *k* y de *L_∞* casi siempre están estrechamente correlacionadas, y por lo tanto la subestimación de la edad de los peces de gran tamaño posiblemente esté contribuyendo a este efecto.

3.67 Se agregó también que la talla por edad era más variable en este estudio que en el estudio de Horn (2002). El grupo de trabajo indicó también que se consideró que uno de los peces de talla de 150 cm en el conjunto de datos, al cual se le determinó una edad de 7 años, tenía una tasa de crecimiento exageradamente alta. Se concluyó que estos problemas podían deberse a varios factores, incluidas las diferencias en las metodologías empleadas en los distintos laboratorios para preparar los otolitos e interpretar los incrementos.

3.68 El Dr. Welsford (Australia) subrayó que si bien los lectores de otolitos experimentados pueden demostrar la concordancia interna entre sus lecturas y de sus determinaciones de la edad, esto no necesariamente quiere decir que las edades estimadas fuesen correctas. Subrayó que para que un método de determinación de la edad sea considerado válido, es necesario contar con datos que prueben:

i) la edad en que se puede ver el primer anillo

ii) que el anillo se forma siguiendo una escala temporal
iii) que los anillos son lo suficientemente nítidos como para permitir la lectura coherente.

3.69 El grupo de trabajo acordó que las edades determinadas por radiometría presentadas en el documento WG-FSA-08/17 solucionaban en parte el problema mencionado en (ii), si bien con amplios intervalos de confianza. WG-FSA hizo mención de otros estudios presentados en años recientes que utilizaron otolitos de austromerluzas marcadas con estroncio y tetraciclina, y que inspiraron confianza en los protocolos actuales de la determinación de la edad.

3.70 El grupo de trabajo convino en que era necesario formar una colección de otolitos de referencia, y hacer comparaciones entre los laboratorios que corrientemente determinan la edad de *D. mawsoni*, para tratar el problema descrito en el punto (iii), y alentó a los autores de WG-FSA-08/17 que se dirigieran al Sr. Horn, de Nueva Zelanda, para seguir examinando este tema.

3.71 Asimismo, se estuvo de acuerdo en que se necesitaban estudios de peces pequeños, ya que los conjuntos de datos con una progresión clara de las cohortes permitiría la convalidación de la posición y de la aparición del primer incremento anual de los otolitos, y se indicó que ciertos trabajos anteriores habían demostrado que los incrementos depositados aproximadamente en los primeros cinco años eran los más difíciles de distinguir en la austromerluza, y que esta dificultad afecta la asignación precisa de peces tanto juveniles como maduros, a las clases anuales.

3.72 El documento WG-FSA-08/48 presenta los resultados de un análisis de los índices GSI para *D. mawsoni* en la región del Mar de Ross. El análisis efectuado con un GLM demostró que había diferencias debidas a la latitud, la talla del pez y el mes. Los análisis histológicos también indicaron que los índices GSI podrían representar mejor la madurez que los datos de observación de los estadios de madurez, y los autores pudieron determinar de manera fiable si un pez había desovado en la temporada anterior, basándose en la presencia de estructuras asociadas con la etapa posterior al desove. Sin embargo, actualmente no pueden distinguir histológicamente entre las hembras inmaduras y las hembras en reposo que no desovaron la temporada anterior.

3.73 El grupo de trabajo expresó preocupación ante el hecho de que la determinación macroscópica de los estadios de madurez de las gónadas aparentemente no era efectiva para determinar la madurez. Pidió que los datos histológicos detallados en el documento WG-FSA-08/48 se utilizaran para precisar las características macroscópicas a fin de determinar el estadio de madurez de *D. mawsoni* en el Mar de Ross.

3.74 Aún se tienen dudas con respecto a la proporción de la población que habita en distintas áreas. El Dr. K.-H. Kock (Alemania) indicó también que la talla mediana de 135 cm correspondía a peces de edad 18+ y que éstos son de mayor tamaño y edad que los contemplados en la evaluación.

3.75 WG-FSA señaló que, a los efectos de la evaluación del stock, el saber que un pez desovó el año anterior es una prueba satisfactoria de su madurez, de manera que el trabajo histológico proporcionado en el documento WG-FSA-08/48 representaba una mejora considerable en la estimación de la talla de madurez de *D. mawsoni* en el Mar de Ross. La predicción de cuál pez desovará el año próximo es menos fiable, ya que los huevos pueden desarrollarse y luego ser reabsorbidos según la exposición a condiciones ambientales. Los
datos emanados del estudio actual podrían aplicarse con éxito en la evaluación del Mar de Ross del próximo año, ya que provienen de una muestra de buen tamaño de esta especie y permitirían mejorar las estimaciones anteriores. El grupo de trabajo indicó que sería útil considerar la sensibilidad de las evaluaciones a los cambios de los parámetros de la talla de madurez, y Nueva Zelanda propuso que se hagan nuevos estudios del crecimiento de los oocitos para entender mejor el proceso de la reproducción en el Mar de Ross (párrafos 5.108 al 5.115).

3.76 El Dr. Constable sugirió que era importante considerar las razones en que se basa la propuesta de nuevos estudios de Nueva Zelanda. El Dr. Constable opina que los estudios serían de utilidad si se necesitara un sistema para predecir el reclutamiento en base a los resultados del desove. Sin embargo, y en relación con los métodos de evaluación actuales, esto tiene menor importancia ya que el reclutamiento se estima de la estructura de edades de la captura. Indicó también que es la ojiva de madurez la que sería más útil para determinar la biomasa del stock de desove y el posible escape de peces de la pesquería al stock de desove.

3.77 El documento WG-FSA-08/12 resume el grado de madurez de las gónadas y el comportamiento de alimentación (inferido del contenido estomacal) de la austromerluza, en base a los datos de observación obtenidos por una sola campaña de observación con un palangrero español que operó en el Mar de Ross de noviembre de 2007 a marzo de 2008. WG-FSA señaló que el estudio confirmaba que la austromerluza era un depredador indiscriminado, y describe la presencia de un ejemplar de austromerluza con lóbulos de gónadas de macho y de hembra. También se presentaron datos de la determinación del estadio de madurez de las gónadas y de las distribuciones de las frecuencias de tallas, y el grupo de trabajo propuso que éstos podrían ser combinados por los autores para proporcionar información sobre la talla de madurez.

3.78 El documento WG-FSA-08/28 resume las características de la dieta de C. gunnari en la Subárea 48.3, y presentó la hipótesis de que la predominancia de anfípodos en la dieta de las clases de menor edad podría proteger los peces juveniles del efecto de la variabilidad interanual de la abundancia de kril. El grupo de trabajo indicó que se ha demostrado que los peces de las clases de edades mayores son por lo general demersales, y consumen predominantemente peces y misidos.

3.79 El grupo indicó que se podría utilizar la información sobre la dieta para ajustar el parámetro de la mortalidad natural en las evaluaciones del draco, y alentó la formulación de modelos que puedan ayudar a entender los efectos del ecosistema que actúan de arriba hacia abajo y viceversa, como también el efecto de la pesquería en el draco.

3.80 El documento WG-FSA-08/23 fue puesto originalmente bajo este punto de la agenda, pero el grupo de trabajo lo remitió al punto 6 de la agenda.

Depredación

3.81 El documento WG-FSA-08/44 describió un estudio de las tasas de captura y de captura secundaria de los palangres artesanales equipados con el dispositivo chileno de exclusión de
Las diferencias entre los artes de pesca hicieron difícil la comparación de las tasas de captura, pero el grupo de trabajo indicó que en la presencia de cetáceos, las cachaloteras colocadas en los palangres artesanales parecían ser efectivas en comparación con el sistema español de palangres. La captura secundaria de granaderos, y hasta cierto punto de rayas, fue por lo general más baja que con el sistema español, pero las rayas y las austromerluzas a menudo estaban en malas condiciones y esto las excluía del programa de marcado, ya que era poco probable que sobreviviesen si fuesen marcadas y liberadas. El Dr. Welsford indicó que se había presentado a TASO información anecdótica que indicaba que las cachaloteras podían quitar las marcas de los ejemplares de austromerluza al restregarlas durante la recogida de la línea.

El Dr. V. Bizikov (Rusia) indicó que anteriormente se había informado al WG-FSA que los palangres artesanales podían tener tasas de captura secundaria menores que las del sistema de palangres de calado automático. El grupo de trabajo subrayó que sería necesario llevar a cabo pruebas experimentales de pesca de diseño pareado para entender los efectos de la configuración del palangre artesanal en las tasas de captura, y que el grupo especial TASO había indicado que todavía no se sabía bien cuál era la gama de configuraciones del palangre artesanal que se utilizaban en el Área de la Convención.

PREPARACIÓN Y CALENDARIO DE LAS EVALUACIONES

Informe de WG-SAM

4.1 Las secciones del informe del WG-SAM de importancia para la agenda del WG-FSA-08 fueron presentadas en detalle al grupo de trabajo por el coordinador de WG-SAM-08. Se sugirió que el concepto de control de las versiones planteado en la reunión de WG-SAM fuera deliberado por el grupo de trabajo (anexo 7, párrafos 7.1 al 7.4).

Examen de los informes de las evaluaciones preliminares de los stocks

4.2 En WG-FSA-08/28 se presentan los pormenores de las evaluaciones preliminares de C. gunnari de la Subárea 48.3. Las estimaciones de las áreas de lecho marino se obtuvieron de la serie de datos batimétricos de Georgia del Sur actualizada recientemente, basada principalmente en batimetría de banda ancha. Con respecto al tema a si las nuevas áreas de lecho marino son comparables con las estimaciones anteriores, el grupo de trabajo observó que si bien el área de lecho marino había aumentado, se habían reducido los intervalos de profundidad incluidos en los estratos de manera que el efecto general del cambio posiblemente sea neutral. Se observó que algunos lances se realizaron por la noche y que la inclusión de estos datos en el análisis podría causar un sesgo negativo de la biomasa estimada

El grupo de trabajo pidió que el Comité Científico determinara un término apropiado para estos dispositivos.

348
por la prospección. No obstante, el aumento de la precisión al contar con estos lances adicionales podría aumentar el límite inferior del intervalo de confianza del 95%, lo que podría incluso aumentar la estimación de biomasa utilizada para calcular los límites de captura. El grupo de trabajo observó que la inclusión de estos lances no tendría un efecto considerable en los resultados de las evaluaciones y que sería preferible mantener estos datos en el análisis.

4.3 Dada la baja frecuencia de muestreo en las zonas en las que tradicionalmente no se pesca, el grupo de trabajo tomó nota de que la extrapolación de los resultados del estudio a estas regiones podría aumentar la estimación de la población del estudio. Se observó que las áreas de donde se obtuvo el mayor número de muestras no fueron utilizadas para inferir la densidad de las regiones de menor muestreo. Se planteó la posible correlación entre el número de lances y la biomasa, y el grupo de trabajo observó que si bien existe una relación entre el límite inferior de los intervalos de confianza y el número de lances, toda correlación entre el número de lances y la biomasa media observada en el tamaño limitado de muestras es posiblemente falsa.

4.4 El grupo de trabajo advirtió pequeñas diferencias entre la relación talla-peso presentada en el anterior informe de pesca y en los utilizados en los análisis. Se observó además que los coeficientes empleados en el análisis fueron estimados a partir de los datos del estudio y que las diferencias fueron muy pequeñas lo que seguramente no tendría ningún efecto considerable.

4.5 El grupo de trabajo recordó que existen relaciones entre la densidad del kril y la situación espacial del draco, y que esto podría proporcionar una indicación de la densidad en zonas no abarcadas por el estudio (WAMI, 2001; véase SC-CAMLR-XX, anexo 5, apéndice D). Asimismo tomó nota de la existencia de información sobre la densidad del kril y de que concordaba en cierto grado con la distribución de dracos observada en regiones del norte. El grupo de trabajo observó que había indicios de la existencia de kril en regiones no cubiertas por el estudio.

4.6 El grupo de trabajo destacó que había una tendencia observable en la distribución de las clases de edad alrededor de la zona del estudio, y consideró la posibilidad de que se congregaran peces de más edad en regiones con mayor densidad de mictófidos. Señaló que había indicios de que así fuera.

4.7 Se sugirió el uso de artes de arrastre pelágico para tratar de detectar la presencia o ausencia de dracos en la zona de la plataforma al sur de Georgia del Sur. El grupo de trabajo estuvo de acuerdo en que esto podría resultar útil. No obstante, tal vez no convendría cambiar el tipo de arte utilizado en las prospecciones, dada la extensa serie cronológica con el tipo de arte actual. Se sugirió además que tal vez convendría realizar una prospección dirigida estrictamente al draco a fin de mejorar la estimación de la abundancia de dracos, en lugar de utilizar el diseño actual de prospección para varias especies.

4.8 El grupo de trabajo consideró si había datos del actual estudio sobre la condición de desove del draco. Se observó que las zonas poco profundas es donde a menudo se produce el desove, y que posiblemente en estos casos el estudio no detecte a los animales en desove.

4.9 WG-FSA-08/56 detalla la evaluación preliminar de *C. gunnari* en la División 58.5.2. Dada la gran reducción observada en la actual cohorte dominante durante los últimos años, el
grupo de trabajo consideró si esto se podría utilizar para estimar la mortalidad natural. Se señaló que la mortalidad natural puede variar a través del tiempo, y que las estimaciones resultantes son muy inciertas pero que, en principio, se puede hacer. Debido a que el draco depende menos del kril en la División 58.5.2, el grupo de trabajo consideró si la mortalidad natural del draco era más estable. Se observó que existen varios factores que pueden afectar dicha mortalidad (la depredación y la disponibilidad del alimento), y que algunas tendencias actuales en las poblaciones de depredadores de la región hacen que resulte difícil inferir la estabilidad en la mortalidad natural.

4.10 Dado el posible efecto de la condición de los dracos de la Subárea 48.3 en la mortalidad natural, el grupo de trabajo se preguntó si había datos de la condición de estos peces respecto a la División 58.5.2. Indicó que es muy posible que se puedan obtener puesto que se han observado cambios en el crecimiento que dependen de la densidad en la Subárea 48.3, pero que en la actualidad no se dispone de este tipo de datos detallados para la División 58.5.2.

4.11 Se presentó una descripción breve de los temas pertinentes y las solicitudes de WG-SAM con respecto al modelo de evaluación descrito en WG-SAM-08/8. WG-FSA alentó a los autores a ejecutar el trabajo propuesto y presentar dicho trabajo a WG-SAM en el futuro.

4.12 WG-FSA-08/43 describió una nueva evaluación de los stocks de austromerluza en las Divisiones 58.4.1 y 58.4.2. Dada la aparente incertidumbre en las estimaciones de la CPUE de las Divisiones 58.4.1 y 58.4.2, el grupo de trabajo consideró el grado de coherencia de la CPUE utilizada en estimaciones relativas de la abundancia en comparación con los valores de este índice en el Mar de Ross. Las diferencias que a veces se observaron si se consideran los barcos que pesaron en el Mar de Ross y en las áreas continentales, y aquellos que pesaron solamente en las Divisiones 58.4.1 y 58.4.2 dejaron bien en claro que el resultado del método comparativo en este caso no debía ser tratado más que como una estimación aproximada de la abundancia. El error elevado en la CPUE normalizada no fue incluido en los intervalos de confianza de la estimación de la biomasa, sólo en la incertidumbre de la estimación de la biomasa del Mar de Ross, y se propuso un método de inclusión que podría resultar de utilidad en los próximos análisis.

4.13 El grupo de trabajo indicó que la información dispar obtenida de los análisis de la CPUE (niveles de biomasa más bajos) y de los datos de marcado (biomasa más alta) fue similar a los resultados del trabajo realizado para el banco BANZARE el año anterior. Las estimaciones de la reducción del stock contradijeron directamente las estimaciones de biomasa derivadas de un análisis sencillo de las marcas recuperadas. El grupo de trabajo estuvo de acuerdo en que los análisis indicaron que los datos de estas divisiones eran de mala calidad. Se destacó sin embargo que la información podría servir para proporcionar asesoramiento de ordenación. El grupo de trabajo sugirió que la utilización de las estimaciones de la biomasa máxima podría ser más informativa ya que aún bajo estas suposiciones, las conclusiones generales presentadas en WG-FSA-08/43 con respecto a los niveles de biomasa y el aparente retraso en la recuperación de marcas no habían cambiado. El grupo de trabajo señaló que las UIPE que actualmente están cerradas a la pesca podrían abrirse a la pesca en el futuro bajo la condición de que (i) se aclaren y resuelvan los problemas relacionados con la falta de marcas recuperadas, y (ii) haya una expectativa razonable del Comité Científico de que si (i) se puede resolver, un programa de marcado
revisado podría brindar información para ser utilizada en las evaluaciones futuras de estos stocks. El grupo de trabajo agradeció a los autores de WG-FSA-08/43 por el trabajo realizado.

4.14 El grupo de trabajo señaló que la hipótesis relativa a los dos stocks del “este y oeste” también podría tratarse sencillamente de una distribución diferencial de los animales maduros e inmaduros de una población, como se observa en el Mar de Ross. Se estuvo de acuerdo en que aún cuando el número de marcas recuperadas (muy pequeño) puede respaldar la hipótesis de dos stocks, el tamaño de la muestra es actualmente tan reducido que ambas hipótesis son igualmente posibles.

4.15 Se presentó una propuesta para ampliar el experimento de marcado y recaptura en la Subárea 48.4 (WG-FSA-08/46), en relación con el tema de las evaluaciones. El grupo de trabajo consideró el riesgo de extraer una captura de 75 toneladas en un año, para obtener una estimación más precisa de la abundancia del stock. Asimismo consideró si se podría simplemente aumentar proporcionalmente la tasa de marcado en esta área. El grupo de trabajo reconoció que la tasa de marcado requerida para esta área ya es alta (cinco peces por tonelada de la captura, en vivo).

4.16 WG-FSA-08/32 presentó en detalle estimaciones indicativas de la biomasa y del rendimiento de Macrourus whitsoni en el talud continental del Mar de Ross. El grupo de trabajo estuvo de acuerdo en que este tipo de enfoque, cuando es posible aplicarlo, representaba un avance en lo que se refiere a la evaluación de la sensibilidad de las medidas de conservación aplicables actualmente a la captura secundaria de esta especie en la región. En cuanto a la cobertura del muestreo (en términos de la distribución por estrato de profundidad de la especie), el grupo de trabajo señaló que estos peces se alimentan en el fondo del mar y que sería conveniente realizar un reconocimiento fotográfico para poder entender mejor la distribución espacial de M. whitsoni.

4.17 El grupo de trabajo sugirió que, dada la escasez de pruebas de que la relación es directamente proporcional, el límite de captura de granaderos debería ser desvinculado del límite de captura de la especie objetivo. Señaló que estudios previos habían tratado de evaluar el efecto de estos niveles de captura en las especies de captura secundaria, y que este enfoque era razonable. Se podrá volver a evaluar el límite de captura a medida que se disponga de nuevos datos y/o si este límite se alcanza en repetidas ocasiones. El grupo de trabajo agradeció a los autores del documento WG-FSA-08/32 por la realización de este estudio.

4.18 WG-FSA consideró una metodología para evaluar la calidad de los datos (WG-SAM-8/13) que fue presentada a WG-SAM-08. El documento describe métodos que podrían ser utilizados por SCIC en la identificación de barcos que no cumplieron con los requisitos de la CCRVMA relativos a la notificación de datos. El grupo de trabajo recomendó que los autores de WG-SAM-08/13 continuaran formulando una serie de índices de la calidad de los datos conjuntamente con la Secretaría durante el período entre sesiones, e informara a WG-SAM sobre el progreso alcanzado. El grupo de trabajo señaló que sería conveniente contar con un enfoque uniforme, por el cual la Secretaría notificaría al WG-FSA los resultados de un conjunto convenido de pruebas de los datos.
Evaluaciones a realizarse y calendario de evaluaciones

4.19 El grupo de trabajo consideró las evaluaciones preliminares de las pesquerías de *C. gunnari* en la Subárea 48.3 (WG-FSA-08/28) y en la División 58.5.2 (WG-FSA-08/56). Se acordó examinar estas evaluaciones durante la reunión, y utilizar la información para formular el asesoramiento de ordenación para estas pesquerías.

4.20 El grupo de trabajo examinó las pesquerías dirigidas a *Dissostichus* spp. en la Subárea 48.3, la División 58.5.2 y el Mar de Ross, y convino en que, siguiendo el actual método de ordenación multianual, no se necesitaba realizar nuevas evaluaciones de dichas pesquerías este año.

EVALUACIONES Y ASESORAMIENTO DE ORDENACIÓN

Pesquerías nuevas y exploratorias en 2007/08 y notificaciones para 2008/09

5.1 En 2007 la Comisión aprobó la realización de siete pesquerías de palangre exploratorias de *Dissostichus* spp. en la temporada 2007/08 (Medidas de Conservación 41-04, 41-05, 41-06, 41-07, 41-09, 41-10 y 41-11). No se recibió ninguna notificación de pesquería nueva para la temporada 2007/08. Las actividades de las pesquerías exploratorias se describen a continuación y se presentan en forma resumida en las tablas 5 y 6.

5.2 Las notificaciones de pesquerías nuevas y exploratorias para 2008/09 se resumen en la tabla 7. Doce miembros presentaron notificaciones – y el pago correspondiente – para realizar pesquerías de palangre exploratorias de *Dissostichus* spp. en las Subáreas 48.6, 88.1 y 88.2 y en las Divisiones 58.4.1, 58.4.2, 58.4.3a y 58.4.3b; una pesquería de arrastre exploratoria de *E. superba* en la Subárea 48.6, y nuevas pesquerías de centollas con nasas en las Subáreas 48.2 y 48.4.

5.3 Además, un miembro notificó su intención de participar en la pesca de centollas en la Subárea 48.3 en 2008/09, de conformidad con la Medida de Conservación 52-01 (ver párrafo 5.173).

5.4 El grupo de trabajo estuvo de acuerdo en que no trataría de determinar si las notificaciones de pesquerías exploratorias cumplían con los requisitos de notificación de la Medida de Conservación 21-02, y opinó que esto le correspondía a SCIC.

5.5 En la tabla 8 se resumen los datos (sin normalizar) de la CPUE de *Dissostichus* spp. de las pesquerías de palangre exploratorias realizadas entre 1996/97 y 2007/08.

5.6 De acuerdo con la Medida de Conservación 41-01, todos los barcos palangreros que operan en las pesquerías exploratorias de *Dissostichus* spp. en 2007/08 deben marcar y devolver al mar un ejemplar de *Dissostichus* spp. por cada tonelada de peso fresco capturado durante la temporada en las Subáreas 48.6, 88.1 y 88.2, y tres ejemplares por tonelada de peso fresco en las Divisiones 58.4.1, 58.4.2, 58.4.3a y 58.4.3b (tabla 9). En 2007/08, se declaró el marcado y liberación de 5 228 ejemplares de *Dissostichus* spp. en las pesquerías de palangre exploratorias (tabla 10), y 261 marcas fueron recuperadas (tabla 11).
Notificación de pesquerías nuevas de centollas en las Subáreas 48.2 y 48.4

5.7 Un miembro (Rusia) notificó su intención de utilizar un barco para explotar una pesquería nueva de centollas, con nasas, en las Subáreas 48.2 y 48.4 durante la temporada 2008/09.

5.8 El grupo de trabajo recordó que la pesquería de centolla en la Subárea 48.3 fue explotada en los años 1992, 1995, 1996 y 2002, y las especies objetivo fueron Paralomis spinosissima y P. formosa. Las capturas anuales han fluctuado entre 250 y 300 toneladas, y han sido extraídas por un barco cada año. La pesquería se realizó utilizando líneas de las cuales se colgaron entre 60 a 169 nasas estándar para centollas (promedio de 120 nasas por línea). El tiempo de reposo de la nasa varió de 14 a 74 horas, con un promedio de 30 horas. La captura secundaria de peces nunca sobrepasó de 9% (promedio de 1.4%). La principal especie de la captura secundaria fue Dissostichus spp.

5.9 El grupo de trabajo indicó que nunca antes se había tratado de explotar la pesquería de centollas en las Subáreas 48.2 y 48.4. Tomando nota de las cuestiones que deben considerarse, además de los requisitos pertinentes a las pesquerías de centollas que se discuten más adelante, el grupo de trabajo estimó que las Medidas de Conservación 52-01 y 52-02 en vigor para la pesquería de centollas de la Subárea 48.3 podrían utilizarse para basar un régimen de explotación experimental para las pesquerías de centollas en las Subáreas 48.2 y 48.4, en el caso de que éstas se llevaran a cabo. Todos los aspectos de las Medidas de Conservación 52-01 y 52-02 deberían ser aplicados a las medidas de conservación elaboradas para las Subáreas 48.2 y 48.4, excepto por las modificaciones propuestas a continuación:

 i) presencia obligatoria de dos observadores científicos a bordo, y por lo menos uno de ellos debería ser un observador científico internacional;

 ii) la temporada 2008/09 debería definirse como el periodo del 1 de diciembre de 2008 al 30 de noviembre de 2009, o hasta que se alcance el límite de captura, lo que suceda primero.

5.10 El grupo de trabajo no tuvo información para basar el cálculo del rendimiento sostenible para las pesquerías de centollas en las Subáreas 48.2 y 48.4. Debido a la falta de datos científicos, el grupo de trabajo realizó algunos cálculos comparativos basados en la información disponible sobre el hábitat potencial y la densidad de los stocks de centollas, tomando nota de que las capturas de las pesquerías nuevas y exploratorias sólo deberán ser suficientes para obtener la información necesaria para una evaluación del estado de los stocks.

5.11 Los siguientes párrafos describen las consideraciones específicas para la pesquería de centollas propuesta en cada subárea.

Subárea 48.2

5.12 El grupo de trabajo indicó que no existe información para determinar un límite de captura para la pesquería de centollas en la Subárea 48.2 ya que nada se sabe acerca del tipo de especies o abundancia de los stocks que podría permitir una explotación sostenible. El grupo de trabajo señaló que podría ser conveniente aplicar el mismo enfoque para asignar límites de captura que el utilizado en las pesquerías exploratorias de austromerluza, es decir,
el límite de captura debería establecerse a un nivel nominal bajo para determinar la distribución y abundancia del stock y para definir las estrategias que permitirán efectuar una evaluación del estado de los stocks y asegurar la explotación sostenible. Estuvo de acuerdo en que, de llevarse a cabo la pesquería de centollas en esta Subárea en la temporada 2008/09, el régimen experimental aplicado en la Subárea 48.3 resultaría adecuado con un límite de captura del orden de 250 toneladas.

5.13 Para que el régimen que se aplicaría en la Subárea 48.2 concuerde con el régimen experimental de explotación de centollas de la Subárea 48.3, al comienzo de las operaciones de pesca en la Subárea 48.2, cada barco deberá dedicar 200 000 horas nasas de esfuerzo dentro de un área total dividida en 12 cuadrángulos de 0.5° de latitud por 1.0° de longitud (figura 2). El barco no podrá dedicar más de 30 000 horas nasa en un solo cuadrángulo de 0.5° de latitud por 1.0° de longitud. Para cada línea, las horas nasa se calcularán tomando el número total de nasas de la línea y multiplicándolo por el tiempo de reposo (en horas) para dicha línea. El tiempo de reposo para cada línea se define como el tiempo entre el comienzo del calado y el comienzo de la recogida.

5.14 El barco no deberá pescar fuera de la zona demarcada por los cuadrángulos de 0.5° de latitud por 1.0° de longitud, o continuar pescando una vez que se haya terminado el régimen de pesca experimental, hasta que los resultados del experimento hayan sido analizados por el WG-FSA.

5.15 El grupo de trabajo indicó que la captura secundaria de peces en esta pesquería puede ser problemática debido al cierre de la Subárea 48.2 a la pesca comercial de peces, hasta que no se efectúe una prospección de peces y los resultados hayan sido analizados por el WG-FSA. No obstante, esto no se consideró un problema si la pesquería sólo efectuaba el régimen experimental y no se seguía pescando hasta que los métodos para tratar la captura secundaria hubieran sido analizados por el WG-FSA.

5.16 Todas las especies de peces de la captura secundaria durante la pesca experimental deberán ser registradas, su talla deberá ser medida y su identificación deberá hacerse a nivel de especie, y luego se las devolverá al mar con el mínimo de manipulación. Antes de su liberación, todos los ejemplares de Dissostichus spp. deben ser mediados y marcados. Se deberá registrar un conjunto completo de datos biológicos de los peces de la captura secundaria que hayan muerto y se les deberá arrojar al mar.

Subárea 48.4

5.17 El grupo de trabajo recomendó que todos los barcos que participaran en la pesquería de centollas en la Subárea 48.4 durante la temporada 2008/09 realicen sus operaciones de pesca de acuerdo con un régimen de pesca experimental conforme al cual, al comienzo de la pesca en la Subárea 48.4 cada barco deberá dedicar unas 30 000 horas nasas de esfuerzo que será distribuido entre los siete grupos de islas (figura 3), no pudiéndose dedicar más de 4 500 horas nasa en un solo grupo de islas. Para cada línea, las horas nasa se calcularán tomando el número total de nasas de la línea y multiplicándolo por el tiempo de reposo (en horas) para dicha línea. El tiempo de reposo para cada línea se define como el tiempo entre el comienzo del calado y el comienzo de la recogida.
5.18 El barco no deberá pescar fuera del área compuesta por los siete grupos de islas mencionados anteriormente (figura 3) mientras los resultados del experimento no hayan sido analizados por el WG-FSA.

5.19 El área de lecho marino hasta los 500 m de profundidad en la Subárea 48.4 es de 2 107 km², comparado con 42 400 km² en la Subárea 48.3. Aplicando una división estricta a prorrata se obtiene un límite de captura de 79.5 toneladas para la Subárea 48.4. No obstante, la información obtenida de la pesquería de palangre que opera en la Subárea 48.4 (WG-FSA-08/46) indicó que al norte de la subárea (al norte de 57°30'S) las capturas de centollas probablemente serán menos densas en el sector sur comparado con el sector norte de la misma, y por lo tanto, el hábitat potencial al norte de la subárea deberá ser dividido por la mitad. Además, los datos disponibles sobre la captura secundaria de centollas en la pesquería de palangre indican que la CPUE para las centollas al norte de la subárea es aproximadamente un tercio de la CPUE de las pesquerías de palangre alrededor de Georgia del Sur. En vista de ello, y del hecho de que no existe información sobre las centollas de la Subárea 48.4 al sur de 57°30'S, el grupo de trabajo estuvo de acuerdo en que la pesquería de centollas en esta subárea se realice de acuerdo con el régimen de pesca experimental con un límite de captura precautorio de 10 toneladas (tabla 12).

5.20 Todas las especies de peces de la captura secundaria durante la pesca experimental deberán ser registradas, su talla deberá ser medida y su identificación deberá hacerse a nivel de especie, y luego se las devolverá al mar con el mínimo de manipulación. Antes de su liberación, todos los ejemplares de *Dissostichus* spp. deben ser medidos y marcados. Se deberá registrar un conjunto completo de datos biológicos de los peces de la captura secundaria que hayan muerto y se les deberá arrojar al mar.

Progreso en las evaluaciones de pesquerías exploratorias

Elaboración del asesoramiento sobre límites de captura de *Dissostichus* spp.

Divisiones 58.4.1 y 58.4.2

5.21 El documento WG-FSA-08/63 examinó las tasas de recuperación de marcas (o de captura de animales marcados) esperadas de las pesquerías de *Dissostichus* spp. nuevas y exploratorias del sector sur del Océano Índico. En particular, el documento consideraba la posibilidad de que los programas de marcado de las pesquerías nuevas y exploratorias pudieran proporcionar suficientes datos para facilitar la determinación de los límites de captura en las primeras fases de desarrollo de la pesquería. Se plantearon distintos casos con distintas tasas de liberación y detección de marcas, mortalidad natural, desplazamiento de peces fuera del alcance de la pesquería y extracciones de la pesca INDNR, a fin de estimar el número previsto de marcas recuperadas. Aún suponiendo el “peor de los casos” — menores tasas de detección, mayor mortalidad causada por el marcado, altas tasas de emigración y de pesca INDNR —, las tasas previstas de recuperación de marcas siguen siendo mucho más altas que las observadas actualmente en las Divisiones 58.4.1 y 58.4.2. El documento concluía que si las tasas actuales de recuperación de marcas continúan, las evaluaciones del stock basadas en los datos de marcado en las Divisiones 58.4.1 y 58.4.2 probablemente continuarán siendo
inciertas a corto y mediano plazo, y la pesca deberá seguir limitándose a las áreas donde se han concentrado las actividades de liberación de marcas, hasta que se pueda resolver la incertidumbre.

5.22 En WG-SAM-08/4 se describió el progreso en la evaluación de la pesquería exploratoria de las Divisiones 58.4.1 y 58.4.2, resumida en los párrafos 3.1 al 3.5 del anexo 7. WG-SAM recomendó que WG-FSA utilice los métodos descritos en este documento para brindar asesoramiento de ordenación para la pesquería de *Dissostichus* spp. en esta división, después de que se hayan efectuado varias modificaciones (anexo 7, párrafo 4.4). WG-SAM también recomendó que se continuara el marcado en la misma proporción en estas divisiones.

5.23 Una evaluación actualizada de las pesquerías exploratorias de las Divisiones 58.4.1 y 58.4.2, que incluyó las modificaciones menores solicitadas por WG-SAM, fue proporcionada en WG-FSA-08/43 (párrafos 4.12 y 4.13). Los autores utilizaron cuatro métodos para comparar las estimaciones de abundancia para estas áreas: una comparación de las tendencias de la CPUE, reducciones locales, un modelo de reclutamiento constante y datos de marcado y recaptura. Las tasas de recaptura fueron tan bajas que no fue posible efectuar una evaluación fiable de los stocks basada en estos datos, en cambio presentaron estimaciones del número de marcas que se espera recuperar dada la biomasa estimada. Las estimaciones de biomasa por UIPE fueron relativamente similares a las obtenidas de las comparaciones efectuadas con la CPUE y de los métodos de reducción local. No obstante, el número esperado de marcas recuperadas fue mucho más alto que el número observado. El documento presentó estimaciones preliminares del rendimiento precautorio para las Divisiones 58.4.1 y 58.4.2, y señaló que éstas son mucho más bajas que los límites de captura en vigor.

5.24 El grupo de trabajo acotó que no se había incorporado toda la incertidumbre con respecto a la CPUE de la pesca de palangre en las dos áreas en la evaluación (párrafos 4.12 al 4.14). Se efectuó otro análisis que incorporó la incertidumbre en la CPUE en las estimaciones de biomasa para las UIPE obtenidas con el método comparativo de las CPUE descrito en WG-FSA-08/43, para brindar asesoramiento sobre posibles límites de captura para las UIPE de las Divisiones 58.4.1 y 58.4.2 abiertas a la pesca. El rendimiento por UIPE fue calculado suponiendo una tasa de explotación de 0.05 (que parece ser una tasa de explotación sostenible para el stock evaluado de *Dissostichus* spp.) multiplicada por el valor de la biomasa estimada. También se calculó el rendimiento para las UIPE 5841C, 5842A y 5842E sobre la base de las estimaciones de biomasa derivadas con el método de reducción. Éstas son las únicas UIPE para las cuales se cuenta con estimaciones de la reducción del stock durante varios años, de las cuales se escogió la reducción más reciente que da el mejor ajuste. Los rendimientos fueron calculados en forma separada para la mediana, el percentil 25 y el percentil 75 del valor de la biomasa para cada UIPE. Los resultados del análisis se presentan en la tabla 13.

5.25 El grupo de trabajo también indicó que las estimaciones del rendimiento se basaron en los datos de la temporada 2006/07 y no incluyeron las capturas legales o INDNR de la temporada 2007/08.

5.26 El Dr. L. Pshenichnov (Ucrania) indicó que la estimación de las áreas explotadas de las Divisiones 58.4.1 y 58.4.2 no habían sido corregidas para tomar en cuenta las UIPE cerradas de estas divisiones. Indicó que la suposición de que la CPUE es proporcional a la densidad de austromerluzas no es correcta para la pesquería de palangre, y esto aumenta la incertidumbre del análisis. Agregó que la biomasa de austromerluzas había sido estimada con
una constante desconocida (la capturabilidad) (WG-FSA-08/43). La capturabilidad de la pesca de palangre en general, y de la pesca de palangre de austromerluzas en particular, es desconocida y no debería utilizarse para la estimación de la biomasa. También consideró que las capturas de peces inmaduros (1–4 años de edad) en la División 58.4.2 (WG-FSA-08/23) con redes de arrastre de fondo son similares a las que se obtienen en otras subáreas, lo que sugiere que el reclutamiento y la biomasa de peces en esta división también se asemejan a los valores obtenidos en esas subáreas. Esto no concuerda con el resumen presentado en WG-FSA-08/43.

5.27 El Dr. Constable indicó que el Dr. Pshenichnov tenía la razón al decir que las estimaciones de biomasa se relacionan solamente con las UIPE abiertas. También indicó que los juveniles fueron capturados en una pesquería y no en una prospección aleatoria con redes de arrastre y por lo tanto, la distribución de juveniles era desconocida. El Dr. Agnew indicó que la CPUE refleja en cierta medida la densidad local, como se muestra en los estudios de reducción. Indicó que no estaba de acuerdo en que la CPUE no era proporcional a la abundancia, especialmente en las capturas que están muy por debajo de los niveles de saturación. El grupo de trabajo señaló que un problema fundamental era entender la capturabilidad de nuevas técnicas de pesca, no de los artes que ya se conocen.

5.28 El grupo de trabajo también reflexionó sobre la pesca INDNR prevista para esa área, de un orden de magnitud más alto que el rendimiento pronosticado. Señaló que estos cálculos podrían requerir de una revisión detallada, en particular, de las suposiciones con respecto a la CPUE.

5.29 El grupo de trabajo consideró que, aún cuando las estimaciones del rendimiento del análisis eran inciertas, los resultados indicaban que el tamaño de la población de Dissostichus spp. en ambas divisiones probablemente era pequeño y que los límites de captura actuales serían insostenibles. El grupo de trabajo por lo tanto recomendó que los límites de captura en cada una de las UIPE abiertas de las Divisiónes 58.4.1 y 58.4.2 se redujeran a los niveles de rendimiento derivados de la mediana de las estimaciones de biomasa presentadas en la tabla 13. El grupo de trabajo también recordó el análisis efectuado por WG-SAM que había considerado que las capturas de 10 toneladas no servían para proporcionar información de utilidad para la evaluación de un stock, excepto cuando éstas se efectuaban de acuerdo con programas de investigación bien diseñados para probar hipótesis bien definidas (anexo 7, párrafo 4.6). Por lo tanto, el grupo de trabajo recomendó además que las UIPE con rendimientos menores de 20 toneladas fueran cerradas a la pesca.

Dissostichus spp. en la División 58.4.1

5.30 Cuatro miembros (España, Namibia, República de Corea y Uruguay) participaron con seis barcos en la pesquería exploratoria en la División 58.4.1 en 2007/08. El límite de captura precautorio de Dissostichus spp. fue de 600 toneladas, de las cuales no más de 200 toneladas pudieron extraerse de las UIPE C, E y G. Las cinco UIPE restantes (A, B, D, F y H) habían sido cerradas a la pesca, y se había permitido la pesca de 10 toneladas de Dissostichus spp. como máximo con fines de investigación con un barco en cada una de estas UIPE. Se prohibió la pesca a menos de 550 m de profundidad para proteger a las comunidades del bentos. La información de esta pesquería se resume en el apéndice D.
5.31 La captura total de *Dissostichus* spp. (en su mayoría de *D. mawsoni*) en 2007/08 declarada a la fecha es de 413 toneladas. La UIPE G fue cerrada el 30 de enero de 2008 cuando la captura se aproximó al límite de captura de 200 toneladas de *Dissostichus* spp. en esa UIPE (la captura final declarada de esa UIPE fue de 197 toneladas). España realizó la pesca con fines de investigación en las UIPE D (captura declarada: 10 toneladas), F (captura declarada: 3 toneladas) y H (captura declarada: 10 toneladas). Si bien la fecha de cierre de la pesquería está siendo revisada actualmente, se espera que la pesquería sea cerrada el 30 de noviembre de 2008. La información sobre las actividades INDNR indicó que se extrajeron 94 toneladas de austromerluza en 2007/08.

5.32 Se marcó y liberó un total de 1 134 austromerluzas en la temporada 2007/08, y seis ejemplares marcados fueron recapturados en esa temporada (tablas 9 y 11).

5.33 Seis miembros (España, Japón, Nueva Zelanda, República de Corea, Sudáfrica y Uruguay) han notificado su intención de participar con un total de 13 barcos en la pesquería de austromerluzas en la División 58.4.1 en 2008/09 (tabla 7a).

5.34 El grupo de trabajo consideró la evaluación preliminar de *Dissostichus* spp. discutida en los párrafos 5.21 al 5.29, y recomendó reducir los límites de captura en todas las UIPE abiertas a la pesca de la División 58.4.1 para que coincidieran con las estimaciones de rendimiento basadas en la mediana de la biomasa estimada presentada en la tabla 13. El grupo de trabajo también recomendó que las UIPE con un rendimiento inferior de 20 toneladas fueran cerradas a la pesca (párrafo 5.29).

Dissostichus spp. en la División 58.4.2

5.35 Dos miembros (República de Corea y Namibia) participaron con tres barcos en la pesca exploratoria en la División 58.4.2 durante 2007/08, declarándose una captura de 124 toneladas. La pesquería sigue abierta hasta el 30 de noviembre de 2008. El límite de captura precautorio de austromerluzas fue de 780 toneladas, de las cuales no más de 240 toneladas pudieron extraerse de las UIPE A, C y E. Se cerraron otras dos UIPE (B y D) a la pesca. Se prohibió la pesca a profundidades menores de 550 m para proteger a las comunidades del bentos. La información de esta pesquería se resume en el apéndice E.

5.36 La especie objetivo de la pesquería que operó en 2007/08 en las UIPE A, C y E fue *D. mawsoni*. No hubo indicios de pesca INDNR en 2007/08.

5.37 Se marcó y liberó un total de 673 austromerluzas en 2007/08, y no se capturó ningún pez marcado (tablas 10 y 11).

5.38 Seis miembros (Australia, España, Japón, Nueva Zelanda, República de Corea y Uruguay) notificaron su intención de participar en la pesquería de *Dissostichus* spp. en la División 58.4.2 en 2008/09, con un total de nueve barcos.

5.39 El grupo de trabajo examinó la evaluación preliminar de *Dissostichus* spp. discutida en los párrafos 5.21 al 5.24. Recomendó reducir los límites de captura en todas las UIPE abiertas a la pesca en la División 58.4.2 para que correspondan con las estimaciones del rendimiento
basadas en la mediana de la biomasa estimada presentada en la tabla 13. El grupo de trabajo recomendó además que las UIPE con rendimientos menores de 20 toneladas sean cerradas a la pesca (párrafo 5.29).

Dissostichus spp. en la División 58.4.3a

5.40 Un miembro (Uruguay) participó con un barco en la pesca exploratoria en la División 58.4.3a en 2007/08. El límite de captura precautorio de austromerluza fue de 250 toneladas y se declaró una captura de 9 toneladas. La pesquería fue cerrada el 31 de agosto de 2008. La información de esta pesquería se resume en el apéndice F.

5.41 No hubo evidencia de que se hubiera realizado la pesca INDNR en 2007/08.

5.42 Se marcó y liberó un total de 41 austromerluzas en 2007/08 y se capturaron dos peces marcados durante esta temporada.

5.43 Un miembro (Japón) notificó su intención de participar con un barco en la pesquería de austromerluza en la División 58.4.3a en 2008/09.

5.44 En WG-SAM-08/5 se describió el progreso en la evaluación de la pesquería exploratoria en la División 58.4.3a, que se resume en los párrafos 3.6 al 3.8 del anexo 7. WG-SAM recomendó que WG-FSA utilizara los métodos descritos en este documento para brindar asesoramiento de ordenación para la pesquería de *Dissostichus* spp. en esta división (anexo 7, párrafo 4.4).

5.45 El grupo de trabajo estimó que el uso de los datos de marcado en la División 58.4.3a era menos incierto que en las Divisiones 58.4.1 y 58.4.2. Esto se debe a que, dado el número de marcas liberadas y las tasas de captura (tanto de la pesca legal como INDNR), si el número de marcas observadas es una subestimación (vg. se debería haber recapturado 10 peces marcados en vez de los cinco observados), habría una alta probabilidad de que la población de la división hubiera sido extraída en su totalidad durante el experimento de marcado. El grupo de trabajo reconoció que éste no es el caso, y esto dio cierta confianza en el uso de los datos de marcado para estimar el tamaño de la población en esta división.

5.46 La evaluación preliminar del stock descrita en detalle en WG-SAM-08/5 utilizó un modelo de excedente de producción de la dinámica de la biomasa para evaluar el estado del stock, utilizando los datos de liberación (199) y recaptura de marcas (5) de 2005 y 2006 respectivamente, así como las capturas legales e ilegales en esta división. Las estimaciones resultantes del tamaño del stock fueron usadas luego para estimar el rendimiento a largo plazo (aplicando los criterios de decisión de la CCRVMA) bajo cuatro suposiciones distintas acerca de la incertidumbre adicional en la dinámica de los stocks en el futuro, más allá de la que ya fue tomada en cuenta en la evaluación de los stocks. Esto produjo un rango de rendimientos potenciales a largo plazo: 113, 105, 103 y 86 toneladas, que abarcó una amplia gama de suposiciones sobre la incertidumbre con respecto a la dinámica del stock en el futuro (dos modelos de probabilidad de recaptura (binomial y normal) y tres valores distintos para el error de tratamiento en el futuro).
5.47 El límite de captura para la División 58.4.3a en la temporada de pesca 2007/08 fue de 250 toneladas. El grupo de trabajo estuvo de acuerdo en que la evaluación indicaba que este nivel de captura era insostenible, y que el límite de captura para esta división debería reducirse a un valor entre 86 y 113 toneladas.

Dissostichus spp. en la División 58.4.3b

5.48 Tres miembros (Japón, Namibia y Uruguay) participaron con tres barcos en la pesca exploratoria en la División 58.4.3b durante 2007/08 y Australia realizó una campaña de investigación científica con un barco. En noviembre de 2007, la división fue dividida en dos UIPE: la UIPE A, al norte de 60°S; y la UIPE B, al sur de 60°S. El límite de captura precautorio de *Dissostichus* spp. en la UIPE A fue 150 toneladas, y la UIPE B fue cerrada a la pesca. Además, se prohibió la pesca desde el 16 de marzo de 2008 hasta el fin de la campaña científica notificada, o hasta el 1 de junio de 2008, lo que ocurrió primero. Se autorizó un límite de captura adicional de 50 toneladas para la campaña de investigación en las UIPE A y B. La información de esta pesquería se resume en el apéndice G.

5.49 La pesquería operó en la UIPE A y se declaró una captura de 139 toneladas de *Dissostichus* spp. (93% del límite de captura precautorio para la pesquería). La pesquería fue cerrada el 20 de febrero de 2008, antes del comienzo de la campaña de investigación notificada. Esta campaña se realizó en mayo de 2008 y se declaró una captura total de 2 toneladas de *Dissostichus* spp. de la UIPE A y B (ver además WG-FSA-08/57).

5.50 La información de las actividades de pesca INDNR indicó que se extrajeron 246 toneladas de austromerluza en 2007/08.

5.51 Se marcó y liberó un total de 417 austromerluzas en 2007/08, y se capturó un pez marcado durante esa temporada.

5.52 Tres miembros (España, Japón y Uruguay) notificaron su intención de participar con tres barcos en la pesquería de austromerluza en la División 58.4.3b en 2008/09.

5.53 En 2007 se realizó un análisis de la CPUE de la pesca de palangre en la División 58.4.3b aplicando el análisis de agotamiento de Leslie (SC-CAMLR-XXVI, anexo 5, párrafo 5.7). En mayo de 2008 Australia realizó una prospección con palangres de diseño aleatorio en esta división (párrafo 3.32). WG-FSA-08/57 concluyó que las tasas de captura de *Dissostichus* spp. fueron muy bajas, y esto indica una reducción de la densidad de los stocks de austromerluza en el área explorada. También notó que sólo se habían observado ejemplares de *Dissostichus* spp. de gran tamaño en el área y la única marca recuperada declarada para esta división en 2007/08 fue obtenida durante la prospección.

5.54 El Dr. Ichii puso en duda que el tamaño de la muestra de 15 estaciones aleatorias fuera suficiente para determinar el estado del stock de esa área. Por ejemplo, existen estratos con densidades altas y bajas y expresó preocupación porque el tamaño de la muestra no había sido lo suficientemente grande como para cubrir los dos tipos de estratos. Por ejemplo, no se cubrió uno de los caladeros más importantes preferido por el barco japonés (58°S 76–78°E). También indicó que el CV de la prospección era muy alto. Más aún, consideraba que sería
conveniente comparar los datos de la CPUE de la pesca comercial de la temporada de pesca 2007/08 con años anteriores, y preguntó por qué los datos de la CPUE de la pesca comercial no habían sido analizados este año.

5.55 En respuesta, los autores de WG-FSA-08/57 indicaron que la prospección había sido realizada siguiendo un diseño aleatorio y la escala de la misma había sido determinada por el Comité Científico, y considerada apropiada dada la preocupación acerca del estado del stock (SC-CAMLR-XXVI, párrafos 4.146 al 4.148 y 9.10). El diseño aleatorio da indicaciones más precisas de la tasa de captura promedio a través del área explorada, que era uno de los objetivos principales de la prospección. La precisión de la tasa de captura promedio no fue indicada en WG-FSA-08/57, pero fue calculada más detalladamente durante la reunión del grupo de trabajo de acuerdo con los métodos descritos en Candy (2004) que dieron un intervalo de confianza de 95% de *D. mawsoni* entre 17 y 60 kg/mil anzuelos aproximadamente. Esto indica que las tasas de captura pueden ser consideradas relativamente pequeñas en comparación con otras áreas, como la Subárea 88.1 por ejemplo.

5.56 Los autores de WG-FSA-08/57 agregaron que dado que los estratos y las estaciones de muestreo de la prospección fueron diseñados para las profundidades en las cuales opera la pesca comercial, y para que cubrieran en general dos de las tres áreas más importantes para la pesca comercial en el pasado (WG-FSA-07/44), no está claro cómo la baja captura podría ser el resultado ya sea del diseño de la prospección o del nivel de esfuerzo de pesca. Más aún, el arte y la tripulación del BP *Janas* tienen una trayectoria reconocida porque son capaces de lograr tasas de captura similares a otros palangreros que utilizan el sistema de calado automático en las pesquerías de astromerluza en la División 58.5.2 y en la Subárea 88.1, y estos datos pueden ser utilizados para normalizar las tasas de captura de la prospección.

5.57 El grupo de trabajo reconoció que la investigación había demostrado lo siguiente:

i) Sobre la base de la información pesquera obtenida hasta el año pasado, las pesquerías que operan en el banco de BANZARE muestran que los caladeros de pesca preferidos de la zona sur habían sido agotados (adoptado en WG-FSA-07, llevó al cierre de la zona sur).

ii) Sobre la base de la prospección y las pesquerías en el banco de BANZARE, hay muy pocos peces aparte de los que se encuentran en los caladeros de pesca preferidos.

iii) Los peces que se encontraron en los caladeros de pesca preferidos fueron peces grandes y probablemente estaban desovando; no se encontraron peces pequeños y hubo una mayor proporción de machos (79%).

iv) En la prospección los peces fueron grandes y en su mayoría, machos.

v) Al este de la Antártida sólo se encontraron peces desovantes en el banco de BANZARE (WG-FSA-07/44 y párrafo 3.32).

5.58 El grupo de trabajo indicó que sólo dos de los tres caladeros de pesca preferidos en el área fueron cubiertos por la prospección aleatoria. No obstante, la naturaleza aleatoria de la prospección implica que el área ha sido cubierta adecuadamente. Japón indicó que hubiera preferido que se hubiera cubierto el tercer caladero de pesca preferido y un número mayor de
estaciones muestreadas para obtener una estimación más robusta de la biomasa. El grupo de trabajo recomendó que WG-SAM estudiara cómo diseñar las prospecciones de pesca de palangre, en particular en relación a cómo tratar el tema de los caladeros preferidos y cómo reconciliar los conjuntos de datos obtenidos con distintos tipos de artes de pesca. También se refirió a los párrafos 5.75 al 5.78 que tratan el tema del diseño de las prospecciones de investigación.

5.59 El grupo de trabajo no pudo brindar asesoramiento de ordenación con respecto a los límites de captura en esta división.

Dissostichus spp. en la Subárea 48.6

5.60 Cuatro miembros notificaron su intención de participar en la pesquería exploratoria en la Subárea 48.6 en 2007/08; no obstante, a la fecha, ninguno de ellos pescó y la pesquería sigue abierta hasta el 30 de noviembre de 2008. El límite de captura precautorio de Dissostichus spp. fue 400 toneladas y la información de esta pesquería se resume en el apéndice H.

5.61 La pesquería ha operado principalmente en la UIPE A y la principal especie capturada ha sido D. eleginoides. En noviembre de 2007 la UIPE A fue dividida en una UIPE A y una UIPE G (ver la Medida de Conservación 41-01).

5.62 No hubo evidencia de que se hubiera realizado la pesca INDNSR en 2007/08.

5.63 Desde 2003/04 se ha marcado y liberado un total de 366 austromerluzas, y se ha capturado un total de cinco austromerluzas marcadas (tablas 10 y 11).

5.64 Dos miembros (Japón y la República de Corea) notificaron su intención de participar con un total de tres barcos en la pesquería de austromerluza en la Subárea 48.6 en 2008/09 (tabla 7a). El Dr. Ichii indicó que a finales de octubre de 2008 los barcos de pabellón japonés iniciarán sus operaciones de pesca en esta subárea.

5.65 El grupo de trabajo señaló que la recuperación de marcas sigue siendo muy baja en la Subárea 48.6, y que no se había podido avanzar en las evaluaciones del stock de D. eleginoides en esta subárea. El grupo de trabajo recomendó aumentar la tasa de marcado a tres peces por tonelada, como en otras áreas donde se efectúan pesquerías nuevas y exploratorias y para las cuales hay muy poca información.

Dissostichus spp. en las Subáreas 88.1 y 88.2

5.66 En 2007/08, ocho miembros (Argentina, República de Corea, España, Nueva Zelanda, Rusia, Sudáfrica, Reino Unido y Uruguay) participaron con 15 barcos en la pesca exploratoria en la Subárea 88.1. La pesquería estuvo restringida debido a la cubierta de hielo y se pescó entre diciembre de 2007 y principios de marzo de 2008; no se realizaron actividades de investigación. La pesquería fue cerrada el 31 de agosto de 2008 y la captura total notificada de Dissostichus spp. fue de 2 259 toneladas (84% del límite de captura) (CCAMLR-XXVII/BG/15, tabla 2). En el transcurso de la pesca, se cerraron las UIPE B, C y G el 19 de
diciembre de 2007, debido al nivel de captura de *Dissostichus* spp. alcanzado (captura total de 259 toneladas; 83% del límite de captura). La captura INDNR para la temporada 2007/08 se estimó en 187 toneladas. La información de esta pesquería y el asesoramiento de ordenación se resumen más adelante (párrafos 5.88 al 5.107).

5.67 Nueve miembros (Argentina, Chile, República de Corea, España, Nueva Zelanda, Rusia, Sudáfrica, Reino Unido y Uruguay) notificaron su intención de participar en la pesquería de *Dissostichus* spp. en la Subárea 88.1 con un total de 21 barcos en 2008/09.

5.68 Cuatro miembros (Nueva Zelanda, Reino Unido, Rusia y Uruguay) participaron con cuatro barcos en la pesca exploratoria en la Subárea 88.2. La pesquería estuvo restringida debido a la cubierta de hielo y se pescó en febrero y marzo de 2008; no se realizaron actividades de investigación. La pesquería fue cerrada el 31 de agosto de 2008, y la captura total notificada de *Dissostichus* spp. fue de 416 toneladas (73% del límite de captura) (CCAMLR-XXVII/BG/15). La UIPE E se cerró el 1 de febrero de 2008, debido al nivel de captura de *Dissostichus* spp. alcanzado (captura total de 333 toneladas; 98% del límite de captura). No hubo indicios de pesca INDNR en 2007/08. La información de esta pesquería y el asesoramiento de ordenación se resumen más adelante (párrafos 5.88 al 5.107).

5.69 Nueve miembros (Argentina, Chile, República de Corea, España, Nueva Zelanda, Reino Unido, Rusia, Sudáfrica y Uruguay) notificaron su intención de participar en la pesquería de *Dissostichus* spp. en la Subárea 88.2 con un total de 19 barcos en 2008/09.

5.70 El informe de pesquería de *Dissostichus* spp. en las Subáreas 88.1 y 88.2 figura en el apéndice I. Se separaron los límites de captura secundaria de *M. whitsoni* de los límites de captura de especies objetivo sobre la base de las estimaciones de la biomasa para la Subárea 88.1 (sección 4.2). Se mantuvo la regla de traslado.

5.71 De conformidad con el asesoramiento del Comité Científico de 2007, no se actualizó la evaluación de las Subáreas 88.1 y 88.2. El grupo de trabajo estuvo de acuerdo en que se podría aplicar el asesoramiento de ordenación del año pasado sobre límites de captura para las Subáreas 88.1 y 88.2 (ver además los párrafos 5.88 al 5.97).

5.72 El grupo de trabajo manifestó que la decisión de realizar evaluaciones de *D. mawsoni* cada dos años había permitido asignar recursos a otras tareas importantes relacionadas con el examen de la evaluación de los stocks de austromerluza. Por ejemplo, la elaboración, durante el año pasado, de un modelo demográfico espacial que pudiera utilizarse para realizar evaluaciones de las estrategias de ordenación (MSE) en aspectos como el desplazamiento y el marcado en las pesquerías de austromerluza, y el examen de aspectos de la ordenación de la pesquería. Las evaluaciones bienales se consideran en más detalle en los párrafos 12.6 y 12.7. El grupo de trabajo también acordó que se podría elaborar un plan específico de recopilación de datos para la pesquería.

5.73 El grupo de trabajo recomendó la creación de otra UIPE en la región al oeste de los 170ºE en la zona oeste del Mar de Ross que incluya la Bahía de Terra Nova y el Estrecho de McMurdo (es decir, UIPE 881J al oeste). Recomendó además que esta UIPE estuviera cerrada a la pesca debido a su importancia para el desplazamiento de los peces subadultos desde la plataforma a la zona norte donde desovan.
5.74 El grupo de trabajo recomendó también combinar los límites de captura para las UIPE 881J (al este de los 170ºE) y 881L. Puntualizó además que los límites de captura combinados para estas UIPE deberían revisarse basándose en las áreas reducidas de lecho marino y las estimaciones de la CPUE para esta región, y que esto se podría calcular durante la semana de la reunión de 2008 del Comité Científico si se aprobaba esta recomendación.

Desarrollo de métodos de evaluación de las pesquerías exploratorias en el futuro

Datos necesarios para la evaluación de las pesquerías exploratorias

5.75 El grupo de trabajo consideró que la información más importante requerida para la evaluación de stocks de peces es: el conocimiento sobre la estructura del stock, la productividad (mortalidad natural, edad, crecimiento, talla de madurez) y la abundancia. El grupo de trabajo revisó luego los datos requeridos de la pesquería para poder efectuar una evaluación: datos de captura, de esfuerzo, de la distribución por sexo y talla (y edad), de marcado, de la CPUE y otros datos biológicos. Se señalaron varios problemas asociados con estos datos, a saber:

- control de calidad de los datos y/o ponderación de los datos de entrada;
- representatividad de los datos;
- sesgos de los datos;
- incertidumbre en general;
- constante q en la extrapolación de la CPUE (la pesquería no es uniforme sino que tiene altos y bajos);
- unidades variables de esfuerzo (vg. número de anzuelos utilizados en los palangres artesanales);
- prioridades en la recopilación de datos.

5.76 El grupo de trabajo centró sus discusiones en las estimaciones de abundancia, que se considera el problema más importante en las pesquerías exploratorias – en particular de las que se realizan en el sector del Océano Índico (Divisiones 58.4.1, 58.4.2 y 58.4.3b) y en la Subárea 48.6. Las tasas de recuperación de marcas generalmente muy bajas de estas áreas han sido discutidas anteriormente. Por otra parte, el grupo de trabajo señaló que los experimentos de marcado en otras áreas (vg. en las Subáreas 88.1, 88.2, 48.3 y 48.4) habían tenido mejores resultados y habían permitido efectuar evaluaciones de stocks. No obstante, el grupo de trabajo indicó que aún en la Subárea 88.1, las tasas extremadamente bajas de recuperación de las marcas colocadas por algunos barcos era un problema que debía resolverse (vg. SC-CAMLR-XXVI, anexo 5; WG-SAM-08/7). El grupo de trabajo examinó luego las razones por las cuales algunos de los programas de marcado habían tenido más éxito que otros.

5.77 El grupo de trabajo destacó la importancia de los siguientes aspectos de los programas de marcado: distribución espacial de las marcas y esfuerzo de pesca posterior, número de
marcas liberadas, tasas de pérdida de marcas, mortalidad de peces marcados, tasas de detección, uniformidad con respecto a los barcos de pesca, e incumplimiento del programa de marcado.

5.78 El grupo de trabajo consideró que uno de los aspectos más importantes de un programa de marcado era la distribución espacial de las marcas y el esfuerzo de pesca. Se reconoció que por lo general las austromerluzas recorren distancias cortas en los primeros 1–2 años, y puede llevar varios años (cinco o más) para que se mezclen en la población. Por lo tanto, para que un programa de marcado dé buenos resultados a corto plazo, es necesario llevar a cabo el marcado y la pesca posterior en la misma área. Los gráficos de las marcas liberadas y del esfuerzo de pesca de los experimentos realizados en las Subáreas 48.3, 48.4, 88.1 y 88.2 en general muestran un buen solapamiento entre las marcas liberadas y el esfuerzo de pesca posterior (vg. SC-CAMLR-XXVI; WG-FSA-08/46). Se señaló que el modelo utilizado para simular la distribución espacial de un stock podría servir para abordar problemas relacionados con la mezcla de los peces marcados en el área pero para ello se necesitaban muchos más datos de las pesquerías que se realizan en el sector sur del Océano Índico que los que se tiene actualmente. También se indicó que los barcos en la Subárea 88.1 en general tienden a recuperar sus propias marcas ya que realizan sus operaciones de pesca en sus caladeros preferidos y esto puede llevar a la obtención de tasas más altas de recaptura de peces marcados en esa área.

5.79 Con el objeto de determinar si la disparidad espacial entre las marcas colocadas y el esfuerzo de pesca posterior podría explicar la falta de recuperación de marcas en las Divisiones 58.4.1, 58.4.2, 58.4.3a y 58.4.3b, el grupo de trabajo revisó la distribución anual de las marcas y el esfuerzo de pesca posterior en dichas áreas. Los resultados señalaron que las áreas donde se habían liberado las marcas y las áreas donde se había aplicado el esfuerzo posterior coincidían relativamente bien, de manera que el solapamiento espacial no constituía un problema.

5.80 El grupo de trabajo también estuvo de acuerdo en que la tasa de marcado tenía que ser lo suficientemente alta para asegurar una recuperación razonable de marcas y una estimación más precisa de la abundancia. El método para estimar el número de marcas requeridas para obtener un CV previsto de la abundancia fue resumido en los párrafos 3.9 y 3.10 del anexo 7. Se pudo estimar aproximadamente el tamaño del stock (y por ende, el número requerido de marcas liberadas) comparando la CPUE relativa de la pesquería con la CPUE derivada de los mismos barcos que pescaron en las Subáreas 88.1 y 88.2, y se pudo entonces ajustar la tasa de marcado y el límite de captura. Se señaló que la gran heterogeneidad de la abundancia de peces dentro de un área podría ser un problema.

5.81 Se graficó la tasa de marcado por barco en función del tiempo para verificar si el marcado se llevó a cabo en la misma proporción que la pesca, de conformidad con la Medida de Conservación 42-01. Los resultados fueron muy variables: algunos barcos marcaron en la proporción requerida durante toda la pesca, mientras que otros liberaron muy pocas marcas al principio y luego la proporción de marcas aumentó rápidamente a mediados o al final del período de pesca (figura 4). El grupo de trabajo señaló su preocupación porque las tasas de marcado relativamente altas alcanzadas en cortos períodos de tiempo podrían ser perjudiciales para la condición de los peces liberados, y no concordaba con la diseminación requerida de peces marcados en toda el área. El grupo de trabajo recomendó remitir esta cuestión a SCIC y señaló que podría ser necesario hacer referencia a la medida de conservación y a los cambios efectuados el año pasado para tratar de solucionar este problema.
5.82 El grupo de trabajo reconoció que, a falta de datos fiables sobre el marcado, se necesita otra estrategia para elaborar evaluaciones de los stocks a corto plazo. Los únicos otros datos disponibles actualmente para efectuar las evaluaciones de stocks en estas áreas es la CPUE. El grupo de trabajo indicó que la CPUE había sido utilizada en estudios de reducción y en comparaciones de las CPUE de áreas en las Divisiones 58.4.1 y 58.4.2 (párrafos 5.22 al 5.24). No obstante, existe preocupación porque las estimaciones de la CPUE utilizadas para dichos análisis no son directamente comparables, concretamente en el caso cuando distintos barcos están pescando en distintas localidades en diferentes años. El grupo de trabajo indicó que el diseño de la pesca utilizado en las Subáreas 48.3 y 48.4 para la distribución de las marcas y el esfuerzo de pesca a través de un área también podría proporcionar estimaciones sin sesgos de toda el área.

5.83 El grupo de trabajo recordó que existe una disposición que exige que los barcos de pesca en las pesquerías exploratorias lleven a cabo 20 lances de investigación, separados por un mínimo de 5 millas náuticas. No obstante, algunas de las líneas utilizadas tienen hasta 40 km de largo, haciendo ineficaz la disposición de guardar una distancia mínima de 5 millas náuticas para distribuir el esfuerzo. El grupo de trabajo señaló que otra posibilidad sería la implementación de un plan de pesca más estructurado, pescando de manera más sistemática con líneas más cortas, similar al diseño experimental empleado en la pesquería de centollas en la Subárea 48.3. Al entrar a participar por primera vez en la pesquería, los pescadores deben llevar a cabo la pesca experimental con fines de investigación dentro de varias cuadrículas antes de comenzar la fase comercial de la pesca (Medida de Conservación 52-02).

Diseño de investigación en las pesquerías exploratorias de austromerluza

5.84 WG-SAM consideró algunos problemas en el diseño de las investigaciones en las pesquerías exploratorias (anexo 7, párrafos 4.1 al 4.9). Recomendó que WG-FSA considerara la definición de planes de investigación específicos, que incluyeran la posición de los lances y configuraciones estándar de los artes. También indicó que, en lo que se refiere a la exención de 10 toneladas para la pesca de investigación, las características operacionales del barco deberán ser bien conocidas, se deberán emplear muchas líneas cortas, y las posiciones de las líneas deberán determinarse antes de que comiencen las actividades de investigación.

5.85 Además de las consideraciones anteriores, el grupo de trabajo examinó la cuestión de cómo aplicar los resultados de estas investigaciones en las evaluaciones. Los resultados de la investigación con artes de palangre han sido muy difíciles de utilizar porque son difíciles de reproducir y no hay coincidencia en la distribución espacial de los barcos. Se deberán establecer normas estándar para llevar a cabo la investigación, y se deberá trabajar en el diseño y efectuar pruebas antes de realizar más investigaciones. El coeficiente de capturabilidad \(q\) entre barcos – y la forma de determinarlo – representa unos de los mayores problemas, especialmente cuando se comparan distintos métodos de pesca (vg. sistema de palangre español, automático y artesanal) (WG-FSA-08/44), y cuando se utilizan variaciones del mismo método de pesca, como el palangre artesanal que también puede variar bastante entre los distintos barcos.

5.86 Otra manera de abordar el problema podría ser la utilización de los datos de un área para extrapolar a otras áreas. Esto podría servir para entender la gran variabilidad potencial
de la CPUE entre años o entre barcos. La CPUE siempre debe ser normalizada. Un patrón de pesca más preceptivo y estándar podría servir para obtener datos representativos, y podría incluir la pesca por cuadrículas con un número obligatorio de anzuelos, etcétera.

5.87 El grupo de trabajo recomendó exigir a los barcos que ingresan a una nueva UIPE en las Subáreas 48.6 y 58.4 que realicen 10 lances de investigación con un número máximo de anzuelos de 5 000 (como lo requiere la Medida de Conservación 41-01) sobre una base estratificada y aleatoria en zonas prescritas dentro de esa UIPE, antes de llevar a cabo la pesca comercial. Los lances se llevarían a cabo en, o cerca de, estaciones especificadas dentro de estratos definidos en zonas explotables para las que existe información. Se podrían suministrar estaciones alternativas para reemplazar cualquier estación que por alguna razón no fuera explotable. Se consideró que se podrían identificar las zonas prescritas y generar estaciones aleatorias durante la semana de la reunión de 2008 del Comité Científico si éste aprobara esta recomendación. Se consideró además que, si esto se realizara anualmente por los mismos barcos, los lances de investigación podrían utilizarse para crear una serie cronológica de los índices de la abundancia relativa.

Examen de la ordenación de Dissostichus spp. de las Subáreas 88.1 y 88.2

5.88 El documento WG-FSA-08/50 se centró en la ordenación de la pesquería de la austromerluza en el Mar de Ross y resumió la ordenación y conducta de la pesquería hasta la temporada de pesca 2004/05 (antes del comienzo del experimento de tres años). Se explican las razones por las cuales se inició dicho experimento y sus objetivos principales. Se examinaron los cambios operacionales que sirvieron de base para el experimento, así como el éxito y/o problemas relacionados con cada uno de los cambios. Se identificaron los objetivos operacionales y de investigación para la pesquería en referencia al Artículo II de la Convención, incluidas las incertidumbres en nuestro conocimiento actual que deben resolverse a fin satisfacer los requisitos del Artículo II. Se incluyen entre ellas, por ejemplo, la incertidumbre en los parámetros biológicos y en la evaluación de D. mawsoni, la incertidumbre en sus relaciones ecológicas con depredadores y especies presa, y la incertidumbre relacionada con otros efectos de la pesca en el ecosistema.

5.89 La ponencia concluyó que este experimento de tres años ha sido muy productivo, ya que ha conllevado a una mejor evaluación de los stocks de D. mawsoni y permitió la formulación de técnicas para el seguimiento de las especies de la captura secundaria y de otros efectos potenciales de la pesquería en el ecosistema. Además, la decisión de 2006/07 de realizar una evaluación de la austromerluza cada dos años ha permitido también redirigir recursos a la formulación de un modelo demográfico espacial y a otras actividades de investigación, de importancia para las futuras evaluaciones de las estrategias de ordenación (MSE) de la pesquería de austromerluza. WG-FSA-08/50 recomendó enérgicamente la adopción de un marco operacional a mediano plazo (próximos 3-5 años) que permita la recopilación de datos de buena calidad de manera estable y uniforme.

5.90 El documento recomienda los siguientes cambios menores del marco operacional para alcanzar los objetivos científicos y de ordenación de la pesquería:
i) Retener la red existente de UIPE abiertas y cerradas en las Subáreas 88.1 y 88.2, y considerar además la creación de otra UIPE en la región al oeste de los 170°E en el Mar de Ross occidental que incluya la Bahía de Terra Nova y el Estrecho de McMurdo (es decir, UIPE 881J al oeste).

ii) Retener la actual amalgamación de los límites de captura de las UIPE, y también considerar la amalgamación de los límites de captura de las UIPE 881J (al este de los 170°E) y 881L.

iii) Reajustar los límites de captura proporcionales en estas UIPE revisadas, sobre la base de las áreas de lecho marino revisadas y la nueva CPUE.

iv) Modificar la exención por investigación para UIPE cerradas (Medida de Conservación 24-01). En lugar de 10 toneladas para cada UIPE por año, concentrarse en experimentos de investigación de 2–3 años de duración en una UIPE determinada con 60 toneladas por año. Mantener el marcado a un mínimo de tres marcas por tonelada para cada año del experimento. Asegurarse de que exista un intervalo adecuado (p. ej. 5–10 años) entre experimentos de este tipo en la misma UIPE a fin de minimizar el efecto.

v) Permitir la retención de los límites de captura de austromerluza y especies de la captura secundaria para experimentos efectuados “fuera de temporada” en UIPE abiertas.

vi) Continuar con las evaluaciones bienales de *D. mawsoni* en las dos subáreas.

vii) Elaborar un plan de recopilación de datos específico y un plan de investigación para las pesquerías de las Subáreas 88.1 y 88.2.

5.91 El grupo de trabajo agradeció a Nueva Zelanda por haber realizado esta labor, señalando que se había logrado un avance considerable en la evaluación de los stocks de *D. mawsoni* en las Subáreas 88.1 y 88.2.

5.92 Algunos miembros expresaron preocupación por el nivel de pesca de investigación que se podría realizar en algunas de las UIPE cerradas bajo la recomendación (iv). Les preocupaba además que esto pudiera tener un efecto excesivo en la evaluación, si el esfuerzo cubriera una zona demasiado extensa. No obstante, se señaló que ya se permite este nivel de captura (y esfuerzo conexo) en las UIPE cerradas, de conformidad con la regla de exención por investigación. El grupo de trabajo convino en que era importante que todo cambio del marco operacional no afectara excesivamente la evaluación actual de los stocks.

5.93 Hubo desacuerdo entre los miembros del grupo de trabajo con respecto a la red de UIPE abiertas y cerradas.

5.94 Algunos miembros consideraron que se debía retener la red de UIPE abiertas y cerradas porque consideraban que la concentración de esfuerzo dentro de las UIPE abiertas había contribuido al avance logrado en la evaluación de los stocks. Estaban de acuerdo en que las recomendaciones (i), (ii) y (iii) debían ser implementadas. Asimismo consideraron

4 Nota: 60 toneladas es la suma de las exenciones por investigación de 10 toneladas para las seis UIPE cerradas en las Subáreas 88.1 y 88.2.
que la recomendación (iv) necesitaba una pequeña modificación de manera que el tonelaje permitido según la exención por investigación fuera evaluado en cada caso particular, estuviera sujeto a un examen por parte de WG-FSA (de conformidad con las normas para la realización de prospecciones formuladas en los párrafos 5.84 al 5.87) y no excediera de 60 toneladas. Se señaló que este aumento de la captura sólo debía permitirse durante un período de hasta dos años luego del cual la UIPE permanecería cerrada por un periodo adecuado (p. ej. 5–10 años). Se manifestó además que esto remplazaría la exención por investigación de 10 toneladas que rige actualmente en cada UIPE cerrada.

5.95 El Dr. Pshenichnov consideró que el experimento de tres años no había tenido éxito puesto que no había conllevado a una mejor evaluación de los stocks de *D. mawsoni* en estas subáreas. En particular, el experimento había llevado a una falta de datos de UIPE cerradas, a la imposibilidad de recapturar peces marcados que se habían desplazado a UIPE cerradas y marcar peces en las UIPE cerradas. Señaló que no se contaba con datos sobre la distribución y composición por tallas de la austromerluza y sobre la tasa de captura secundaria (composición de la captura) en esas UIPE. El Dr. Pshenichnov consideró por lo tanto que la falta de esta información significaba que los datos para la evaluación de los stocks estaban incompletos, y acotó que cada año había señalado este hecho a la atención del Comité Científico y de la Comisión.

5.96 El Dr. K. Shust (Rusia) también expresó dudas acerca del éxito del experimento de tres años en lo que se refiere al marcado de austromerluzas en el Mar de Ross. Se señalaron varias fuentes de considerable incertidumbre en las evaluaciones de los stocks de austromerluza en el Mar de Ross basadas en las marcas recuperadas (WG-SAM-08/8). La primera fuente es la falta de datos de las UIPE cerradas. Otra es que se surge de tomar en cuenta la recuperación de marcas de la pesquería de Nueva Zelanda solamente, la cual opera de un año a otro en zonas restringidas del Mar de Ross y aguas adyacentes. En conjunto, estos factores pueden dar como resultado un subestimación considerable de la biomasa de austromerluza y del límite de captura en el Mar de Ross. Tomando en cuenta las razones mencionadas, la continuación del programa de marcado de la austromerluza no debe seguir estando restringido a las UIPE abiertas. Las incertidumbres relacionadas con el actual plan de marcado pueden magnificarse aún más con la realización de experimentos de tres – o cinco – años de ordenación de la pesquería de austromerluza. Considerando todo esto, el Dr. Shust propuso que el Comité Científico considerara la posibilidad de abrir todas las UIPE cerradas a fin de repartir el esfuerzo pesquero a través de toda la zona de pesca.

5.97 El grupo de trabajo recomendó que los méritos relativos de las distintas opiniones sobre estrategias de explotación y programas de investigación para la austromerluza en el Mar de Ross (párrafos 5.89 y 5.94 al 5.96) se evalúen utilizando simulaciones (ver anexo 7, párrafos 5.1 al 5.6). Se recomendó remitir esta tarea al WG-SAM para que éste efectúe una revisión de la metodología de simulación y evaluación antes de presentar los resultados a la consideración del WG-FSA.

Asesoramiento de ordenación

5.98 El grupo de trabajo consideró que si bien las estimaciones de rendimiento obtenidas en el análisis eran inciertas, los resultados indicaban que el tamaño de la población de *Dissostichus* spp. en las Divisiones 58.4.1 y 58.4.2 probablemente sea pequeño y que había
pocas probabilidades de que los actuales límites de captura fueran sostenibles. Por lo tanto, el grupo de trabajo recomendó reducir los límites de captura en cada UIPE abierta en estas dos divisiones al nivel de las estimaciones de rendimiento basadas en las estimaciones de la mediana de la biomasa proporcionadas en la tabla 13 (párrafo 5.29).

5.99 El límite de captura para la División 58.4.3a para la temporada de pesca 2007/08 fue de 250 toneladas. El grupo de trabajo convino en que la evaluación indicaba que este nivel de captura no era sostenible y que el límite de captura para esta división debía reducirse a un nivel entre 86 y 113 toneladas (párrafo 5.47). El grupo de trabajo no pudo proporcionar asesoramiento de ordenación sobre los límites de captura en la División 58.4.3b (párrafo 5.59).

5.100 El grupo de trabajo coincidió en que se debían mantener las medidas relativas a los planes de investigación y de recopilación de datos, incluido el requisito de marcar austromerluzas en una proporción de tres ejemplares por tonelada en las pesquerías exploratorias de la Subárea 58.4 (párrafo 5.22). Señaló además que si mejora el número de marcas que se liberan y recuperan en dichas subáreas, estos datos podrían servir de base para una evaluación a corto o mediano plazo.

5.101 El grupo de trabajo recomendó exigir a los barcos que ingresan a una nueva UIPE en las Subáreas 48.6 y 58.4 que realicen 10 lances de investigación con un número máximo de anzuelos de 5 000 (como lo requiere la Medida de Conservación 41-01) sobre una base estratificada y aleatoria en zonas prescritas dentro de esa UIPE, antes de llevar a cabo la pesca comercial. Los lances se llevarían a cabo en, o cerca de, estaciones especificadas dentro de estratos definidos en áreas explotables para las que existe información. Se podrían suministrar estaciones alternativas para reemplazar cualquier estación que por alguna razón no fuera explotable. Se consideró que se podrían identificar las zonas prescritas y generar estaciones aleatorias durante la semana de la reunión de 2008 del Comité Científico si éste aprobara esta recomendación (párrafo 5.87).

5.102 El grupo de trabajo no pudo proporcionar asesoramiento adicional de ordenación acerca de los límites de captura en la Subárea 48.6. Expresó que se han recuperado muy pocas marcas en la Subárea 48.6 hasta ahora. Por lo tanto, recomendó aumentar la tasa de marcado a tres austromerluzas por tonelada, igual que en otras zonas nuevas y exploratorias para las que se cuenta con poca información (párrafo 5.65).

5.103 El grupo de trabajo convino en que se podría aplicar el asesoramiento de ordenación sobre límites de captura para Dissostichus spp. en las Subáreas 88.1 y 88.2 utilizado el año pasado. No obstante, señaló que se esperaría que la evaluación fuera actualizada el próximo año.

5.104 El grupo de trabajo recomendó nuevos límites de captura para Macrourus spp. en la Subárea 88.1 basándose en el asesoramiento proporcionado en los párrafos 6.16 al 6.22.

5.105 El grupo de trabajo consideró la propuesta de Nueva Zelanda sobre la ordenación futura de la pesquería dirigida a Dissostichus spp. en las Subáreas 88.1 y 88.2 pero no hubo consenso para proporcionar asesoramiento en cuanto a mantener la red de UIPE abiertas y cerradas en estas subáreas.
5.106 No obstante, el grupo de trabajo recomendó la creación de otra UIPE en la región al oeste de los 170°E en el Mar de Ross occidental que incluya la Bahía de Terra Nova y el Estrecho de McMurdo (es decir, UIPE 881J al oeste) y que esta UIPE sea cerrada a la pesca (párrafo 5.73).

5.107 El grupo de trabajo recomendó también combinar los límites de captura para las UIPE 881J (al este de los 170°E) y 881L y revisar estos límites de captura combinados de acuerdo con las áreas reducidas de lecho marino y las estimaciones de la CPUE para esta región (párrafo 5.74).

Notificaciones para llevar a cabo prospecciones de investigación utilizando barcos comerciales según la Medida de Conservación 24-01

Propuesta de Nueva Zelanda para llevar a cabo estudios de investigación en la Subárea 88.1 durante el invierno

5.108 WG-FSA-08/62 presentó una propuesta de Nueva Zelanda para realizar un estudio científico durante el invierno austral en las UIPE 881B, C y G de la CCRVMA en 2008/09, el cual sería el primero en una posible serie de tres años. Se trata de una prospección de pesca de palangre dirigida, y diseñada para llenar lagunas críticas en el conocimiento del ciclo de vida de *D. mawsoni* en el Mar de Ross, mediante la recopilación de muestras biológicas en una amplia gama de sitios de la zona norte del Mar de Ross (donde se anticipa el desove de la austromerluza) durante el invierno austral. El estudio tiene como fin recopilar información sobre las etapas iniciales de vida y la reproducción de *D. mawsoni* en la región del Mar de Ross, y abordar asuntos claves identificados en la reunión de 2007 de la CCRVMA (SC-CAMLR-XXVI, párrafo 4.48; SC-CAMLR-XXVI, anexo 5, párrafos 3.64 al 3.67). Además, los datos de marcado recogidos probablemente proporcionen información adicional sobre la fecha del desplazamiento relacionado con el desove de *D. mawsoni* maduro y los períodos de residencia en la zona norte.

5.109 El estudio propone recopilar datos que permitan someter a prueba tres hipótesis científicas, y tiene seis objetivos científicos adicionales. Los resultados del estudio contribuirán a un mejor entendimiento de la estructura de los stocks de *D. mawsoni* del Mar de Ross, y a largo plazo, conducirán a una mejor estimación de la talla/edad de madurez y de la proporción de la población de peces maduros desovantes. Los datos recopilados durante el estudio proporcionarán información que posiblemente afectará en forma directa las evaluaciones futuras de *D. mawsoni*. La investigación propuesta se atiende a las medidas de conservación existentes, propone una tasa de marcado de un mínimo de tres austromerluzas por tonelada (normalmente, un pez por tonelada en esta región), y propone la participación de dos científicos a bordo (con la opción de un científico internacional) además de dos observadores científicos.

5.110 El documento propuso asignar una captura de 150 toneladas, equivalente a 4 600 peces aproximadamente, del límite de captura de 313 toneladas del área norte (UIPE 881B, C y G) para poder llevar a cabo esta investigación. Esta cifra se basa en una estimación del número de peces necesario para investigar las características del desove y del ciclo de madurez, para estudiar el desplazamiento dentro de la temporada, y toma en cuenta las restricciones logísticas para llevar a cabo el estudio propuesto en esta zona y en esa época del año.
5.111 El grupo de trabajo coincidió en que muy probablemente los resultados inmediatos del estudio no tendrán un efecto directo en la evaluación en el próximo año. No obstante, la mayoría de los miembros del grupo de trabajo opinó que el estudio proporcionaría información importante sobre la biología reproductiva y las primeras etapas de vida de *D. mawsoni*. Se advirtió que los resultados del estudio por sí solos no proporcionarían estimaciones de la talla de madurez o la proporción de los peces maduros desovantes puesto que el estudio sólo mostraría qué proporción está desovando en la zona sin hielo. No obstante, hubo consenso con respecto a que los datos del estado de madurez, de las características histológicas y del índice gonadosómático contribuirían a continuar definiendo el ciclo de desarrollo de *D. mawsoni*, requerido para poder estimar la talla de madurez y la proporción de la población en desove (párrafos 3.72 al 3.76).

5.112 El grupo de trabajo también expresó preocupación acerca del tamaño de la captura propuesta. La Dra. S. Mormede (Nueva Zelanda) acotó que en parte, el alto tonelaje propuesto se debía al elevado peso promedio de la austromerluza en esa zona (32 kg), y que esto era preferible a proponer la captura de un gran número de ejemplares. El número de peces que se requiere examinar para ver si tienen marcas, y para evaluar la madurez reproductiva había sido calculado utilizando un análisis de potencia. Observó además que se había estimado que se necesitaría revisar, sólo en la UIPE 881C, unas 3 000 austromerluzas durante el estudio a fin de recuperar nueve marcas, además de la cantidad que se necesita revisar en la UIPE 881B. Asimismo, el Dr. S. Parker (Nueva Zelanda) señaló que se necesitaban estas cantidades de peces para estudiar el estado de madurez y muestrear adecuadamente la porción inferior de la curva de distribución por tallas. El grupo de trabajo señaló que se retendría un total de 500 ovarios y testes para posteriormente realizar su análisis histológico.

5.113 El Dr. Constable puso en duda si este estudio ayudaría a la CCRVMA. Consideró que el efecto de recopilar los datos propuestos en la evaluación debía analizarse primero a través de simulaciones. Señaló que esto resolvería las inquietudes de algunos de los miembros acerca del tamaño de la captura propuesto. Cuestionó además el efecto en la evaluación si estos peces se extrajeran durante el invierno y no durante la pesquería tradicional del verano.

5.114 El grupo de trabajo indicó que no existía un proceso para determinar cómo se podría reservar una captura para este tipo de pesca de investigación:

i) El Dr. Ramm señaló la importancia del límite de captura en esta área para los barcos que ingresan por primera vez a la pesquería del Mar de Ross en diciembre de cada año, y acotó que en esa región se extrae toda la captura permisible en la mayoría de los años.

ii) Un método sería restar la captura del límite de captura al comienzo de la temporada siguiente, pero el grupo de trabajo pidió al subgrupo de evaluación que examinara el efecto que esto tendría en la evaluación y captura permisible. El Dr. S. Hanchet (Nueva Zelanda) informó que el Sr. A. Dunn (Nueva Zelanda) quien realiza la evaluación de los stocks del Mar de Ross, indicó que la extracción de la captura seis meses antes de lo contemplado en el modelo tendría muy poco efecto en la evaluación (estimado en un máximo de un par de toneladas del rendimiento, de la proyección de 35 años).
iii) Otro enfoque sugerido por el grupo de trabajo fue llamar a licitación para realizar el estudio, de manera que otros miembros tuvieran la oportunidad de ofrecerse para hacer la investigación (párrafos 5.75 al 5.83).

5.115 El Dr. R. Holt (EEUU) explicó que como se trataba de una propuesta de varios años, la extracción de la captura de las UIPE del norte en esta época del año podría tener un mayor efecto en la evaluación. El Dr. Agnew indicó que la pesquería de austromerluza del Mar de Ross aún está siendo explotada de manera intensiva, de manera que el efecto de la extracción de una captura adicional pequeña en esta época sería menos crítica.

Propuesta de Japón para realizar una campaña de investigación en la División 58.4.4

5.116 Japón presentó una notificación para llevar a cabo una campaña de investigación en 2008/09 (WG-FSA-08/39). El propósito es continuar el estudio de la distribución y estructura demográfica de la austromerluza en las Divisiones 58.4.4a y 58.4.4b iniciado en 2007/08. El barco de investigación utilizará nuevamente palangres artesanales y se ha solicitado un límite de captura de 120 toneladas de austromerluza. La notificación se enmarca en el párrafo 3 de la Medida de Conservación 24-01. El principal objetivo es recopilar diversos datos biológicos, físicos y oceanográficos sobre la austromerluza necesarios para evaluar el estado de los stocks. Esta información es importante porque han pasado cinco años desde que el área fue abierta a la pesca. Se realizaran además actividades de marcado en una proporción de tres austromerluzas por tonelada para contribuir a las investigaciones futuras sobre la distribución y estructura demográfica de la austromerluza en estas zonas. Se describe un plan de investigación de dos etapas.

5.117 El Dr. Ichii mencionó que ciertos estudios realizados el año pasado indicaban que los datos de la composición por talla revelan una abundancia de austromerluzas juveniles y adultas, y que la CPUE fue el doble de la utilizada para establecer inicialmente el límite de captura de 103 toneladas. Señaló que se anticipa que la eficacia de los palangres artesanales sea un poco mayor que la de otros sistemas de palangre. No obstante, si los palangres artesanales fueran doblemente eficaces en comparación con otros sistemas de palangre, todos los barcos los utilizarían. Los estudios indican que los stocks posiblemente no se encuentren en malas condiciones, y que se necesita continuar la investigación para poder realizar una evaluación fiable. El Dr. Ichii manifestó que los datos de un estudio de un año no eran suficientes para proporcionar una evaluación fidedigna del stock de peces y que era indispensable contar con datos de un mínimo de tres años para proporcionar una mejor cobertura temporal. Se propone extender la cobertura para incluir profundidades de menos de 500 m en los Bancos de Ob y de Lena con el objeto de evaluar el reclutamiento más reciente. En cuanto a la captura total, a fin de obtener un tamaño adecuado de la muestra, y considerando la viabilidad económica, Japón propuso fijar una captura de 30 toneladas para cada UIPE, es decir una captura total de 120 toneladas. Añadió además que la pesca reglamentada en esta división también serviría para controlar y disuadir a los barcos de la pesca INDNR.

5.118 El Dr. Kock preguntó si se podría obtener información sobre el reclutamiento y variabilidad del reclutamiento de D. eleginoides de los datos recopilados por Ucrania durante su pesquería de arrastre en esta área. El Dr. Pshenichnov respondió que estos datos existen en papel pero no en formato electrónico.
5.119 El grupo de trabajo convino en que la investigación podría derivar en estimaciones de la población si se cuenta con un procedimiento de investigación robusto. Agregó que la pesquería se cerró en 2002 porque se pensó que la población se había reducido demasiado luego de haber estado sometida a altos niveles de pesca INDR (SC-CAMLR-XXI, párrafo 4.106). El Dr. Agnew preguntó si se podría no sólo estimar el tamaño de la población actual sino también el nivel de reducción de la población en relación con la biomasa inicial. Sugirió que esto se podría hacer mediante estudios de simulación que incluyeran datos de recuperación de marcas y de la composición por talla. El grupo de trabajo observó que se debía contemplar en el próximo año qué métodos se podrían utilizar para comprender mejor la reducción de la población además de su tamaño actual y el potencial de recuperación.

5.120 El grupo de trabajo indicó que, antes de poder proporcionar asesoramiento al Comité Científico, necesitaba tener la seguridad de que el estudio no impediría la recuperación del stock. Necesitaba saber cómo se iban utilizar y normalizar los datos, y cómo se puede determinar el estado y la trayectoria del stock utilizando estos datos. Más aún, se necesita entender cómo utilizar adecuadamente la CPUE del palangre artesanal. Se consideró además que si se utilizaba el mismo arte de pesca que se había empleado anteriormente en la pesquería, se obtendría una respuesta más fácilmente. En este sentido, se observó también que el límite de captura, cuando la pesquería estaba cerrada, era de 103 toneladas, y que la captura propuesta de 120 toneladas parecía excesiva.

5.121 El Dr. Ichii agradeció al grupo de trabajo por sus útiles comentarios. No obstante, recalcó que los datos de composición por talla y de la CPUE indican que el estado del stock tal vez no sea malo, y que se necesita seguir investigando para poder realizar una evaluación fiable.

Principios generales para la realización de estudios de investigación patrocinados por la CCRVMA

5.122 El grupo de trabajo consideró los principios generales y los requisitos que se deben satisfacer para llevar a cabo estudios de investigación patrocinados por la CCRVMA. Se especificó que este tipo de estudio:

i) estaría diseñado en apoyo de la labor de la Comisión encaminada al logro de los objetivos del artículo II;

ii) debe ser compatible con el enfoque precautorio de la CCRVMA;

iii) no debe socavar las iniciativas tomadas en otras partes de la CCRVMA o en otras partes del Sistema del Tratado Antártico, como la protección de especies, el cierre de áreas y/o las ASPA y las ASMA;

iv) bajo un patrocinio directo tal, puede contemplar, entre otras cosas:

 a) asignaciones de captura especiales de un límite de captura para realizar estudios de investigación;

 b) exenciones por investigación de medidas de conservación existentes según la Medida de Conservación 24-01;
c) la coordinación de la recopilación de datos y programas de campo a través de la Secretaría de la CCRVMA;

d) requisitos especiales que todos los miembros deben acatar durante las operaciones de pesca.

5.123 El grupo de trabajo hizo mención de la experiencia recogida en el diseño de la prospección CCAMLR-2000 y otros trabajos realizados bajo los auspicios de la CCRVMA, y que se seguirían los siguientes pasos en la formulación y utilización de estudios patrocinados por la CCRVMA:

i) Preparación:

a) Demostrar la necesidad de la investigación –

Se subrayó que la “necesidad” puede determinarse sobre la base de las consecuencias que tenga el estudio para la Comisión en la consecución de los objetivos del artículo II, decidiendo, por ejemplo, si el límite de captura es demasiado elevado (tal vez no se satisfagan los objetivos de conservación) o demasiado bajo (no representa riesgo para la conservación y por lo tanto se puede permitir una captura mayor), y sin mayores probabilidades de que sea corregido utilizando el proceso actual, y si el estudio podría mejorar el asesoramiento proporcionado a la Comisión. Se podrían utilizar análisis que demostraran la necesidad, por ejemplo, evaluaciones de las estrategias de ordenación, análisis de potencia, y/o evaluaciones preliminares utilizando conjuntos de datos verosímiles que se puedan obtener del estudio.

b) Crear un diseño de investigación para satisfacer la necesidad –

Será importante identificar los datos que se deben recopilar para resolver el problema, incluyendo el muestreo espacial y temporal requerido y el número de muestras necesario para lograr la precisión de la estimación requerida.

c) Evaluar si habrá efectos a corto o largo plazo del plan de investigación en el asesoramiento actual proporcionado a la Comisión –

Se señaló que mientras se esté realizando la investigación, la calidad del asesoramiento actual puede variar. El grado en el cual eso afectaría el logro de los objetivos por parte de la Comisión tendrá que ser considerado.

d) Identificar las pautas que se deben satisfacer durante la recopilación de datos –

 Tales pautas deberán incluir la especificación de requisitos de calidad de datos (p. ej. marcado), estándar y capacidad del barco y de los observadores, diseño e implementación de la investigación.

e) Determinar todo requisito específico que se deba satisfacer para implementar el programa de investigación –
Estos requisitos incluirán: consideración de posibles participantes (miembros, barcos de pesca, barcos de investigación), organización de la participación, definición de la capacidad para satisfacer las pautas, determinación de la contribución requerida de la CCRVMA (asignación de captura, requisitos de las medidas de conservación, exenciones por investigación, contribuciones de los miembros) y requisitos de los observadores y de los barcos.

ii) Implementación

iii) Análisis de los resultados

iv) Provisión de asesoramiento a la Comisión.

5.124 El grupo de trabajo estimó que estos criterios serían de utilidad y pidió al Comité Científico que considerara su posible utilización para establecer programas de investigación patrocinados por la CCRVMA.

Dissostichus eleginoides en Georgia del Sur (Subárea 48.3)

5.125 El informe de pesquería de *D. eleginoides* para la Subárea 48.3 se presenta en el apéndice J.

5.126 Siguiendo la recomendación del Comité Científico, no se actualizó la evaluación en 2008.

Asesoramiento de ordenación

5.127 El grupo de trabajo recordó que la Comisión había decidido que el límite de captura de austromerluza en la Subárea 48.3 (stock de SGSR) fuera 3 920 toneladas para las temporadas de pesca 2007/08 y 2008/09 (CCAMLR-XXVI, párrafo 13.54). No se llevó a cabo ninguna evaluación este año y no se cambió el límite de captura acordado para la temporada 2008/09.

Dissostichus eleginoides en las Islas Kerguelén (División 58.5.1)

5.128 El informe de pesquería de *D. eleginoides* en la División 58.5.1 aparece en el apéndice K.

5.129 La captura de *D. eleginoides* declarada para esta división al 31 de agosto de 2008 fue de 2 853 toneladas. En la actualidad sólo se permite el uso de palangres en esta pesquería. La estimación de la captura INDNR para la temporada 2007/08 dentro de la ZEE francesa fue cero. Es posible que se hayan realizado actividades de pesca INDNR fuera de la ZEE, según se informó en WG-FSA-08/10 Rev. 2.

5.130 La normalización de la CPUE de la División 58.5.1 no fue actualizada por el grupo de trabajo.
5.131 El grupo de trabajo recomendó que se estimaran los parámetros biológicos de Kerguelén y se efectuara una evaluación del stock en esta zona. También alentó a Francia y Australia a que siguieran colaborando durante el período entre sesiones en el análisis de los datos de captura y esfuerzo y de otros datos, que podrían ser utilizados para obtener más información sobre los stocks de peces y la dinámica de la pesquería en las Divisiones 58.5.1 y 58.5.2, y en la Subárea 58.6. El grupo de trabajo alentó a Francia a que continuara su programa de marcado en la División 58.5.1.

5.132 El grupo de trabajo recomendó que se considerara también evitar la pesca en aquellas zonas donde las tasas de captura incidental son especialmente altas.

5.133 No se dispuso de información nueva sobre el estado de las poblaciones de peces en la División 58.5.1, fuera de las zonas de jurisdicción nacional. El grupo de trabajo por lo tanto recomendó que se mantuviera la prohibición de la pesca dirigida a *D. eleginoides* dispuesta en la Medida de Conservación 32-13.

5.134 El grupo de trabajo señaló que Francia había logrado un considerable avance en la mitigación de la captura secundaria, e incluso había establecido áreas y temporadas cerradas a la pesca (SC-CAMLR-XXVI, anexo 6, párrafo II.23). Indicó que el análisis de la CPUE probablemente no se verá afectado por estos cambios, siempre que se continúe la presentación de datos detalladas de cada lance.

Dissostichus eleginoides en la Isla Heard (División 58.5.2)

5.135 El informe de pesquería de *D. eleginoides* en la División 58.5.2 se presenta en el apéndice L.

5.136 Siguiendo la recomendación del Comité Científico, no se actualizó la evaluación de *D. eleginoides* para la División 58.5.2. El grupo de trabajo señaló que la evaluación del stock de *D. eleginoides* para esta división será actualizada en 2009.

Asesoramiento de ordenación

5.137 El grupo de trabajo recomendó establecer un límite de captura de 2 500 toneladas para *D. eleginoides* en la División 58.5.2 al oeste de 79°20'E durante la temporada de pesca 2008/09.

Dissostichus eleginoides en las Islas Crozet (Subárea 58.6)

5.138 El informe de pesquería de *D. eleginoides* en la Subárea 58.6 (ZEE francesa) aparece en el apéndice M.
5.139 La captura de *D. eleginoides* declarada para esta subárea hasta finales de agosto de 2008 fue de 684 toneladas. Sólo se permite el uso de palangres en esta pesquería. Se estimó una captura INDNR de cero para la temporada 2007/08 dentro de la Subárea 58.6, según se informó en WG-FSA-08/10 Rev. 2.

5.140 La serie de la CPUE para esta pesquería no fue actualizada por el grupo de trabajo.

Asesoramiento de ordenación

5.141 El grupo de trabajo recomendó que se estimen los parámetros biológicos de Crozet y se efectúe una evaluación del stock para esta área. Asimismo, alentó a Francia a continuar su programa de marcado en la Subárea 58.6.

5.142 El grupo de trabajo recomendó que también se considerara evitar la pesca en zonas donde la captura secundaria es muy abundante.

5.143 No se dispuso de información nueva sobre el estado de las poblaciones de peces en la Subárea 58.6, fuera de las áreas de jurisdicción nacional. Por lo tanto, el grupo de trabajo recomendó mantener en vigor la prohibición de la pesca dirigida a *D. eleginoides* descrita en la Medida de Conservación 32-13.

5.144 El grupo de trabajo señaló que Francia había logrado un considerable avance en la mitigación de la captura secundaria, e incluso había establecido áreas y temporadas cerradas a la pesca (SC-CAMLR-XXVI, anexo 6, párrafo II.23). Indicó que el análisis de la CPUE probablemente no se verá afectado por estos cambios, siempre que se continúe la presentación de datos detalladas de cada lance.

Disostichus eleginoides en las Islas Príncipe Eduardo y Marion (Subáreas 58.6 y 58.7)

5.145 El informe de la pesquería de *D. eleginoides* dentro de la ZEE de Sudáfrica de las Subáreas 58.6 y 58.7 se incluye en el apéndice N.

5.146 El límite de captura de *D. eleginoides* en la ZEE de Sudáfrica durante la temporada 2007/08 fue de 450 toneladas para el período del 1º de diciembre de 2007 al 30 de noviembre de 2008. La captura notificada para las Subáreas 58.6 y 58.7 al 5 de octubre de 2008 fue de 61 toneladas, extraída en su totalidad con palangres. Se supuso que la captura INDNR de la temporada 2007/08 fue igual a la captura INDNR de 2004/05, es decir, 156 toneladas.

5.147 La serie de la CPUE no fue actualizada por el grupo de trabajo en 2008.

Asesoramiento de ordenación para *D. eleginoides* dentro de la ZEE de las Islas Príncipe Eduardo y Marion (Subáreas 58.6 y 58.7)

5.148 En 2005, el Comité Científico tomó nota de que el asesoramiento sobre los futuros límites de captura propuestos en WG-FSA-05/58 (véase además WG-FSA-06/58 y 07/34...
Rev. 1) no se había basado en los criterios de decisión de la CCRVMA. Por lo tanto, el grupo de trabajo no pudo brindar asesoramiento de ordenación en relación con la pesquería que se realiza en la ZEE sudafricana de las Islas Príncipe Eduardo. Se recomendó utilizar los criterios de decisión de la CCRVMA en la estimación de rendimientos para esta pesquería, y tomar nota de las inquietudes sobre la sensibilidad del ASPM a las ponderaciones de los datos de distintas fuentes y la estimación de los niveles de reclutamiento en las proyecciones a largo plazo.

Asesoramiento de ordenación para *D. eleginoides* fuera de la ZEE de las Islas Príncipe Eduardo (Subáreas 58.6 y 58.7 y División 58.4.4)

5.149 No se contó con información nueva acerca de los stocks de peces fuera de las zonas de jurisdicción nacional, en las Subáreas 58.6 y 58.7 y en la División 58.4.4. Por lo tanto, el grupo de trabajo recomendó mantener vigente la prohibición de la pesca dirigida a *D. eleginoides*, descrita en las Medidas de Conservación 32-10, 32-11 y 32-12.

Champsocephalus gunnari en Georgia del Sur (Subárea 48.3)

5.150 El informe de pesquería de *C. gunnari* en Georgia del Sur (Subárea 48.3) se incluye en el apéndice O.

5.151 El límite de captura establecido para *C. gunnari* para la Subárea 48.3 durante la temporada de pesca 2007/08 fue de 2 462 toneladas. Para finales de octubre de 2008 de la temporada de pesca 2007/08, la pesquería había capturado 1 326 toneladas. La pesquería permanecerá abierta hasta el 14 de noviembre de 2008 y se anticipa que se alcanzará el límite de captura.

5.152 En abril de 2008, el Reino Unido realizó una campaña de arrastres de fondo estratificada aleatoriamente en las plataformas de Georgia del Sur y las Rocas Cormorán (WG-FSA-08/28). Se usó el mismo tipo de arte de arrastre y diseño de prospección utilizados en campañas anteriores del Reino Unido realizadas en la Subárea 48.3.

5.153 El grupo de trabajo estuvo de acuerdo en que se deberá efectuar una proyección a corto plazo con el GYM, utilizando el valor bootstrap del límite inferior del intervalo de confianza de 95% de la biomasa total derivada de la prospección de 2008.

5.154 No se ha cambiado ninguno de los parámetros de entrada de la evaluación desde 2007.

Asesoramiento de ordenación

5.155 El grupo de trabajo recomendó establecer un límite de captura de 3 834 toneladas para *C. gunnari* en 2008/09, y de 2 631 toneladas en 2009/10, sobre la base de los resultados de la proyección a corto plazo.
Champsocephalus gunnari Isla Heard (División 58.5.2)

5.156 El informe de la pesquería de *C. gunnari* en la División 58.5.2 se presenta en el apéndice P.

5.157 El límite de captura de *C. gunnari* en la División 58.5.2 para la temporada 2007/08 fue de 220 toneladas para el período del 1 de diciembre de 2007 al 30 de noviembre de 2008. La captura notificada al 5 de octubre de 2008 para esta división fue de 199 toneladas.

5.158 En la población estudiada por la prospección realizada en junio de 2008 predominó una clase anual abundante de peces de edad 2+, probablemente como resultado del desove de la cohorte de edad 4+ que predominó en la población en 2006.

5.159 La evaluación a corto plazo fue ejecutada en el GYM, utilizando el valor bootstrap del límite inferior del intervalo de confianza del 95% de la biomasa total de la prospección de 2008. Todos los demás parámetros fueron iguales a los de años anteriores.

Asesoramiento de ordenación

5.160 El grupo de trabajo recomendó que el límite de captura de *C. gunnari* en 2008/09 no sea mayor de 102 toneladas.

5.161 Recomendó también mantener vigentes las demás disposiciones de la medida de conservación.

Evaluación y asesoramiento de ordenación para otras pesquerías

Península Antártica (Subárea 48.1) e Islas Orcadas del Sur (Subárea 48.2)

5.162 Después de la temporada 1989/90, la CCRVMA cerró la pesquería comercial de peces en la Península Antártica (Subárea 48.1) e Islas Orcadas del Sur (Subárea 48.2). La reapertura de ambas subáreas a la pesca comercial está supeditada a resultados de estudios científicos que demuestren que la condición de los stocks de peces ha mejorado a tal punto que pudiera permitir la explotación comercial.

5.163 Las últimas tres estimaciones de la biomasa de peces en las Subáreas 48.1 y 48.2 se obtuvieron en febrero-marzo de 2006 (Península Antártica) (Jones y Kock, 2006), diciembre de 2006–enero de 2007 (Isla Elefante y la región sur de las Islas Shetland del Sur) (Kock et al., 2007) y febrero-marzo de 1999 alrededor de las Islas Orcadas del Sur (Jones et al., 2000). Los resultados de estos estudios no indican que la biomasa haya aumentado a un grado que permita considerar la reapertura de la pesquería.

5.164 El Programa AMLR de Estados Unidos llevará a cabo una nueva prospección de arrastre en la Subárea 48.2 con participación internacional en febrero–marzo de 2009.
Asesoramiento de ordenación

5.165 Se recomendó mantener vigentes las Medidas de Conservación 32-02 y 32-04 que prohíben la pesca de peces en las Subáreas 48.1 y 48.2 respectivamente.

Islas Sándwich del Sur (Subárea 48.4)

5.166 El grupo de trabajo consideró los resultados del experimento de marcado y recaptura de tres años de duración en el sector norte de la Subárea 48.4 (Medida de Conservación 41-03). Entre 2005/06 y 2007/08, se marcó y liberó un total de 929 ejemplares de *D. eleginoides* en la Subárea 48.4, y 25 peces marcados fueron recapturados, 23 de ellos en la temporada 2007/08 (apéndice Q). El experimento ha permitido efectuar una evaluación preliminar del stock de *D. eleginoides* en la zona norte, y se ha estimado una biomasa vulnerable de 1 000 a 2 000 toneladas (WG-FSA-08/46).

5.167 El grupo de trabajo también consideró la propuesta del Reino Unido de continuar el experimento de marcado y recaptura en la Subárea 48.4 en 2008/09 para poder evaluar detalladamente el stock de *D. eleginoides* de la zona norte en 2009. Además, el Reino Unido ha propuesto iniciar un experimento similar en el sector sur de la Subárea 48.4 (figura 5), con el objeto de recopilar los datos necesarios para evaluar la estructura de la población, el tamaño, el desplazamiento y el crecimiento de *D. eleginoides* y *D. mawsoni* en la zona sur de la Subárea 48.4.

5.168 Los elementos principales de la propuesta descrita en WG-FSA-08/48 incluyen:

Zona norte –

i) establecer un límite de captura de 75 toneladas de *D. eleginoides*;

ii) continuar la prohibición de la captura de *D. mawsoni* para otros fines que no sean de investigación;

iii) adoptar límites de captura para las especies de la captura secundaria, con un límite de 12 toneladas de granaderos (16% del límite de captura de *D. eleginoides*) y un límite de 4 toneladas de rayas (5% del límite de captura de *D. eleginoides*).

Zona sur –

i) establecer un límite de captura de 75 toneladas de *Dissostichus* spp. (*D. eleginoides* y *D. mawsoni* combinados) en la zona sur;

ii) adoptar una regla de traslado para las especies de la captura secundaria, con un nivel de activación para los granaderos equivalente al 16% de la captura de *Dissostichus* spp., y otro para las rayas fijado en un 5% de la captura de *Dissostichus* spp.

5.169 El grupo de trabajo felicitó al Reino Unido por esta iniciativa, y señaló que el experimento de tres años de marcado y recaptura de peces y la nueva propuesta para 2008/09
permitían realizar la evaluación de *Dissostichus* spp. en la Subárea 48.4 por etapas. Este enfoque demuestra cómo se pueden añadir los nuevos datos a la información disponible para realizar evaluaciones en áreas para las cuales no existe información previa sobre el estado de los stocks.

5.170 El grupo de trabajo señaló que el año pasado un ejemplar de *D. eleginoides* que había sido marcado en la Subárea 48.4, fue recapturado en el sector este de la Subárea 48.3. No se ha detectado aún el desplazamiento de ningún pez desde la Subárea 48.3 a la Subárea 48.4. El Dr. Agnew informó que los datos de marcado y las muestras genéticas recogidas en las Subáreas 48.3 y 48.4 serán analizados por el Reino Unido para determinar la relación entre estas poblaciones.

Asesoramiento de ordenación

5.171 El grupo de trabajo aprobó la prolongación del experimento de marcado y recaptura (párrafo 5.168), y un límite de captura de 75 toneladas para la zona norte y 75 toneladas para la zona sur. El grupo de trabajo estuvo de acuerdo en que la forma en que se había llevado a cabo la investigación en la Subárea 48.4 había permitido el desarrollo controlado de una evaluación fiable del stock. Señaló además que el Reino Unido había proporcionado propuestas detalladas e informes anuales durante la duración completa del experimento. Si bien la captura máxima de *D. eleginoides* propuesta para la zona norte en 2008/09 supera en 50% el valor estimado del rendimiento sostenible (50 toneladas) (ver WG-FSA-08/46), esto mejoraría la precisión de las evaluaciones de tipo CASAL de la subárea, en combinación con los datos de los tres años previos del experimento, y sería compatible con los objetivos generales de la investigación.

5.172 Además, el grupo especial WG-IMAF recomendó enmendar la Medida de Conservación 24-02 a fin de que los requisitos de mitigación para la Subárea 48.4 correspondieran con la evaluación del riesgo de IMAF, de tal manera que se permitiría el calado durante el día si se realizan las pruebas de la botella, y la temporada de pesca se extendería del 1 de diciembre al 30 de noviembre (anexo 6, párrafo 9.10).

Centollas (*Paralomis* spp.) (Subárea 48.3)

5.173 No hubo pesca de centollas durante la temporada 2007/08. Rusia notificó a la Comisión su intención de pescar centolla en esta subárea durante la temporada 2008/09, y de realizar sus operaciones de pesca de conformidad con las condiciones establecidas en las Medidas de Conservación 52-01 y 52-02.

Asesoramiento de ordenación

5.174 El grupo de trabajo recomendó mantener en vigor las Medidas de Conservación 52-01 y 52-02 relativas a las centollas.
Calamar (*Martialia hyadesi*) (Subárea 48.3)

5.175 No hubo pesca de calamar durante la temporada 2007/08, y la CCRVMA no recibió ninguna propuesta para pescar dicho recurso en la temporada 2008/09.

Asesoramiento de ordenación

5.176 La pesquería exploratoria de calamar estuvo sujeta a la Medida de Conservación 61-01. No se contó con información nueva sobre esta especie. El grupo de trabajo recomendó mantener dicha medida en vigor.

CAPTURA SECUNDARIA DE PECES E INVERTEBRADOS

6.1 El grupo de trabajo estuvo de acuerdo en que las discusiones bajo este punto de la agenda se limitarían a cuestiones relacionadas con la captura secundaria de peces y con las guías de identificación.

6.2 El grupo de trabajo identificó las siguientes áreas de trabajo de particular interés para la reunión de 2008:

i) una revisión de la captura secundaria en las pesquerías de palangre y de arrastre realizadas en el Área de la Convención;

ii) la eficacia de los cambios efectuados a la Medida de Conservación 33-03 (regla del traslado relativa a la captura secundaria de granaderos en las pesquerías nuevas y exploratorias);

iii) la implementación del “Año de la raya” en la próxima temporada;

iv) los límites de la captura secundaria de granaderos en la Subárea 88.1;

v) la mitigación de la captura secundaria;

vi) las guías de identificación de la captura secundaria de especies del bentos.

Estimación de la captura secundaria en las pesquerías de palangre

6.3 En la tabla 14 se muestran las estimaciones de la extracción total de especies de la captura secundaria, basadas en los datos notificados en escala fina (C2) de las pesquerías de palangre realizadas dentro del Área de la Convención en 2007/08. No se alcanzó el límite de captura de ninguna de las especies de captura secundaria, si bien algunas capturas estuvieron cerca de los límites para algunas especies. En la tabla 15 figura el número y suerte inmediata de *Dissostichus* spp., granaderos, rayas y “Otras especies” notificadas en los datos en escala fina de 2007/08.
Rayas

6.4 La captura notificada de rayas retenidas en las pesquerías de palangre dentro del Área de la Convención en 2007/08 (como porcentaje de la captura de *Dissostichus* spp.) fue baja (<4% de la captura de *Dissostichus* spp.), excepto en aquellas áreas donde se retiene y procesa la mayoría de las rayas (ZEE francesas: División 58.5.1 y Subárea 58.6). El grupo de trabajo indicó que sólo se habían capturado 4 toneladas de *Dissostichus* spp. en la División 58.4.3a, con una captura secundaria de rayas de 2 toneladas.

6.5 Con la excepción de las ZEE francesas y de la Subárea 58.4, en casi todas las regiones se liberó a la mayoría de las rayas cortando las líneas.

6.6 La captura total de rayas fue estimada sumando el número de ejemplares capturados y liberados (tabla 15), y multiplicándolo por el peso promedio de rayas capturadas en cada subárea, derivado de los datos correspondientes en los formularios C2 (tabla 16). El grupo de trabajo indicó que muchas rayas sobreviven después de ser liberadas de las líneas y que las estimaciones de la tabla 16 representan “el peor de los casos de supervivencia” para las rayas liberadas (100% de mortalidad).

6.7 Las estimaciones de la captura total de rayas para cada área (tabla 16) están muy por debajo de los límites de captura correspondientes para esas áreas. La captura total se estimó en 83% del límite de captura para la Subárea 48.3, 35% para la División 58.5.2 y 53% para la Subárea 88.1.

Granaderos

6.8 Las tasas de captura secundaria de granaderos (expresadas como porcentajes de la captura de *Dissostichus* spp.) para la temporada 2007/08 estuvieron en el rango de 1.1–15.9%. Los límites de captura no fueron alcanzados en ninguna subárea. Las tasas de captura más elevadas (como porcentaje de *Dissostichus* spp.) se dieron en las ZEE de Francia (División 58.5.1 y Subárea 58.6) y en la Subárea 48.4.

6.9 En comparación con la temporada de 2006/07, la captura secundaria de granaderos fue similar en la mayoría de las áreas, observándose una reducción (como porcentaje de *Dissostichus* spp.) en las Subáreas 48.4 y 58.6.

6.10 El grupo de trabajo estudió el efecto del cambio de la regla de traslado para los granaderos (Medida de Conservación 33-03) adoptada en la reunión del año pasado (SC-CAMLR-XXVI, párrafo 4.188). La regla de traslado fue activada cuando la captura de *Macrourus* spp. extraída por un solo barco en cualquiera de dos períodos de 10 días en una sola UIPE excedió de 1 500 kg y de 16% de la captura de *Dissostichus* spp. La nueva regla de traslado fue activada en una ocasión (en la Subárea 88.1), habiéndose dado 10 ocasiones en que se cumplieron los criterios en un solo período de 10 días. Bajo la versión anterior de la Medida de Conservación 33-03, la regla de traslado (activada solamente cuando la captura de *Macrourus* spp. supera el 16% de la captura de *Dissostichus* spp.) se habría activado tres veces (dos veces en la Subárea 88.1 y una vez en la Subárea 88.2) habiéndose dado 19 ocasiones dentro de un período de 10 días en que se pudo activar esta regla.
6.11 El grupo de trabajo señaló que la captura secundaria de *Macrourus* spp. en las pesquerías nuevas y exploratorias no había aumentado en 2007/08 y recomendó que se mantuviera la regla de traslado modificada.

Otras especies

6.12 La captura secundaria de otras especies en general fue baja (<2% de la captura de *Dissostichus* spp.). Las 36 toneladas atribuidas a otras especies en la Subárea 48.3 fueron principalmente de *Antimora rostrata*, y las 20 toneladas atribuidas a otras especies en la Subárea 88.1 eran en su mayor parte de *Muraenolepis* spp.

Estimación de la captura secundaria en las pesquerías de arrastre

6.13 Las estimaciones de la captura secundaria en las pesquerías de arrastre de draco rayado (Subárea 48.3 y División 58.5.2) y de austromerluza (División 58.5.2) derivadas de los datos en escala fina (C2) se presentan en la tabla 17.

6.14 La captura secundaria en la pesquería de arrastre de *C. gunnari* en la Subárea 48.3 fue insignificante (<0.5% de la especie objetivo) y similar a la de 2006/07. El grupo de trabajo indicó que la pesquería permanece abierta y se esperan bajas capturas secundarias. En la pesquería de arrastre de *C. gunnari* en la División 58.5.2, la captura secundaria correspondió a un 9% de la captura de la especie objetivo, y se compuso principalmente de *Channichthys rhinoceratus*. En la pesquería de arrastre de *D. eleginoides* en la División 58.5.2, la captura secundaria correspondió a un 2% de la captura de la especie objetivo, siendo los granaderos y *A. rostrata* las especies más abundantes.

6.15 El grupo de trabajo tomó nota de la breve información presentada en el documento WG-FSA-08/23 sobre la captura secundaria de juveniles de *D. mawsoni* en la pesca de arrastre de kril efectuada en la División 58.4.2 durante 1987 y 1989. El grupo de trabajo estuvo de acuerdo en que la información obtenida de esa pesquería en el período de 1975 a 1990 sería de utilidad para la labor de la CCRVMA. El Dr. Pshenichnov informó que había una gran cantidad de información impresa, pero que se necesitaban fondos para digitalizar los datos.

Límites de captura precautorios para *M. whitsoni* en la Subárea 88.1

6.16 WG-FSA-08/32 presentó estimaciones de la biomasa y el rendimiento de los granaderos en la pesquería del Mar de Ross (Subárea 88.1 y las UIPE 882A–B). El grupo de trabajo aceptó el principio de desvincular los límites de captura secundaria de los límites de captura de la especie objetivo, y convino en utilizar estimaciones de la biomasa para la Subárea 88.1, señalando que las UIPE 882A–B están actualmente cerradas.

6.17 WG-FSA indicó que el CV de la estimación de la biomasa era 0.3, y estuvo de acuerdo en que sería apropiado utilizar el valor de γ calculado suponiendo un CV de 0.5 para la estimación de B_0.

385
6.18 El grupo de trabajo decidió utilizar la suposición de que la densidad es constante al extraer la estimación de la biomasa a través de la región del talud, indicando que esto proporcionaría una estimación del rendimiento más precautoria que la obtenida de extrapolaciones de los datos de la CPUE de la pesca de palangre. La estimación resultante de biomasa para las UIPE 881H, I y L fue de 21 401 toneladas, que da una estimación del rendimiento de 388 toneladas.

6.19 Se señaló que la biomasa estimada en el documento cubría profundidades de 600 a 2 000 m y abarcaba las UIPE 881H, I y K en su totalidad, pero también se extendía en parte dentro de porciones pequeñas de las UIPE 881J y L de la plataforma. Por lo tanto, el grupo de trabajo acordó que el rendimiento de granaderos estimado en 388 toneladas debe ser repartido entre estas cinco UIPE.

6.20 Las capturas históricas en las UIPE 881J y L han sido más bien pequeñas (WG-FSA-08/22), de manera que los límites de captura propuestos fueron fijados en un nivel ligeramente superior al nivel de las capturas máximas en estas UIPE. El rendimiento restante fue repartido en las UIPE del talud, es decir, las UIPE 881H, I y K.

6.21 No hubo nuevos datos disponibles sobre la biomasa de granaderos en las UIPE 881B, C y G. El grupo de trabajo convino en reducir el límite de captura existente de 50 a 40 toneladas para esta región. La estimación de la biomasa para las UIPE 882A–B fue de 5 491 toneladas, con una estimación equivalente del rendimiento de 100 toneladas.

6.22 El grupo de trabajo recomendó mantener las reglas de traslado existentes, pero estuvo de acuerdo en revisar anualmente los límites de la captura secundaria de granaderos y su captura total.

Biología de las rayas

6.23 WG-FSA-08/20 presentó parámetros biológicos actualizados para la raya estrellada (Amblyraja georgiana) y propuso hacer actualizaciones menores a la guía de madurez utilizada por los observadores. El documento WG-FSA-08/21 presentó estimaciones revisadas de la edad y del crecimiento de la raya estrellada, que indican que el crecimiento es más lento en las primeras etapas del ciclo de vida, y que la longevidad es mayor (28–37 años en comparación con la estimación de longevidad previa de 6–11 años). El grupo de trabajo observó que los nuevos datos concordaban con otros estudios de rayas de aguas frías. Tomó nota además de la falta de convalidación y recomendó que se realizara esta labor. Indicó que sería útil emplear una metodología común para el estudio y las mediciones de las rayas en toda el Área de la Convención de la CCRVMA, y recomendó que se le encargue a la Red de Otolitos de la CCRVMA (CON) la coordinación de esta labor.

Medidas de mitigación para los granaderos

6.24 WG-FSA-08/52 presentó los resultados de pruebas preliminares sobre el uso de carnada artificial para reducir la captura secundaria de granaderos en la pesca de palangre de austromerluza. Los resultados muestran que podría haber una leve mejora en la tasa de captura secundaria en algunas áreas; se deberán realizar más pruebas. El grupo de trabajo
indicó que posiblemente no existe una razón biológica por la cual los granaderos no son atraídos por la carnada artificial. El grupo de trabajo consideró el efecto potencial en el medio ambiente de la introducción de cebos artificiales en el Área de la Convención, pero reconoció que este cebo es un producto macerado de caballa, el cebo utilizado normalmente.

Año de la raya

6.25 WG-FSA señaló que el Comité Científico apoyó la realización del Año de la Raya en la temporada 2008/09 (SC-CAMLR-XXVI, párrafos 4.181 al 4.184), aclarando que las actividades pertinentes deberán ser llevadas a cabo en todas las pesquerías de Dissostichus spp. en el Área de la Convención, con un programa de marcado en las pesquerías nuevas y exploratorias. El grupo de trabajo recordó también la recomendación del Comité Científico, de subir a bordo todas las rayas capturadas antes de su liberación durante el Año de la Raya (ver párrafos 6.28 al 6.31).

Identificación de rayas

6.26 El grupo de trabajo indicó que la identificación de rayas sigue siendo un problema, en particular la identificación de especies poco comunes y en áreas específicas. Por ejemplo, WG-FSA-08/13 notificó la presencia de dos especies supuestamente nuevas de Bathyraja spp. en el Archipiélago de Crozet. El grupo de trabajo se alegró por la presentación de las nuevas hojas de identificación elaboradas para la División 58.5.2 (WG-FSA-08/55).

6.27 El grupo de trabajo subrayó la utilidad de la obtención de muestras de tejidos para estudios genéticos y de ejemplares representativos de la gama de especies de rayas existentes en distintas áreas.

Captura y manipulación de las rayas

6.28 WG-FSA-08/30 revisó los métodos para manipular las rayas a bordo de un barco palangreño neocelandés de calado automático, y demostró que la acción de subir las rayas a bordo podría realizarse más rápidamente que la acción de cortarlas de la línea en el agua, y que las rayas sufrían menos heridas. Este procedimiento también aumenta la tasa de detección de marcas, mejora la identificación de especies y permite evaluar la condición del animal. El grupo de trabajo señaló que este tipo de resultados dependerían del barco, de la tripulación y de los procedimientos específicos utilizados para liberar rayas.

6.29 WG-FSA indicó que no hay pruebas científicas concluyentes de que la acción de subir la raya a bordo, o de acercarla al barco, aumente la supervivencia, pero señaló que al hacerlo, se puede evaluar mejor su condición y examinar el animal para ver si ha sido marcado. Por lo tanto, el grupo de trabajo recomendó que durante el Año de la Raya todo ejemplar capturado sea subido a bordo o acercado al barco para ver si tiene marcas y evaluar su condición.

6.30 El grupo de trabajo también recomendó que durante el Año de la Raya, en todos los barcos se evalúe la condición de todas las rayas capturadas, se vea si están marcadas y se
retengan a bordo todos aquellos ejemplares en la condición 1 (muerta) ó 2 (con heridas graves). En el caso de rayas en la condición 3 (viva, con heridas de gravedad suficiente como para reducir la supervivencia) o 4 (viva y en buenas condiciones), el animal deberá ser liberado contando la brazolada lo más cerca del anzuelo que se pueda, o cortando la brazolada y sacándole el anzuelo, siempre que esto no le ocasione más daño.

6.31 El grupo de trabajo recomendó que se examinara la eficacia de este enfoque en su reunión de 2009.

6.32 El grupo de trabajo recomendó que, durante los períodos de observación, se encargara al observador la tarea de evaluar la condición de todas las rayas y las probabilidades de supervivencia y de revisarlas para comprobar si llevan marcas. Estos datos de supervivencia serían posteriormente extrapolados a la captura total para obtener una estimación de la extracción de rayas, a la vez que se comparan las tasas de detección de marcas durante los períodos de observación con las obtenidas fuera del período de observación.

Cambios de los cuadernos de observación

6.33 El documento WG-FSA-08/49 presentó los experimentos de marcado de rayas realizados por Nueva Zelanda en 2007/08 y propuso actualizaciones del protocolo y del cuaderno de observación para el Año de la Raya. El grupo de trabajo recomendó una simplificación de los formularios para reducir el riesgo de duplicación en la notificación de las rayas.

6.34 El grupo de trabajo recomendó actualizar el cuaderno de observación para facilitar el registro, obtener la información requerida para el Año de la Raya, y hacerlo más flexible de manera que se pueda incorporar muestreos específicos de la captura secundaria. El grupo de trabajo recomendó efectuar enmiendas al formulario L5 para recopilar información sobre la probabilidad de supervivencia de las rayas, y eliminar el formulario L11 (donde se registraba esa información anteriormente). Recomendó además pequeños cambios al formulario L6, para permitir el registro los detalles biológicos, de marcado o recaptura de cualquier especie.

Protocolo de marcado de rayas

6.35 El grupo de trabajo observó que un objetivo primordial del Año de la Raya era el establecimiento de un programa de marcado de rayas para las pesquerías nuevas y exploratorias, y señaló que este tipo de programa ya se encuentra en funcionamiento en la Subárea 48.3 y División 58.5.2.

6.36 El grupo de trabajo consideró las tasas de marcado que se necesitarían para estimar la biomasa. Se utilizó la metodología detallada en WG-SAM-08/6 para estimar los niveles de marcado requeridos para obtener una estimación de la abundancia con una precisión definida de antemano en el año siguiente, para un nivel de captura determinado y contando con una estimación aproximada de la biomasa subyacente.

6.37 En el Mar de Ross, una evaluación del stock muy preliminar indicó que la biomasa de rayas es de 6 000 toneladas aproximadamente (SC-CAMLR-XXVI, anexo 7), habiéndose
examinado alrededor de 7 500 rayas en una captura estimada en 70 toneladas durante 2007/08 (tabla 6.16). Se utilizaron estimaciones de supervivencia (dada la profundidad media de la que se extrajeron los peces), y de la pérdida de marcas para definir una mortalidad relacionada con el marcado de 0.41 (una supervivencia de 66%). Se supuso que la mortalidad natural era 0.15. Utilizando el número de rayas marcadas por raya capturada para definir la intensidad de marcado (basada en el tamaño de la captura y del stock en 2008), el grupo de trabajo investigó tres posibles CV de 0.2, 0.3 y 0.5 – que representan estimaciones precisas, moderadamente precisas y poco precisas. El modelo predice que el marcado de 1 ejemplar cada 2, 1 cada 5 y 1 cada 20 rayas arrojaría un CV de 0.2, 0.3 y 0.5 respectivamente.

6.38 Por lo tanto, el grupo de trabajo recomendó una tasa de marcado de 1 de cada 5 rayas capturadas en las pesquerías nuevas y exploratorias durante 2008/09 hasta un máximo de 500 rayas por barco. El programa de marcado será coordinado por la Secretaría, que será el depositario de los kits de marcado de rayas.

6.39 El grupo de trabajo señaló que habría un cambio en el tipo de marcas que se utilizarán en las Subáreas 88.1 y 88.2 en 2008/09 (WG-FSA-08/30) y que cabe la posibilidad de que se confundan las evaluaciones de las poblaciones debido a las distintas tasas de pérdida de marcas a través del tiempo o a diferencias en la pérdida de cada tipo de marca. El grupo de trabajo recomendó que en las pesquerías nuevas y exploratorias se coloquen dos marcas a las rayas, una de la CCRVMA (expedida por la Secretaría) en cada aleta. El grupo de trabajo recomendó además que, en lo posible, se realicen experimentos de marcado para comparar los distintos tipos de marcas y estimar las tasas de pérdida.

6.40 El grupo de trabajo recomendó medir todas las rayas antes de liberarlas. Esta información ayuda a reducir la incertidumbre acerca de las tasas de crecimiento de las rayas.

Información biológica sobre las rayas

6.41 El grupo de trabajo tomó nota del requisito de realizar muestreos biológicos adicionales de las rayas durante 2008/09, pero reconoció que los observadores ya tienen un volumen considerable de trabajo. El grupo de trabajo consideró el efecto en las evaluaciones si se reduce el número de ejemplares de Dissostichus spp. muestreados por línea, para permitir que se analicen más rayas por línea.

6.42 Aplicando una simple teoría de muestreo (que expresa con la función de raíz cuadrada la relación básica de proporcionalidad entre la precisión y el tamaño de la muestra), el grupo de trabajo estimó que la reducción del tamaño de la muestra de 35 a 20 Dissostichus spp. reduciría la precisión en un 25% con respecto a los valores promedio. El grupo de trabajo señaló que no se capturaban rayas en todas las líneas, de manera que la pérdida real de precisión sería inferior al 25%.

6.43 El grupo de trabajo observó que se propone cambiar el número de muestras biológicas de 35 por línea a una por cada 150 anzuelos, y apoyó esta recomendación (párrafo 11.4(ii)(e)). Por lo tanto, el grupo de trabajo propuso que, cuando se capturan rayas en la línea, éstas sean muestreadas aleatoriamente con una frecuencia de 3 rayas/mil anzuelos, reduciendo el muestreo de Dissostichus spp. a 4 austromerluzas de cada especie/mil anzuelos. En el caso de que no se capturaran suficientes rayas para satisfacer este protocolo, se propone que el
número total de muestras biológicas por línea permanezca constante, y se incluya más ejemplares de *Dissostichus* spp. en las muestras. El grupo de trabajo recomendó que este aumento en la recopilación de información biológica de las rayas se limite inicialmente al Año de la Raya, pero que se evalúe en la reunión del WG-FSA del próximo año.

6.44 El grupo de trabajo indicó que la única información biológica que requiere que se sacrifique el animal, es la relacionada con el estado de madurez de la hembra. Por lo tanto, el grupo de trabajo recomendó no sacrificar rayas para fines de muestreo biológico, y que el estadio de madurez de la hembra sólo se registre si la raya está muerta o ha sufrido heridas de muerte (condiciones 1 y 2). Todas las rayas vivas que sean parte de las muestras biológicas, y que no hayan sufrido heridas graves, deben ser manipuladas con cuidado y liberadas una vez que se haya registrado la información biológica, si aún están en condiciones de ser liberadas (es decir, aún en condición 3 ó 4).

Guías de identificación de la captura secundaria de bentos

6.45 Habiendo solicitado el Comité Científico (SC-CAMLR-XXVI, párrafo 4.190) la preparación de guías de identificación de organismos del bento para áreas específicas, el grupo de trabajo agradeció la elaboración de guías para la fauna vulnerable del bento del Mar de Ross (WG-FSA-08/19) y para los invertebrados bentónicos de IHIM (WG-FSA-08/59). El grupo de trabajo señaló además que en las últimas temporadas se había estado utilizando una guía de invertebrados en la Subárea 48.3. El grupo de trabajo observó que la guía del Mar de Ross sólo incluye taxones que se anticipa se incluirán en la categoría “vulnerable”, y esto podría cambiar cuando se cuente con más información. El grupo de trabajo acotó que sería útil contar con una guía que abarcara toda la región de la CCRVMA, pero estuvo de acuerdo en que esto sería muy costoso de lograr a corto plazo.

6.46 El grupo de trabajo deliberó sobre el actual sistema de códigos de la CCRVMA y su idoneidad para los taxones relacionados con los EMV en lo que respecta al detalle jerárquico necesario para fines de identificación. Se señaló que faltaban códigos para algunos grupos taxonómicos y se necesitaba agregarlos. La Secretaría informó que los códigos de tres caracteres de la FAO son parte de un sistema alfanumérico jerárquico. Para los grupos taxonómicos sin códigos de la FAO, la Secretaría creará códigos provisorios que serán actualizados con la información obtenida posteriormente de la FAO. El grupo de trabajo recomendó que se expidan códigos provisorios para la temporada 2008/09, para los taxones relacionados con los EMV que se detallan y aparecen sin código en WG-FSA-08/19.

6.47 Tomando nota de que el número de combinaciones alfanuméricas de tres caracteres es limitado (17 576 combinaciones), el grupo de trabajo recomendó investigar más a fondo otros sistemas jerárquicos de identificación de taxones como el ITIS.

MORTALIDAD INCIDENTAL DE AVES Y MAMÍFeros MARINOS OCASIONADA POR LA PESCA (INFORME DEL GRUPO ESPECIAL WG-IMAF)

7.1 Los coordinadores de WG-IMAF presentaron el informe de este grupo (anexo 6) al WG-FSA. El grupo de trabajo discutió los siguientes puntos.
Desechos marinos

7.2 El grupo de trabajo preguntó si el grupo especial WG-IMAF había notado un aumento del número de cintas de empaque de las cajas de carnada en los desechos y si esto se estaba convirtiendo en un problema más serio en el Área de la Convención. Los coordinadores explicaron que este era el primer año en que WG-IMAF incluía el tema de los desechos marinos en su agenda. Había tratado varios asuntos relacionados con los desechos marinos, pero aún no ha podido realizar una evaluación completa de las tendencias observadas con respecto a los desechos marinos (anexo 6, párrafos 12.1 al 12.14). Sin embargo, WG-IMAF indicó que según los datos notificados a la Secretaría había habido un aumento del número de cintas de empaque en los desechos marinos y de material que ocasiona enredos del lobo fino antártico.

Estimación de la mortalidad incidental ocasionada por la pesca INDNR

7.3 Tomando nota que el grupo especial WG-IMAF no había estimado este año la mortalidad incidental ocasionada por la pesca INDNR, el grupo de trabajo preguntó si sería más apropiado utilizar las estimaciones más recientes de una pesquería que no utiliza medidas de mitigación (vg. la pesquería de palangre en la División 58.5.1 antes de que se comenzara a utilizar las medidas de mitigación para aves marinas) en vez de las tasas de captura incidental observadas en las operaciones de pesca de palangre de 1996/97 cuando pocos barcos utilizaban medidas de mitigación.

7.4 Los coordinadores del grupo especial WG-IMAF reconocieron la utilidad de lo propuesto a la hora de considerar las estimaciones de la mortalidad incidental de la pesca de palangre INDNR en el futuro. No obstante, el problema principal este año es que la mayoría de las operaciones de pesca INDNR notificadas fueron realizadas con redes de enmalle o por barcos dedicados a esta pesca en particular, y no se cuenta con información fiable sobre las tasas de mortalidad incidental de aves marinas, o información, sobre la pesca con este tipo de arte (anexo 6, párrafos 5.3 y 5.4).

Métodos de pesca utilizados en el Área de la Convención

7.5 El grupo de trabajo preguntó si las tasas de hundimiento alcanzadas hasta ahora con los palangres artesanales eran suficientes para evitar las interacciones con las aves marinas. Los coordinadores del grupo especial WG-IMAF señalaron que el año pasado se habían revisado varios trabajos que indicaban que los palangres artesanales se hunden relativamente rápido fuera del alcance de las aves marinas que buscan alimento; un estudio citó una velocidad de hundimiento de 0.8 m s\(^{-1}\) (SC-CAMLR-XXVI, anexo 6, párrafos II.81 al II.91 y II.100).

7.6 Los coordinadores del grupo especial WG-IMAF indicaron que como resultado de su labor este año, el documento SC-CAMLR-XXVII/BG/19 incluyó las revisiones propuestas a las Medidas de Conservación 25-02 y 24-02 con el fin de incorporar un requisito referente al lastrado de este arte de pesca relativamente nuevo, como también un protocolo para determinar la tasa de hundimiento de la línea (anexo 6, párrafos 6.11 y 9.15).
7.7 Tanto el WG-FSA como el grupo especial WG-IMAF han identificado información que se requiere de la pesca con palangres artesanales (anexo 6, párrafos 6.1, 6.2 y 7.27; párrafo 11.8). WG-IMAF encontró extremadamente útil el documento que examinó los palangres de calado automático (WG-FSA-08/60) y alentó a los miembros a que presentaran estudios similares de los palangres artesanales y de otros métodos de pesca utilizados en el Área de la Convención (anexo 6, párrafo 6.2). El grupo de trabajo estuvo de acuerdo en que esta labor era de especial importancia para ambos grupos de trabajo y que requería colaboración permanente.

Temas compartidos por WG-FSA e WG-IMAF

7.8 WG-FSA consideró el posible rol de WG-IMAF, conjuntamente con el de WG-FSA, en el avance de la formulación de un marco para la evaluación y gestión del riesgo, a fin de evitar los graves efectos que los artes de pesca de fondo podrían tener en los EMV (un enfoque ya utilizado con éxito por el grupo WG-IMAF en la minimización del riesgo de mortalidad incidental de aves marinas en las pesquerías).

7.9 Los coordinadores de WG-IMAF expresaron que se alegraban de que se estaba considerando la aplicación del enfoque de evaluación del riesgo para enfrentar otros casos de mortalidad incidental, por ejemplo aplicándolo a los EMV, pero indicó que la experiencia con que cuenta actualmente el grupo especial WG-IMAF tendría que ser ampliada para que incluyera expertos en este tema.

7.10 El grupo de trabajo indicó que una posibilidad sería realizar un taller sobre los EMV con la participación de los integrantes indicados de todos los grupos de trabajo del Comité Científico que tengan la experiencia necesaria (párrafo 10.54).

7.11 WG-FSA destacó cuán útil es contar con la coordinación de las actividades y la cooperación entre los grupos WG-FSA y WG-IMAF, y concurrió con la recomendación del grupo especial WG-IMAF de continuar con esta colaboración como se ha hecho hasta ahora.

EVALUACIÓN DE LAS AMENAZAS SURGIDAS DE LAS ACTIVIDADES DE PESCA INDNR

Desarrollo de métodos para estimar las extracciones totales de austromerluza

8.1 El grupo de trabajo señaló la matriz de prueba JAG elaborada por la Secretaría para estimar la incertidumbre relacionada con incidentes de pesca INDNR, y observó que esta labor sería examinada por SCIC (WG-FSA-08/10 Rev. 2; véase asimismo el párrafo 3.16).

8.2 WG-FSA indicó también que la Secretaría había desarrollado un índice de la densidad local de los barcos autorizados (WG-FSA-08/10 Rev. 2; véase asimismo el párrafo 3.12 y SC-CAMLR-XXVI, anexo 5, párrafos 8.2 y 8.3).
Examen de las tendencias históricas de la pesca INDNR

8.3 WG-FSA examinó el historial de la captura de *Dissostichus* spp. extraída por la pesca INDNR en el Área de la Convención (tabla 3 y figura 1). Esta serie cronológica había sido actualizada con los valores presentados en WG-FSA-08/10 Rev. 2.

8.4 El grupo de trabajo informó que el número de barcos de pesca INDNR observados durante 2007/08 había disminuido (párrafo 3.14). No obstante, existe preocupación debido a que el número de barcos de la flota de pesca INDNR que operan con redes de enmalle es cada vez mayor y actualmente no se dispone de información para estimar las tasas de captura de estos barcos, o el efecto de las redes de enmalle en las especies objetivo, en las especies de la captura secundaria, en las aves y en los mamíferos marinos (figura 6 y párrafo 3.13). Este asunto había sido remitido al grupo especial WG-IMAF y a SCIC.

8.5 Ya que no se cuenta con información sobre las tasas de captura, el grupo de trabajo concluyó que el aumento de los barcos de pesca INDNR que utilizan redes de enmalle indica que este arte probablemente sea más eficaz para capturar las especies objetivo, y señaló que no necesita de carnada y permite que los barcos operen con tripulaciones reducidas. Entre los riesgos presentados por las redes de enmalle están la pesca indiscriminada, los enredos y la pesca fantasma.

8.6 El grupo de trabajo estuvo de acuerdo en que se necesita con urgencia más información sobre la flota de barcos de pesca INDNR que operan con redes de enmalle y sobre el uso de estas redes. Instó a los miembros a aumentar sus esfuerzos para documentar este tipo de actividades de pesca en el Área de la Convención y, cuando fuese posible, recogieran las redes de enmalle caladas o abordaran estos barcos de pesca INDNR para examinar la captura y las bitácoras a fin de obtener más información sobre este método de pesca INDNR.

8.7 WG-FSA señaló que el grupo especial WG-IMAF no había podido proporcionar una estimación fiable del número de aves marinas muertas durante las operaciones de pesca INDNR con redes de enmalle durante la temporada 2007/08 (anexo 6, párrafos 5.3 y 5.4).

8.8 El grupo de trabajo estuvo de acuerdo en que la reducción del número de barcos de pesca INDNR avistados recientemente en el Área de la Convención no indicaba necesariamente que la captura total y el nivel de la mortalidad incidental asociada con la pesca INDNR también hubieran disminuido.

BIOLOGÍA, ECOLOGÍA Y DEMOGRAFÍA DE LAS ESPECIES OBJETIVO Y DE CAPTURA SECUNDARIA

Resumen de la información presentada a la reunión

9.1 Se presentaron 19 documentos con información biológica y ecológica sobre las especies objetivo (*D. mawsoni, D. eleginoides* y *C. gunnari*), las especies de la captura secundaria (rayas), las especies explotadas en pesquerías anteriores (*Chaenodraco wilsonii*), y sobre el consumo de alimento de los peces antárticos en general. Los trabajos completos pueden solicitarse de la Secretaría de la CCRVMA y los resúmenes de los mismos serán incluidos en los Resúmenes Científicos de la CCRVMA, razón por la cual no serán repetidos
en este informe. La consideración de los efectos de la pesca en el ecosistema y la interacción entre depredadores (pinnípedos, orcas) y D. mawsoni figura en los párrafos 6.1 al 6.23 del anexo 4.

9.2 En relación con las solicitudes del Comité Científico (SC-CAMLR-XXVI, anexo 5, párrafo 9.10), se ha logrado cierto avance en el trabajo sobre la estructura del stock de D. eleginoides y en la reconstrucción del ciclo de vida de la misma especie, aunque no se ha logrado avanzar con respecto a la elaboración de una guía de campo sobre las rayas del Océano Austral (ver párrafos a continuación).

Dissostichus mawsoni

9.3 Los resultados de los estudios de la distribución y abundancia de D. mawsoni considerados en este punto de la agenda guardaron relación con las hipótesis en las cuales se basa el trabajo de modelado que actualmente se realiza para estas especies, y que ha sido considerado dentro de la competencia de WG-SAM (anexo 7, párrafo 5.2).

9.4 WG-FSA-08/12 describió las tallas de D. mawsoni y D. eleginoides capturado en distintas áreas de la plataforma antártica, y las características del estadio de madurez de sus gónadas y nutrición (ver párrafo 3.77).

9.5 Las zonas de desove más probables de D. mawsoni son la Dorsal Pacífico-Antártica situada al norte del Mar de Ross y la Dorsal de Amundsen en el mar del mismo nombre. La zona de desove en el Mar de la Cooperación probablemente es el banco de BANZARE. El desove ocurre en invierno y puede abarcar parte del otoño y primavera (WG-FSA-08/14).

9.6 El grupo de trabajo indicó que los resultados confirman las hipótesis de que los juveniles viven principalmente en la zona de la plataforma continental, mientras que los peces más grandes habitan en el talud, y que los peces próximos a desovar se encuentran migrando hacia el norte a sus zonas de desove, o en zonas más profundas del talud.

9.7 Las estimaciones de edad de D. mawsoni indicaron que la longevidad mínima de esta especie es de 39 años. Las edades estimadas y las edades obtenidas por radiometría guardaron estrecha relación, lo que confirmó los criterios para la estimación de la edad y la periodicidad anual de las bandas de crecimiento de otolitos. Los parámetros de crecimiento de Von Bertalanffy indican que el crecimiento de D. mawsoni es relativamente lento \((k = 0.111; t_0 = –0.605)\), especialmente si se toma en cuenta su talla máxima \((L_\infty = 158.9 \text{ cm})\) (WG-FSA-08/17) (párrafos 3.66 y 3.67).

9.8 En WG-FSA-08/34 se destacó la naturaleza depredadora de D. mawsoni que se manifiesta desde una temprana edad en varias regiones de altas latitudes antárticas. Los principales componentes de la dieta de los peces más grandes son los peces y calamares, mientras que los juveniles se alimentan en cierta medida de invertebrados. Se detalla la distribución batimétrica de los peces a medida que crecen, tanto cronológicamente como en talla.
La frecuencia de hembras de *D. mawsoni* con ovarios en el estadio IV de madurez a fines del verano fue de 1.2–10% en varias regiones. La fecundidad individual absoluta varió de 0.03 a 0.61 millones de huevos, y la fecundidad relativa de 11.48 a 42.53 huevos. El diámetro de los oocitos con más trofoplasma varió de 2.8 a 3.15 mm (WG-FSA-08/35).

El grupo de trabajo indicó que en el pasado se habían obtenido estimaciones más altas de la fecundidad absoluta y relativa. Pareciera ser que no todos los huevos maduros que el estudio anterior supuso que habían sido desovados, fueron en realidad desovados. Se espera que Nueva Zelandia y Rusia trabajen en estrecha colaboración para resolver las dudas relativas al desove de *D. mawsoni*.

WG-FSA-08/41 presentó un análisis del contenido estomacal de *D. mawsoni* capturado por el palangrero Yantar con el método español en el Mar de Ross y en el Mar de Amundsen durante el período del 29 de diciembre de 2006 al 3 de marzo de 2007. Durante el verano austral, se observó que *D. mawsoni* en ambos mares se alimentó activamente (con un índice de repleción de 1.88). En lo que se refiere al componente peces de la dieta, *M. whitsoni* fue la presa principal (hasta 18.2%), y entre los demás componentes, el calamar fue el más común (8.1–27.3%).

El grupo de trabajo notó que los resultados de este estudio guardan relación con el trabajo presentado anteriormente en Stevens (2004, 2006).

El grupo de trabajo también tomó nota de los resultados de los estudios presentados en WG-FSA-08/48 (talla de madurez) y WG-EMM-08/27 y 08/43 (estudios de alimentación).

Dissostichus eleginoides

El grupo de trabajo tomó nota de los resultados presentados en WG-FSA-08/P3, 08/P4 y 08/P5 (química de otolitos).

El grupo de trabajo notó con preocupación que algunas de las hipótesis presentadas en los tres trabajos no guardaban relación con el conocimiento que se tiene actualmente sobre el ciclo de vida de *D. eleginoides*. El conocimiento adquirido en el curso de las investigaciones relacionadas con la CCRVMA debe ser incorporado mejor en los estudios sobre esta especie realizados fuera del ámbito de la CCRVMA, a fin de evitar que existan dos estudios en paralelo con resultados incompatibles.

Rayas

Muestras de rayas tomadas durante la pesca comercial en el Mar de Ross (WG-FSA-08/20) indicaron una proporción de 10.75:1 de *A. georgiana* con relación a *B. cf. eatonii*, lo que concuerda con la estimación previa basada en una muestra abundante de rayas marcadas. Las regresiones revisadas de la relación talla-peso para machos y hembras de *A. georgiana* confirmaron que las relaciones para los machos y para las hembras difieren considerablemente. Una mejor clasificación de los estados de madurez de las rayas de parte de los observadores, combinado con el examen en el laboratorio de una muestra módica de
rayas enteras, ayudaron a mejorar las estimaciones de la mediana de la talla de madurez. No hubo diferencias significativas entre la mediana de la talla de madurez de machos y hembras de *A. georgiana*, que fue estimada en 67.3 cm de longitud de la pelvis (=96.5 cm TL).

9.17 El grupo de trabajo indicó que todavía existe una discrepancia considerable en el conocimiento sobre la tasa de crecimiento y la edad máxima de las rayas. La convalidación del método para determinar la edad de las rayas es esencial para entender su capacidad de soportar incluso niveles bajos de pesca. El grupo de trabajo alentó el intercambio de material e información sobre las técnicas para determinar la edad para tratar de convalidar los métodos de determinación de la edad de las rayas.

Dracos

9.18 WG-FSA-08/29 presenta un estudio de las variaciones ontogenéticas, interanuales y regionales de la dieta de *C. gunnari* alrededor de Georgia del Sur en tres veranos sucesivos. La dieta de los 2 239 peces (13–56 cm TL) analizados varió significativamente entre años y clases de edad, pero hubo muy poca diferencia en la dieta de los peces de distintas regiones. En general, la dieta estuvo compuesta primordialmente de kril (*E. superba*) y por el anfípodo *Themisto gaudichaudii*. Los peces más pequeños (más jóvenes) se alimentaron en mayor proporción de *T. gaudichaudii* y pequeños eufáusidos, como por ejemplo, *Thysanoessa* spp., y en menor cantidad, de *E. superba*. En las temporadas en que hubo una baja disponibilidad de kril, la proporción de kril en la dieta, la repleción estomacal y la condición de los peces fueron significativamente menores que en otras temporadas de verano. En el año siguiente (2005) de la temporada de bajas concentraciones de kril se observó una considerable disminución (>80%) en la estimación de la biomasa anual de *C. gunnari*. Esto puede haberse debido a la mortalidad de los peces de 2+ y 3+ años de edad, que son más dependientes de kril que los peces de edad 1+. Aparentemente los peces más jóvenes sobrevivieron, lo que llevó a un aumento en la biomasa estimada de la población en 2006.

9.19 Se determinó la edad de *C. wilsoni* muestreado en el extremo de la Península Antártica en 2006 y 2007 (WG-FSA-08/33). Los resultados preliminares confirmaron los resultados de estudios previos en el sentido que la vasta mayoría de los peces tenían entre 2 y 4 años de edad.

Peces antárticos – general

9.20 WG-FSA-08/42 presentó una revisión detallada del consumo de presas pelágicas por parte de los peces antárticos. Inicialmente el documento fue presentado para ser considerado por el taller conjunto CCAMLR-IWC celebrado en agosto de 2008 en Hobart, Australia. El documento fue posteriormente actualizado de acuerdo con los comentarios recabados durante la reunión. Dado que el trabajo debe ser finalizado antes de fines de noviembre de 2008, se alentó encarecidamente a los miembros del WG-FSA a que entreguen sus comentarios sobre el mismo antes del término de CCAMLR-XXVII.
Reseñas de especies

9.21 Se finalizaron las reseñas de dos especies que actualmente son objeto de explotación en el Área de la Convención de la CCRVMA: *D. mawsoni* (Dr. Hanchet) y *C. gunnari* (Dres. K.-H. Kock (Alemania) e I. Everson (RU)). La reseña de una tercera especie, *D. eleginoides*, será actualizada durante 2009 (Dr. M. Collins (RU)). El grupo de trabajo recomendó que estas tres reseñas de especies sean publicadas en el sitio web de la CCRVMA a principios de 2010, y se las actualice regularmente.

9.22 Actualmente no se está considerando reseñas para las especies que no son el objetivo de la pesca, como por ejemplo, *Gobionotothen gibberifrons* o *Chaenocephalus aceratus*.

Red de otolitos de la CCRVMA

9.23 Después del segundo taller de estimación de la edad del draco rayado (*Champsocephalus gunnari*) que se llevó a cabo en junio de 2006 en Kaliningrado, Rusia, el grupo de trabajo no ha recibido nueva información sobre cómo se ha avanzado el trabajo de calibración de lecturas de otolitos. Se recomendó que el trabajo sobre la calibración sea finalizado en 2008/09, y se presente un informe sobre el intercambio de otolitos a la próxima reunión del WG-FSA en 2009.

CONSIDERACIONES SOBRE LA ORDENACIÓN DEL ECOSISTEMA

10.1 Con la excepción de la sección 10.2, la mayoría de las consideraciones del grupo de trabajo sobre este tema se discuten en mayor detalle en otras secciones del informe, y se proporcionan remisiones donde procede.

Interacciones ecológicas

10.2 Se deliberó sobre las interacciones ecológicas durante las discusiones sobre el documento WG-FSA-08/19 (bentos), los documentos considerados en la sección 9 de este informe, y el anexo 4, párrafos 6.1 al 6.23.

Actividades de pesca de fondo y los EMV

10.3 El grupo de trabajo recordó los resultados de su consideración de este tema el año pasado (SC-CAMLR-XXVI, anexo 5, párrafos 14.1 al 14.43), incluido:

 i) el acuerdo sobre la naturaleza de las prácticas pesqueras destructivas, el concepto de la vulnerabilidad y lo que constituye un efecto negativo considerable (daño considerable) (SC-CAMLR-XXVI, anexo 5, párrafo 14.4 al 14.6) y los mecanismos disponibles en el ámbito de la CCRVMA que se podrían emplear para evitar efectos negativos considerables en los EMV (SC-CAMLR-XXVI, anexo 5, párrafo 14.7);
ii) historia de la pesca de fondo en aguas de altura dentro del Área de la Convención (SC-CAMLR-XXVI, anexo 5, párrafos 14.12 al 14.20);

iii) el proceso anual propuesto para manejar las interacciones de la pesca de fondo con el medio ambiente del bentos a fin de evitar un efecto negativo considerable en los EMV, indicándose que estos efectos podían ser evitados utilizando varios mecanismos, incluidos el desarrollo de métodos de mitigación, disposiciones para evitar los efectos dentro de las temporadas (regla de traslado), o vedas más prolongadas de la pesca en ciertas áreas (SC-CAMLR-XXVI, anexo 5, párrafo 14.21). El procedimiento se describe en SC-CAMLR-XXVI, anexo 5, párrafos 14.22 al 14.39, e incorpora:

a) el reconocimiento de que no se cuenta con suficientes datos y que, cuando existen indicios de la presencia de un EMV, se proporcionaría una protección provisoria mientras se recogen los datos suficientes para permitir que la Comisión juzgue si se debe o no continuar la protección de un área;

b) la necesidad de contar con planes de investigación y de recopilación de datos, planes de las operaciones de pesca, estrategias para desarrollar medidas de mitigación, un registro de las áreas vulnerables y planes de gestión de la conservación;

c) la relación inversa entre los niveles críticos de activación y el riesgo de que ocurran efectos negativos considerables en un área, incluidos los ejemplos de la aplicación de tales niveles para provocar la realización de investigaciones, el traslado de las operaciones de pesca, o la implementación de medidas de protección provisorias durante una temporada;

d) enfoques para evaluar las posibles interacciones con el bentos, y para clasificar las áreas;

e) la clasificación progresiva de las áreas en las categorías de “abiertas”, “potencialmente vulnerables” o “vulnerables”, y la recopilación de datos y protección necesarias para cada una;

f) la necesidad de que el tamaño del área protegida coincida con el tamaño del EMV;

g) el papel de los observadores en la obtención de datos.

10.4 El grupo de trabajo indicó que el Comité Científico había aprobado su informe, que prestó especial atención a varios temas (SC-CAMLR-XXVI, párrafos 4.162 y 4.163). El Comité Científico aprobó el procedimiento y las definiciones proporcionadas por WG-FSA, que se basaron en prácticas y procedimientos existentes (SC-CAMLR-XXVI, párrafo 4.164 y figura 1) y que claramente demuestra que se necesita formular asesoramiento científico sobre:

i) guías prácticas para detectar indicios de la presencia de un EMV durante las actividades de pesca;
ii) procedimientos que podrían seguirse ante el hallazgo de un EMV;

iii) programas de estudios y de recopilación de datos necesarios para:

 a) evaluar los EMV y la posibilidad de que sufran un daño considerable;

 b) desarrollar enfoques para evitar y mitigar los efectos negativos considerables de la pesca en los ecosistemas del bentos.

10.5 La Comisión aprobó el marco proporcionado por el Comité Científico (CCAMLR-XXVI, párrafos 5.11 y 5.12) y la labor propuesta para el futuro (CCAMLR-XXVI, párrafos 5.13 al 5.15). Encargó al Comité Científico que elaborara guías pragmáticas y flexibles para:

 i) identificar los EMV;

 ii) definir las acciones de los barcos cuando detecten indicios de la presencia de un EMV durante la pesca.

Estas guías serían examinadas en la próxima reunión de la Comisión (CCAMLR-XXVI, párrafo 5.18).

10.6 El grupo de trabajo estuvo de acuerdo en que una prueba de la efectividad de tales guías sería si se evitan los efectos negativos considerables en un EMV mientras se formulan y perfeccionan el asesoramiento científico y los enfoques de gestión.

10.7 WG-FSA indicó que la Medida de Conservación 22-06 dispone que las Partes contratantes cuyos barcos deseen llevar a cabo cualquier actividad de pesca de fondo, a partir del 1 de diciembre de 2008 deberán adherirse a los procedimientos descritos en los párrafos 7 a 10 de dicha medida. Además, el Comité Científico deberá proporcionar una evaluación a la Comisión, basada en la mejor información científica disponible, de la posibilidad de que las actividades de pesca de fondo propuestas tuvieran un efecto negativo considerable en los EMV, y de cuáles medidas de ordenación se podrían aplicar para evitar estos efectos. Atendiéndose a lo indicado por la Medida de Conservación 22-06, el grupo de trabajo identificó las siguientes tareas para proporcionar asesoramiento al Comité Científico:

 i) examen de las evaluaciones preliminares y de las medidas de mitigación propuestas por los miembros que tienen intenciones de participar en la pesca de fondo;

 ii) revisión, perfeccionamiento, y si fuera necesario, desarrollo de procedimientos y normas para evaluar los efectos potenciales de las propuestas y las posibles medidas de mitigación;

 iii) hacer recomendaciones sobre los posibles efectos de las actividades de pesca de fondo, las medidas de mitigación y los planes de recopilación de datos, tomando en cuenta otra información y enfoques disponibles al grupo de trabajo;

 iv) hacer recomendaciones sobre cómo debieran los miembros preparar las evaluaciones preliminares y las medidas de mitigación propuestas;
v) recopilar información sobre los EMV hallados, y hacer recomendaciones sobre los efectos conocidos y previstos de las actividades de pesca de fondo en los EMV y sobre las prácticas apropiadas para cuando se encuentra un EMV en el curso de las operaciones de pesca de fondo.

10.8 Al realizar esta tarea, el grupo de trabajo acordó llevar a cabo sus discusiones y formular sus recomendaciones siguiendo el marco aprobado por la Comisión.

Hallazgos de EMV y efectos conocidos y previstos de la pesca de fondo en los mismos

10.9 El documento WG-FSA-08/53 propone un marco para la evaluación de los efectos negativos de la pesca de fondo en el Área de la Convención de la CCRVMA, y describe en detalle seis etapas de una evaluación:

i) descripción del arte de pesca;

ii) descripción de la actividad de pesca, y definición de la huella espacial de un evento de pesca normal;

iii) descripción de las condiciones del uso de artes de pesca distintos de los usuales, y de la huella de los mismos;

iv) evaluación de la vulnerabilidad de una gama de grupos taxonómicos de EMV;

v) descripción del esfuerzo pesquero histórico en su totalidad;

vi) estimación del efecto negativo acumulado total.

10.10 El grupo de trabajo indicó que en este proceso de evaluación de los efectos negativos:

i) se considera que los eventos de pesca no se solapan;

ii) se supone que todos los grupos taxonómicos de un EMV están distribuidos en un área;

iii) se determina que la proporción de los grupos taxonómicos del EMV afectada por la pesca está dada por la proporción del área explotable bajo consideración que habría sido afectada por la huella total menos el nivel de escape esperado de los distintos tipos de grupos taxonómicos asociados con los EMV;

iv) se necesita considerar cuál parte del arte de pesca es la que interacciona con los hábitats del bentos.

10.11 El documento WG-FSA-08/58 presentó observaciones directas de los efectos de un PLI en el lecho marino durante el virado obtenidas mediante secuencias filmadas en vídeo. El área de lecho marino afectada por el virado del palangre se calculó en base a la distancia cubierta por el movimiento lateral de barrido de la línea (24 metros) antes de dejar el fondo. En esta presentación, el Dr. Welsford señaló que:
i) la secuencia filmada en vídeo muestra que la captura secundaria del bentos puede desprenderse del palangre antes de que alcance la superficie;

ii) a pesar de la presencia de fuertes corrientes, los palangres filmados no se movieron hasta que comenzó el virado;

iii) si bien ésta es sólo una observación, las secuencias filmadas de otros dos palangres mostraron plumas de sedimento que indican que las líneas también se movieron lateralmente durante el virado.

10.12 El grupo de trabajo señaló lo siguiente con relación a la estimación de la huella de un palangre utilizando filmadoras:

i) si bien las cámaras filmadoras han sido diseñadas para tener una flotabilidad neutral y las películas examinadas en la reunión indican que no tienen un efecto en el comportamiento de la línea, es necesario realizar un seguimiento para eliminar esta posibilidad, en particular cuando se utilizan cámaras filmadoras para evaluar la huella de un calado;

ii) el movimiento lateral de las líneas podría ocurrir porque los barcos no recogen el palangre estando situados directamente sobre la línea, o porque hay corrientes que desplazan la línea en dirección opuesta a la del barco;

iii) algunos organismos erectos que sobresalen bastante desde el fondo continuarian siendo afectados por el barrido lateral de las líneas aún después de haber sido éstas levantadas del fondo, pero las estimaciones deben reconocer que los organismos de menor altura serán afectados en una banda menos ancha al levantar la línea;

iv) la amplitud del movimiento de barrido lateral de las líneas y su efecto en el bentos dependerá del tipo de barco y de arte de pesca, y de las condiciones locales;

v) se podrían mejorar los modelos del movimiento de la línea, y por lo tanto el área afectada por ella, si se incluyeran datos sobre la ubicación de los barcos en relación con el virado del palangre, junto con información sobre las corrientes en el momento del virado.

10.13 El grupo de trabajo estuvo de acuerdo en que conociendo esta nueva información, considera que la huella de un palangre de calado automático probablemente no sea tan pequeña como la estimada en CCAMLR-XXVII/19. Asimismo, reconoció que la magnitud de la huella es sumamente incierta, si se tiene en cuenta la observación anterior de que una línea podría afectar hasta 25 m del bentos.

10.14 El grupo de trabajo agradeció a Australia por diseñar el equipo de filmación para usar en los palangres, e indicó que esta labor es importante para entender mejor la dinámica de los artes de pesca en el fondo y para estimar el efecto de los palangres y de otros artes de pesca en los organismos del bentos.

10.15 El grupo de trabajo señaló que el foco de estos estudios fueron los barcos palangreros de calado automático que utilizan PLI. No se tiene en claro cuáles serían los efectos que
tendrían los palangres españoles y los palangres artesanales en los hábitats del bentos. El grupo de trabajo acotó que no disponía de información para considerar el efecto de otros artes de pesca, e indicó que las anclas, los manojos de anzuelos y otros elementos de estos artes de pesca podrían tener efectos que debieran ser evaluados. Informó que el equipo de filmación diseñado por Australia podía ser instalado en todos los artes de pesca de fondo.

10.16 El grupo de trabajo observó que no hay pruebas empíricas que permitan evaluar los efectos de los artes de pesca en los grupos taxonómicos o hábitats del bentos en el Área de la Convención (véase el párrafo 10.54).

10.17 A los efectos de realizar una evaluación de las interacciones de la pesca de fondo con el bentos (SC-CAMLR-XXVI, párrafo 4.165(iii)), el grupo de trabajo revisó y modificó el análisis de la huella ecológica de la pesca realizado en 2007. En vez de presentar la captura en las distintas áreas de ordenación, se resume el esfuerzo acumulado (en miles de anzuelos) en la figura 7 para el periodo 1985–2007 y para 2008 por separado. El grupo de trabajo observó que en los próximos años sería conveniente graficar las UIPE además de las subáreas y divisiones.

10.18 El grupo de trabajo convino en que las evaluaciones a las cuales se debe prestar mayor atención son las de los efectos potenciales de la pesca de fondo en los EMV presentes en caladeros donde se aplica el mayor esfuerzo pesquero en relación al área de lecho marino. También se reconoció que se debe distinguir entre el esfuerzo aplicado a áreas de poca profundidad y el aplicado en áreas más profundas. A falta de otra información, los mapas del esfuerzo por cuadrículas en cada subárea/división indican dónde se ha aplicado el mayor esfuerzo de pesca. Esto se puede combinar con estimaciones del área de lecho marino explotable para calcular la proporción del área explotable posiblemente afectada por los artes de pesca. La tabla 18 muestra los resultados de este tipo de análisis para las UIPE de las Divisiones 58.4.1 y 58.4.3b. Se estimaron las áreas explotables del lecho marino, el esfuerzo acumulado total (la suma de la longitud de los palangres desplegados en el transcurso de la pesquería) y la proporción del esfuerzo total en cada estrato de profundidad, a partir de los datos archivados en la base de datos de la CCRVMA de acuerdo con los intervalos de profundidad utilizados en el Boletín Estadístico de la CCRVMA. Las proporciones del área de lecho marino que podrían haber sido afectadas por los palangres fueron calculadas utilizando un valor bajo y uno alto para el ancho estimado del área afectada por un solo palangre – 1 m (de acuerdo con CCAMLR-XXVII/19) y 25 m (de acuerdo con WG-FSA-08/58). La tabla 18 muestra también las mismas estimaciones para la Subárea 88.1 pero sólo para el intervalo de profundidad de 600–1 800m. Todavía no se dispone de datos del área de lecho marino por intervalo de profundidad. Las áreas de lecho marino utilizadas en el análisis de la Subárea 88.1 son las que fueron proporcionadas a Nueva Zelandia en 2003 (SC-CAMLR-XXII, anexo 5, tabla 5.3). Asimismo, se proporcionan datos resumidos del esfuerzo sin estimaciones del lecho marino para la Subárea 88.1, y las demás UIPE en las pesquerías exploratorias de austromerluza.

10.19 El grupo de trabajo convino en que este enfoque sirve de base para proporcionar asesoramiento sobre la escala actual de las posibles interacciones de los artes de pesca con los EMV en las pesquerías exploratorias de palangre, teniendo en cuenta que algunas UIPE en las áreas de los montes marinos y dorsales o crestas al norte de la Subárea 88.1 pueden haber tenido una proporción de área de lecho marino afectada por las actividades de pesca de fondo mayor que otras UIPE.
10.20 El grupo de trabajo recomendó obtener datos actualizados de fuentes fiables sobre el área de lecho marino para los tres estratos de profundidad de todas las UIPE.

10.21 El grupo de trabajo indicó que estos datos serían utilizados para evaluar, de conformidad con la Medida de Conservación 22-06, los posibles efectos de las actividades de pesca propuestas en distintas áreas. Sin embargo, no se cuenta con suficiente información sobre las áreas que serán explotadas por las pesquerías exploratorias a realizarse próximamente para hacer recomendaciones sobre cuáles serían los posibles efectos en los EMV.

10.22 El grupo de trabajo señaló lo siguiente:

i) estos análisis deberán tener en cuenta la posibilidad de que los palangres se solapen, como sería el caso en lances múltiples, y que en este caso se deberá considerar si el mayor efecto de la pesca ocurre durante el primer lance, teniendo los subsiguientes un efecto insignificante (sin embargo, véase CCAMLR-XXVII/19);

ii) la magnitud del efecto dentro de la huella es difícil de evaluar debido a la falta de datos empíricos sobre el efecto de los distintos tipos de palangres en los hábitats del bentos y en los grupos taxonómicos de EMV. El grupo de trabajo estuvo de acuerdo en que se necesita trabajar en el futuro para obtener datos empíricos y aumentar el conocimiento sobre el efecto individual de los distintos tipos de palangres. Asimismo, se deben refinar las metodologías y los cálculos para determinar la huella (área) afectada por los distintos tipos de palangre (WG-FSA-08/58) y para estimar el posible efecto en los taxones de EMV dentro de dicha huella, como se describe en el documento WG-FSA-08/53. Sería conveniente examinar estos temas en el taller propuesto mencionado en el párrafo 10.54;

iii) la captura secundaria observada de los palangres podría no ser una buena indicación de las interacciones del arte con los EMV porque los grupos taxonómicos afectados por los palangres pueden no aparecer en la captura secundaria subida a bordo (párrafo 10.11). Por lo tanto, la ausencia de captura secundaria no necesariamente significa que no ha habido una interacción con un EMV. Sin embargo, la presencia de taxones de EMV en la captura secundaria podría indicar la presencia de un EMV. Si bien por el momento no se pueden utilizar las tasas de captura de los taxones de EMV, se podrían utilizar en el futuro para estimar la escala del efecto en los EMV, siempre que se pudiera determinar la capturabilidad de cada grupo taxonómico de EMV.

10.23 El grupo de trabajo puso fin a la discusión, indicando que la reducción de la incertidumbre de las evaluaciones del efecto acumulado y de la posibilidad de que las actividades de pesca propuestas tengan un efecto negativo en el futuro dependerá del refinamiento de los métodos para evaluar la huella de la pesca y del desarrollo de evaluaciones de riesgo en distintas áreas, como se describe a continuación.
Enfoques para evitar y mitigar efectos negativos considerables en los EMV

Evaluaciones preliminares y medidas de mitigación presentadas por los miembros

10.24 La tabla 19 resume la relación entre las notificaciones de pesquerías nuevas y exploratorias y las evaluaciones preliminares y medidas de mitigación presentadas por los miembros. El documento CCAMLR-XXVII/26 presenta un resumen de las notificaciones. El grupo de trabajo señaló que sólo 5 de las 12 notificaciones presentadas contenían evaluaciones preliminares. Como resultado, el grupo de trabajo no pudo estudiar los posibles efectos de todas las propuestas de pesquerías nuevas y exploratorias, ni hacer las recomendaciones pertinentes.

10.25 El grupo de trabajo observó la gran variación en el contenido de las evaluaciones preliminares y estuvo de acuerdo en que se necesita un enfoque común para la presentación de dichas evaluaciones, similar a los requisitos para la notificación de pesquerías exploratorias. Se convino en que el formulario propuesto presentado en la tabla 20 sentaría las pautas adecuadas para que los miembros presentaran evaluaciones preliminares de la posibilidad de que las actividades de pesca de fondo que proyectan realizar tengan efectos negativos considerables en los EMV. Se diseñó el formulario para que fuera compatible con los requisitos para la presentación de notificaciones de pesquerías exploratorias y se basa en los requisitos dispuestos en los párrafos 7(i) y 7(ii) de la Medida de Conservación 22-06. El grupo de trabajo estuvo de acuerdo en que se necesita uniformidad en la presentación de información relativa a:

i) Alcance de las operaciones propuestas –
 a) los métodos(s) de pesca que se utilizarán
 b) el área estadística donde se realizará la pesca
 c) el período en el cual se realizarán las operaciones.

ii) Actividad de pesca propuesta –
 a) descripción detallada del arte de pesca;
 b) la escala de la actividad propuesta, incluidas las estimaciones del número total de anzuelos y de líneas que se desplegarán;
 c) la distribución espacial de la actividad.

iii) Medidas de mitigación que se aplicarán.

iv) Evaluación de los efectos conocidos y previstos en los EMV –
 a) la huella espacial del esfuerzo estimada;
 b) el resumen de los posibles EMV presentes dentro del área de las actividades;
 c) la probabilidad de los efectos;
d) la probable magnitud o gravedad de la interacción del arte de pesca propuesto con el EMV;

e) las probables consecuencias físicas, biológicas y ecológicas del efecto.

v) Estimación de la huella acumulada.

vi) Actividades de investigación relacionadas con el suministro de nueva información sobre los EMV –

a) estudios anteriores, incluida la recopilación de pruebas directas e indirectas de la presencia de un EMV;

b) actividades de investigación propuestas para el período de las actividades de pesca propuestas;

c) los estudios complementarios propuestos.

10.26 El grupo de trabajo estuvo de acuerdo en que los requisitos pertinentes a las evaluaciones preliminares de los miembros cambiarán a medida que mejore la información sobre las pesquerías de fondo. Se anticipa que la información mencionada en los puntos (i)–(iii) probablemente será la más importante de la que debe ser incluida en las propuestas presentadas en los próximos años, pero actualmente también se requieren datos sobre los temas mencionados en (iv)–(vi).

10.27 WG-FSA examinó el resumen de la captura secundaria de bentos presentado en el documento CCAMLR-XXVII/26 por la Secretaría, basado en la información de la base de datos de la CCRVMA. El grupo de trabajo agradeció a la Secretaría por su labor y estuvo de acuerdo con la conclusión del trabajo en el sentido de que la información a nivel de grupo taxonómico en la base de datos de la CCRVMA no es lo suficientemente detallada como para realizar análisis cuantitativos de las interacciones de las pesquerías con los grupos taxonómicos del bentos y de los posibles efectos en los EMV. Además, la incertidumbre en la identificación de los grupos taxonómicos del bentos impediría la utilización de estos datos. Esto se discute en más detalle en los párrafos 6.45 al 6.47.

10.28 El grupo de trabajo estuvo de acuerdo en que hay pocos datos empíricos para determinar cuál sería el efecto de las actividades propuestas en los EMV dentro del Área de la Convención, y si habría un solapamiento entre dichas actividades y los EMV.

Asesoramiento sobre los posibles efectos de las actividades de pesca de fondo, las medidas de mitigación y los planes de recopilación de datos

10.29 WG-FSA-08/64 presentó un marco para la gestión del riesgo a fin de evaluar si las actividades de pesca propuestas tendrían efectos negativos considerables en los EMV, y para proporcionar asesoramiento sobre las medidas de gestión y de mitigación que se podrían necesitar, en particular para zonas de alto riesgo. El marco permite hacer actualizaciones de las evaluaciones de riesgo para áreas específicas a medida que se dispone de nueva información y conocimiento.
10.30 El grupo de trabajo acordó que sería útil contar con un método de evaluación de riesgo similar al utilizado por el grupo especial WG-IMAF, y que se podría seguir mejorando más el método presentado en WG-FSA-08/64 en este sentido. Señaló que el riesgo de que ocurriese efectos negativos considerables debiera evaluarse en escalas espaciales commensurables con el área ocupada por el EMV, es decir, que se requiere una escala espacial mucho menor que la considerada por WG-IMAF. Los elementos de importancia en una evaluación de riesgo incluirían, *inter alia*, los siguientes conceptos:

i) No todas las áreas tienen igual probabilidad de contener un EMV que pueda ser afectado, pero la información necesaria para evaluar esta probabilidad es muy limitada.

ii) Es posible formular modelos de hábitats potencialmente vulnerables en base a datos geomorfológicos, oceanográficos y medioambientales y relacionar éstos con las observaciones de los lugares donde se encuentran los distintos grupos taxonómicos de EMV. Las observaciones podrían ser directas (con filmadoras, o equipos de muestreo del bentos) o indirectas, como la captura secundaria en las pesquerías.

iii) La escala apropiada para caracterizar el riesgo sería una cuadrícula de 0.5° de latitud por 1.0° de longitud, conforme con las áreas en escala fina de la CCRVMA.

iv) Las distintas áreas tendrán distinto nivel de riesgo, por ejemplo, áreas de alto riesgo podrían ser los montes marinos, la cabeza de los cañones y el estrato de profundidad hasta los 550 m.

v) Habrá distintas necesidades relativas a la recopilación de datos, las investigaciones y la mitigación para distintos artes de pesca y niveles de riesgo.

vi) La evaluación y clasificación de riesgo deberá ser revisada a medida que se disponga de nueva información.

10.31 El grupo de trabajo no pudo elaborar un mapa que incorporase la evaluación de riesgo para proporcionar recomendaciones en esta reunión sobre el posible efecto de las actividades de pesca propuestas, pero recomendó que se continúe desarrollando el enfoque para la próxima reunión de WG-FSA, en base a las consideraciones de los párrafos 10.29 y 10.30 y de la sección siguiente sobre los EMV.

10.32 Las propuestas presentadas en CCAMLR-XXVII/26 respecto a las medidas de mitigación de las interacciones entre las actividades de pesca y los EMV se resumen en la tabla 21. Las acciones pueden dividirse naturalmente en tres clases principales – actividades de los observadores, respuestas de los barcos y requerimientos relativos a la notificación de información.

10.33 El grupo de trabajo estuvo de acuerdo en que las observaciones de la captura secundaria del bentos serán importantes en el año próximo. Convendría que los observadores proporcionaran información sobre lo siguiente:
i) los tipos de grupos taxonómicos subidos a bordo en la captura secundaria y la ubicación de la captura, identificándose estos grupos por lo menos a nivel de los tipos morfológicos descritos en el afiche elaborado por Nueva Zelanda (párrafo 6.45);

ii) el número, y cuando sea posible, el peso total de cada taxón subido a bordo;

iii) información sobre el posible origen geográfico de los taxones – teniendo en cuenta de que las observaciones por anzuelo o por bandeja podrían relacionarse a la posición geográfica de la línea en el sustrato, si bien esto requeriría que se proporcionara al observador un GPS de mano para registrar la posición del barco cuando se sube un ejemplar de un taxón a bordo;

iv) en el futuro, el aumento del detalle necesario estará dado por la captura de tipos específicos de grupos taxonómicos, pero se reconoció que en el futuro inmediato se deberá registrar todo grupo taxonómico subido a bordo y que la información presentada por los observadores deberá ser lo más completa posible para los periodos de observación.

10.34 El grupo de trabajo indicó también que sería conveniente que los observadores obtuviesen información sobre el funcionamiento del arte de pesca y datos para elaborar protocolos de seguimiento. Sin embargo, dado el gran volumen de trabajo de los observadores, esto se consideró de menor prioridad para el año próximo.

10.35 El grupo de trabajo observó que el grado de detalle de los datos taxonómicos que los observadores deben registrar en la temporada próxima posiblemente no identificará las especies endémicas. Se recomendó que este tema sea considerado más a fondo en el taller propuesto en el párrafo 10.54, y por el grupo especial de trabajo TASO, para ver si se podrían adoptar métodos prácticos para identificar mejor los taxones registrados en los datos de la captura secundaria del bentos.

10.36 Las respuestas de los barcos propuestas varían con la notificación y dependen también del nivel de las pruebas o indicios requeridos para provocar una acción. Las acciones propuestas fueron:

i) sólo realizar estudios cuando se tienen indicios de un EMV en la captura secundaria subida a bordo

ii) trasladarse cuando se encuentran indicios de un EMV

iii) una combinación de estas dos acciones, en base a un sistema de activación de dos etapas.

El grupo de trabajo convino en que se necesitaba una estrategia común con variaciones específicas según el arte de pesca. Sin embargo, no hubo suficiente información para acordar una estrategia ni para determinar el tipo y el nivel de captura secundaria que actuaría como nivel crítico y provocaría una acción, ni la naturaleza exacta de la acción que se tendría que llevar a cabo. Se propuso que estos temas fuesen resueltos en un taller sobre los EMV (véase el párrafo 10.54).

10.37 El grupo de trabajo observó que se esperaba que los miembros, en general, notificaran el hallazgo de un EMV por parte de sus barcos. Sin embargo, las notificaciones variaron con
respecto a los indicios que fueron considerados suficientes como para notificar el hallazgo. No obstante, los datos de observación deberán ser notificados junto con los datos necesarios para las evaluaciones preliminares que los miembros deben presentar de acuerdo con la Medida de Conservación 22-06 (tabla 20).

10.38 Un aspecto difícil de la discusión fue la necesidad de equilibrar la necesidad de proteger los EMV de efectos negativos considerables con la necesidad de obtener información de tales efectos, es decir, si están ocurriendo o ya ocurrieron. En estas circunstancias, cualquier estrategia para evitar efectos negativos considerables en un EMV, como la delimitación clara de las áreas que deben cerrarse a la pesca, deberá ser formulada tomando en cuenta lo siguiente:

i) el grado en que la captura secundaria de los palangres es representativa del bentos afectado por los palangres no se conoce, pero el registro de taxones característicos de un EMV en la captura secundaria puede ser indicativo de la presencia de EMV (párrafo 10.22(iii));

ii) la realización de actividades de pesca de investigación en un área luego de ocurrida una captura abundante de bentos, para documentar mejor el EMV, depende de que la escala espacial del efecto de los palangres del lance de investigación sea menor que el área ocupada por el EMV, y de que éste último esté totalmente circunscrito por las actividades de pesca de investigación;

iii) el traslado del barco fuera del área después de una captura abundante de bentos podría resultar en una interpretación exagerada de la captura secundaria en el sentido de que se la podría considerar representativa de un EMV y suponer, erradamente, que la continuación de la pesca en el área dañaría el EMV;

iv) el requisito de utilizar palangres para circunscribir el EMV puede ser obviado utilizando otros métodos para observar el EMV (véase el párrafo 10.44).

10.39 Se indicó que la continuación de la pesca en áreas en las cuales existen indicios en la captura secundaria que apuntan a posibles interacciones con un EMV contradice la intención de proteger los EMV de efectos negativos considerables. Asimismo, la continuación de la pesca en un área donde se han encontrado indicios de la presencia de un EMV puede contravenir lo dispuesto en el párrafo 8 de la Medida de Conservación 22-06.

10.40 El grupo de trabajo reconoció este dilema, e indicó que no podía estimar en esta reunión el nivel de pruebas de la existencia de EMV que se requeriría para motivar acciones de parte de los distintos barcos. Convino que será importante cumplir plenamente con los requisitos relativos a la provisión de datos sobre la captura secundaria del bentos a fin de determinar recomendaciones específicas para cada barco sobre el nivel de activación. Otra estrategia distinta al nivel de activación específico para cada barco sería la identificación de las áreas que se deben cerrar a todos los barcos.

10.41 El grupo de trabajo señaló que el documento CCAMLR-XXVII/26 contenía datos para estudiar la ubicación de las capturas de taxones de EMV. Sin embargo, no dispuso de tiempo suficiente para hacer recomendaciones sobre las áreas que posiblemente deberían estar cerradas a la pesca durante la próxima temporada según la Medida de Conservación 22-06. El
grupo de trabajo expresó que el próximo año se deberá asignar tiempo para realizar estas evaluaciones, y alentó a los participantes a mejorar la cantidad y calidad de los datos pertinentes.

10.42 WG-FSA estuvo de acuerdo en que cualquiera que fuese la estrategia adoptada para el año próximo, será muy importante recopilar la máxima cantidad de datos de la captura secundaria del bento posible para efectuar el análisis el año próximo. También se reconoció que la experiencia del grupo especial WG-IMAF demostró la importancia de ciertos factores para la mitigación de la mortalidad incidental de aves marinas en las pesquerías, y que estos factores también serían importantes en la mitigación de los efectos negativos considerables en los EMV, y son:

i) la educación de las tripulaciones de los barcos que participan en las pesquerías exploratorias con artes de arrastres de fondo ayudará a aumentar la conciencia del valor de los EMV, en términos de la biodiversidad marina y como hábitats de comunidades de peces, y la importancia de desarrollar medidas de mitigación para evitar que sufran un daño considerable;

ii) el perfeccionamiento constante de métodos para reducir la frecuencia con que se pierden los artes de pesca que puedan tener un efecto en los EMV.

10.43 El grupo de trabajo señaló que sería útil realizar simulaciones de los distintos enfoques de gestión para evaluar si el traslado o la realización de estudios es más eficaz para evitar efectos negativos considerables en los EMV, dado que no hay información para juzgar cuál es la estrategia apropiada.

Efectos negativos considerables en los EMV

10.44 El grupo de trabajo indicó que el conocimiento sobre los EMV y los distintos efectos de las actividades de pesca de fondo aumentará con las observaciones realizadas con una gama de métodos: métodos acústicos, filmadoras de películas de vídeo, dispositivos de muestreo del bento como trineos y excavadoras, y observaciones de la captura secundaria de bentos en los artes de pesca. Estos métodos podrían ser utilizados en las pesquerías y en las operaciones independientes de la pesquería (investigaciones). Otros datos independientes de la pesquería podrían obtenerse de actividades científicas efectuadas con dispositivos para medir la conductividad, tiempo y profundidad (CTD por su sigla en inglés), sonar de haces múltiples y satélites.

10.45 El grupo de trabajo tomó nota de varias fuentes de información disponibles sobre la distribución y la abundancia de la fauna y los hábitats del bento en el Área de la Convención de la CCRVMA, incluidas:

i) la biorregionalización del bento adoptada por el Comité Científico de la CCRVMA en 2007 (SC-CAMLR-XXVI, párrafos 3.80 al 3.84), incluido el mapa de las características geomorfológicas en el Mar de Ross, el este de la Antártida y la gran plataforma de Kerguelén, que muestra, en particular, los montes marinos, los cañones y la gran variación de las áreas de la plataforma;

ii) datos e información en la base de datos de SCARMarBIN (www.scarmarbin.be);
iii) datos y análisis de regiones específicas del Océano Austral, incluidos:

a) mapas de los hábitats cerca del Glaciar Mertz (Beaman y Harris, 2005);

b) tipos de hábitats y su distribución general en la región sudoeste del Mar de Ross (Barry et al., 2003);

c) mapas de las características de los hábitats en la Península Antártica (Lockhart y Jones, 2008);

iv) análisis de la captura secundaria de bentos en la pesca de palangre en el Mar de Ross (CCAMLR-XXVII/26).

10.46 El grupo de trabajo observó que el conocimiento actual de la distribución de la fauna del bentos en el Océano Austral indica que el grado de endemismo podría ser alto, es decir, la distribución de algunos taxones podría estar limitada a ciertas localidades. Esto puede deberse a los ciclos de vidas y a la dispersión de la fauna antártica del bentos, es decir, si se trata de organismos reproductores incubadores o de organismos reproductores en aguas libres. El informe de biorregionalización de la CCAMLR (SC-CAMLR-XXVI, anexo 9; SC-CAMLR-XXVI, párrafos 3.71 al 3.89; SC-CAMLR-XXVI/11) indica que la mayoría de las especies se encontraban dentro de una cuadrícula, lo que indica que en esta escala particular las especies son endémicas (SC-CAMLR-XXVI, anexo 9, párrafos 129 y 130).

10.47 El grupo de trabajo indicó que no se debe concluir tan fácilmente que una especie es endémica a partir de sólo unas pocas muestras. Sin embargo, en este caso la denominación “ilegítima” de una especie como endémica resultaría en la protección de esos EMV hasta que se dispusiera de mayor información que, si demostrara que no se trata de una especie endémica, permitiría cesar la protección. Si no se otorgara protección y la especie fuese en realidad endémica, podría haber un daño considerable. En el caso de los montes marinos, hay cada vez más pruebas de que la fauna podría ser endémica de cada monte o de un grupo de montes marinos (Rogers, 2004).

10.48 El grupo de trabajo también reconoció que otros expertos ajenos a la labor de la CCRVMA podrían tener datos y conocimiento adecuados para la consideración de los EMV y de su vulnerabilidad. Indicó que los esfuerzos coordinados de CAML (www.caml.aq) y del API para tomar muestras de los hábitats del bentos a través de la Antártida podrían proporcionar información de utilidad para estos análisis, como el presentado al WG-FSA este año (SC-CAMLR-XXVII/13; WG-FSA-08/31). Se alentó la participación de SCAR en la provisión de información y de asesoramiento sobre estos temas.

10.49 El grupo de trabajo estuvo de acuerdo en que para elaborar un mapa que incorpore la evaluación de riesgo se necesitaba contar con un modelo de los tipos de hábitats asociados con características identificables en los conjuntos de datos que dan una cobertura sinóptica del Área de la Convención de la CCRVMA, incluidos los datos batimétricos, geomorfológicos, oceanográficos y satelitales. Si bien la implementación de tal modelo conllevaría cierta incertidumbre, es poco probable que se pueda algún día elaborar un mapa detallado de la distribución de los EMV a través de toda el Área de la Convención de la CCRVMA a partir de observaciones directas. Beaman y Harris (2005) proporcionan un ejemplo de este tipo de modelo para una región de la División 58.4.1. Este enfoque utiliza observaciones empíricas de la relación entre la biota y los atributos físicos y luego hace interpolaciones de dicha
relación a través del mapa sinóptico del medioambiente físico. Este proceso podría realizarse a través de programas de investigación en otras áreas. Otra alternativa sería desarrollar modelos teóricos de las relaciones a partir de los datos disponibles y, hasta que se realice el muestreo de un área, se podría extrapolar estos modelos a las áreas para las cuales se cuenta con algunos datos físicos sinópticos.

10.50 El grupo de trabajo convino en que se deberían utilizar las pruebas directas disponibles de la presencia de un EMV para elaborar mapas de evaluación del riesgo y para identificar los EMV que se deben evitar. Por consenso, se consideró que las pruebas conseguidas con filmadoras eran las de más peso en la identificación de los EMV pero que las pruebas obtenidas con los dispositivos de muestreo como los arrastres de vara, los trineos y las excavadoras darían indicaciones fidedignas de la presencia de taxones de EMV.

10.51 Como se describe arriba (párrafo 10.22(iii)), los arts de pesca probablemente son poco eficaces para tomar muestras de los taxones de EMV. El grupo de trabajo decidió que la presencia de estos taxones o de indicadores de EMV en muestras tomadas con cualquiera de estos métodos sería una prueba de la posible existencia de un EMV. Sin embargo, convino también en que la situación inversa - ausencia de taxones o de indicadores de EMV en las muestras – no sería necesariamente una prueba de que no había un EMV. El grado de certeza de esta conclusión dependería de la selectividad y de la eficacia de los arts empleados para el muestreo.

10.52 El grupo de trabajo señaló la falta de pruebas empíricas de la vulnerabilidad de los grupos taxonómicos del bentos a los distintos arts de pesca de fondo utilizados en las pesquerías exploratorias. En consecuencia, acordó que en primera instancia el mapa de evaluación de riesgo tendrá que depender de las opiniones de expertos sobre la vulnerabilidad y el posible efecto de los arts de pesca en los distintos tipos de hábitats y de EMV (WG-FSA-08/53, 08/64).

10.53 El grupo de trabajo indicó que sólo unos pocos expertos en la ecología del bentos participan en las reuniones, y que sería conveniente que se realizará un examen general de los temas relacionados con la ecología y la vulnerabilidad de los EMV en el Océano Austral. Hizo mención también de la discusión del tema en WG-EMM (anexo 4, párrafo 3.27 al 3.33).

10.54 El grupo de trabajo apoyó la opinión de WG-EMM de que convendría celebrar un taller de expertos para considerar los temas identificados en el párrafo 3.31 del anexo 4. Además, pidió que se incorporasen las siguientes preguntas en la discusión, tomando en cuenta los conceptos y las definiciones en su informe del año pasado (SC-CAMLR-XXVI, anexo 5, párrafos 14.4 al 14.6):

 i) A falta de observaciones directas de los EMV ¿cómo se podría elaborar mapas que indicaran la posible ubicación de los EMV?

 ii) ¿Cuáles son las características probables del ciclo de vida de los taxones representativos de estos EMV y, la consiguiente resistencia y capacidad de recuperación de estos EMV con respecto a los efectos negativos de la pesca de fondo, y cuál es la vulnerabilidad potencial de estos EMV a los distintos tipos de arts de pesca?
iii) ¿Hasta qué punto es limitada la distribución de los grupos taxonómicos del bentos?
iv) ¿Cuál es la posible importancia de los taxones de los EMV para las comunidades de peces y hasta qué grado se puede utilizar la diversidad de los peces como indicadores de la presencia de los EMV?

10.55 El grupo de trabajo estuvo de acuerdo en que la labor de identificación de los EMV y de adquirir conocimiento sobre el riesgo de que los EMV sufran un daño considerable a causa de las actividades de pesca de fondo podía separarse de la consideración de las medidas de mitigación y los planes de recopilación de datos. Pidió que el Comité Científico decidiera si WG-EMM podría encargarse de la consideración de los EMV y del riesgo, y que WG-FSA se encargara de la consideración de las medidas de mitigación.

10.56 El documento SC-CAMLR-XXVII/13 describe los EMV identificados por Australia durante la campaña CEAMARC-CASO, parte de la labor de Australia durante el API. Se muestrearon ochenta y nueve estaciones con varios métodos, incluidos artes de pesca de arrastre equipados con filmadoras digitales y/o máquinas fotográficas fijas, en la plataforma continental y el talud de las Tierras de Jorge V y de Adelía al oeste del Glaciar Mertz. El documento identificó a dos de las estaciones como EMV. La estación 65 estaba ubicada entre 523 y 827 m en la cabeza de un sistema de cañones que va hacia la plataforma, y demostró tener un hábitat biogénico extenso compuesto de hidrocorales, esponjas y bryozoos erectos. Igualmente, la estación 79–81 estaba ubicada en la cabeza de un sistema de cañones más al oeste, entre los 436 y 844 m, y tenía un hábitat biogénico extenso con esponjas de gran tamaño, hidrocorales y bryozoos erectos. El grupo de trabajo vio una película de video de las áreas descritas.

10.57 El grupo de trabajo estuvo de acuerdo en que estos casos representaban sin lugar a dudas EMV, con claros indicios de la existencia de comunidades bentónicas bien desarrolladas.

10.58 El Dr. Ramm presentó el borrador del formulario para la notificación de los EMV elaborado por la Secretaría sobre la base de los requisitos de la Medida de Conservación 22-06 y la tabla de notificación presentada en SC-CAMLR-XXVII/13. Se diseñó de tal manera que los miembros podrían presentarlo como parte del sistema de notificación de datos cada cinco días durante las operaciones de pesca, pero también podría ser utilizado por los miembros que realicen actividades de investigación.

10.59 El grupo de trabajo agradeció a la Secretaría por la elaboración del formulario y recomendó que se utilizara para notificar a la Secretaría cualquier indicio de la presencia de un EMV. Indicó que el tipo de información que se podría incluir en el formulario posiblemente sería diferente de los datos recopilados por los observadores. No obstante, el grupo de trabajo estuvo de acuerdo en que los miembros podrán recopilar otros datos e información no recogida por los observadores y que pudiera ser útil para notificar la presencia de un EMV.

10.60 El grupo de trabajo pidió que el Comité Científico considere el método para revisar dichas notificaciones y el proceso a seguir para incorporar un nuevo EMV al registro de los
mismos. Asimismo, preguntó al Comité Científico si se esperaba que el WG-FSA fuese el grupo encargado de la realización de las revisiones. El grupo de trabajo indicó que es posible que los requisitos para proteger los EMV cambien a medida que se dispone de más información, en particular, datos sobre la extensión de las áreas ocupadas por los EMV y la vulnerabilidad de los mismos a la pesca.

Asesoramiento al Comité Científico

Guías

10.61 El grupo de trabajo recomendó que el Comité Científico considerara lo siguiente al brindar su asesoramiento a la Comisión de acuerdo con la petición expresa da por ésta en los párrafos 5.13 al 5.15 de CCAMLR-XXVI.

10.62 El grupo de trabajo estuvo de acuerdo en que una prueba de la efectividad de tales guías sería si se evitan efectos negativos considerables en un EMV mientras se formulan y perfeccionan el asesoramiento científico y los enfoques de gestión.

Identificación de EMV

10.63 El grupo de trabajo señaló a la atención del Comité Científico los párrafos 10.44 al 10.55 donde figuran sus deliberaciones sobre el proceso de identificación de un EMV.

10.64 Existe suficiente información acerca de la distribución y abundancia de los taxones del bentos en el Océano Austral como para confeccionar mapas de la distribución de algunos de los taxones (párrafo 10.45). Se señaló que podría haber un alto grado de endemismo, especialmente en los montes marinos (párrafo 10.46 y 10.47). También se indicó que podría haber otras fuentes de datos sobre la distribución de los EMV y de los taxones de EMV, como por ejemplo, los datos de campañas recientes del API y CAML (párrafo 10.48). No obstante, el grupo de trabajo estuvo de acuerdo en que la distribución general de los EMV en el Océano Austral tendría que inferirse aplicando modelos de los hábitats (párrafo 10.49). Éstos podrían utilizarse para elaborar mapas de evaluación del riesgo para predecir el grado de riesgo de que se dañen los EMV en distintas localidades de pesca.

10.65 El grupo de trabajo convino en que, cuando se disponga de pruebas directas de la presencia de un EMV, éstas se deberían utilizar para elaborar mapas de evaluación del riesgo y para identificar los EMV que se deben evitar (párrafo 10.50). Se reconoció que las pruebas conseguidas con filmadoras eran las de más peso en la identificación de los EMV pero que las pruebas obtenidas con los dispositivos de muestreo como los arrastres de vara, los trineos y las excavadoras darían indicaciones fidedignas de la presencia de taxones dentro de un EMV.

10.66 Como se describe en el párrafo 10.51, los artes de pesca probablemente sean poco eficaces para tomar muestras de los taxones de un EMV. El grupo de trabajo estuvo de acuerdo en que la presencia de estos taxones o de indicadores de un EMV en muestras tomadas con cualquiera de estos métodos sería un indicio de la posible existencia de un EMV. Sin embargo, convino también en que la situación inversa – ausencia de taxones o de
indicadores de un EMV en las muestras – no sería necesariamente un indicio de que no hay un EMV. El grado de certeza de esta conclusión dependería de la selectividad y de la eficacia de los artes empleados para el muestreo.

10.67 El grupo de trabajo notó en el párrafo 10.52 la falta de pruebas empíricas de la vulnerabilidad de los taxones del bentos a los distintos artes de pesca de fondo utilizados en las pesquerías exploratorias. En consecuencia, acordó que en primera instancia el mapa de evaluación de riesgo tendría que depender de las opiniones de expertos sobre la vulnerabilidad y el posible efecto de los artes de pesca en los distintos tipos de hábitats y en los EMV.

10.68 El grupo de trabajo estuvo de acuerdo en apoyar la opinión del WG-EMM de que convendría celebrar un taller de expertos para considerar los temas identificados en el párrafo 3.31 de anexo 4 (párrafo 10.54). Además, pidió que se incorporaran las siguientes preguntas en la discusión, tomando en cuenta los conceptos y las definiciones en su informe del año pasado (SC-CAMLR-XXVI, anexo 5, párrafos 14.4 al 14.6):

i) A falta de observaciones directas de los EMV ¿cómo se podría elaborar mapas que indicaran la posible ubicación de los EMV?

ii) ¿Cuáles son las características probables del ciclo de vida de los taxones representativos de estos EMV y, la consiguiente resistencia y capacidad de recuperación de estos EMV con respecto a los efectos negativos de la pesca de fondo, y cuál es la vulnerabilidad potencial de estos EMV a los distintos tipos de artes de pesca?

iii) ¿Hasta qué punto estaría limitada la distribución de los grupos taxonómicos del bentos?

iv) ¿Cuál es la posible importancia de los taxones de los EMV para las comunidades de peces y hasta qué grado se puede utilizar la diversidad de los peces como indicadores de la presencia de los EMV?

10.69 El grupo de trabajo estuvo de acuerdo en que la labor de identificación de los EMV y reconocimiento del riesgo de que los EMV sufran un daño considerable a causa de las actividades de pesca de fondo podía separarse de la consideración de las medidas de mitigación y los planes de recopilación de datos (párrafo 10.55). Pidió que el Comité Científico considerara si WG-EMM podría encargarse de la consideración de los EMV y del riesgo, y el WG-FSA de la consideración de las medidas de mitigación.

Medidas a tomar por los barcos de pesca que encuentran EMV

10.70 El grupo de trabajo señaló a la atención del Comité Científico sus deliberaciones en los párrafos 10.29 al 10.43 para definir las medidas a ser tomadas por los barcos que encontrarán pruebas de la existencia de un EMV durante el curso de la pesca. Los resultados se describen en más detalle en las secciones sobre la aplicación de la Medida de Conservación 22-06.
Asesoramiento sobre las tareas de la Medida de Conservación 22-06

10.71 Se proporciona el siguiente asesoramiento al Comité Científico sobre las tareas identificadas en la Medida de Conservación 22-06.

Asesoramiento sobre las evaluaciones preliminares y medidas de mitigación presentadas por los miembros

10.72 De conformidad con las solicitudes descritas en el párrafo 7 de la Medida de Conservación 22-06, en los párrafos 10.24 al 10.28 el grupo de trabajo revisó las evaluaciones preliminares y las medidas de mitigación presentadas por los miembros que tenían intenciones de participar en la pesca de fondo. El grupo de trabajo observó que sólo 5 de las 12 propuestas contenían evaluaciones preliminares. En consecuencia, el grupo de trabajo no pudo examinar ni asesorar sobre los posibles efectos de todas las pesquerías nuevas y exploratorias propuestas.

10.73 El grupo de trabajo observó la gran variación en el contenido de las evaluaciones preliminares y estuvo de acuerdo en que se necesita un enfoque común para la presentación de dichas evaluaciones, similar a los requisitos para la notificación de pesquerías exploratorias (párrafo 10.25). El grupo de trabajo recomendó que el Comité Científico adoptara el formulario propuesto, descrito en el párrafo 10.25 y presentado en la tabla 20, como estándar adecuado para que los miembros presentaran evaluaciones preliminares de la posibilidad de que las actividades de pesca de fondo que proyectan realizar tengan efectos negativos considerables en los EMV. Se diseñó el formulario para que fuera compatible con los requisitos para la presentación de notificaciones de pesquerías exploratorias y se basara en los requisitos dispuestos en el párrafo 7(i) y 7(ii) de la Medida de Conservación 22-06. Otras consideraciones sobre el tema figuran en el párrafo 10.26.

Asesoramiento sobre los procedimientos y normas para evaluar los posibles efectos de las propuestas y de posibles medidas de mitigación

10.74 El grupo de trabajo indicó que se había encomendado al Comité Científico la tarea de examinar, refinar y, en la medida que se necesitara, desarrollar procedimientos y estándares para evaluar los posibles efectos de las propuestas y de posibles medidas de mitigación (Medida de Conservación 22-06, párrafo 7(iii)). El grupo de trabajo consideró tres tipos de procedimientos y enfoques:

i) la magnitud de la huella dejada actualmente por las pesquerías de fondo con relación a la Medida de Conservación 22-06 y los posibles efectos que esta huella podría tener en los EMV (párrafos 10.9 al 10.23);

ii) el riesgo de que las actividades de pesca de fondo pasadas y futuras, contribuyan a producir un efecto perjudicial considerable en los EMV (párrafos 10.29 al 10.31, 10.49 y 10.50);

iii) enfoques para desarrollar medidas de mitigación para los barcos (párrafos 10.32 al 10.43).
10.75 Se utilizaron dos enfoques para examinar la huella actual de las pesquerías de fondo. En el párrafo 10.17, el grupo de trabajo revisó y modificó el análisis de la huella efectiva de la pesca realizado en 2007. En vez de presentar la captura en las distintas áreas de ordenación, se resume el esfuerzo acumulado (en miles de anzuelos) en mapas para cada subárea y división para el período 1985–2007 y para 2008 por separado. El grupo de trabajo observó que en los próximos años sería conveniente graficar los límites geográficos de las UIPE y de las subáreas y divisiones.

10.76 En el párrafo 10.18, el grupo de trabajo convino en que las evaluaciones a las cuales se debe prestar mayor atención son las de los efectos potenciales de la pesca de fondo en los EMV presentes en caladeros donde se aplica el mayor esfuerzo pesquero en relación al área de lecho marino. También se reconoció que se debe distinguir entre el esfuerzo aplicado en áreas de poca profundidad y el aplicado en áreas más profundas. A falta de otra información, los mapas del esfuerzo por cuadrículas en cada subárea/división proporcionan una indicación de dónde se ha aplicado el mayor esfuerzo de pesca. Esto puede combinarse con estimaciones del área de lecho marino explotable para calcular la proporción del área explotable posiblemente afectada por los artes de pesca.

10.77 Las proporciones del área de lecho marino que podrían haber sido afectadas por los palangres fueron calculadas utilizando un valor bajo y uno alto para el ancho estimado del área afectada por un solo palangre – 1 m (de acuerdo con CCAMLR-XXVII/19) y 25 m (de acuerdo con WG-FSA-08/58). Los fundamentos sobre los cuales se basaron estos valores figuran en los párrafos 10.9 al 10.12.

10.78 En el párrafo 10.19, el grupo de trabajo convino en que este enfoque serviría de base para proporcionar asesoramiento sobre la escala actual de las posibles interacciones de los artes de pesca con los EMV en las pesquerías exploratorias de palangre.

10.79 El grupo de trabajo recomendó que se obtuvieran datos actualizados de fuentes fiables sobre el área de lecho marino para los tres estratos de profundidad de todas las UIPE (párrafo 10.20).

10.80 El grupo de trabajo indicó en el párrafo 10.21 que estos datos podrían ser utilizados para evaluar, de conformidad con la Medida de Conservación 22-06, los posibles efectos de las actividades de pesca propuestas en distintas áreas. Sin embargo, no se cuenta con suficiente información sobre las áreas que se propone explotar durante las pesquerías exploratorias a realizarse próximamente para hacer recomendaciones sobre cuáles serían los posibles efectos en los EMV.

10.81 El grupo de trabajo también señaló a la atención del Comité Científico los aspectos generales de estos métodos indicados en el párrafo 10.22:

i) estos análisis deberán tener en cuenta la posibilidad de que los palangres se solapen, como sería el caso en lances múltiples, y que en este caso se deberá considerar si el mayor efecto de la pesca ocurre durante el primer lance, teniendo los subsiguientes un efecto insignificante (sin embargo, véanse las conclusiones en CCAMLR-XXVII/19);
ii) la magnitud del efecto dentro de la huella es difícil de evaluar debido a la falta de datos empíricos sobre el efecto de los distintos tipos de palangres en los hábitats del bentos y en los grupos taxonómicos de EMV (párrafo 10.16). El grupo de trabajo estuvo de acuerdo en que se necesitaba trabajar en el futuro para obtener datos empíricos a fin de reducir esta incertidumbre sobre la magnitud del efecto de un solo palangre. Asimismo, se deben refinar las metodologías y los cálculos para determinar la huella (área) de los distintos tipos de palangre (párrafos 10.11 al 10.14) y para estimar el posible efecto en los taxones de los EMV dentro de dicha huella, como se describe en los párrafos 10.9 y 10.10;

iii) la captura secundaria observada de los palangres podría no ser una buena indicación de las interacciones del arte con los EMV (párrafo 10.11) porque los grupos taxonómicos afectados por los palangres pueden no aparecer en la captura secundaria subida a bordo. Por lo tanto, la ausencia de captura secundaria no necesariamente significa que no ha habido una interacción con un EMV. Sin embargo, la presencia de taxones de EMV en la captura secundaria podría indicar la presencia de un EMV. Si bien por el momento no se pueden utilizar las tasas de captura de los taxones de EMV, se podrían utilizar en el futuro para estimar la escala del efecto en los EMV, siempre que se pudiera determinar la capturabilidad de cada grupo taxonómico de los EMV.

10.82 El grupo de trabajo concluyó la discusión en el párrafo 10.23, indicando que la reducción de la incertidumbre de las evaluaciones del efecto acumulado y de la posibilidad de que las actividades de pesca propuestas tengan un efecto negativo en el futuro dependerá del refinamiento de los métodos para evaluar la huella de la pesca y del desarrollo de evaluaciones de riesgo en distintas áreas.

Estrategias de evaluación de riesgo

10.83 El grupo de trabajo acordó que sería útil contar con un método de evaluación de riesgo similar al utilizado por el grupo especial WG-IMAF, y que se podría seguir mejorando más el método considerado en los párrafos 10.29 y 10.30 en este sentido. Señaló que el riesgo de que ocurriesen efectos negativos considerables debiera evaluarse en escalas espaciales conmensurables con el área ocupada por el EMV, es decir, que se requiere una escala espacial mucho menor que la considerada por WG-IMAF. Los elementos de importancia en una evaluación de riesgo incluirían, inter alia, los siguientes conceptos:

i) No todas las áreas tienen igual probabilidad de contener un EMV que pueda ser afectado, pero la información necesaria para evaluar esta probabilidad es muy limitada.

ii) Es posible formular modelos de hábitats potencialmente vulnerables en base a datos geomorfológicos, oceanográficos y medioambientales y relacionar éstos con las observaciones de los lugares donde se encuentran los distintos grupos taxonómicos de EMV. Las observaciones podrían ser directas (con filmadoras, o equipos de muestreo del bentos) o indirectas, como la captura secundaria en las pesquerías.
iii) La escala apropiada para caracterizar el riesgo sería una cuadrícula de 0.5° de latitud por 1.0° de longitud, en concordancia con las áreas en escala fina de la CCRVMA.

iv) Las distintas áreas tendrán distinto nivel de riesgo, por ejemplo, áreas de alto riesgo podrían ser los montes marinos, la cabeza de los cañones y el estrato de profundidad hasta los 550 m.

v) Habrá distintas necesidades relativas a la recopilación de datos, las investigaciones y la mitigación para distintos artes de pesca y niveles de riesgo.

vi) La evaluación y clasificación del riesgo deberá ser revisada a medida que se disponga de nueva información.

10.84 El grupo de trabajo no pudo elaborar un mapa que incorporase la evaluación del riesgo para proporcionar recomendaciones en esta reunión sobre el posible efecto de las actividades de pesca propuestas, pero recomendó que se continúe desarrollando el enfoque para la próxima reunión de WG-FSA, en base a las consideraciones de los párrafos 10.29 y 10.30 y en el taller recomendado en el párrafo 10.68.

10.85 El grupo de trabajo convino en el párrafo 10.50 que se deberían utilizar las pruebas directas disponibles de la presencia de un EMV para elaborar mapas de evaluación de riesgo y para identificar los EMV que se deben evitar.

10.86 El grupo de trabajo señaló en el párrafo 10.52 la falta de pruebas empíricas de la vulnerabilidad de los grupos taxonómicos del bento a los distintos artes de pesca de fondo utilizados en las pesquerías exploratorias. En consecuencia, acordó que en primera instancia el mapa de evaluación de riesgo tendría que depender de las opiniones de expertos sobre la vulnerabilidad y el posible efecto de los artes de pesca en los distintos tipos de hábitats y de EMV. Esto sería facilitado por el taller recomendado en el párrafo 10.68.

10.87 Al considerar el desarrollo de medidas de mitigación, el grupo de trabajo señaló que éstas pueden dividirse naturalmente en tres clases principales – actividades de los observadores, respuestas de los barcos y requerimientos relativos a la notificación de información (párrafo 10.32).

10.88 El grupo de trabajo estuvo de acuerdo en que las observaciones de la captura secundaria del bentos serán importantes en el año próximo y recomendó (párrafo 10.33) tomar varias medidas. Asimismo, señaló que convendría que los observadores obtuvieran información sobre el funcionamiento del arte de pesca y datos para elaborar protocolos del seguimiento. Sin embargo, dado el recargado volumen de trabajo de los observadores, se consideró que esto tendría menor prioridad en el año próximo (párrafo 10.34).

Medidas de mitigación

10.89 El grupo de trabajo señaló a la atención del Comité Científico su consideración de la manera en que los barcos debieran responder cuando encuentren indicios de un EMV (párrafos 10.36 al 10.40). En el párrafo 10.36, el grupo de trabajo convino en que se necesitaba una estrategia común con variaciones específicas según el arte de pesca. Sin
embargo, no hubo suficiente información para acordar una estrategia ni para determinar el tipo y el nivel de captura secundaria que activaría una intervención, ni la naturaleza exacta de las medidas que se tendrían que tomar. Se propuso que estos temas fuesen resueltos en un taller sobre los EMV recomendado en el párrafo 10.68.

10.90 En el párrafo 10.37, el grupo de trabajo observó la expectativa general de que los miembros notificaran el hallazgo de un EMV por parte de sus barcos. Sin embargo, las notificaciones variaron con respecto a los indicios que fueron considerados suficientes para notificar el hallazgo. No obstante, los datos de observación deberán ser notificados junto con los datos necesarios para las evaluaciones preliminares que los miembros deben presentar de acuerdo con la Medida de Conservación 22-06.

10.91 Un aspecto difícil de la discusión fue la necesidad de equilibrar la necesidad de proteger los EMV de efectos negativos considerables con la necesidad de obtener información de tales efectos, es decir, si están ocurriendo o ya ocurrieron. En estas circunstancias, cualquier estrategia para evitar efectos negativos considerables en un EMV, como la delimitación clara de las áreas que se deben evitar, deberá ser formulada tomando en cuenta los puntos descritos en el párrafo 10.38.

10.92 El grupo de trabajo indicó que la pesca está prohibida en todas las áreas de profundidad menor que 550 m en las Divisiones 58.4.1 y 58.4.2 (Medidas de Conservación 41-04 y 41-05) debido al alto riesgo para los hábitats del bentos (párrafo 10.83(iv)).

10.93 Se indicó en el párrafo 10.39 que la continuación de la pesca en áreas en las cuales existen indicios en la captura secundaria que apuntan a posibles interacciones con un EMV contradice la intención de proteger los EMV de efectos negativos considerables. Asimismo, la continuación de la pesca en un área donde se han encontrado indicios de la presencia de un EMV puede contravenir lo dispuesto en el párrafo 8 de la Medida de Conservación 22-06.

10.94 El grupo de trabajo reconoció este dilema (párrafo 10.40) e indicó que no podía estimar en esta reunión el nivel de pruebas de la existencia de EMV que se requeriría para motivar acciones de parte de los distintos barcos. Convino que será importante cumplir plenamente con los requisitos relativos a la provisión de datos sobre la captura secundaria del bentos a fin de determinar recomendaciones específicas para cada barco sobre el nivel de activación. Otra estrategia distinta al nivel de activación específico para cada barco sería la identificación de áreas que se deben cerrar a todos los barcos (véase el párrafo 10.97).

10.95 En el párrafo 10.43, el grupo de trabajo señaló que sería útil realizar simulaciones de los distintos enfoques de gestión para evaluar si el traslado o la realización de estudios es más eficaz para evitar efectos negativos considerables en los EMV, dado que no hay información para juzgar cuál es la estrategia apropiada.

Asesoramiento sobre la identificación de EMV

10.96 Además del siguiente asesoramiento, el grupo de trabajo señaló a la atención del Comité Científico su asesoramiento sobre la identificación de EMV en los párrafos 10.63 al 10.69 para la consideración del requisito del párrafo 12 de la Medida de Conservación 22-06.
10.97 El grupo de trabajo señaló en el párrafo 10.41 que el documento CCAMLR-XXVII/26 contenía datos para estudiar la ubicación de las capturas de taxones de EMV. Sin embargo, no dispuso de tiempo suficiente para hacer recomendaciones sobre las áreas que posiblemente deberían estar cerradas a la pesca durante la próxima temporada según la Medida de Conservación 22-06. El grupo de trabajo expresó que el próximo año se deberá asignar tiempo para realizar estas evaluaciones, y alentó a los participantes a mejorar la cantidad y calidad de los datos pertinentes.

10.98 El grupo de trabajo consideró dos notificaciones de EMV en la División 58.4.1 (SC-CAMLR-XXVII/13) en los párrafos 10.56 al 10.57, y convino en que estos casos representaban sin lugar a dudas EMV, con claros indicios de la existencia de comunidades bentónicas bien desarrolladas.

10.99 En los párrafos 10.58 y 10.59, el grupo de trabajo consideró un borrador del formulario para la notificación de los EMV elaborado por la Secretaría siguiendo los requisitos de la Medida de Conservación 22-06 y la tabla de notificación presentada en SC-CAMLR-XXVII/13. Se diseñó de tal manera que los miembros podrían presentarlo como parte del sistema de notificación de datos cada cinco días durante las operaciones de pesca, y también podría ser utilizado por los miembros que realicen actividades de investigación. El grupo de trabajo recomendó que se utilizara para notificar a la Secretaría cualquier indicio de la presencia de un EMV.

10.100 En el párrafo 10.60, el grupo de trabajo pidió que el Comité Científico considerara el método para revisar dichas notificaciones y el proceso a seguir para incorporar un nuevo EMV al registro de los mismos. Asimismo, preguntó al Comité Científico si se esperaba que el WG-FSA fuese el grupo encargado de la realización de las revisiones. El grupo de trabajo indicó que es posible que los requisitos para proteger a los EMV cambien a medida que se dispone de más información, en particular, de datos sobre la extensión de las áreas ocupadas por los EMV y de la vulnerabilidad de los mismos a la pesca.

Asesoramiento sobre efectos conocidos y previstos

10.101 Sobre la base de sus deliberaciones de los párrafos 10.9 al 10.22, el grupo de trabajo indicó que no podía proporcionar asesoramiento este año sobre hallazgos reales o potenciales de EMV en el transcurso de la pesca de palangre exploratoria, o sobre los efectos conocidos y previstos, pero que algunos estratos de profundidad en algunas UIPE podrían haber experimentado niveles de interacción con artes de pesca de fondo más altos que otras zonas de la Subárea 88.1.

10.102 En el párrafo 10.28, el grupo de trabajo convino en que no se dispone de datos empíricos para determinar cuál sería el efecto de las actividades propuestas en los EMV dentro del Área de la Convención, y si habría un solapamiento entre dichas actividades y los EMV.

10.103 El grupo de trabajo recomendó preparar un informe, similar a los informes de pesquerías, sobre “Pesquerías de fondo y ecosistemas marinos vulnerables”, para recopilar la información existente sobre EMV, el potencial de efectos adversos considerables, las evaluaciones de riesgo y los posibles efectos ocasionados por la pesca de fondo. Dado el gran
volumen de trabajo que esto implicaría y las diversas especialidades científicas necesarias para redactar las distintas secciones de un informe tal, el grupo de trabajo indicó que tal vez no conviniera que el WG-FSA fuera el único responsable de su preparación y actualización. Solicitó al Comité Científico que considerara qué se necesitaría en un informe tal para satisfacer los requisitos de la Comisión y cómo se podría emprender esta labor.

Asesoramiento sobre las prácticas

cuando hay indicios de la presencia de EMV

10.104 Con respecto a los párrafos 7(iii) y 9 de la Medida de Conservación 22-06, el grupo de trabajo no pudo proporcionar asesoramiento para la temporada 2008–2009 sobre prácticas específicas cuando hay indicios de la presencia de un EMV durante actividades de pesca de fondo, pero señaló a la atención del Comité Científico las deliberaciones de los párrafos 10.32 al 10.43.

Asesoramiento sobre otras medidas de mitigación

10.105 Con respecto al párrafo 7(iii) de la Medida de Conservación 22-06, el grupo de trabajo no proporcionó asesoramiento sobre otras medidas de mitigación para la temporada 2008/09.

Asesoramiento sobre planes de investigación y recopilación de datos

10.106 Con respecto a los planes de investigación y la recopilación de datos para pesquerías de fondo reglamentadas por la Medida de Conservación 22-06, el grupo de trabajo estuvo de acuerdo en que cualquiera que fuese la estrategia adoptada para el año próximo, será importante recopilar la máxima cantidad de datos de la captura secundaria del bentos posible para efectuar un análisis el año próximo (párrafo 10.42). También se reconoció que la experiencia del grupo especial WG-IMAF demostró que los siguientes factores eran importantes para la mitigación de la mortalidad incidental de aves marinas en las pesquerías, y también lo serían para la mitigación de efectos negativos considerables en los EMV (párrafo 10.42):

i) la educación de las tripulaciones de los barcos que participan en las pesquerías exploratorias con artes de arrastres de fondo ayudará a aumentar la conciencia del valor de los EMV, en términos de la biodiversidad marina y como hábitats de comunidades de peces, y la importancia de desarrollar medidas de mitigación para evitar que sufran un daño considerable;

ii) el perfeccionamiento constante de métodos para reducir la frecuencia con que se pierden los artes de pesca que puedan tener un efecto en los EMV.

10.107 El grupo de trabajo estuvo de acuerdo en que convendría que los observadores proporcionaran información sobre lo siguiente (párrafo 10.33):
i) los tipos de grupos taxonómicos subidos a bordo en la captura secundaria y la ubicación de la captura, identificándose estos grupos por lo menos a nivel de los tipos morfológicos descritos en el afiche elaborado por Nueva Zelandia (párrafo 6.45);

ii) el número, y cuando sea posible, el peso total de cada taxón subido a bordo;

iii) información sobre el posible origen geográfico de los taxones – teniendo en cuenta que las observaciones por anzuelo o por bandeja podrían relacionarse a la posición geográfica de la línea en el sustrato, si bien esto requeriría que se proporcionara al observador un GPS de mano para registrar la posición del barco cuando se sube un ejemplar de un taxón a bordo;

iv) en el futuro, la información sobre la captura de tipos específicos de grupos taxonómicos requerirá un mayor grado de detalle, no obstante se reconoció que por el momento, se deberán registrar todos los grupos taxonómicos subidos a bordo y que la información presentada por los observadores deberá ser lo más completa posible para los períodos de observación.

10.108 El grupo de trabajo desea señalar a la atención del Comité Científico el párrafo 10.27 que identifica la necesidad de mejorar la presentación de datos de la captura secundaria de bentos para que éstos se puedan utilizar en los análisis de la interacción de actividades de pesca de fondo con EMV.

General

10.109 El grupo de trabajo manifestó que, a falta de (i) observaciones directas del efecto del arte de pesca, (ii) censos de la distribución y de la abundancia de los hábitats del bentos, y (iii) una evaluación de las consecuencias ecológicas de los efectos de la pesca en esos hábitats y procesos ecológicos críticos, se necesita adoptar una estrategia precautoria que evite satisfactoriamente todo impacto adverso considerable en los EMV, mientras se realizan evaluaciones del efecto y se formulen estrategias de mitigación a largo plazo. El grupo de trabajo señaló además que se necesita considerar los siguientes temas en la elaboración de una estrategia tal:

i) Se cree que muchos de los taxones de EMV son sésiles, de lento crecimiento y larga vida, lo que implica que si estos taxones comienzan a agotarse, habrá pocas probabilidades de que se recuperen en dos o tres décadas como lo especifica el Artículo II. Por lo tanto, el escape de taxones de EMV a la influencia de la pesca es una importante consideración en el mantenimiento de EMV viables.

ii) Se necesita adoptar estrategias precautorias para evitar efectos adversos considerables en los EMV y aquellos taxones de EMV de distribución limitada, por ejemplo, taxones endémicos.

iii) Se necesitará efectuar una recopilación de datos controlada, compatible con el enfoque precautorio.
iv) Es poco probable que un solo evento de pesca cause efectos adversos considerables en los EMV, no obstante, el efecto acumulativo entre evaluaciones y decisiones de ordenación podría dar origen a efectos adversos considerables. Se necesitan estrategias para limitar los efectos acumulativos entre evaluaciones ya que a la larga será un solo evento de pesca el que cause el efecto adverso considerable en el transcurso de un periodo de pesca entre evaluaciones.

v) Entre las estrategias provisorias se pueden incluir:

a) cierres en gran escala de áreas con una probabilidad razonable de que contengan EMV representativos;

b) cierres en pequeña escala de áreas basados en la captura secundaria de bentos limitada durante las operaciones de pesca, tomando en cuenta que el bentos afectado por los sistemas de palangre posiblemente no esté bien representado en la captura secundaria subida a bordo;

c) cierres temporarios como en (b) mientras se realicen estudios para establecer la extensión espacial de los hábitats y los EMV.

vi) Sin el conocimiento adecuado, será muy difícil predecir cuándo se producirá una acumulación de las consecuencias de la pesca de fondo tal que cause efectos adversos considerables en los EMV. Bajo tales circunstancias, los efectos adversos considerables tal vez no sean detectados hasta después que se hayan hecho evidentes.

vii) Si las actividades de pesca deben coincidir considerablemente con zonas donde existen EMV debido a la distribución de peces, el escape de los EMV tendrá que ser mayor de lo previsto. Esto se debe a que se necesita prever consecuencias inadvertidas en los EMV que pudieran acumularse y causar efectos adversos considerables.

Interacciones con WG-EMM

10.110 Las deliberaciones sobre este asunto aparecen en la sección 9.

Formulación de modelos de ecosistema

10.111 WG-EMM-08/42 informa sobre el progreso alcanzado en la formulación de un modelo trófico del flujo del carbono con balance de masa del Mar de Ross, que representa un paso más hacia la investigación de los efectos de la pesquería de D. mawsoni en el ecosistema. El grupo de trabajo tomó nota de las deliberaciones de WG-EMM sobre este documento, en los párrafos 6.6 y 6.7 del anexo 4, y subrayó la importancia del trabajo que será considerado en FEMA2 (párrafos 13.12 al 13.17).
11.1 Se asignaron observadores científicos en todos los barcos de todas las pesquerías de peces realizadas en el Área de la Convención de conformidad con el Sistema de Observación Científica Internacional de la CCRVMA.

11.2 La información recopilada por los observadores científicos se resume en WG-FSA-08/5 Rev. 1, 08/6 Rev. 1, 08/7 Rev. 2 y en 08/8.

11.3 En la temporada de 2007/08 se realizaron las siguientes campañas:

i) Pesca de palangre: se efectuaron 40 campañas con observadores científicos (internacionales y nacionales) a bordo de todos los barcos. Se llevaron a cabo 11 campañas en la Subárea 48.3 con 10 barcos, dos campañas en la Subárea 48.4 con dos barcos, nueve campañas en las Divisiones 58.4.1, 58.4.2, 58.4.3a y 58.4.3b con ocho barcos, cuatro en la División 58.5.2 con dos barcos, una en las Subáreas 58.6 y 58.7 y 13 en las Subáreas 88.1 y 88.2 con 13 barcos. Además se realizó una campaña en el Área 51, fuera del Área de la Convención.

ii) Pesca de arrastre de peces: cinco barcos realizaron nueve campañas de arrastre de peces. Todos los arrastreros participantes en estas pesquerías llevaron observadores científicos a bordo. En total, se designaron tres observadores científicos nacionales y seis internacionales para participar en estas operaciones.

iii) Pesca de arrastre de kril: un observador científico nacional y siete observadores científicos internacionales llevaron a cabo ocho programas de observación a bordo de barcos de pesca de kril que operaron en el Área de la Convención. Todos los arrastres de kril observados se realizaron en el Área 48, cuatro campañas se efectuaron en las Subáreas 48.1 y 48.2 y cuatro en la Subárea 48.3. Se efectuó un total de 3 935 arrastres, de los cuales se observaron 314 (8%). La mayoría de estos arrastres fueron efectuados de acuerdo con el método de bombeo continuo, donde un arrastre continuo se divide en períodos de dos horas. (Para ver la explicación de esta tasa de observación aparentemente tan baja, véase anexo 6, párrafo 2.21).

iv) Se efectuaron tres campañas de pesca con nasas de *D. eleginoides* en la temporada 2007/08. Todas las campañas fueron realizadas en la Subárea 48.3, dos de ellas por el barco de pabellón coreano *Jung Woo No. 2* y una por el barco uruguayo *Punta Ballena*. Todos los viajes llevaron observadores científicos internacionales a bordo.

11.4 El grupo de trabajo examinó el informe de la primera reunión del grupo especial TASO llevada a cabo en San Petersburgo, Rusia, el 19 y 20 de julio de 2008 (SC-CAMLR-XXVII/BG/6), y consideró diversos asuntos que le fueron remitidos por TASO.

i) Caracterización del arte de pesca:

a) La descripción detallada del arte de pesca por lance es esencial para el análisis adecuado de los datos de captura y esfuerzo.
b) Se propone transferir la responsabilidad de la presentación de estos datos del observador al barco, y hacer los cambios adecuados al formulario C2 para permitir que los barcos puedan presentar esta información por lance. No obstante, el observador debe de todas maneras hacer comentarios sobre las características generales del arte utilizado en el informe final y en el cuaderno de observación.

c) No existe suficiente información sobre el grado de variabilidad de los distintos tipos de arte, especialmente de las líneas artesanales, para reflejar todos los parámetros que pudieran ser importantes para la normalización de la CPUE de los distintos tipos de arte. El grupo de trabajo pidió que todos los barcos incluyan descripciones detalladas del arte que piensan utilizar en la notificación de su intención de pescar. El grupo de trabajo reconoció que este tipo de datos son importantes desde el punto de vista comercial, y que todos los datos de la pesca y de observación son mantenedos en la base de datos de la CCRVMA observando su confidencialidad. El acceso a los datos está regulado por las Normas de Acceso y Utilización de los Datos de la CCRVMA.

d) Como medida provisoria, el grupo de trabajo recomendó agregar las cinco columnas siguientes (sugeridas por TASO) al formulario C2 para registrar datos sobre la variabilidad de las líneas artesanales:

- el número de anzuelos en un manojo
- el número de manojo en un espinel
- la distancia entre espinel
- la distancia entre manojos de anzuelos
- la distancia desde el manojo de anzuelos más profundo hasta el fondo.

e) El grupo de trabajo apoyó la recomendación hecha en WG-FSA-08/60 de que cuando el barco cala dos secciones de la línea unidas por debajo del agua, éstas deben ser notificadas como dos lances independientes – las posiciones geográficas del comienzo y fin de estos lances serán dadas por la posición de las anclas o rezones.

ii) Consideración de los requisitos de recopilación de datos:

a) Como no siempre es viable contar el número de ejemplares por especie en la captura (en especial de dracos) (SC-CAMLR-XXVII/BG/6, párrafo 3.18), WG-FSA recomendó modificar el formulario T3 para permitir que el observador registre la captura total por peso, y ya sea el número total o bien el peso medio. El peso medio de los peces se obtendrá de una submuestra de la captura.

b) El grupo de trabajo reconoció que la determinación macroscópica (en el campo) de los estados de madurez de Dissostichus spp. continúa siendo precaria y que se necesita seguir trabajando para mejorar esta situación (párrafos 3.72 y 3.73). Se recomendó que, mientras tanto, se continúe
realizando la determinación macroscópica de los estadios, y que el índice gonadosomático se mida cuando se cuente con balanzas con compensación del movimiento.

c) El grupo de trabajo señaló que el nivel de muestreo actual de *Dissostichus* spp. en las pesquerías de palangre nuevas y exploratorias (de 35 peces por lance) se originó de una combinación de la recomendación de muestrear un pez por cada 150 anzuelos (WG-FSA-05/49) y del número medio de anzuelos por línea en la Subárea 88.1.

Cuando se muestrean ambas especies de *Dissostichus* spp. en una sola línea, esto tiene el potencial de aumentar al doble el esfuerzo de muestreo a 70 peces por línea. El grupo de trabajo observó que cuando ambas especies son capturadas, rara vez lo son en igual proporción y por lo tanto es poco probable que se requiera una muestra de 70 peces. Sin embargo, es importante que el muestreo de ambas especies sea proporcional a la captura de las mismas. Cuando la proporción de una especie en la captura es muy pequeña, podría deberse a que los ejemplares del taxón menos representado no sean seleccionados para el muestreo biológico. Sin embargo, es importante recolectar información de las especies presentes en menor proporción en la captura.

d) El grupo de trabajo ha remitido a WG-SAM el asunto del número de austromerluzas que se deben muestrear para obtener datos biológicos, de la edad y la talla para que lo evalúe nuevamente.

e) Mientras tanto, el grupo de trabajo recomendó una tasa de muestreo de un *D. eleginoides* y un *D. mawsoni* por cada 150 anzuelos con un mínimo de cinco *D. eleginoides* y cinco *D. mawsoni* por línea. El tamaño de muestra requerido se deberá determinar una vez que la línea haya sido calada y en lo posible, las muestras se deberán extraer en forma contigua. No obstante, véase el párrafo 6.43 sobre la reducción recomendada en el muestreo de *Dissostichus* spp. en la próxima temporada, para cumplir con los requisitos adicionales relacionados con el Año de la Raya.

f) Se puntuializa que las modificaciones de los formularios del cuaderno de observación para registrar los datos de las rayas, descritas en los párrafos 6.33 y 6.34, simplificarán la tarea del observador.

g) Se acordó que la recopilación de ciertos datos, como estado y temperatura del mar y otros parámetros meteorológicos, fuese la responsabilidad de los barcos, si fueran requeridos (SC-CAMLR-XXVII/BG/6, párrafo 3.19). Nunca se han utilizado en ningún análisis y se deberían eliminar del cuaderno de observación.

11.5 El grupo de trabajo observó que las guías de identificación de las especies de la captura secundaria (párrafo 6.45) son sencillas y fáciles de utilizar por los observadores. Indicó también que la guía de WG-FSA-08/59 es más completa y fue elaborada para ser utilizada por los observadores y por los científicos, y ha mantenido la opción de llegar hasta una clasificación taxonómica más alta si se desea.
11.6 El grupo de trabajo recomendó que el requisito de que los barcos notifiquen el número total de anzuelos perdidos por línea sea eliminado del formulario L5. Sin embargo, los barcos que utilizan palangres tradicionales deberán notificar el número de anzuelos perdidos en porciones de la línea principal de cada lance, y los barcos que emplean palangres artesanales deberán notificar el número de espineles con anzuelos perdidos por lance.

11.7 El grupo de trabajo recordó que la Secretaría lleva a cabo revisiones de rutina y la convalidación de todos los datos presentados, y cuando es necesario, hace correcciones de hecho a los datos, habiendo consultado a los autores o de dueños de los datos. En el caso de los datos de observación científica, el primer punto de contacto para realizar consultas son los coordinadores técnicos de los miembros designantes. En el caso de los datos en escala fina, el primer punto de contacto para las consultas es la entidad que proporciona los datos en nombre del Estado del pabellón. Todos los cambios se documentan en la base de datos, y los datos originales y correcciones son archivados por la Secretaría.

Asesoramiento al Comité Científico

11.8 El grupo de trabajo recomienda que:

i) se incluyan descripciones detalladas de los artes que pretenden utilizar todos los barcos mencionados en las notificaciones de pesquerías;

ii) se responsabilice al barco de proporcionar una descripción detallada del arte de pesca utilizado en cada lance (o arrastre) y se agreguen las cinco columnas siguientes al formulario C2 para describir la variedad de palangres artesanales:
 - el número de anzuelos en un manojo
 - el número de manojos de anzuelos por espinel
 - la distancia entre los espineles
 - la distancia entre los manojos de anzuelos
 - la distancia entre el manojo de anzuelos más profundo de la línea y el fondo;

iii) cuando un barco cala dos secciones de línea unidas bajo el agua, éstas sean notificadas como lances independientes, estando dada la posición geográfica del inicio y fin de estos lances por la posición de las anclas o rezones;

iv) se modifique el formulario T3 para registrar el peso de la captura total, el número total de peces capturados y el peso promedio de los peces de la captura;

v) se desarrollen guías fotográficas para la determinación macroscópica de los estadíos de madurez de *Dissostichus* spp. y se midan los índices GSI cuando se disponga de balanzas con un mecanismo estabilizador para compensar el movimiento;

vi) se pida a WG-SAM que efectúe un análisis estadístico del nivel de muestreo de *Dissostichus* spp. requerido para la recopilación de datos biológicos, de la edad y de la talla;
vii) mientras tanto, se fije una tasa de muestreo de un ejemplar de *D. eleginoides* y uno de *D. mawsoni* por cada 150 anzuelos, con un mínimo de cinco peces de cada especie por palangre;

viii) los barcos, y no los observadores, se encarguen de registrar los datos tales como el estado y la temperatura del mar y otros parámetros meteorológicos;

ix) se elimine del formulario L5 el requisito de que los barcos notifiquen el número total de anzuelos perdidos por palangre. Sin embargo, los barcos que utilizan palangres tradicionales deben notificar el número de anzuelos perdidos en porciones de la línea principal para cada lance, y los barcos que emplean palangres artesanales, el número de espinelos con anzuelos perdidos por lance.

EVALUACIONES FUTURAS

12.1 El grupo de trabajo recordó que había pedido que se refinará en parte la prospección de dracos en la Subárea 48.3 para facilitar la evaluación, en particular determinado la distribución del draco en la región meridional de Georgia del Sur, y la proporción de la población que probablemente no será muestreada por la red de arrastre de fondo utilizada en la prospección, a partir de datos acústicos y de arrastres pelágicos (párrafos 3.25 y 4.7). También se sugirió la posibilidad de utilizar la información sobre la condición y la dieta para refinar el parámetro de la mortalidad natural en las evaluaciones del draco (párrafo 3.79).

12.2 Luego de celebrado el Año de la Raya en 2009, el grupo de trabajo está considerando designar el 2011 como el “Año del Granadero”. Se pidió a WG-SAM que indicara qué tipo de evaluaciones serían apropiadas para los granaderos, y proporcionara asesoramiento sobre las investigaciones y la recopilación de datos que se necesitarían para que el WG-FSA pudiera realizar estas evaluaciones.

12.3 Los experimentos de marcado y recaptura en las Divisiones 58.4.1 y 58.4.2 hasta ahora no han entregado información para poder realizar una evaluación (párrafos 5.21 y 5.22). WG-FSA pidió que WG-SAM continuara investigando otros métodos de evaluación, similares a los desarrollados este año que utilizan el índice CPUE (párrafo 5.24, WG-FSA-08/43) y, en particular, campañas de investigación con artes de palangre (WG-FSA-08/57), capaces de proporcionar evaluaciones fidedignas del estado y las tendencias de los stocks de austromerluza, dado que no se cuenta con datos fiables de marcado.

12.4 Si la investigación japonesa propuesta en el documento WG-FSA-08/39 es fructífera, se podría hacer una evaluación del tamaño del stock en la División 58.4.4 en los próximos años. WG-FSA indicó que se supone que este stock está agotado y el objetivo de la CCRVMA es asegurar su recuperación. Se pidió a WG-SAM que estudiara métodos para determinar el estado del stock, en relación con su grado de reducción o recuperación, teniendo en cuenta que el arte de pesca utilizado en el experimento no es el mismo arte que fue utilizado por última vez en la pesquería, y que recomendará los requisitos con respecto a la recopilación de datos y a los estudios necesarios para efectuar esta evaluación.

12.5 Dado que se utilizan tres tipos de artes de palangre en el Área de la Convención (español, automático y palangres artesanales), se pidió a WG-SAM que considerara posibles diseños que podrían servir para normalizar los artes utilizados en distintas campañas.
Frecuencia de las evaluaciones.

12.6 El grupo de trabajo reconoció que el cambio a evaluaciones bienales para tres stocks (Subárea 48.3, División 58.5.2 y Mar de Ross) había dado muy buenos resultados porque se había contado con más tiempo durante el periodo entre sesiones y en las reuniones de WG-SAM y WG-FSA. Este tiempo adicional había permitido preparar las primeras evaluaciones de tres pesquerías exploratorias (Divisiones 58.4.1, 58.4.2 y 58.4.3a) y discutir en profundidad otros asuntos de gran importancia para la Comisión y el Comité Científico, como por ejemplo, los EMV y el Año de la raya.

12.7 El grupo de trabajo indicó que los tres criterios del Comité Científico para retornar a una evaluación anual no se habían cumplido para ninguno de los stocks que son evaluados cada dos años (SC-CAMLR-XXVI, párrafo 14.6). No obstante, esto no había sido considerado de manera formal, sino que simplemente de forma individual por los miembros. El grupo de trabajo pidió que WG-SAM considerara la elaboración de un procedimiento formal para efectuar esta decisión, si bien reconoció que para algunos stocks una decisión tal puede resultar difícil de hacer durante la reunión de WG-SAM debido a las fechas de las temporadas de pesca.

Consideraciones generales

12.8 Se expresó preocupación por la falta de participación de muchos miembros en el trabajo del WG-FSA, y en particular de aquellos cuyo idioma materno no es el inglés. Parte de problema radica en la dificultad de entender lo que ahora han llegado a ser métodos bastante complejos para la evaluación de los stocks, aunque la participación de científicos con amplios conocimientos de estadística y biología da más confianza en el uso de tales métodos.

12.9 El Dr. Holt sugirió que si los miembros actuales del WG-FSA actuaban como mentores de nuevos miembros de manera individual, les ayudaría a integrarse al grupo y a entender cómo se hacen las evaluaciones de los stocks dentro de la CCRVMA.

LABOR FUTURA

Organización de las actividades intersesionales de los subgrupos

13.1 En la tabla 22 se resume la labor futura identificada por el grupo de trabajo y se indican las personas o subgrupos que se encargarán de continuar el trabajo. Se incluyen además remisiones a las distintas secciones de este informe en las que se describen las tareas. El grupo de trabajo observó que las tareas identificadas en la reunión o que se relacionan con los procedimientos establecidos para las reuniones no incluyen tareas en marcha realizadas por la Secretaría, como el tratamiento y la convalidación de datos, publicaciones y demás trabajos normales relacionados con los preparativos para las reuniones.

13.2 WG-FSA agradeció a todos los subgrupos por su contribución y les animó a continuar trabajando en el próximo periodo intersesional, concentrándose en lo posible en los temas importantes identificados en la tabla 22. El grupo de trabajo volvió a recalcar que la
participación en los subgrupos estaba abierta a todos los participantes (se anima a los nuevos participantes a que se comuniquen con la Secretaría si desean obtener información adicional sobre los subgrupos). Los siguientes subgrupos sesionaron durante la reunión:

- Subgrupo de evaluaciones (coordinador: Dr. R. Hillary (RU))
- Subgrupo de biología y ecología (coordinador: Dr. Kock)
- Subgrupo de la captura secundaria (coordinador: Dr. Collins)
- Subgrupo de pesquerías nuevas y exploratorias (coordinadores: Dres. Hanchet y Bizikov)
- Subgrupo de observadores (coordinador: Dr. R. Leslie (Sudáfrica))
- Subgrupo de marcado (coordinador: Dr. Welsford)
- Subgrupo de los EMV (coordinador: Dr. Constable)
- Subgrupo del Año de la Raya (coordinadores: Dres. R. Mitchell (RU) y Mormede).

13.3 El Dr. Jones aceptó contactarse con los coordinadores de los subgrupos dos semanas antes de la próxima reunión del grupo de trabajo, a fin de revisar el plan de trabajo de los subgrupos para esa reunión a la luz de las prioridades del grupo de trabajo, la agenda de la reunión y los documentos presentados.

13.4 El grupo de trabajo notó con preocupación que su carga de trabajo, así como la de otros grupos de trabajo, había aumentado en los últimos años, mientras que el número de participantes y miembros representados había disminuido en el mismo período. En consecuencia, el mayor volumen de trabajo estaba siendo compartido entre menos participantes, y el grupo de trabajo ya no estaba en condiciones de abordar todas las tareas con la profundidad que el Comité Científico esperaba de él.

13.5 El grupo de trabajo estimó que debería considerar dos temas de importancia en su reunión de 2009:

 i) la revisión de las evaluaciones de las pesquerías de draco rayado y austromerluza, incluidas las pesquerías de las Subáreas 48.3, 88.1 y 88.2 y en la División 58.5.2, y las pesquerías exploratorias de la Subárea 58.4;

 ii) el refinamiento de las estrategias para evitar y mitigar los efectos negativos considerables de la pesca de fondo en los EMV.

13.6 Además, el grupo de trabajo reconoció que podría ser necesario examinar más detenidamente algunas de las recomendaciones de la Evaluación del Funcionamiento de la CCRVMA, antes de la próxima reunión del WG-FSA en 2009.

13.7 El trabajo sobre los EMV había alterado bastante la carga de trabajo del WG-FSA, y la de otros grupos de trabajo, y la consideración de las recomendaciones de la Evaluación del Funcionamiento también podría aumentar considerablemente el volumen de trabajo del WG-FSA.

13.8 El grupo de trabajo exhortó al Comité Científico a preparar un Plan Científico de mediano a largo plazo a fin de abordar las exigencias competitivas de la Comisión, facilitar la coordinación entre los grupos de trabajo y asignar las prioridades de investigación. Sin este Plan Científico, el WG-FSA continuaría abordando los temas que en su opinión tienen alta prioridad para el Comité Científico. Este trabajo estaría limitado por el tiempo disponible durante las reuniones y por el número de participantes y las áreas de su experiencia.
13.9 El grupo de trabajo también exhortó a sus miembros y a los miembros del Comité Científico a que consideraran cómo se podría aumentar la participación en la labor del WG-FSA y de otros grupos de trabajo.

13.10 El grupo de trabajo recordó la propuesta de que 2010 sea el “Año del granadero” (SC-CAMLR-XXVI, anexo 5, párrafo 6.39). No obstante, el grupo de trabajo estuvo de acuerdo en aplazar esta actividad provisoriamente hasta 2011, para poder evaluar los protocolos establecidos para el Año de la raya y los consiguientes resultados.

13.11 En su lugar, el grupo de trabajo sugirió que el Comité Científico podría considerar conveniente designar 2010 como el “Año de los EMV” para dedicar otras actividades de investigación a la formulación de estrategias para evitar y mitigar efectos negativos considerables de la pesca de fondo en los EMV (punto 10.2).

Segundo Taller sobre Pesquerías y Modelos de Ecosistema en la Antártida

13.12 El grupo de trabajo consideró una serie de temas a ser tratados en FEMA2, que fueron preparados por los coordinadores del WG-EMM y del WG-FSA y considerados en WG-EMM-08 (anexo 4, párrafos 8.1 al 8.4).

13.13 Se propusieron cuatro temas para ser tratados en FEMA2:

i) Evaluar si el nivel de escape actualmente propugnado en los criterios de decisión que se aplican a la pesquería de austromerluza en el Mar de Ross es lo suficientemente precautorio cuando se considera a estos peces como importantes especies presa y como depredadores. Una evaluación tal debería incluir un análisis comparativo de la importancia de las austromerluzas como especies presa en distintas regiones del Océano Austral.

ii) Evaluar si los límites existentes de las UIPE del Mar de Ross pueden ser revisados sobre la base de un solapamiento entre la distribución espacial de la pesquería, las áreas de alimentación de los depredadores de austromerluza, y otra información como por ejemplo, la presencia o densidad de los EMV. Una evaluación tal debería incluir trabajo similar al que fue realizado para definir las UOPE del Área 48 (SC-CAMLR-XXI, anexo 4, apéndice D).

iii) Evaluar si los fundamentos actuales para la repartición del límite de captura precautorio de austromerluza entre las UIPE en el Mar de Ross podrían ser revisados de acuerdo con la información considerada en (ii) supra.

iv) Evaluar si los pasos para implementar las posibles revisiones dispuestas en (ii) y (iii) supra podrían afectar los resultados de los estudios actuales de marcado que son importantes componentes del plan de investigación y del proceso de evaluación de stocks en las pesquerías exploratorias de austromerluza del Mar de Ross.

13.14 WG-FSA estuvo de acuerdo con la recomendación del WG-EMM de que FEMA2 debería centrar su atención en los temas (i) y (ii), y que los temas (iii) y (iv) tendrían que ser considerados en una etapa posterior (anexo 4, párrafos 8.4 al 8.6).
13.15 Después de extensas deliberaciones, WG-FSA recomendó que FEMA2 se centrara principalmente en el tema (i), específicamente en la evaluación de los elementos precautorios y aquellos basados en la consideración del ecosistema relacionados con los niveles de escape utilizados en la ordenación de los stocks de austromerluza del Mar de Ross.

13.16 El grupo de trabajo alentó al Comité Científico a formar un pequeño grupo encargado de elaborar el mandato de FEMA2.

13.17 El grupo de trabajo también señaló que la IWC mantenía datos sobre los cetáceos e información que fue recogida por la antigua URSS, y que esta información podría estar disponible para FEMA2.

Reuniones intersesionales

Reunión de WG-SAM

13.18 Durante el curso de su reunión, el grupo de trabajo identificó varias cuestiones que había remitido a WG-SAM: párrafo 3.58 (marcas recuperadas que no concuerdan con los registros); párrafo 4.18 (índices de la calidad de los datos) párrafo 5.97 (estrategias de recolección y programas de investigación); párrafo 11.4(ii)(d) (toma de muestras de peces de los palangres) y párrafos 12.1 al 12.9 (evaluaciones futuras).

Reunión del grupo especial TASO

13.19 Durante el curso de su reunión, el grupo de trabajo identificó varios asuntos que había remitido a TASO: párrafo 10.35 (detalles taxonómicos de las observaciones).

Reunión de SG-ASAM

13.20 Durante el curso de su reunión, el grupo de trabajo identificó varios asuntos que había remitido a SG-ASAM: el párrafo 3.26 y Apéndice O, párrafo 7 (factor de corrección de la altura de la relinga superior de la red de arrastre).

Notificación de las actividades de investigación científica

13.21 El grupo de trabajo señaló que los siguientes miembros realizarían actividades de investigación científica en 2009 de conformidad con la Medida de Conservación 24-01:

Australia: prospección de peces demersales en la División 58.5.2 en mayo–junio de 2009

Japón: pesca de investigación en la División 58.4.4 (párrafos 5.116 al 5.121; ver también CCAMLR-XXVII/BG/15)
Nueva Zelandia: pesca de investigación en la Subárea 88.1 (párrafos 5.108 al 5.115; ver también CCAMLR-XXVII/BG/15)

Reino Unido: prospección de peces demersales en la Subárea 48.3 en enero–febrero de 2009

Estados Unidos: prospección de peces demersales en la Subárea 48.2.

13.22 El Dr. Constable informó que Australia realizaría una prospección multidisciplinaria del bentos en la loma submarina Bruce en la División 58.4.1, utilizando principalmente artes con cámaras de video, y una variedad de artes para muestrear el bentos, como por ejemplo, palangres de investigación sin anzuelos y arrastres.

13.23 El Dr. Holt indicó que la prospección estadounidense en la Subárea 48.2 también incluirá la recopilación de datos acústicos, la toma de muestras de kril con redes de arrastre y transectos video-fotográficos de los hábitats del bentos.

13.24 El grupo de trabajo indicó que los miembros que participaran en actividades de investigación científica abarcadas por la Medida de Conservación 24-01 deberían entregar a la Secretaría:

• una notificación de las actividades de los barcos de investigación (Medida de Conservación 24-01, anexo A, formato 1 o Formato 2);
• informes de captura y esfuerzo de las actividades de investigación cada 5 días;
• formularios STATLANT anuales que incluyeran las capturas extraídas durante las actividades de investigación;
• un breve informe dentro de 180 días de terminadas las actividades de investigación y un informe completo dentro de 12 meses después de finalizada la investigación.

OTROS ASUNTOS

Carta sobre D. mawsoni en el Estrecho de McMurdo

14.1 El grupo de trabajo consideró una carta dirigida al Funcionario Científico y a los coordinadores del WG-EMM y WG-FSA, escrita por 25 científicos especializados en la Antártida, sobre la reducción de D. mawsoni en el Estrecho de McMurdo (WG-EMM-08/20; véase también WG-EMM-08/21), y mencionó las deliberaciones del WG-EMM sobre este asunto (anexo 4, párrafos 6.23 al 6.27).

14.2 El grupo de trabajo señaló que el WG-EMM había identificado varias incongruencias en el documento WG-EMM-08/21 y no había podido evaluar adecuadamente las conclusiones del trabajo. El WG-EMM había pedido a los autores que proporcionaran más información sobre el esfuerzo pesquero y las capturas, datos biológicos, incluidas las distribuciones por frecuencia de tallas, y detalles de los dos sitios de muestreo (anexo 4, párrafo 6.24).
14.3 El WG-FSA alentó a los científicos que participaron en esa labor a presentar los datos y la información identificada en los párrafos anteriores a la Secretaría de la CCRVMA para que se pudiera utilizar un análisis del tipo GLM que permitiera examinar las conclusiones presentadas en WG-EMM-08/21. El grupo de trabajo acordó realizar dicho examen en su próxima reunión si se le proporcionaban los datos con suficiente antelación.

CCAMLR Science

14.4 En 2007 el Comité Científico pidió que el jefe de redacción de *CCAMLR Science*, en consulta con el Presidente del Comité Científico y los coordinadores de los grupos de trabajo, preparara una revisión de la política de publicación de la revista, en especial, el procedimiento para la selección de los artículos (SC-CAMLR-XXVI, párrafos 13.24 y 13.25). La política actualizada se describe en SC-CAMLR-XXVII/6. El Dr. Reid presentó los principales puntos al grupo de trabajo.

14.5 El grupo de trabajo apoyó el proceso y política de publicación actualizados.

14.6 El grupo de trabajo reconoció la importante contribución a la labor de la CCRVMA que podrían proporcionar científicos de países no miembros de esta organización, y que el actual procedimiento posiblemente esté impidiendo a la CCRVMA obtener un beneficio máximo de estos trabajos.

14.7 El grupo de trabajo exhortó al Comité Científico a considerar la posibilidad de permitir la presentación de contribuciones de científicos de países no miembros de la CCRVMA a la consideración de los grupos de trabajo. Añadió que si los autores así lo desearan, estas contribuciones podrían ser consideradas para su publicación en *CCAMLR Science*. Tales contribuciones también podrían proporcionar nuevas ideas a la labor de CCRVMA.

14.8 El grupo de trabajo convino en que las contribuciones de científicos ajenos a la CCRVMA deberían presentarse siguiendo pautas distintas a las requeridas para la presentación de documentos de trabajo para las reuniones. Estas contribuciones necesitarían presentarse con bastante antelación a las reuniones (p. ej. dos meses), a fin de dar suficiente tiempo a los participantes para considerar los resultados y elaborar su planes de trabajo.

Taller conjunto SC-CAML-CPA

14.9 El grupo de trabajo discutió la propuesta de un taller conjunto entre SC-CAML-CPA y el CPA (“Oportunidades para la colaboración y cooperación práctica entre el CPA y SC-CAMLR”), y tomó nota de las deliberaciones del WG-EMM sobre el tema (anexo 4, párrafos 9.1 al 9.5; WG-EMM 08/52), y de la información circulada por la Secretaría (SC CIRC 08/47 y 08/65) Este taller está programado para principios de abril de 2009, inmediatamente antes de la XII reunión del CPA en Baltimore, EEUU.

14.10 El grupo de trabajo apoyó las recomendaciones del WG-EMM, incluida la sugerencia de una consulta ulterior durante la próxima reunión del Comité Científico.
APROBACIÓN DEL INFORME

15.1 Se aprobó el informe de la reunión.

CLAUSURA DE LA REUNIÓN

16.1 El Dr. Jones agradeció a los coordinadores de los subgrupos, relatores, demás participantes y al personal de la Secretaría por su aporte y participación en la reunión, como también en las actividades intersesionales.

16.2 El Dr. Constable, en nombre del grupo de trabajo, agradeció al Dr. Jones por coordinar el grupo de trabajo. Las deliberaciones del grupo pueden a veces ser intensas, y el Dr. Jones condujo la reunión con renovada energía, dirección y discernimiento.

16.3 El Dr. Zhao expresó su agradecimiento al grupo de trabajo por haberlo recibido en la reunión y ayudado a comprender la labor de este grupo.

16.4 El Sr. N. Smith (Nueva Zelandia), en nombre del grupo de trabajo, hizo mención del retiro inminente del Dr. Holt. El grupo de trabajo agradeció al Dr. Holt por su excepcional dirección y contribución a la labor de la CCRVMA, y expresó que aguardaba con ansias su participación futura en el trabajo del grupo.

16.5 Se dio clausura a la reunión.

REFERENCIAS

<table>
<thead>
<tr>
<th>Especie objetivo</th>
<th>Región</th>
<th>Pesquería</th>
<th>Temporada de pesca</th>
<th>Medida de Conservación</th>
<th>Captura especie objetivo (toneladas)</th>
<th>% del límite de captura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champsocephalus gunnari</td>
<td>48.3</td>
<td>Arrastre</td>
<td>15-Nov-07</td>
<td>14-Nov-08</td>
<td>1 326</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>58.5.2</td>
<td>Arrastre</td>
<td>01-Dic-07</td>
<td>30-Nov-08</td>
<td>199</td>
<td>90</td>
</tr>
<tr>
<td>Distostichus eleginoides</td>
<td>48.3</td>
<td>Palangre, nasas</td>
<td>01- Dic-07</td>
<td>30-Nov-08</td>
<td>3 856</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>48.4</td>
<td>Palangre</td>
<td>01-Abr-08</td>
<td>14-May-08</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>58.5.1 ZEE francesa</td>
<td>Palangre</td>
<td>ns</td>
<td>ns</td>
<td>2 853</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>58.5.2 Palangre, nasas, arrastre</td>
<td>01- Dic-07</td>
<td>30-Nov-08</td>
<td>1 496</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>58.6 ZEE francesa</td>
<td>Palangre</td>
<td>ns</td>
<td>ns</td>
<td>684</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>58 ZEE sudafricana</td>
<td>Palangre</td>
<td>ns</td>
<td>ns</td>
<td>54</td>
<td>60</td>
</tr>
<tr>
<td>Dissostichus spp.</td>
<td>48.6</td>
<td>Palangre</td>
<td>01-Dic-07</td>
<td>30-Nov-08</td>
<td>0</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>58.4.1</td>
<td>Palangre</td>
<td>01-Dic-07</td>
<td>30-Nov-08</td>
<td>413</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>58.4.2</td>
<td>Palangre</td>
<td>01-Dic-07</td>
<td>30-Nov-08</td>
<td>217</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>58.4.3a</td>
<td>Palangre</td>
<td>01-May-08</td>
<td>31-Ago-08</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>58.4.3b</td>
<td>Palangre</td>
<td>01-May-08</td>
<td>20-Feb-08</td>
<td>141</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>58.4.4</td>
<td>Research</td>
<td>20-Jun-08</td>
<td>27-Sep-08</td>
<td>77</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>88.1</td>
<td>Palangre</td>
<td>01-Dic-07</td>
<td>31-Ago-08</td>
<td>2 259</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>88.2</td>
<td>Palangre</td>
<td>01-Dic-07</td>
<td>31-Ago-08</td>
<td>416</td>
<td>73</td>
</tr>
<tr>
<td>Euphausia superba</td>
<td>48</td>
<td>Arrastre</td>
<td>01-Dic-07</td>
<td>30-Nov-08</td>
<td>125 063</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>58.4.1</td>
<td>Arrastre</td>
<td>01-Dic-07</td>
<td>30-Nov-08</td>
<td>125 063</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>58.4.2</td>
<td>Arrastre</td>
<td>01-Dic-07</td>
<td>30-Nov-08</td>
<td>400 000</td>
<td>20</td>
</tr>
<tr>
<td>Lithodidae</td>
<td>48.3</td>
<td>Nasas</td>
<td>01-07</td>
<td>30-Nov-08</td>
<td>452 000</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>Poteras</td>
<td>01-Dic-07</td>
<td>30-Nov-08</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

a Bajo revisión.
b No incluye 2 toneladas extraídas durante la prospección de arrastre.
c Datos en escala fina hasta agosto de 2008.
d No incluye el límite aplicado a la pesca con fines de investigación (50 toneladas).
ns No ha sido especificado por la CCRVMA.
Tabla 2: Estimación del esfuerzo, tasas de captura y captura total de la pesca INDNR de *Dissostichus* spp. en el Área de la Convención durante la temporada 2007/08. Los cálculos se han derivado de la información de los barcos de pesca de palangre y con redes de enmalle. (Fuente: WG-FSA-08/10 Rev. 2).

<table>
<thead>
<tr>
<th>Subárea/división</th>
<th>Fecha estimada de inicio</th>
<th>No. de barcos avistados</th>
<th>No. adicional de barcos extrapolado al final</th>
<th>No. estimado de días de pesca INDNR</th>
<th>Tasa de captura promedio (t/día)</th>
<th>Captura INDNR estimada (valor no extrapolado)</th>
<th>Captura INDNR extrapolada al final de la temporada</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.3</td>
<td>1991</td>
<td>0</td>
<td>0</td>
<td>1.3</td>
<td>55</td>
<td>82</td>
<td>1.7</td>
</tr>
<tr>
<td>58.4.1</td>
<td>2005</td>
<td>1</td>
<td>0.3</td>
<td>1.3</td>
<td>55</td>
<td>82</td>
<td>1.7</td>
</tr>
<tr>
<td>58.4.2</td>
<td>2002</td>
<td>0</td>
<td>0</td>
<td>1.3</td>
<td>55</td>
<td>82</td>
<td>1.7</td>
</tr>
<tr>
<td>58.4.3a</td>
<td>2003</td>
<td>0</td>
<td>0</td>
<td>1.3</td>
<td>55</td>
<td>82</td>
<td>1.7</td>
</tr>
<tr>
<td>58.4.3b</td>
<td>2003</td>
<td>3</td>
<td>0.9</td>
<td>3.9</td>
<td>164</td>
<td>246</td>
<td>1.5</td>
</tr>
<tr>
<td>58.4.4</td>
<td>1996</td>
<td>0</td>
<td>0</td>
<td>1.3</td>
<td>55</td>
<td>82</td>
<td>2.8</td>
</tr>
<tr>
<td>58.5.1</td>
<td>1996</td>
<td>3</td>
<td>0.9</td>
<td>3.9</td>
<td>164</td>
<td>246</td>
<td>3.0</td>
</tr>
<tr>
<td>58.5.2</td>
<td>1997</td>
<td>0</td>
<td>0</td>
<td>1.3</td>
<td>55</td>
<td>82</td>
<td>2.8</td>
</tr>
<tr>
<td>58.6</td>
<td>1996</td>
<td>1</td>
<td>0.3</td>
<td>1.3</td>
<td>55</td>
<td>82</td>
<td>3.4</td>
</tr>
<tr>
<td>58.7</td>
<td>1996</td>
<td>0</td>
<td>0</td>
<td>1.3</td>
<td>55</td>
<td>82</td>
<td>3.4</td>
</tr>
<tr>
<td>88.1</td>
<td>2002</td>
<td>1</td>
<td>0.3</td>
<td>1.3</td>
<td>55</td>
<td>82</td>
<td>3.4</td>
</tr>
<tr>
<td>88.2</td>
<td>2006</td>
<td>0</td>
<td>0</td>
<td>1.3</td>
<td>55</td>
<td>82</td>
<td>3.4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>9</td>
<td>2.7</td>
<td>11.7</td>
<td>493</td>
<td>738</td>
<td>1169</td>
</tr>
</tbody>
</table>
Tabla 3: Historial de la captura INDNR de *Dissostichus* spp. en el Área de la Convención. La pesca INDNR fue detectada por primera vez en 1988/89, y sus estimaciones se derivan de las actividades de los barcos de pesca con palangre y con redes de enmalle de deriva. En blanco: no se cuenta con una estimación; cero: no existen pruebas de pesca INDNR. (Fuente: WG-FSA-08/10 Rev. 2 e informes de SC-CAMLR).

<table>
<thead>
<tr>
<th>Temporada</th>
<th>48.3</th>
<th>58.4.1</th>
<th>58.4.2</th>
<th>58.4.3a</th>
<th>58.4.3b</th>
<th>58.4.4</th>
<th>58.5.1</th>
<th>58.5.2</th>
<th>58.6</th>
<th>58.7</th>
<th>88.1</th>
<th>88.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988/89</td>
<td>144</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989/90</td>
<td>437</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990/91</td>
<td>1775</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991/92</td>
<td>3066</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992/93</td>
<td>4019</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993/94</td>
<td>4780</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994/95</td>
<td>1674</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995/96</td>
<td>0</td>
<td>833</td>
<td>3000</td>
<td>7875</td>
<td>4958</td>
<td>16666</td>
<td>32673</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996/97</td>
<td>0</td>
<td>375</td>
<td>6094</td>
<td>7117</td>
<td>11760</td>
<td>7327</td>
<td>0</td>
<td>15106</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997/98</td>
<td>146</td>
<td>1298</td>
<td>7156</td>
<td>4150</td>
<td>1758</td>
<td>598</td>
<td>0</td>
<td>5868</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998/99</td>
<td>667</td>
<td>1519</td>
<td>1237</td>
<td>427</td>
<td>1845</td>
<td>173</td>
<td>0</td>
<td>7644</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999/00</td>
<td>1015</td>
<td>1254</td>
<td>2600</td>
<td>1154</td>
<td>1430</td>
<td>191</td>
<td>0</td>
<td>8802</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000/01</td>
<td>196</td>
<td>1247</td>
<td>4550</td>
<td>2004</td>
<td>685</td>
<td>120</td>
<td>0</td>
<td>11857</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001/02</td>
<td>3</td>
<td>295</td>
<td>880</td>
<td>6300</td>
<td>3489</td>
<td>720</td>
<td>78</td>
<td>240</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002/03</td>
<td>0</td>
<td>98</td>
<td>110</td>
<td>5518</td>
<td>1274</td>
<td>302</td>
<td>120</td>
<td>0</td>
<td>742</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003/04</td>
<td>0</td>
<td>197</td>
<td>246</td>
<td>0</td>
<td>536</td>
<td>531</td>
<td>380</td>
<td>48</td>
<td>240</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004/05</td>
<td>508</td>
<td>23</td>
<td>86</td>
<td>98</td>
<td>1015</td>
<td>220</td>
<td>268</td>
<td>265</td>
<td>12</td>
<td>60</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>2005/06</td>
<td>336</td>
<td>0</td>
<td>597</td>
<td>192</td>
<td>1903</td>
<td>104</td>
<td>144</td>
<td>74</td>
<td>55</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>2006/07</td>
<td>0</td>
<td>612</td>
<td>197</td>
<td>0</td>
<td>2293</td>
<td>109</td>
<td>404</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2007/08</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>246</td>
<td>0</td>
<td>489</td>
<td>0</td>
<td>153</td>
<td>0</td>
<td>187</td>
<td>0</td>
</tr>
<tr>
<td>Todas las temporadas</td>
<td>844</td>
<td>17945</td>
<td>1303</td>
<td>1065</td>
<td>98</td>
<td>5703</td>
<td>7116</td>
<td>36129</td>
<td>23485</td>
<td>26975</td>
<td>13673</td>
<td>542</td>
</tr>
</tbody>
</table>
Tabla 4: Captura declarada de *Dissostichus* spp. (en toneladas) de la pesca reglamentada, estimación de la captura de la pesca INDNR en el Área de la Convención; y captura en zonas fuera del Área de la Convención según el SDC en las temporadas 2006/07 y 2007/08. (Fuente: captura declarada – datos STATLANT de la temporada pasada e informes de captura y esfuerzo y datos suministrados por Francia de la temporada actual; captura INDNR – WG-FSA-08/10 Rev. 2; captura SDC – datos hasta octubre de 2008).

<table>
<thead>
<tr>
<th>Subárea/división</th>
<th>Captura declarada</th>
<th>Captura INDNR</th>
<th>Total CCRVMA</th>
<th>Límite de captura*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporada 2006/07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dentro de</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.1</td>
<td><1**</td>
<td><1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>48.3</td>
<td>3 539</td>
<td>3 539</td>
<td>3 554</td>
<td></td>
</tr>
<tr>
<td>48.4</td>
<td>54</td>
<td>54</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>48.6</td>
<td>112</td>
<td>112</td>
<td>910</td>
<td></td>
</tr>
<tr>
<td>58.4.1</td>
<td>634</td>
<td>612</td>
<td>1 246</td>
<td></td>
</tr>
<tr>
<td>58.4.2</td>
<td>124</td>
<td>197</td>
<td>321</td>
<td></td>
</tr>
<tr>
<td>58.4.3</td>
<td>255</td>
<td>2 293</td>
<td>2 548</td>
<td></td>
</tr>
<tr>
<td>58.4.4</td>
<td>0</td>
<td>109</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>58.5.1</td>
<td>5 201</td>
<td>404</td>
<td>5 605</td>
<td></td>
</tr>
<tr>
<td>58.5.2</td>
<td>2 387</td>
<td>2 387</td>
<td>2 584</td>
<td></td>
</tr>
<tr>
<td>58.6</td>
<td>436</td>
<td>436</td>
<td>0 fuera de la ZEE</td>
<td></td>
</tr>
<tr>
<td>58.7</td>
<td>148</td>
<td>148</td>
<td>0 fuera de la ZEE</td>
<td></td>
</tr>
<tr>
<td>88.1</td>
<td>3 091</td>
<td>3 091</td>
<td>3 072</td>
<td></td>
</tr>
<tr>
<td>88.2</td>
<td>347</td>
<td>347</td>
<td>567</td>
<td></td>
</tr>
<tr>
<td>88.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total dentro</td>
<td>16 329</td>
<td>3 615</td>
<td>19 944</td>
<td></td>
</tr>
<tr>
<td>Fuera de</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Área</td>
<td>Captura en ZEE según SDC</td>
<td>Captura en alta mar según SDC</td>
<td>Total fuera de la CCRVMA</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>2 224</td>
<td>3 831</td>
<td>6 055</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>15</td>
<td>593</td>
<td>593</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>15</td>
<td>20</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>299</td>
<td>2</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>5 440</td>
<td>258</td>
<td>5 698</td>
<td></td>
</tr>
<tr>
<td>Total fuera</td>
<td>7 978</td>
<td>4 704</td>
<td>12 682</td>
<td></td>
</tr>
<tr>
<td>Total global</td>
<td></td>
<td></td>
<td>32 626</td>
<td></td>
</tr>
</tbody>
</table>

Temporada 2007/08

<table>
<thead>
<tr>
<th>Subárea/división</th>
<th>Captura declarada</th>
<th>Captura INDNR</th>
<th>Total CCRVMA</th>
<th>Límite de captura*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.3</td>
<td>3 856</td>
<td>3 856</td>
<td>3 920</td>
<td></td>
</tr>
<tr>
<td>48.4</td>
<td>98</td>
<td>98</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>48.6</td>
<td>0</td>
<td>0</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>58.4.1</td>
<td>413</td>
<td>94</td>
<td>507</td>
<td></td>
</tr>
<tr>
<td>58.4.2</td>
<td>217</td>
<td>217</td>
<td>780</td>
<td></td>
</tr>
<tr>
<td>58.4.3</td>
<td>150</td>
<td>246</td>
<td>396</td>
<td></td>
</tr>
<tr>
<td>58.4.4</td>
<td>77**</td>
<td>77</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>58.5.1</td>
<td>2 853</td>
<td>489</td>
<td>3 342</td>
<td></td>
</tr>
<tr>
<td>58.5.2</td>
<td>1 496</td>
<td>1 496</td>
<td>2 500</td>
<td></td>
</tr>
<tr>
<td>58.6</td>
<td>704</td>
<td>153</td>
<td>857</td>
<td></td>
</tr>
<tr>
<td>58.7</td>
<td>34</td>
<td>34</td>
<td>2 700</td>
<td></td>
</tr>
<tr>
<td>88.1</td>
<td>2 259</td>
<td>187</td>
<td>2 446</td>
<td></td>
</tr>
<tr>
<td>88.2</td>
<td>416</td>
<td>416</td>
<td>567</td>
<td></td>
</tr>
<tr>
<td>88.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total dentro</td>
<td>12 573</td>
<td>1 169</td>
<td>13 742</td>
<td></td>
</tr>
</tbody>
</table>

(continúa)
Tabla 4 (continuación)

<table>
<thead>
<tr>
<th>Fuera de Área</th>
<th>Captura en ZEE (SDC)</th>
<th>Captura en alta mar (SDC)</th>
<th>Total fuera de CCRVMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>3 435</td>
<td>2 826</td>
<td>6 261</td>
</tr>
<tr>
<td>47</td>
<td>13</td>
<td>187</td>
<td>200</td>
</tr>
<tr>
<td>51</td>
<td>20</td>
<td>83</td>
<td>103</td>
</tr>
<tr>
<td>57</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>378</td>
<td></td>
<td>378</td>
</tr>
<tr>
<td>87</td>
<td>3 232</td>
<td>117</td>
<td>3 349</td>
</tr>
<tr>
<td>Total fuera</td>
<td>7 078</td>
<td>3 213</td>
<td>10 291</td>
</tr>
<tr>
<td>Total global</td>
<td></td>
<td></td>
<td>24 033</td>
</tr>
</tbody>
</table>

* Incluye los límites de captura de la pesca con fines de investigación.

** Campaña/pesca de investigación.

Tabla 5: Participación en pesquerías exploratorias de *Dissostichus* spp. en 2007/08. Miembro participante incluye los miembros que presentaron notificaciones de pesquerías que no fueron ejecutadas. (Fuente: WG-FSA-08/4)

<table>
<thead>
<tr>
<th>Subárea/división</th>
<th>Miembro participante</th>
<th>Número de barcos pescando</th>
<th>Captura de Dissostichus spp. (toneladas)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Límite</td>
</tr>
<tr>
<td>Pesquerías exploratorias en el Área 48 (Sector del Océano Atlántico)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.6</td>
<td>Japón</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>República de Corea</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Nueva Zelandia</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Sudáfrica</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>400</td>
<td>0</td>
</tr>
<tr>
<td>Pesquerías exploratorias en el Área 58 (Sector del Océano Índico)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.4.1</td>
<td>Australia</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Japón</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>República de Corea</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Namibia</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>España</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ucrania</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Uruguay</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>600</td>
<td>413</td>
</tr>
<tr>
<td>58.4.2</td>
<td>Australia</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Japón</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>República de Corea</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Namibia</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>España</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ucrania</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Uruguay</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>780</td>
<td>217</td>
</tr>
<tr>
<td>58.4.3a</td>
<td>Uruguay</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>250</td>
<td>9</td>
</tr>
</tbody>
</table>

(continúa)
Tabla 5 (continuación)

<table>
<thead>
<tr>
<th>Subárea/división</th>
<th>Miembro participante</th>
<th>Número de barcos pescando</th>
<th>Captura de Dissostichus spp. (toneladas)</th>
<th>Límite</th>
<th>Declaradas</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.4.3b</td>
<td>Australia</td>
<td>1</td>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Japón</td>
<td>1</td>
<td></td>
<td></td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>República de Corea</td>
<td>-</td>
<td></td>
<td></td>
<td>(50)*</td>
</tr>
<tr>
<td></td>
<td>Namibia</td>
<td>1</td>
<td></td>
<td></td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>España</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uruguay</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>139</td>
</tr>
</tbody>
</table>

Pesquerías exploratorias en el Área 88 (Sector suroeste del Océano Pacífico)

<table>
<thead>
<tr>
<th>Subárea/división</th>
<th>Miembro participante</th>
<th>Número de barcos pescando</th>
<th>Captura declarada de Dissostichus spp. (en toneladas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>88.1</td>
<td>Argentina</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>República de Corea</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Namibia</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Nueva Zelanda</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Rusia</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sudáfrica</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>España</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Reino Unido</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Uruguay</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14</td>
<td>2 700</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subárea/división</th>
<th>Miembro participante</th>
<th>Número de barcos pescando</th>
<th>Captura declarada de Dissostichus spp. (en toneladas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>88.2</td>
<td>Argentina</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Nueva Zelanda</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Rusia</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sudáfrica</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>España</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Reino Unido</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Uruguay</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4</td>
<td>567</td>
</tr>
</tbody>
</table>

* Campaña de investigación

Tabla 6: Captura declarada de *Dissostichus* spp. en las pesquerías exploratorias. (Fuente: datos STATLANT de temporadas pasadas e informes de captura y esfuerzo de la temporada actual).

<table>
<thead>
<tr>
<th>Temporada</th>
<th>Captura declarada de Dissostichus spp. (en toneladas) en las pesquerías exploratorias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48.6</td>
</tr>
<tr>
<td>1996/97</td>
<td><1</td>
</tr>
<tr>
<td>1997/98</td>
<td>42</td>
</tr>
<tr>
<td>1998/99</td>
<td>297</td>
</tr>
<tr>
<td>1999/00</td>
<td>751</td>
</tr>
<tr>
<td>2000/01</td>
<td><1</td>
</tr>
<tr>
<td>2001/02</td>
<td>1 325</td>
</tr>
<tr>
<td>2002/03</td>
<td>1 831</td>
</tr>
<tr>
<td>2003/04</td>
<td>7</td>
</tr>
<tr>
<td>2004/05</td>
<td>51</td>
</tr>
<tr>
<td>2005/06</td>
<td>163</td>
</tr>
<tr>
<td>2006/07</td>
<td>112</td>
</tr>
<tr>
<td>2007/08</td>
<td>413</td>
</tr>
<tr>
<td>Total</td>
<td>333</td>
</tr>
</tbody>
</table>

442
Tabla 7: Resumen de miembros y barcos notificados en 2008/09 en: (a) la pesca de palangre exploratoria de *Dissostichus* spp. (y número correspondiente de miembros participantes, número de barcos y límites de captura acordados en las medidas de conservación en vigor en 2007/08); (b) la pesca de arrastre exploratoria de kril; y (c) la pesca nueva de centollas con nasas. (Fuente: CCAMLR-XXVII/12).

<table>
<thead>
<tr>
<th>Notificaciones de los miembros</th>
<th>Número de barcos notificados por subárea/división</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.6</td>
<td>58.4.1</td>
</tr>
<tr>
<td>58.4.2</td>
<td>58.4.3a</td>
</tr>
<tr>
<td>58.4.3b</td>
<td>88.1</td>
</tr>
<tr>
<td>88.2</td>
<td></td>
</tr>
</tbody>
</table>

(a) Notificaciones de pesquerías de palangre exploratorias de *Dissostichus* spp. en la temporada 2008/09

<table>
<thead>
<tr>
<th>País</th>
<th>Número de miembros</th>
<th>Número de barcos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Australia</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chile</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Japón</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>República de Corea</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Nueva Zelanda</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Rusia</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Sudáfrica</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>España</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Reino Unido</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Uruguay</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Número de miembros</th>
<th>Número de barcos</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

Medidas de conservación en vigor durante la temporada 2007/08

<table>
<thead>
<tr>
<th>Número de miembros</th>
<th>Número de barcos</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1*</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Límite de captura de la especie objetivo (t)

<table>
<thead>
<tr>
<th>Número de miembros</th>
<th>Número de barcos</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>780</td>
<td>250</td>
</tr>
<tr>
<td>150**</td>
<td>2700</td>
</tr>
<tr>
<td>567</td>
<td></td>
</tr>
</tbody>
</table>

(b) Notificaciones de pesquerías de arrastre exploratorias de kril en la temporada 2008/09

<table>
<thead>
<tr>
<th>País</th>
<th>Número de miembros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noruega</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
</tr>
</tbody>
</table>

(c) Notificaciones de pesquerías nuevas de centollas con nasas en la temporada 008/09

<table>
<thead>
<tr>
<th>País</th>
<th>Número de miembros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rusia</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
</tr>
</tbody>
</table>

* Número máximo de barcos, por país miembro, autorizados a pescar en un momento dado
** No incluye la pesca con fines de investigación.
Tabla 8: Índice CPUE no estandarizado (kg/anzuelo) de *Dissostichus* spp. en la pesca de palangre exploratoria declarada entre 1996/97 y 2007/08. (Fuente: datos en escala fina de la pesca comercial y de los lances de investigación efectuados en dichas pesquerías. Las UIPE han sido definidas en la Medida de Conservación 41-01 (2006)).

<table>
<thead>
<tr>
<th>Subárea/división</th>
<th>UIPE</th>
<th>Temporada</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.6</td>
<td>A</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>0.02</td>
</tr>
<tr>
<td>58.4.1</td>
<td>C</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>0.15</td>
</tr>
<tr>
<td>58.4.2</td>
<td>A</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>0.21</td>
</tr>
<tr>
<td>58.4.3a</td>
<td>A</td>
<td>0.05</td>
</tr>
<tr>
<td>58.4.3b</td>
<td>A</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.14</td>
</tr>
<tr>
<td>88.1</td>
<td>A</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>0.12</td>
</tr>
<tr>
<td>88.2</td>
<td>A</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Tabla 9: Número de ejemplares de *Dissostichus* spp. marcados y liberados y tasa de marcado (peces por tonelada de peso fresco capturado) declarados por los barcos que participaron en 2007/08 en las pesquerías de *Dissostichus* spp. a las que se aplican medidas de conservación que disponen el marcado obligatorio. La tasa de marcado de *Dissostichus* spp. requerida (tasa requerida) se indica para cada subárea y división, y no incluye otros requisitos para la pesca con fines de investigación en las UIPE cerradas. Se señalan aquellos barcos que marcaron más de 500 peces (ver Medida de Conservación 41-01, anexo C). El número de *D. eleginoides* marcado se indica entre paréntesis. (Fuente: datos de observación e informes de captura y esfuerzo).

<table>
<thead>
<tr>
<th>Subárea o división (tasa requerida)</th>
<th>Estado del pabellón</th>
<th>Nombre del barco</th>
<th>Dissostichus spp. marcado y liberado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>No. de peces</td>
</tr>
<tr>
<td>48.4 (5)</td>
<td>Nueva Zelandia</td>
<td>San Aspiring</td>
<td>252 (252)</td>
</tr>
<tr>
<td></td>
<td>Reino Unido</td>
<td>Argos Froyanes</td>
<td>252 (252)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>504 (504)</td>
</tr>
<tr>
<td>48.6 (1)</td>
<td>No hay pesca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.4.1 (3)</td>
<td>República de Corea</td>
<td>Insung No. 1</td>
<td>370 (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insung No. 2</td>
<td>449 (8)</td>
</tr>
<tr>
<td></td>
<td>Namibia</td>
<td>Antilllas Reefer</td>
<td>56 (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paloma V</td>
<td>47 (5)</td>
</tr>
<tr>
<td></td>
<td>España</td>
<td>Tronio</td>
<td>202 (7)</td>
</tr>
<tr>
<td></td>
<td>Uruguay</td>
<td>Banzare</td>
<td>10 (0)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>1134 (20)</td>
</tr>
<tr>
<td>58.4.2 (3)</td>
<td>República de Corea</td>
<td>Insung No. 1</td>
<td>248 (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insung No. 2</td>
<td>48 (1)</td>
</tr>
<tr>
<td></td>
<td>Namibia</td>
<td>Antilllas Reefer</td>
<td>377 (9)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>673 (10)</td>
</tr>
<tr>
<td>58.4.3a (3)</td>
<td>Uruguay</td>
<td>Banzare</td>
<td>41 (41)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>41 (41)</td>
</tr>
<tr>
<td>58.4.3b (3)</td>
<td>Australia</td>
<td>Janas</td>
<td>15 (9)</td>
</tr>
<tr>
<td></td>
<td>Japón</td>
<td>Shinsei Maru No. 3</td>
<td>346 (120)</td>
</tr>
<tr>
<td></td>
<td>Namibia</td>
<td>Antilllas Reefer</td>
<td>13 (1)</td>
</tr>
<tr>
<td></td>
<td>Uruguay</td>
<td>Banzare</td>
<td>43 (9)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>*417 (130)**</td>
</tr>
<tr>
<td>88.1 (1)</td>
<td>Argentina</td>
<td>Antartic III</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>República de Corea</td>
<td>Hong Jin No. 707</td>
<td>255 (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insung No. 2</td>
<td>13 (8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jung Woo No. 2</td>
<td>212 (11)</td>
</tr>
<tr>
<td></td>
<td>Nueva Zelandia</td>
<td>Ayro Chieftain</td>
<td>50 (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Janas</td>
<td>179 (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Aotea II</td>
<td>196 (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Aspiring</td>
<td>370 (0)</td>
</tr>
<tr>
<td></td>
<td>Rusia</td>
<td>Yantar</td>
<td>283 (0)</td>
</tr>
<tr>
<td></td>
<td>Sudáfrica</td>
<td>Ross Mar</td>
<td>128 (3)</td>
</tr>
<tr>
<td></td>
<td>España</td>
<td>Tronio</td>
<td>46 (38)</td>
</tr>
<tr>
<td></td>
<td>Reino Unido</td>
<td>Argos Froyanes</td>
<td>370 (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Argos Georgia</td>
<td>196 (14)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Argos Helena</td>
<td>181 (1)</td>
</tr>
<tr>
<td></td>
<td>Uruguay</td>
<td>Ross Star</td>
<td>95 (1)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>2574 (79)</td>
</tr>
<tr>
<td>88.2 (1)</td>
<td>Nueva Zelandia</td>
<td>Ayro Chieftain</td>
<td>349 (0)</td>
</tr>
<tr>
<td></td>
<td>Rusia</td>
<td>Yantar</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Reino Unido</td>
<td>Argos Froyanes</td>
<td>38 (0)</td>
</tr>
<tr>
<td></td>
<td>Uruguay</td>
<td>Ross Star</td>
<td>2 (0)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>389 (0)</td>
</tr>
</tbody>
</table>

* Incluye *Dissostichus* spp. (especies no identificadas)
Tabla 10: Número de ejemplares de *Dissostichus* spp. marcados y liberados en las pesquerías de palangre exploratorias. (Fuente: datos de observación científica presentados a la CCRVMA).

<table>
<thead>
<tr>
<th>Subárea/división</th>
<th>Temporada</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000/01</td>
<td>2001/02</td>
</tr>
<tr>
<td>48.6</td>
<td>4</td>
<td>62</td>
</tr>
<tr>
<td>58.4.1</td>
<td>462</td>
<td>469</td>
</tr>
<tr>
<td>58.4.2</td>
<td>342</td>
<td>136</td>
</tr>
<tr>
<td>58.4.3a</td>
<td>199</td>
<td>104</td>
</tr>
<tr>
<td>58.4.3b</td>
<td>231</td>
<td>175</td>
</tr>
<tr>
<td>88.1</td>
<td>326</td>
<td>756</td>
</tr>
<tr>
<td>88.2</td>
<td>12</td>
<td>94</td>
</tr>
<tr>
<td>Total</td>
<td>326</td>
<td>768</td>
</tr>
</tbody>
</table>

Notificado durante la campaña de pesca de palangre efectuada en mayo de 2008.

Tabla 11: Número de ejemplares de *Dissostichus* spp. marcados y recapturados en las pesquerías de palangre exploratorias. (Fuente: datos de observación científica presentados a la CCRVMA).

<table>
<thead>
<tr>
<th>Subárea/división</th>
<th>Temporada</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000/01</td>
<td>2001/02</td>
</tr>
<tr>
<td>48.6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>58.4.1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>58.4.2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>58.4.3a</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>58.4.3b</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>88.1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>88.2</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Notificado durante la campaña de pesca de palangre efectuada en mayo de 2008.
Tabla 12: Límites de captura precautorios para la pesca de centollas y límite del esfuerzo para las campañas de exploración realizadas en las Subáreas 48.2 y 48.4.

<table>
<thead>
<tr>
<th>Subárea</th>
<th>48.3</th>
<th>48.2</th>
<th>48.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área del estrato de profundidad 0–500 m (km²)</td>
<td>42 400<sup>a</sup></td>
<td>32 175<sup>a</sup></td>
<td>2 107<sup>a</sup></td>
</tr>
<tr>
<td>Límite de captura provisional de centollas (toneladas)</td>
<td>1 600.0<sup>b</sup></td>
<td>250</td>
<td>10</td>
</tr>
<tr>
<td>Horas/esfuerzo de campaña exploratoria (nasas*hora)</td>
<td>200 000<sup>b</sup></td>
<td>200 000</td>
<td>30 000</td>
</tr>
</tbody>
</table>

^a Datos proporcionados por la Secretaría de la CCRVMA.

^b Datos de las Medidas de Conservación 52-01 y 52-02.

Tabla 13: Estimaciones del rendimiento (toneladas) suponiendo una tasa de explotación de 5% por UIPE utilizando la mediana, el percentil 25 (25%), y el percentil 75 (75%) de los niveles de biomasa calculados mediante la CPUE comparativa y los métodos derivados de la reducción. Las estimaciones se relacionan con la temporada de pesca 2006/07.

<table>
<thead>
<tr>
<th>UIPE:</th>
<th>5841C</th>
<th>5841E</th>
<th>5841G</th>
<th>5842A</th>
<th>5842C</th>
<th>5842E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Método:</td>
<td>CPUE</td>
<td>Reducción</td>
<td>CPUE</td>
<td>CPUE</td>
<td>CPUE</td>
<td>Reducción</td>
</tr>
<tr>
<td>Mediana</td>
<td>98</td>
<td>95</td>
<td>43</td>
<td>51</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>25%</td>
<td>58</td>
<td>90</td>
<td>4</td>
<td>13</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>75%</td>
<td>138</td>
<td>100</td>
<td>83</td>
<td>88</td>
<td>47</td>
<td>12</td>
</tr>
</tbody>
</table>

| Límite de captura actual | 200 | 200 | 200 | 260 | 260 | 260 |
| Captura en 2007/08 | 177 | 16 | 197 | 54 | 37 | 125 |
Tabla 14: Captura secundaria de granaderos, rayas y otras especies extraídas en las pesquerías de palangre efectuadas en 2007/08, y declaradas en escala fina. Las capturas se dan en toneladas y como porcentaje de la captura de *Dissostichus* spp. (TOT) declarado en escala fina. (Las rayas liberadas de los palangres no se incluyen en estas estimaciones). na – no corresponde.

<table>
<thead>
<tr>
<th>Subárea/división</th>
<th>Captura objetivo (t)</th>
<th>Granaderos</th>
<th></th>
<th>Rayas</th>
<th></th>
<th>Otras especies</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Captura (t)</td>
<td>% TOT</td>
<td>Límite de captura</td>
<td>Captura (t)</td>
<td>% TOT</td>
<td>Límite de captura</td>
</tr>
<tr>
<td>48.3</td>
<td>3807</td>
<td>161</td>
<td>4.2</td>
<td>196</td>
<td>12</td>
<td>0.3</td>
<td>196</td>
</tr>
<tr>
<td>48.4</td>
<td>98</td>
<td>16</td>
<td>15.9</td>
<td>-</td>
<td>4</td>
<td>3.6</td>
<td>-</td>
</tr>
<tr>
<td>48.6</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>64</td>
<td>0</td>
<td>0.0</td>
<td>100</td>
</tr>
<tr>
<td>58.4.1</td>
<td>410</td>
<td>36</td>
<td>8.8</td>
<td>96</td>
<td>0</td>
<td>0.0</td>
<td>50</td>
</tr>
<tr>
<td>58.4.2</td>
<td>217</td>
<td>12</td>
<td>5.3</td>
<td>124</td>
<td>0</td>
<td>0.2</td>
<td>50</td>
</tr>
<tr>
<td>58.4.3a</td>
<td>9</td>
<td>0</td>
<td>1.1</td>
<td>26</td>
<td>2</td>
<td>17.5</td>
<td>50</td>
</tr>
<tr>
<td>58.4.3b</td>
<td>138</td>
<td>7</td>
<td>5.0</td>
<td>80</td>
<td>1</td>
<td>0.4</td>
<td>50</td>
</tr>
<tr>
<td>58.5.1 ZEE francesa</td>
<td>2853</td>
<td>453</td>
<td>15.9</td>
<td>na</td>
<td>230</td>
<td>8.1</td>
<td>na</td>
</tr>
<tr>
<td>58.5.2</td>
<td>715</td>
<td>66</td>
<td>9.3</td>
<td>360</td>
<td>9</td>
<td>1.2</td>
<td>120</td>
</tr>
<tr>
<td>58.6 ZEE francesa</td>
<td>684</td>
<td>103</td>
<td>15.1</td>
<td>na</td>
<td>39</td>
<td>5.7</td>
<td>na</td>
</tr>
<tr>
<td>58 ZEE sudafricana</td>
<td>54</td>
<td>4</td>
<td>7.5</td>
<td>na</td>
<td>0</td>
<td>0.0</td>
<td>na</td>
</tr>
<tr>
<td>88.1</td>
<td>2259</td>
<td>112</td>
<td>4.9</td>
<td>426</td>
<td>4</td>
<td>0.2</td>
<td>133</td>
</tr>
<tr>
<td>88.2</td>
<td>416</td>
<td>17</td>
<td>4.2</td>
<td>88</td>
<td>0</td>
<td>0.0</td>
<td>50</td>
</tr>
</tbody>
</table>

Tabla 15: Número de granaderos, rayas y otras especies capturadas o liberadas en las pesquerías de palangre en 2007/08, y datos declarados en escala fina.

<table>
<thead>
<tr>
<th>Subárea/división</th>
<th>Dissostichus spp.</th>
<th>Granaderos</th>
<th></th>
<th>Rayas</th>
<th></th>
<th>Otras especies</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capturado Liberado</td>
</tr>
<tr>
<td>48.3</td>
<td>574 593 4 430</td>
<td>109 460 310</td>
<td>1 598 19 558</td>
<td>29 550 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.4</td>
<td>5 926 496</td>
<td>14 946 4</td>
<td>724 8 276</td>
<td>510 133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.6</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.4.1</td>
<td>12 586 688</td>
<td>35 425 0</td>
<td>11 0</td>
<td>2 453 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.4.2</td>
<td>6 628 633</td>
<td>9 648 0</td>
<td>74 0</td>
<td>1 548 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.4.3a</td>
<td>1 805 43</td>
<td>185 0</td>
<td>332 0</td>
<td>1 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.4.3b</td>
<td>5 184 399</td>
<td>10 463 0</td>
<td>152 155</td>
<td>1 839 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.5.1 ZEE francesa</td>
<td>608 099</td>
<td>1 629</td>
<td>285 150 0</td>
<td>53 151</td>
<td>2 461 0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>58.5.2</td>
<td>138 317 802</td>
<td>56 090 10</td>
<td>1 425 5 542</td>
<td>14 946 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.6 ZEE francesa</td>
<td>123 337 462</td>
<td>81 065 0</td>
<td>10 844 9 299</td>
<td>0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58 ZEE sudafricana</td>
<td>6 124 119</td>
<td>3 815 0</td>
<td>0 0</td>
<td>810 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.1</td>
<td>101 618 2 543</td>
<td>83 929 1</td>
<td>431 7 190</td>
<td>57 230 17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.2</td>
<td>10 869 386</td>
<td>20 287 0</td>
<td>0 0</td>
<td>5581 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabla 16: Captura total de rayas estimada (incluye las rayas liberadas al cortar las líneas o de otro modo) en las pesquerías de palangre realizadas en la temporada 2007/08, derivada de los datos en escala fina (C2).

<table>
<thead>
<tr>
<th>Subárea/división</th>
<th>Ejemplares capturados</th>
<th>Ejemplares liberados</th>
<th>Captura total estimada (t)</th>
<th>Peso promedio (kg)</th>
<th>Límite de captura (t)</th>
<th>% del límite de captura</th>
</tr>
</thead>
<tbody>
<tr>
<td>48.3</td>
<td>1 598</td>
<td>19 558</td>
<td>162.5</td>
<td>7.68</td>
<td>196</td>
<td>82.9</td>
</tr>
<tr>
<td>48.4</td>
<td>724</td>
<td>8 276</td>
<td>43.6</td>
<td>4.84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>48.6</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>-</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>58.4.1</td>
<td>11</td>
<td>0</td>
<td>0.1</td>
<td>8.34</td>
<td>50</td>
<td>0.2</td>
</tr>
<tr>
<td>58.4.2</td>
<td>74</td>
<td>0</td>
<td>0.5</td>
<td>6.41</td>
<td>50</td>
<td>0.9</td>
</tr>
<tr>
<td>58.4.3a</td>
<td>332</td>
<td>0</td>
<td>1.5</td>
<td>4.62</td>
<td>50</td>
<td>3.1</td>
</tr>
<tr>
<td>58.4.3b</td>
<td>152</td>
<td>155</td>
<td>1.0</td>
<td>3.41</td>
<td>50</td>
<td>2.1</td>
</tr>
<tr>
<td>58.5.1 ZEE francesa</td>
<td>53 151</td>
<td>2 461</td>
<td>240.8</td>
<td>4.33*</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>58.5.2</td>
<td>1 425</td>
<td>5 542</td>
<td>42.3</td>
<td>6.07</td>
<td>120</td>
<td>35.2</td>
</tr>
<tr>
<td>58.6 ZEE francesa</td>
<td>10 844</td>
<td>9 299</td>
<td>72.5</td>
<td>3.60*</td>
<td>na</td>
<td>-</td>
</tr>
<tr>
<td>58 ZEE sudafricana</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>na</td>
<td>-</td>
</tr>
<tr>
<td>88.1</td>
<td>431</td>
<td>7 190</td>
<td>70.4</td>
<td>9.24</td>
<td>133</td>
<td>52.9</td>
</tr>
<tr>
<td>88.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>50</td>
<td>0.0</td>
</tr>
</tbody>
</table>

* Valor derivado de la captura total declarada dividida por el número de ejemplares retenidos.

Tabla 17: Límites de captura propuestos para los granaderos en la Subárea 88.1 suponiendo un CV de 0.5 para la B_0 estimada y una densidad constante de granaderos en toda la pendiente (WG-FSA-08/32).

<table>
<thead>
<tr>
<th>Región</th>
<th>Límite de captura actual</th>
<th>Rendimiento estimado</th>
<th>Captura histórica máxima</th>
<th>Límite de captura propuesto</th>
</tr>
</thead>
<tbody>
<tr>
<td>881B, C, G</td>
<td>50</td>
<td>-</td>
<td>34</td>
<td>40</td>
</tr>
<tr>
<td>881H, I, K</td>
<td>271</td>
<td>-</td>
<td>390</td>
<td>320</td>
</tr>
<tr>
<td>881J</td>
<td>79</td>
<td>388</td>
<td>46</td>
<td>50</td>
</tr>
<tr>
<td>881L</td>
<td>24</td>
<td>388</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>882A, B</td>
<td>0</td>
<td>100</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>424</td>
<td>488</td>
<td>430</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 18: Esfuerzo acumulado de la pesca de palangre, áreas de lecho marino y estimaciones del esfuerzo proporcional (esfuerzo proporcional en estrato) en estratos de profundidad de las UIPE explotadas por las pesquerías exploratorias de austromerluza.

(a) UIPE para las que se ha estimado el área de lecho marino, la proporción de un estrato de profundidad potencialmente afectado por la acumulación de palangres a la fecha (Prop. del área afectada) se calcula utilizando dos posibles anchos del área afectada por una línea – 1 m y 25 m. (Fuente: esfuerzo – datos en escala fina C2; áreas de lecho marino – Sandwell and Smith, GEBCO y GEODAS, ver Boletín Estadístico, Vol. 20, tabla 18.)

<table>
<thead>
<tr>
<th>División</th>
<th>UIPE</th>
<th>No. de años de la pesquería</th>
<th>Longitud acumulada (km)</th>
<th>500–600 m de profundidad</th>
<th>600–1500 m de profundidad</th>
<th>1500–1800 m de profundidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Área de lecho marino (km²)</td>
<td>Prop. de esfuerzo en estrato</td>
<td>Prop. de área afectada (1m ancho)</td>
<td>Prop. de área afectada (25m ancho)</td>
</tr>
<tr>
<td>58.4.1</td>
<td>C</td>
<td>4</td>
<td>9323</td>
<td>6107</td>
<td>0.001</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>1</td>
<td>173</td>
<td>6076</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>4</td>
<td>4178</td>
<td>3792</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>1</td>
<td>93</td>
<td>6390</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>4</td>
<td>6437</td>
<td>9147</td>
<td>0.029</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>1</td>
<td>108</td>
<td>13673</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>58.4.3b</td>
<td>A</td>
<td>5</td>
<td>6167</td>
<td>90</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>4</td>
<td>6707</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(b) Subárea 88.1 – Esfuerzo acumulado de la pesca de palangre, áreas de lecho marino y estimaciones del esfuerzo proporcional (esfuerzo proporcional en estrato) en las UIPE explotadas por la pesquería de palangre en la Subárea 88.1 entre 600 y 1800 m de profundidad (no se dispuso de las áreas de lecho marino en los estratos de profundidad mostrados en (a)). También se muestra la proporción del esfuerzo en cada estrato de profundidad en (a). na – no hay subestrato en ese rango. (Fuente: esfuerzo – datos en escala fina C2; áreas de lecho marino – SC-CAMLR-XXII, anexo 5, párrafo 5.37 y tabla 5.3.)

<table>
<thead>
<tr>
<th>UIPE</th>
<th>No. de años de la pesquería</th>
<th>Longitud acumulada (km)</th>
<th>600–1800 m de profundidad</th>
<th>Prop. de esfuerzo en estrato de profundidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Área de lecho marino (km²)</td>
<td>Prop. de área afectada (1m ancho)</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>232</td>
<td>4908</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>5526</td>
<td>4318</td>
<td>0.001</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>7104</td>
<td>4444</td>
<td>0.002</td>
</tr>
<tr>
<td>E</td>
<td>7</td>
<td>1740</td>
<td>14797</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
<td>34</td>
<td>18398</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>8</td>
<td>3318</td>
<td>7110</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>11</td>
<td>27802</td>
<td>19245</td>
<td>0.001</td>
</tr>
<tr>
<td>I</td>
<td>11</td>
<td>19293</td>
<td>30783</td>
<td>0.001</td>
</tr>
<tr>
<td>J</td>
<td>8</td>
<td>7135</td>
<td>43954</td>
<td>0</td>
</tr>
<tr>
<td>K</td>
<td>8</td>
<td>7674</td>
<td>24695</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>5</td>
<td>4722</td>
<td>16807</td>
<td>0</td>
</tr>
</tbody>
</table>
Tabla 18 (continuación)

c) Áreas para las cuales no se dispuso de las áreas de lecho marino específicas por UIPE. (Fuente: esfuerzo – datos en escala fina C2.)

<table>
<thead>
<tr>
<th>Subárea/división</th>
<th>UIPE</th>
<th>No. de años de la pesquería</th>
<th>Longitud acumulada (km)</th>
<th>Prop. de esfuerzo en estrato de profundidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500–600 m</td>
</tr>
<tr>
<td>48.6</td>
<td>A</td>
<td>4</td>
<td>1 825</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>1</td>
<td>62</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>2</td>
<td>153</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>4</td>
<td>3 856</td>
<td>0.016</td>
</tr>
<tr>
<td>58.4.2</td>
<td>A</td>
<td>4</td>
<td>2 634</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>4</td>
<td>767</td>
<td>0.062</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>3</td>
<td>2 189</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>6</td>
<td>4 056</td>
<td>0.012</td>
</tr>
<tr>
<td>58.4.3a</td>
<td>A</td>
<td>4</td>
<td>7 498</td>
<td>0</td>
</tr>
<tr>
<td>58.4.4a</td>
<td>A</td>
<td>2</td>
<td>1 643</td>
<td>0.723</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>2</td>
<td>284</td>
<td>0.709</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1</td>
<td>195</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>1</td>
<td>684</td>
<td>0</td>
</tr>
<tr>
<td>88.2</td>
<td>A</td>
<td>4</td>
<td>875</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>3</td>
<td>488</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>6</td>
<td>7 228</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>3</td>
<td>575</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>1</td>
<td>35</td>
<td>0.25</td>
</tr>
<tr>
<td>88.3</td>
<td>B</td>
<td>1</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>1</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabla 19: Tabla resumen de notificaciones de pesquerías de fondo relacionadas con la Medida de Conservación 22-06. X – notificación de una pesquería nueva o exploratoria presentada por un miembro. Las notificaciones que incluyen evaluaciones preliminares del impacto potencial de las actividades de pesca de fondo se muestran como A (subíndice: g – evaluación general, a – área específica). M – también se proporcionan las medidas de mitigación propuestas.

<table>
<thead>
<tr>
<th>Pesquería/miembro</th>
<th>Subárea/división</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48.2</td>
</tr>
<tr>
<td>Pesquerías de austromerluza:</td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td></td>
</tr>
<tr>
<td>Japón</td>
<td></td>
</tr>
<tr>
<td>República de Corea</td>
<td>A_g</td>
</tr>
<tr>
<td>Nueva Zelanda</td>
<td></td>
</tr>
<tr>
<td>Rusia</td>
<td></td>
</tr>
<tr>
<td>Sudáfrica</td>
<td></td>
</tr>
<tr>
<td>España</td>
<td></td>
</tr>
<tr>
<td>Reino Unido</td>
<td></td>
</tr>
<tr>
<td>Uruguay</td>
<td></td>
</tr>
<tr>
<td>Pesquerías con nasas:</td>
<td></td>
</tr>
<tr>
<td>Rusia</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 20: Formulario tipo propuesto para que los miembros presenten evaluaciones preliminares del riesgo de que las actividades de pesca de fondo notificadas ocasionen graves daños a los EMV. Este formulario es coherente con los requisitos de las propuestas de pesquerías exploratorias y se basa en los requisitos establecidos en el párrafo 7(i) de la Medida de Conservación 22-06.

1. Evaluación preliminar de las actividades de pesca de fondo – Información requerida

1.1 Alcance

1.1.1 Método(s) de pesca a ser utilizado
Tipo de palangre (español/automático/artesanal/nasas)

1.1.2 Subárea/división
v.g. 88.1 y 88.2

1.1.3 Periodo de aplicación
Año

1.2 Actividad de pesca propuesta

1.2.1 Descripción detallada del arte
Proporcione un diagrama detallado de la configuración del arte a ser utilizado (vea ejemplo en WG-FSA-08/60 o los diagramas del manual de observación de la CCRVMA). Incluya detalles sobre el tipo y largo de la línea (rango de longitudes si fuese necesario); tipo(s) de anzuelos, número y distancia entre los anzuelos de una línea (por espinel en el caso de los palangres artesanales); tipo y magnitud de los pesos empleados; distancia entre pesos; tipo de ancla; flotadores y espaciamiento etc., para cada barco incluido en esta solicitud/notificación.

1.2.2 Escala de la actividad propuesta
Proporcione estimaciones del número total de anzuelos y/o líneas a ser utilizadas.

1.2.3 Extensión geográfica de la actividad propuesta
Proporcione detalles de las UIPE o regiones geográficas dentro del área/división donde se realizarán las actividades, incluido el estrato de profundidad de las actividades de pesca.

1.3 Medidas de mitigación a ser utilizadas
Proporcione detalles de las modificaciones de la configuración del arte o de los métodos de despliegue empleados para prevenir o reducir efectos adversos en los EMV.

2. Evaluación preliminar de las actividades de pesca de fondo – Información básica

2.1 Evaluación de efectos conocidos/previstos en los EMV
Proporcione datos o información disponible sobre el conocimiento actual de los efectos adversos de las actividades de pesca propuestas en los EMV dentro del área donde se propone realizar las actividades de pesca.

2.1.1 Estimación de la huella espacial del esfuerzo
Proporcione detalles del % del área cubierta por el esfuerzo de pesca.

2.1.2 Sinopsis de los EMV que se pueden encontrar dentro de las áreas cubiertas
Proporcione detalles de, por ejemplo, aspectos biogénicos y geológicos; área (distribución) del hábitat; fragilidad/vulnerabilidad y capacidad de recuperación de los hábitats; composición/endemismo de especies; características del ciclo de vida.

2.1.3 Probabilidad de impacto
vg. bajo/mediano/alto/desconocido. Proporcione detalles.

2.1.4 Magnitud/intensidad de la interacción del arte de pesca propuesto con los EMV
vg. mortalidad asociada y extensión espacial del impacto. Proporcione detalles.

2.1.5 Efectos físicos y biológicos/ecológicos del impacto
vg. pérdida de la estructura física del hábitat o de especies clave, o extinciones.

2.2 Estimación de la huella acumulativa
Proporcione una estimación del efecto acumulativo derivado de la información proporcionada en los puntos 2.1.1 a 2.1.5 anteriores, y cualquier información adicional disponible de la Secretaría (vg. esfuerzo de pesca histórico; mapas de hábitats).

(continúa)
2.3 Actividades de investigación con miras a obtener nueva información de los EMV

<table>
<thead>
<tr>
<th>2.3.1 Investigaciones previas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proporcione un resumen de los estudios llevados a cabo anteriormente por su Estado miembro (incluidos programas nacionales, regionales o internacionales de investigación) en el área donde se propone realizar las actividades. Esto incluye los datos recogidos en la temporada previa bajo el punto 2.3.2 y detalles de los datos enviados a la Secretaría como por ejemplo:</td>
</tr>
<tr>
<td>- Pruebas indirectas (vg. observación de la captura secundaria; identificación de especies mediante la colección de muestras y análisis genético y morfológico; recolección de datos acústicos o geomórficos; otros).</td>
</tr>
<tr>
<td>- Pruebas directas (vg. observaciones con cámaras colocadas en los artes o vehículos teledirigidos (ROV); otros).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.3.2 Investigaciones durante la temporada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proporcione un resumen de los estudios que su Estado miembro proyecta efectuar durante las actividades de pesca (incluidos programas de investigación nacionales, regionales o internacionales). Proporcione detalles de los datos que serán recopilados para documentar los indicios de la presencia de EMV o para aumentar el conocimiento sobre los EMV dentro de las áreas de actividad incluidas:</td>
</tr>
<tr>
<td>- Pruebas indirectas (ver ejemplos anteriores).</td>
</tr>
<tr>
<td>- Pruebas directas (ver ejemplos anteriores).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.3.3 Investigaciones posteriores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proporcione detalles de los estudios que podrían realizarse en el futuro como resultado de los estudios previos o durante la temporada, incluida la colaboración con otros Estados miembros o como parte de programas de investigación nacionales, regionales e internacionales incluidas:</td>
</tr>
<tr>
<td>- Pruebas indirectas (ver ejemplos anteriores).</td>
</tr>
<tr>
<td>- Pruebas directas (ver ejemplos anteriores).</td>
</tr>
</tbody>
</table>
Tabla 21: Tabla resumen de medidas de mitigación y otras acciones para implementar la Medida de Conservación 22-06 en la temporada 2008/09 propuestas por los miembros que presentaron evaluaciones preliminares de los posibles efectos de las actividades de pesca de fondo en 2008.

<table>
<thead>
<tr>
<th>Tipo de arte propuesto</th>
<th>Resumen de las acciones propuestas por los miembros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requisitos de observación</td>
<td></td>
</tr>
<tr>
<td>Sistema automático 1</td>
<td>Se controlará la captura secundaria de organismos relacionados con los EMV. Se instalará una cámara de vídeo en los palangres calados.</td>
</tr>
<tr>
<td>Sistema automático 2</td>
<td>Recopilación adicional de datos de observación sobre la captura secundaria en líneas que recogen ≥5 especímenes/mil anzuelos.</td>
</tr>
<tr>
<td>Requisitos relativos a los barcos</td>
<td></td>
</tr>
<tr>
<td>Sistema automático 1</td>
<td>Cesar la pesca en cualquiera localidad donde se encuentre evidencia (en la captura secundaria o vídeo).</td>
</tr>
<tr>
<td>Sistema automático 2</td>
<td>Educación de observadores y tripulación. Tomar medidas para reducir la pérdida de artes de pesca. Trasladar el barco del área donde se extrajo >25 especímenes/miles de anzuelos en una línea.</td>
</tr>
<tr>
<td>Sistema automático 3</td>
<td>≥20 especímenes/mil anzuelos en una línea provoca la documentación de la extensión del EMV.</td>
</tr>
<tr>
<td>Sistema español</td>
<td>Pruebas de un EMV – 15 especímenes/mil anzuelos cuando se encuentran juntos; 20 especímenes/mil anzuelos cuando se observan separadamente. Mitigación – no pescar en la misma localidad (separación de 1 milla náutica) cuando se encuentran pruebas. Investigación – líneas paralelas (separadas por 1 milla náutica de distancia por lo menos) (Cobertura de observación de un 100%).</td>
</tr>
<tr>
<td>Palangres artesanales</td>
<td>No se requieren medidas de mitigación.</td>
</tr>
<tr>
<td>Requisitos de notificación</td>
<td></td>
</tr>
<tr>
<td>Sistema automático 1</td>
<td>Notificar el lugar donde se encontró un EMV.</td>
</tr>
<tr>
<td>Sistema automático 3</td>
<td>Cuando se encuentran ≥20 organismos/mil anzuelos en una línea provoca la notificación y un plan de investigación.</td>
</tr>
<tr>
<td>Sistema español</td>
<td>Notificar el lugar donde se encontró un EMV.</td>
</tr>
<tr>
<td>Ref.</td>
<td>Tarea</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Revisión de la información disponible</td>
</tr>
<tr>
<td>3.5</td>
<td>Examinar las capturas de D. eleginoides declaradas de las Divisiones 58.4.1 y 58.4.3b.</td>
</tr>
<tr>
<td>3.26</td>
<td>Revisar la aplicación del factor de ajuste de la altura de la relinga superior de la red de arrastre utilizado en las prospecciones de C. gunnari.</td>
</tr>
<tr>
<td>3.38</td>
<td>Adquirir mayor conocimiento de la CPUE de los palangres artesanales.</td>
</tr>
<tr>
<td>* 3.49</td>
<td>Devolver todas las marcas y comprobar la correcta transcripción de los detalles de las marcas devueltas, incluidos los caracteres alfanuméricos.</td>
</tr>
<tr>
<td>3.52</td>
<td>Documentar el procedimiento para inferir una correspondencia satisfactoria entre un registro de recaptura y uno de liberación, y debería consistir en un algoritmo para minimizar la subjetividad.</td>
</tr>
<tr>
<td>* 3.55</td>
<td>Comprometerse a identificar los detalles del marcado de todas las marcas recuperadas.</td>
</tr>
<tr>
<td>3.58</td>
<td>Considerar otras maneras de incorporar las tasas de recuperación de marcas sin conciliar en las evaluaciones.</td>
</tr>
<tr>
<td>3.59</td>
<td>Considerar el uso del equipo de marcado proporcionado por la Secretaría en todas las pesquerías de la CCRVMA.</td>
</tr>
<tr>
<td>3.60</td>
<td>Comprar marcas de la Secretaría y participar en el marcado de rayas durante el Año de la Raya.</td>
</tr>
<tr>
<td>3.70</td>
<td>Formar una colección de otolitos de referencia de D. mawsoni.</td>
</tr>
<tr>
<td></td>
<td>Preparación de evaluaciones</td>
</tr>
<tr>
<td>4.7</td>
<td>Considerar modificaciones al diseño de las prospecciones utilizadas para estimar la abundancia de C. gunnari.</td>
</tr>
<tr>
<td>* 4.18</td>
<td>Desarrollar una serie de índices de la calidad de datos.</td>
</tr>
<tr>
<td></td>
<td>Evaluaciones y asesoramiento de ordenación</td>
</tr>
<tr>
<td>5.58</td>
<td>Estudiar el diseño de las prospecciones de pesca de palangre y la reconciliación de los conjuntos de datos obtenidos con distintos tipos de artes de pesca.</td>
</tr>
<tr>
<td>* 5.81</td>
<td>Marcar peces al mismo ritmo de la pesca de acuerdo con la Medida de Conservación 42-01.</td>
</tr>
<tr>
<td>5.94, 5.97</td>
<td>Revisar las estrategias de pesca y los programas de investigación de austromerluzas en el Mar de Ross.</td>
</tr>
<tr>
<td>5.124</td>
<td>Considerar criterios para establecer programas de investigación patrocinados por la CCRVMA.</td>
</tr>
</tbody>
</table>

(continúa)
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Tarea</th>
<th>Grupo</th>
<th>Miembros</th>
<th>Secretaría</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.23</td>
<td>Desarrollar una metodología común para el estudio y la lectura de las rayas.</td>
<td>CON</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* 6.25–6.40 Participar en las actividades del Año de la Raya en todas las pesquerías de Dissostichus spp., centrándolo un</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>programa de marcado en las pesquerías exploratorias.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* 6.34 Revisar los formularios del cuaderno de observación.</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* 6.46 Investigar sistemas de códigos para taxones relacionados con los EMV.</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Captura secundaria de peces e invertebrados</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evaluación del riesgo asociado con las actividades de pesca INDNR</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>* 8.6 Investigar y documentar las actividades de pesca INDNR con redes de enmalle de deriva.</td>
<td>SCIC</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biología, ecología y demografía de las especies objetivo y de captura secundaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.21 Actualizar la reseña de la especies D. eleginoides.</td>
<td>Subgrupo de biología y ecología</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.23 Finalizar el trabajo de calibración de la lectura de otolitos para determinar la edad de C. gunnari y presentar informe.</td>
<td>CON</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consideración de los EMV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.17 Incluir límites de las UIPE, subárea y división en el mapa de la huella ecológica de la pesca.</td>
<td>WG-FSA</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* 10.20 Obtener datos actualizados de fuentes fiables sobre el área de lecho marino para los tres estratos de profundidad para todas las UIPE.</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.23 Refinar los métodos para evaluar la huella de la pesca y desarrollo de evaluaciones de riesgo en distintas áreas.</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.25 Elaborar un formulario tipo para la presentación de las evaluaciones preliminares.</td>
<td>SC-CAMLR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* 10.35 Considerar el grado de detalle de los datos taxonómicos que los observadores deben registrar.</td>
<td>TASO</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* 10.41 Mejorar la calidad y cantidad de datos sobre la captura secundaria de bentos.</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.48 Suministrar datos y asesoramiento sobre los EMV y su vulnerabilidad.</td>
<td>SCAR</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* 10.55 Los EMV y el riesgo sean considerados por WG-EMM, y las medidas de mitigación por WG-FSA.</td>
<td>SC-CAMLR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continúa)
Tabla 22 (continuación)

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Tarea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema de observación científica internacional</td>
<td></td>
</tr>
<tr>
<td>* 11.8(i)</td>
<td>Incluir descripciones detalladas de los artes que los barcos mencionados en las notificaciones de pesquerías exploratorias proponen utilizar.</td>
</tr>
<tr>
<td>* 11.8(ii)</td>
<td>Actualizar los formularios de datos C2.</td>
</tr>
<tr>
<td>* 11.8(iii)</td>
<td>Notificar las secciones de la línea unidas bajo el agua como dos lances independientes.</td>
</tr>
<tr>
<td>* 11.8(iv)</td>
<td>Actualizar los formularios del cuaderno de observación.</td>
</tr>
<tr>
<td>11.8(ix)</td>
<td>Desarrollar guías fotográficas de los estadios macroscópicos de madurez de Dissostichus spp.</td>
</tr>
<tr>
<td>11.4(ii)(d)</td>
<td>Realizar análisis estadísticos del nivel de muestreo de Dissostichus spp. requerido para la recolección de datos biológicos, de edad y longitud.</td>
</tr>
<tr>
<td>11.8(vi)</td>
<td>Implementar una tasa de marcado de un ejemplar de D. eleginoides y uno de D. mawsoni por cada 150 anzuelos con un mínimo de cinco peces de cada especie por línea calada.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluaciones futuras</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
</tr>
<tr>
<td>12.2</td>
</tr>
<tr>
<td>12.3, 12.4, 5.119</td>
</tr>
<tr>
<td>12.5</td>
</tr>
<tr>
<td>* 12.7</td>
</tr>
<tr>
<td>* 12.8–12.9</td>
</tr>
</tbody>
</table>

(continúa)
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Tarea</th>
<th>Grupo</th>
<th>Miembros</th>
<th>Secretaría</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Labor futura</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.2–13.5</td>
<td>Actividades de los subgrupos.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 13.8</td>
<td>Preparar un Plan Científico.</td>
<td>SC-CAMLR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.24</td>
<td>Notificar las actividades de investigación científica de acuerdo con la Medida de Conservación 24-01, y cumplir con los requisitos de notificación.</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Otros asuntos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.3</td>
<td>Presentar los datos de D. mawsoni del Estrecho de McMurdo.</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figura 1: Captura histórica de Dissostichus spp. de la pesca INDNR en el Área de la Convención. Este tipo de pesca se detectó por primera vez en 1988/89; las estimaciones se han derivado de la pesca con palangres y con redes de enmalle. (Fuente: WG-FSA-08/10 Rev. 2 y los informes de SC-CAMLR).

Figura 2: Área operacional para la fase I del régimen de pesca experimental de centollas en la Subárea 48.2.

Figura 3: Área operacional para la fase I del régimen de pesca experimental de centollas en la Subárea 48.4.
Figura 4: Captura acumulativa de *Dissostichus* spp. versus número acumulativo de *Dissostichus* spp. marcado en cada barco participante en las pesquerías exploratorias de *Dissostichus* spp. en la Subárea 58.4 en 2007/08 (Fuente: captura – datos C2; número de peces marcados – datos de observación científica). **NB:** La figura 4 fue corregida después de la reunión WG-FSA-08. La versión corregida figura en la página siguiente.
Figura 4 corregida
Figura 5: Límites geográficos del área norte y sur en la Subárea 48.4. Se muestra la isóbata de 1 000 m.

Figura 6: Número estimado de barcos de pesca INDNR con palangres y redes de enmalle que han operado en el Área de la Convención desde 2004/05. Nótese que algunos barcos pueden emplear ambos artes de pesca. (Fuente: WG-FSA-08/10 Rev. 2 y los informes de SC-CAMLR).
Figura 7: Gráficos del esfuerzo de la pesca de palangre (datos agregados del número de anzuelos), con una subdivisión que muestra el esfuerzo que contribuyó a un 90% de la captura total (especies objetivo y secundarias) y esfuerzo responsable por el 10% restante de la captura. En cada gráfico se utilizan dos escalas de tres colores cada una para distinguir los valores de estos grupos. Línea de la costa e islas (negro), isóbata de 1 000 m (azul), isóbata de 2 000 m (verde) y límite del área estadística (rojo). Las cuadrículas son de 0.25° de latitud por 0.5° de longitud. Se muestra un mapa con datos del esfuerzo agregado de 1985–2007 junto a un mapa separado del esfuerzo en la temporada 2007/08. Esta figura está disponible a todo color en el sitio web de la CCRVMA.

(continúa)
Figura 7 (continuación)

c) División 58.4.2

(d) División 58.4.3a
Figura 7 (continuación)

e) División 58.4.3b

f) Divisiones 58.4.4a y 58.4.4b

(continúa)
Figura 7 (continuación)

g) Subárea 88.1

h) Subárea 88.2

(continúa)
Figura 7 (continuación)

i) Subárea 88.3
1. Apertura de la reunión

2. Organización de la reunión y aprobación de la agenda
 2.1 Organización de la reunión
 2.2 Organización y coordinación de subgrupos

3. Examen de la información disponible
 3.1 Datos necesarios especificados en 2007
 3.1.1 Desarrollo de la base de datos de la CCRVMA
 3.1.2 Tratamiento de datos
 3.1.3 Planes de pesca
 3.2 Información sobre las pesquerías
 3.2.1 Datos de captura y esfuerzo notificados a la CCRVMA
 3.2.2 Estimaciones de la captura y esfuerzo de la pesca INDNR
 3.2.3 Datos de captura y esfuerzo de las pesquerías de austromerluzas en las aguas adyacentes al Área de la Convención
 3.2.4 Datos de observación científica
 3.3 Parámetros de entrada para las evaluaciones del stock
 3.3.1 Captura por talla/edad de las pesquerías
 3.3.2 Prospecciones de investigación
 3.3.3 Análisis de la CPUE
 3.3.4 Programa de marcado
 3.3.5 Parámetros biológicos
 3.3.6 Estructura de las poblaciones y áreas de ordenación
 3.3.7 Depredación

4. Preparativos para las evaluaciones y calendario de evaluaciones
 4.1 Informe del Grupo de Trabajo de Estadísticas, Evaluación y Modelación (WG-SAM)
 4.2 Revisión de trabajos con evaluaciones preliminares de los stocks
 4.3 Calendario de las evaluaciones por realizar.
5. Evaluaciones y asesoramiento de ordenación

5.1 Pesquerías nuevas y exploratorias
5.1.1 Pesquerías nuevas y exploratorias en 2007/08
5.1.2 Pesquerías nuevas y exploratorias notificadas para 2008/09
5.1.3 Avances en las evaluaciones de otras pesquerías exploratorias
5.1.4 Actualizar informe de pesquería para la Subárea 48.6
5.1.5 Actualizar informes de pesquerías para las divisiones de la Subárea 58.4
5.1.6 Actualizar informes de pesquerías para las Subáreas 88.1 y 88.2
5.1.7 Protocolos de investigación para los barcos de pesca comercial

5.2 Actualizar informes para las siguientes pesquerías evaluadas:
5.2.1 Dissostichus eleginoides en Georgia del Sur (Subárea 48.3)
5.2.2 Dissostichus eleginoides en Islas Kerguelén (División 58.5.1)
5.2.3 Dissostichus eleginoides en Isla Heard (División 58.5.2)
5.2.4 Dissostichus eleginoides en Islas Crozet (Subárea 58.6)
5.2.5 Dissostichus eleginoides en Islas Príncipe Eduardo y Marion (Subárea 58.6/58.7)
5.2.6 Champsocephalus gunnari en Georgia del Sur (Subárea 48.3)
5.2.7 Champsocephalus gunnari en Isla Heard (División 58.5.2)

5.3 Evaluación y asesoramiento de ordenación en otras pesquerías
5.3.1 Península Antártica (Subárea 48.1) e Islas Orcadas del Sur (Subárea 48.2)
5.3.2 Islas Sándwich del Sur (Subárea 48.4)
5.3.3 Centollas (Paralomis spinosissima y P. formosa) (Subárea 48.3)
5.3.4 Martialia hyadesi (Subárea 48.3)

6. Captura secundaria de peces e invertebrados
6.1 Evaluación del estado de las especies o grupos de especies de la captura secundaria
6.2 Estimación de los niveles y tasas de la captura secundaria
6.3 Notificación de la captura secundaria
6.4 Evaluación del riesgo
6.5 Consideración de las medidas de mitigación

7. Mortalidad incidental de aves y mamíferos marinos ocasionada por la pesca (Informe del grupo especial WG-IMAF)

8. Evaluación del riesgo que representan las actividades INDNR
8.1 Desarrollo de enfoques para estimar las extracciones totales de austromerluza
8.2 Examen de las tendencias históricas de las actividades INDNR
9. Biología, ecología y demografía de las especies objetivo y de la captura secundaria
 9.1 Examen de la información disponible a los participantes a la reunión
 9.2 Reseñas de especies
 9.3 Red de Otolitos de la CCRVMA

10. Consideraciones sobre la ordenación del ecosistema
 10.1 Interacciones ecológicas (p.ej. múltiples especies, bentos, depredación, etc.)
 10.2 Actividades de pesca de fondo y ecosistemas marinos vulnerables (EMV)
 10.3 Interacciones con el WG-EMM
 10.4 Desarrollo de modelos del ecosistema

11. Sistema de observación científica internacional de la CCRVMA
 11.1 Informe del Grupo Técnico de Operaciones en el Mar (TASO)
 11.2 Resumen de los datos de los informes de observación y/o proporcionados por los coordinadores técnicos
 11.3 Implementación del programa de observación
 11.3.1 Manual del Observador Científico
 11.3.2 Estrategias de muestreo
 11.3.3 Prioridades

12. Evaluaciones futuras
 12.1 Trabajo de carácter general y específico para el desarrollo de las evaluaciones
 12.2 Frecuencia de las evaluaciones futuras

13. Labor futura
 13.1 Organización de las actividades intersesionales de los subgrupos
 13.2 Segundo Taller de sobre Pesquerías y Modelos de Ecosistema en la Antártida
 13.3 Reuniones durante el periodo entre sesiones
 13.3.1 Reunión de WG-SAM
 13.3.2 Reunión de ad hoc TASO
 13.3.3 Reunión de SG-ASAM

14. Asuntos varios

15. Aprobación del informe

LISTA DE PARTICIPANTES
Grupo de Trabajo de Evaluación de las Poblaciones de Peces
(Hobart, Australia, 13 al 24 de octubre 2008)

AGNEW, David (Dr.)
(a partir del 20 de octubre)
Department of Biology
Imperial College London
Prince Consort Road
London SW7 2BP
United Kingdom
d.agnew@imperial.ac.uk
d.agnew@mrag.co.uk

AKIMOTO, Naohiko (Sr.)
(a partir del 20 de octubre)
Japan Overseas Fishing Association
NK-Bldg, 6F
3-6, Kanda Ogawa-cho
Chiyoda-ku, Tokyo
101-0052 Japan
naohiko@sol.dti.ne.jp

BIZIKOV, Viacheslav (Dr.)
VNIRO
17a V. Krasnoselskaya
Moscow 107140
Russia
bizikov@vniro.ru

CANDY, Steve (Dr.)
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
steve.candy@aad.gov.au

COLLINS, Martin (Dr.)
British Antarctic Survey
Natural Environment Research Council
High Cross, Madingley Road
Cambridge CB3 0ET
United Kingdom
macol@bas.ac.uk
CONSTABLE, Andrew (Dr.)
(Choordinador de WG-SAM)
Australian Antarctic Division
Department of the Environment, Water,
Heritage and the Arts
Channel Highway
Kingston Tasmanina 7050
Australia
andrew.constable@aad.gov.au

FENAUGHTY, Jack (Sr.)
Silvifish Resources Ltd
PO Box 17-058
Karori, Wellington 6147
New Zealand
jmfenaughty@clear.net.nz

GASCO, Nicolas (Sr.)
la Clotte, l’ermitage
33550 Tabanac
France
nicopec@hotmail.com

HANCHET, Stuart (Dr.)
National Institute of Water and
Atmospheric Research Ltd (NIWA)
PO Box 893
Nelson
New Zealand
s.hanchet@niwa.co.nz

HILLARY, Richard (Dr.)
Royal School of Mines
Imperial College
Exhibition Road
London SW7 2AZ
United Kingdom
r.hillary@imperial.ac.uk

HOLT, Rennie (Dr.)
US AMLR Program
Southwest Fisheries Science Center
8604 La Jolla Shores Drive
La Jolla, CA 92037
USA
rennie.holt@noaa.gov

ICHII, Taro (Dr.)
(a partir del 20 de octubre)
National Research Institute of Far Seas Fisheries
2-12-4, Fukuura, Kanazawa-ku
Yokohama, Kanagawa
236-8648 Japan
ichii@affrc.go.jp
JONES, Christopher (Dr.) (Coordinador)
US AMLR Program
Southwest Fisheries Science Center
8604 La Jolla Shores Drive
La Jolla, CA 92037
USA
chris.d.jones@noaa.gov

KOCK, Karl-Hermann (Dr.)
Johann Heinrich von Thünen-Institute
Federal Research Institute for Rural Areas, Forestry & Fisheries
Palmaille 9
D-22767 Hamburg
Germany
karl-hermann.kock@vti.bund.de

LESLIE, Robin (Dr.)
Marine and Coastal Management
Private Bag X2
Roggebaai 8012
South Africa
rwleslie@deat.gov.za

MCKINLAY, John (Sr.)
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
john.mckinlay@aad.gov.au

MARTIN-SMITH, Keith (Dr.)
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
keith.martin-smith@aad.gov.au

MATSUSHIMA, Hirohide (Sr.)
(a partir del 20 de octubre)
International Affairs Division
Fisheries Agency
Government of Japan
2-1, 1-Chome, Kasumigaseki
Chiyoda-ku, Tokyo 100-8907
Japan
jhirohide_matsushima@nm.maff.go.jp
MITCHELL, Rebecca (Dra.)
MRAG Ltd
18 Queen Street
London W1J 5PN
United Kingdom
r.mitchell@mrag.co.uk

MIYAGAWA, Naohisa (Sr.)
(a partir del 20 de octubre)
Overseas Operations Group
Southern Fishery Team
TAFO (Taiyo A & F Co. Ltd)
Toyomishinko Building
4-5, Toyomi-cho, Chuo-ku
Tokyo
Japan 104-0055
kani@maruha-nichiro.co.jp

MOIR Clark, James (Sr.)
MRAG Ltd
18 Queen Street
London W1J 5PN
United Kingdom
j.clark@mrag.co.uk

MORMEDE, Sophie (Dra.)
National Institute of Water and Atmospheric Research Ltd (NIWA)
PO Box 14-901
Kilbirnie, Wellington
New Zealand
s.mormede@niwa.co.nz

PARKER, Steve (Dr.)
National Institute of Water and Atmospheric Research Ltd (NIWA)
PO Box 893
Nelson
New Zealand
s.parker@niwa.co.nz

PSHENICHNOV, Leonid (Dr.)
YugNIRO
Sverdlov str., 2
98300 Kerch
Ukraine
lkp@bikent.net

RIVERA, Kim (Sra.)
(Coordinadora de WG-IMAF)
National Marine Fisheries Service
PO Box 21668
Juneau, AK 99802
USA
kim.rivera@noaa.gov
SHUST, Konstantin (Dr.) VNIRO
17a V. Krasnoselskaya
Moscow 107140
Russia
antarctica@vniro.ru
kshust@vniro.ru

SMITH, Neville (Sr.) Ministry of Fisheries
(Coordinador de WG-IMAF) PO Box 1020
Wellington
New Zealand
neville.smith@fish.govt.nz

SULLIVAN, Kevin (Dr.) Ministry of Fisheries
(Presidente interino del PO Box 1020
Comité Científico) Wellington
New Zealand
sullivak@fish.govt.nz

WELSFORD, Dirk (Dr.) Australian Antarctic Division
Department of the Environment, Water,
Heritage and the Arts
203 Channel Highway
Kingston Tasmania 7050
Australia
dirk.welsford@aad.gov.au

ZHAO, Xianyong (Dr.) Yellow Sea Fisheries Research Institute
Chinese Academy of Fishery Sciences
106 Nanjing Road
Qingdao 266071
People’s Republic of China
zhaoxy@ysfri.ac.cn
SECRETARÍA

Secretario Ejecutivo
Denzil Miller
Asuntos generales de oficina y conferencias
Rita Mendelson
Asistente
Richard Miller

Ciencias
Funcionario científico
Keith Reid
Análisis de los datos de observación científica
Eric Appleyard
Asistente de investigación
Jacquelyn Turner

Administración de Datos
Administrador de datos
David Ramm
Asistente de administración de datos
Lydia Millar
Administrador/Programador de la base de datos
Simon Morgan

Ejecución y cumplimiento
Funcionario de cumplimiento
Natasha Slicer
Asistente de cumplimiento
Ingrid Karpinskyj

Administración y Finanzas
Administrador
Ed Kremzer
Asistente de finanzas
Christina Macha

Comunicaciones
Funcionaria de comunicaciones
Genevieve Tanner
Asistente de publicaciones y sitio web
Doro Forck
Traductora y coordinadora del equipo español
Ana María Merino
Traductora (español)
Margarita Fernández
Traductora (español)
Marcia Fernández
Traductora y coordinadora del equipo francés
Gillian von Bertouch
Traductora (francés)
Bénédicte Graham
Traductora (francés)
Floride Pavlovic
Traductora (francés)
Michèle Roger
Traductora y coordinadora del equipo ruso
Natalia Sokolova
Traductora (ruso)
Ludmilla Thornett
Traductor (ruso)
Vasily Smirnov

Sitio web y servicios de información
Sitio web y servicios de información
Rosalie Marazas
Asistente de servicios de información
Philippa McCulloch

Tecnología de la información
Administrador de tecnología de la información
Fernando Cariaga
Asistente de la tecnología de la información
Tim Byrne
LISTA DE DOCUMENTOS

Grupo de Trabajo de Evaluación de las Poblaciones de Peces
(Hobart, Australia, 13 al 24 de octubre 2008)

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>WG-FSA-08/1</td>
<td>Provisional Agenda and Provisional Annotated Agenda for the 2008 Meeting of the Working Group on Fish Stock Assessment (WG-FSA)</td>
</tr>
<tr>
<td>WG-FSA-08/2</td>
<td>List of participants</td>
</tr>
<tr>
<td>WG-FSA-08/3</td>
<td>List of documents</td>
</tr>
</tbody>
</table>
| WG-FSA-08/4 | CCAMLR fisheries: 2008 update
Secretariat |
| WG-FSA-08/5 Rev. 1 | A summary of observations on board longline vessels operating within the CCAMLR Convention Area during the 2007/08 season
Secretariat |
| WG-FSA-08/6 Rev. 1 | Summary of observations aboard trawlers operating in the Convention Area during the 2007/08 season
Secretariat |
Secretariat |
| WG-FSA-08/8 | Summary of observations aboard pot vessels operating in the Convention Area during the 2007/08 season
Secretariat |
| WG-FSA-08/9 | Review of CCAMLR activities on monitoring marine debris in the Convention Area
Secretariat |
| WG-FSA-08/10 Rev. 2 | Estimation of IUU catches of toothfish inside the Convention Area during the 2007/08 fishing season
Secretariat |
| WG-FSA-08/11 | Fishing activity and seabird-vessel attendance near the northern Antarctic Peninsula
J.A. Santora, K.S. Dietrich (USA) and D. Lombard (Canada)
(submitted to *Mar.Ornithol.*) |
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WG-FSA-08/12</td>
<td>Comparative characteristics of basic biological parameters of two toothfish species in high-latitude seas of the Antarctic</td>
<td>A.K. Zaytsev (Ukraine)</td>
</tr>
<tr>
<td>WG-FSA-08/13</td>
<td>New records of deep-sea skates (Rajidae, Chondrichthyes) from the Crozet Archipelago</td>
<td>S.P. Iglésias, N. Gasco and G. Duhamel (France)</td>
</tr>
<tr>
<td>WG-FSA-08/14</td>
<td>Some field materials on area and season of Antarctic toothfish spawning</td>
<td>V. Prutko (Ukraine)</td>
</tr>
<tr>
<td></td>
<td>(CCAMLR Science, submitted)</td>
<td></td>
</tr>
<tr>
<td>WG-FSA-08/15</td>
<td>CCAMLR tagging program</td>
<td>Secretariat</td>
</tr>
<tr>
<td>WG-FSA-08/16</td>
<td>Operational difficulties in implementing the CCAMLR tagging protocol in Division 58.4.1 in 2007/08</td>
<td>A.T. Lozano and O. Pin (Uruguay)</td>
</tr>
<tr>
<td>WG-FSA-08/18</td>
<td>Spatial distribution and age structure of the Antarctic toothfish (Dissostichus mawsoni) in the Ross Sea, Antarctica</td>
<td>C.M. Brooks and J.R. Ashford (USA)</td>
</tr>
<tr>
<td></td>
<td>(CCAMLR Science, submitted)</td>
<td></td>
</tr>
<tr>
<td>WG-FSA-08/19</td>
<td>Classification guide for potentially vulnerable invertebrate taxa in the Ross Sea longline fishery</td>
<td>S. Parker, D. Tracey, E. Mackay, S. Mills, P. Marriott, O. Anderson, K. Schnabel, D. Bowden and M. Kelly (New Zealand)</td>
</tr>
<tr>
<td>WG-FSA-08/20</td>
<td>Updated biological parameters for the Antarctic starry skate (Amblyraja georgiana) from the Ross Sea</td>
<td>M.P. Francis and S. Mormede (New Zealand)</td>
</tr>
<tr>
<td>WG-FSA-08/21</td>
<td>Revised age and growth estimates for Antarctic starry skate (Amblyraja georgiana) from the Ross Sea</td>
<td>M.P. Francis (New Zealand) and M.J. Gallagher (CCAMLR Science, submitted)</td>
</tr>
<tr>
<td>WG-FSA-08/22</td>
<td>A characterisation of the toothfish fishery in Subareas 88.1 and 88.2 from 1997/98 to 2007/08</td>
<td>M.L. Stevenson, S.M. Hanchet and A. Dunn (New Zealand)</td>
</tr>
</tbody>
</table>
WG-FSA-08/23 Preliminary analysis of *Dissostichus mawsoni* by-catch during bottom and krill fishing (Statistical Division 58.4.2)
L.K. Pshenichnov (Ukraine)

WG-FSA-08/24 Beach debris survey – Main Bay, Bird Island, South Georgia 2006/07
F. Le Bouard (UK)

WG-FSA-08/25 Fishing equipment, marine debris and hydrocarbon soiling associated with seabirds at Bird Island, South Georgia, 2007/08
D. Fox (UK)

WG-FSA-08/26 Beach debris survey and incidence of entanglement of Antarctic fur seals (*Arctocephalus gazella*) at Signy Island, South Orkney Islands, 2007/08
M.J. Dunn and C.M. Waluda (UK)

WG-FSA-08/27 Entanglement of Antarctic fur seals (*Arctocephalus gazella*) in man-made debris at Bird Island, South Georgia, during the 2007 winter and 2007/08 breeding season
E.W.J. Edwards (UK)

WG-FSA-08/28 Groundfish survey in CCAMLR Subarea 48.3 in April 2008 with preliminary assessment of mackerel icefish
M.A. Collins, R.E. Mitchell, C.E. Main, J. Lawson, J. Watts, J. Slakowski, L. Featherstone and O. Rzewuski (UK)
(submitted to *Polar Biol.*)

WG-FSA-08/29 Identifying patterns in diet of mackerel icefish (*Champsocephalus gunnari*) at South Georgia using bootstrapped confidence intervals of a dietary index
C.E. Main, M.A. Collins, R. Mitchell and M. Belchier (UK)
(*Polar Biol.*, submitted)

WG-FSA-08/30 A review of the methods used to release skates (rajiids), with or without tags, in Antarctic exploratory fisheries
J.M. Fenaughty (New Zealand)

WG-FSA-08/31 Biomass estimates and size distributions of demersal finfish on the Ross Sea shelf and slope from the New Zealand IPY-CAML survey, February–March 2008
(*CCAMLR Science*, submitted)
<table>
<thead>
<tr>
<th>Document ID</th>
<th>Title</th>
<th>Authors</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>WG-FSA-08/32</td>
<td>Indicative estimates of biomass and yield of Whitson’s grenadier (M. whitsoni) on the continental slope of the Ross Sea in Subareas 88.1 and 88.2</td>
<td>S.M. Hanchet, D. Fu and A. Dunn (New Zealand)</td>
<td>(CCAMLR Science, submitted)</td>
</tr>
<tr>
<td>WG-FSA-08/33</td>
<td>Age and growth of spiny icefish (Chaenodraco wilsoni Regan, 1914) off Joinville-D’Urville Islands (Antarctic Peninsula)</td>
<td>M. La Mesa, A. De Felice (Italy), C.D. Jones (USA) and K.-H. Kock (Germany)</td>
<td>(CCAMLR Science, submitted)</td>
</tr>
<tr>
<td>WG-FSA-08/35</td>
<td>On the study of fecundity and eggs size of Antarctic toothfish (Dissostichus mawsoni Norman 1937)</td>
<td>S.V. Piyanova, A.F. Petrov and N.V. Kokorin (Russia)</td>
<td>(CCAMLR Science, submitted)</td>
</tr>
<tr>
<td>WG-FSA-08/36</td>
<td>Proposal to vary the requirement to test sink rates for integrated weight longline (IWL) gear prior to entering the Convention Area</td>
<td>I. Hay (Australia)</td>
<td></td>
</tr>
<tr>
<td>WG-FSA-08/37 Rev. 1</td>
<td>Report on Australian fishing effort and seabird by-catch in fisheries outside the Convention Area</td>
<td>T. Hewitt and I. Hay (Australia)</td>
<td></td>
</tr>
<tr>
<td>WG-FSA-08/38</td>
<td>Effect of stern-setting tunnel on the sink rate of integrated weight longline (IWL)</td>
<td>I. Hay and G. Robertson (Australia)</td>
<td></td>
</tr>
<tr>
<td>WG-FSA-08/39</td>
<td>Research plan for toothfish by Shinsei Maru No. 3 in 2008/09</td>
<td>Delegation of Japan</td>
<td></td>
</tr>
<tr>
<td>WG-FSA-08/40</td>
<td>Proposal for revising Conservation Measure 41-04(2007): Limits on the Exploratory Fishery for Dissostichus spp. in Statistical Subarea 48.6 in the 2008/09 Season</td>
<td>Delegation of Japan</td>
<td></td>
</tr>
<tr>
<td>WG-FSA-08/41</td>
<td>The analysis of feeding activity and diet composition of Antarctic toothfish (D. mawsoni) in the Ross and Amundsen Seas in the fishing season 2006/07</td>
<td>N.V. Kokorin (Russia)</td>
<td></td>
</tr>
</tbody>
</table>
The role of fish as predators of krill (*Euphausia superba*) and other pelagic resources in the Southern Ocean
K.-H. Kock (Germany), D.J. Agnew (UK), E. Barrera-Oro (Argentina), M. Belchier, M.A. Collins (UK), S. Hanchet (New Zealand), L. Pshenichnov (Ukraine), K.V. Shust (Russia), D. Welsford and R. Williams (Australia)

Revised assessment of toothfish stocks in Divisions 58.4.1 and 58.4.2
D.J. Agnew, C. Edwards, R. Hillary, R. Mitchell (UK) and L.J. López Abellán (Spain)
(CCAMLR Science, submitted)

Preliminary results of trials testing modified longline gear ‘trotlines’ in presence of cetaceans in Subarea 48.3

Proposal for revising Conservation Measures 24-02 (2005) and 41-03 (2006) in relation to Subarea 48.4
Delegation of the United Kingdom

Proposal for an extension to the mark–recapture experiment to estimate toothfish population size in Subarea 48.4
J. Roberts and D. J. Agnew (UK)

Update on items of interest to WG-IMAF
N. Walker (New Zealand)

Investigating length at maturity of Antarctic toothfish (*Dissostichus mawsoni*) based on scientific observers’ data
S. Mormede, S. Parker and P. Grimes (New Zealand)
(CCAMLR Science, submitted)

Year of the Skate sampling protocol: learning from the 2007/08 season sampling protocol on NZ vessels
S. Mormede (New Zealand)

The Ross Sea Antarctic toothfish fishery: review of the 3-year experiment and development of medium-term research objectives and an operational framework for the fishery
Delegation of New Zealand

Updated preliminary results of an ecological risk assessment for seabirds and marine mammals with risk of fisheries interactions
S. Waugh, D. Filippi, N. Walker (New Zealand) and D.S. Kirby
WG-FSA-08/52 An assessment of artificial bait (NORBAIT™) as a means of reducing the incidental catch of *Macrourus* and other by-catch species in high-latitude toothfish fisheries
J.M. Fenaughty (New Zealand)

WG-FSA-08/53 Methods for implementing Conservation Measure 22-06: an impact assessment framework for bottom-impacting fishing methods in the CCAMLR Convention Area
B. Sharp, S. Parker and N. Smith (New Zealand)
(CCAMLR Science, submitted)

WG-FSA-08/54 A non-hierarchical taxonomic key for seabird identification in the Heard Island and McDonald Islands and Kerguelen Island fisheries
J. Fielding, T. Lamb, B. Wienecke (Australia) and N. Gasco (France)

WG-FSA-08/55 The Australian skate tagging program at Heard Island and McDonald Islands, CCAMLR Division 58.5.2
G.B. Nowara and T. Lamb (Australia)

WG-FSA-08/56 Preliminary assessment of mackerel icefish (*Champsocephalus gunnari*) in the vicinity of Heard Island and McDonald Islands (Division 58.5.2), based on a survey in July 2008, using the generalised yield model
D.C. Welsford (Australia)

WG-FSA-08/57 Report on a longline survey conducted by the FV *Janas* in may 2008 on BANZARE Bank, and an assessment of the status of *Dissostichus* spp. in Division 58.4.3b
D. Welsford, T. Robertson and G. Nowara (Australia)
(CCAMLR Science, submitted)

WG-FSA-08/58 Estimating the swept area of demersal longlines based on in situ video footage
D. Welsford and R. Kilpatrick (Australia)
(CCAMLR Science, submitted)

WG-FSA-08/59 Field identification guide to Heard Island and McDonald Island (HIMI) benthic invertebrates
T. Hibberd and K. Moore (Australia)

WG-FSA-08/60 The autoline system – an updated descriptive review of the method with recommendations to clarify CCAMLR conservation measures regulating longline fisheries within the Convention Area
J.M. Fenaughty (New Zealand)
WG-FSA-08/61 Report of the Second Meeting of the Seabird Bycatch Working Group
(Hermanus, South Africa, 17–18 August 2008)
ACAP Seabird Bycatch Working Group

WG-FSA-08/62 Application to undertake winter scientific research in
CCAMLR Subarea 88.1 (SSRUs 881B, 881C and 881G)
in the 2008/09 season
Delegation of New Zealand

WG-FSA-08/63 Expected tag–recapture rates from new and exploratory
fisheries for *Dissostichus* spp.
J.P. McKinlay and D.C. Welsford (Australia)
(CCAMLR Science, submitted)

WG-FSA-08/64 A risk management framework for avoiding significant adverse
impacts of bottom fishing gear on Vulnerable Marine
Ecosystems
K. Martin-Smith (Australia)
(CCAMLR Science, submitted)

WG-FSA-08/65 Conveners’ Report of the WG-IMAF Workshop
K. Rivera and N. Smith (Co-conveners of ad hoc WG-IMAF)

Otros documentos

WG-FSA-08/P1 Population subdivision in the Antarctic toothfish (*Dissostichus mawsoni*) revealed by mitochondrial and nuclear single
nucleotide polymorphisms (SNPs)
K. Kuhn and P.M. Gaffney
doi:10.1017/S0954102008000965)

WG-FSA-08/P2 Recruitment and body size in relation to temperature in
juvenile Patagonian toothfish (*Dissostichus eleginoides*) at
South Georgia
M. Belchier and M.A. Collins
10.1007/s00227-008-1047-3)*

WG-FSA-08/P3 Oxygen and carbon stable isotopes in otoliths record spatial
isolation of Patagonian toothfish (*Dissostichus eleginoides*)
J.R. Ashford and C.M. Jones
doi:10.1016/j.gca.2006.08.030)*
WG-FSA-08/P4 Otolith chemistry reflects frontal systems in the Antarctic Circumpolar Current
J.R. Ashford, A.I. Arkhipkin and C.M. Jones
doi: 10.3354/meps07153)

WG-FSA-08/P5 Otolith chemistry indicates population structuring by the Antarctic Circumpolar Current
J.R. Ashford, C.M. Jones, E.E. Hofmann, I. Everson, C.A. Moreno, G. Duhamel and R. Williams
doi: 10.1139/F07-158)

WG-FSA-08/P6 Slope currents around the Kerguelen Islands from demersal longline fishing records
Y.-H. Park, N. Gasco and G. Duhamel (France)
doi: 10.1029/2008GL033660)

CCAMLR-XXVII/12 Resumen de las notificaciones de pesquerías nuevas y exploratorias en 2008/09
Secretaría

CCAMLR-XXVII/13 Notificación de la intención de Noruega de realizar una pesquería de arrastre exploratoria de Euphausia superba en la temporada 2008/09
Delegación de Noruega

CCAMLR-XXVII/14 Notificaciones de la intención de Argentina de realizar pesquerías de palangre exploratorias de Dissostichus spp. en la temporada 2008/09
Delegación de Argentina

CCAMLR-XXVII/15 Notificación de la intención de Australia de realizar una pesquería de palangre exploratoria de Dissostichus spp. en la temporada 2008/09
Delegación de Australia

CCAMLR-XXVII/16 Notificaciones de la intención de Chile de realizar pesquerías de palangre exploratorias de Dissostichus spp. en la temporada 2008/09
Delegación de Chile

CCAMLR-XXVII/17 Notificaciones de la intención del Japón de realizar pesquerías de palangre exploratorias de Dissostichus spp. en la temporada 2008/09
Delegación de Japón
CCAMLR-XXVII/18 Notificaciones de la intención de la República de Corea de realizar pesquerías de palangre exploratorias de *Dissostichus* spp. en la temporada 2008/09
Delegación de la República de Corea

CCAMLR-XXVII/19 Notificaciones de la intención de Nueva Zelanda de realizar pesquerías de palangre exploratorias de *Dissostichus* spp. en la temporada 2008/09
Delegación de Nueva Zelanda

CCAMLR-XXVII/20 Notificaciones de la intención de Rusia de iniciar nuevas pesquerías de centollas con nasas en la temporada 2008/09
Delegación de Rusia

CCAMLR-XXVII/21 Notificaciones de la intención de Rusia de realizar pesquerías de palangre exploratorias de *Dissostichus* spp. en la temporada 2008/09
Rev. 1
Delegación de Rusia

CCAMLR-XXVII/22 Notificaciones de la intención de Sudáfrica de realizar pesquerías de palangre exploratorias de *Dissostichus* spp. en la temporada 2008/09
Delegación de Sudáfrica

CCAMLR-XXVII/23 Notificaciones de la intención de España de realizar pesquerías de palangre exploratorias de *Dissostichus* spp. en la temporada 2008/09
Delegación de España

CCAMLR-XXVII/24 Notificaciones de la intención del Reino Unido de realizar pesquerías de palangre exploratorias de *Dissostichus* spp. en la temporada 2008/09
Delegación del Reino Unido

CCAMLR-XXVII/25 Notificaciones de la intención de Uruguay de realizar pesquerías de palangre exploratorias de *Dissostichus* spp. en la temporada 2008/09
Delegación de Uruguay

CCAMLR-XXVII/26 Preliminary assessments of known and anticipated impacts of proposed bottom fishing activities on vulnerable marine ecosystems
Collated by the Secretaría

CCAMLR-XXVII/BG/15 Implementation of conservation measures in 2007/08
Secretariat

SC-CAMLR-XXVII/5 Informe del Grupo de Trabajo de Estadística, Evaluación y Modelado
(San Petersburgo, Rusia, 14 al 22 de julio de 2008)
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Author/Delegate</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC-CAMLR-XXVII/8</td>
<td>Action plan aimed at reducing seabird by-catch in the French EEZs in Statistical Division 58.5.1 and Subarea 58.6</td>
<td>Delegation of France</td>
</tr>
<tr>
<td>SC-CAMLR-XXVII/10</td>
<td>Resumen de los informes presentados por Francia en relación con las recomendaciones del Comité Científico sobre la mortalidad incidental de aves marinas</td>
<td>Delegación de Francia</td>
</tr>
<tr>
<td>SC-CAMLR-XXVII/12</td>
<td>Efectos ambientales, espaciales, temporales y operacionales sobre la mortalidad incidental de aves en la pesquería de palangre de la zona de Crozet y Kerguelén de 2003 a 2006</td>
<td>Delegación de Francia</td>
</tr>
<tr>
<td>SC-CAMLR-XXVII/13</td>
<td>Notificación de Ecosistemas Marinos Vulnerables en el Área estadística 58.4.1</td>
<td>Delegación de Australia</td>
</tr>
<tr>
<td>SC-CAMLR-XXVII/BG/1</td>
<td>Catches in the Convention Area in the 2006/07 and 2007/08 seasons</td>
<td>Secretariat</td>
</tr>
<tr>
<td>SC-CAMLR-XXVII/BG/6</td>
<td>Report of the ad hoc Technical Group for at-sea Operations (St Petersburg, Russia, 19 and 20 July 2008)</td>
<td>Secretariat</td>
</tr>
<tr>
<td>SC-CAMLR-XXVII/BG/7</td>
<td>Attendance of Science Officer at the Second Meeting of the ACAP Seabird Bycatch Working Group (Hermanus, South Africa, 17 to 18 August 2008)</td>
<td>Secretariat</td>
</tr>
<tr>
<td>SC-CAMLR-XXVII/BG/8</td>
<td>Etude d’évaluation de l’impact des pêcheries sur les populations de pétrels à menton blanc Procellaria aequinoctialis et de pétrels gris Procellaria cinerea aux îles Crozet et Kerguelen</td>
<td>Délégation française</td>
</tr>
<tr>
<td>SC-CAMLR-XXVII/BG/11</td>
<td>Instruments de réglementation en vigueur pour réduire la mortalité des oiseaux de mer directement ou indirectement</td>
<td>Délégation française</td>
</tr>
<tr>
<td>SC-CAMLR-XXVII/BG/12</td>
<td>Mise en place d’un système d’effarouchement au poste de virage sur les palangriers exploitant la légine dans les ZEE françaises incluses dans les sous-zones statistiques 58.5.1 et 58.6 – Campagne de pêche 2007-2008</td>
<td>Délégation française</td>
</tr>
</tbody>
</table>
WG-EMM-08/27 Trophic study of Ross Sea Antarctic toothfish (*Dissostichus mawsoni*) using carbon and nitrogen stable isotopes
S.J. Bury, M.H. Pinkerton, D.R. Thompson, S. Hanchet, J. Brown and I. Vorster (New Zealand)

WG-EMM-08/42 A preliminary balanced trophic model of the ecosystem of the Ross Sea, Antarctica, with emphasis on apex predators
M.H. Pinkerton, J.M. Bradford-Grieve and S.M. Hanchet (New Zealand)

WG-EMM-08/43 Trophic overlap of Weddell seals (*Leptonychotes weddelli*) and Antarctic toothfish (*Dissostichus mawsoni*) in the Ross Sea, Antarctica
M.H. Pinkerton, A. Dunn and S.M. Hanchet (New Zealand)

WG-SAM-08/8 Towards the balanced stock assessment of Antarctic toothfish in the Ross Sea
D. Vasilyev and K. Shust (Russia)

WG-SAM-08/13 Development of a methodology for data quality assessment
D.A.J. Middleton and A. Dunn (New Zealand)
Los apéndices D–Q (Informes de pesquerías) sólo están disponibles electrónicamente en:

www.ccamlr.org/pu/s/pubs/fr/drt.htm
INFORME DEL GRUPO ESPECIAL DE TRABAJO SOBRE LA
MORTALIDAD INCIDENTAL RELACIONADA CON LA PESCA
(Hobart, Australia, 13 al 17 de octubre de 2008)
ÍNDICE

APERTURA DE LA REUNIÓN .. 495

ORGANIZACIÓN DE LA REUNIÓN Y APROBACIÓN DE LA AGENDA 495

TRABAJO DEL GRUPO ESPECIAL WG-IMAF
DURANTE EL PERÍODO ENTRE SESIONES .. 495
Asesoramiento al Comité Científico ... 496

MORTALIDAD INCIDENTAL DE AVES Y MAMÍFEROS MARINOS
EN LAS PESQUERÍAS DEL ÁREA DE LA CONVENCIÓN 496
Aves marinas ... 496
Aves marinas en las pesquerías de palangre ... 496
 Mortalidad incidental de aves marinas en las ZEE francesas
 de la Subárea 58.6 y División 58.5.1 .. 497
Aves marinas en las pesquerías de arrastre ... 498
 Draco rayado en la Subárea 48.3 ... 498
 Austromerluza/draco rayado en la División 58.5.2 499
 Kril ... 499
Aves marinas en la pesquería con nasas .. 500
Mamíferos marinos .. 500
Mamíferos marinos en la pesca de palangre .. 500
Mamíferos marinos en la pesca de arrastre ... 500
 Kril ... 500
 Peces .. 501
Mamíferos marinos en la pesca con nasas ... 501

Información relacionada con la implementación de
las Medidas de Conservación 26-01, 25-02 y 25-03 501
Medida de Conservación 26-01 “Protección general
del medio ambiente durante la pesca” .. 501
 Zunchos plásticos de empaque ... 501
 Restos de artes de pesca y basura ... 501
Medida de Conservación 25-02 “Reducción de la mortalidad incidental
de aves marinas durante la pesquería de palangre o en la pesquería
de investigación con palangres en el Área de la Convención” 502
 Lastrado de la línea ... 502
 Calado nocturno .. 502
 Vertido de restos de pescado ... 502
 Anzuelos desechados .. 503
 Líneas espantapájaros ... 503
 Dispositivos para ahuyentar las aves durante el virado 503
Medida de Conservación 25-03 “Reducción de la mortalidad incidental
de aves y mamíferos marinos durante la pesca de arrastre
en el Área de la Convención” ... 504
 Cables de la red .. 504
 Vertido de desechos ... 504
Resumen de la implementación de medidas de conservación 504
Asesoramiento al Comité Científico ... 505

EXAMEN DE LOS PLANES DE ACCIÓN
PARA ELIMINAR LA MORTALIDAD DE AVES MARINAS 506
Plan de acción de Francia para reducir/eliminar
la mortalidad de aves marinas en la Subárea 58.6 y División 58.5.1 506
Asesoramiento al Comité Científico ... 508

MORTALIDAD INCIDENTAL DE AVES Y MAMÍFEROS MARINOS
EN PESQUERÍAS FUERA DEL ÁREA DE LA CONVENCIÓN 508
Asesoramiento al Comité Científico ... 509

MORTALIDAD INCIDENTAL DE AVES MARINAS
DURANTE LA PESCA INDNR EN EL ÁREA DE LA CONVENCIÓN 509
Asesoramiento al Comité Científico ... 510

INVESTIGACIONES Y EXPERIENCIAS RELACIONADAS
CON LAS MEDIDAS DE MITIGACIÓN ... 511
Palangres .. 511
Arrastre ... 512
Asesoramiento al Comité Científico ... 512

INFORMES DE OBSERVACIÓN Y RECOPIACIÓN DE DATOS 513
Datos de observación de aves anilladas ... 513
Extrapolación de la mortalidad incidental total de mamíferos marinos 513
Progreso del protocolo de recopilación de datos sobre el cable de la red
en los arrastres efectuados dentro del Área de la Convención 514
Modificación del protocolo de colisiones con el cable de la red
en la pesca de kril con arrastre continuo .. 515
Recopilación de datos sobre la extensión del área cubierta
por las líneas espantapájaros ... 515
Prioridades del grupo especial WG-IMAF
para la recopilación de datos de observación .. 516
Arrastres ... 516
Palangres .. 517
Recopilación de datos sobre desechos marinos ... 517
Asesoramiento al Comité Científico ... 518

ESTUDIO SOBRE EL ESTADO Y LA DISTRIBUCIÓN
DE AVES Y MAMÍFEROS MARINOS .. 519
Asesoramiento al Comité Científico ... 521

EVALUACIÓN DEL RIESGO EN SUBÁREAS Y DIVISIONES
DE LA CCRVMA .. 521
Información nueva relacionada con la evaluación del riesgo 521
Metodología de evaluación del riesgo ... 522
Propuestas para modificar las medidas de conservación y el asesoramiento
de ordenación para minimizar el impacto de las pesquerías en las aves marinas . 522
Asesoramiento al Comité Científico ... 523
MORTALIDAD INCIDENTAL DE AVES MARINAS
EN LAS PESQUERÍAS NUEVAS Y EXPLORATORIAS 524
Pesquerías nuevas y exploratorias realizadas en 2007/08 524
Pesquerías nuevas y exploratorias propuestas para 2008/09 525
Asesoramiento al Comité Científico .. 526

INICIATIVAS INTERNACIONALES Y NACIONALES RELACIONADAS
CON LA MORTALIDAD INCIDENTAL DE AVES Y MAMÍFeros MARINOS
OCASIONADA POR LAS ACTIVIDADES DE PESCA 526
ACAP .. 526
Iniciativas internacionales .. 527
Aplicación de la Resolución 22/XXV de la CCRVMA 527
PAI-Aves marinas de la FAO .. 528
OROP y organizaciones gubernamentales internacionales 529
WCPFC ... 529
ICCAT ... 529
CCSBT ... 529
IOTC ... 530
Iniciativas nacionales .. 530
Asesoramiento proporcionado al Comité Científico 531

DESECHOS MARINOS Y SU EFECTO EN LAS POBLACIONES
DE AVES Y MAMÍFeros MARINOS DEL ÁREA DE LA CONVENCIÓN 532
Asesoramiento al Comité Científico .. 534

INTERACCIONES CON OTROS GRUPOS DE TRABAJO
DEL COMITÉ CIENTÍFICO .. 535

INFORMES DE PESCA ... 536
Asesoramiento al Comité Científico .. 536

RACIONALIZACIÓN DE LA LABOR DEL COMITÉ CIENTÍFICO 536
Asesoramiento al Comité Científico .. 538

ASUNTOS VARIOS ... 538
Asesoramiento al Comité Científico .. 538

APROBACIÓN DEL INFORME Y CLAUSURA DE LA REUNIÓN 539

REFERENCIAS .. 539

TABLAS .. 540

FIGURA ... 566

APÉNDICE A: Agenda ... 567

APÉNDICE B: Lista de participantes .. 569
INFORME DEL GRUPO DE TRABAJO ESPECIAL
SOBRE LA MORTALIDAD INCIDENTAL ASOCIADA CON LA PESCA
(Hobart, Australia, 13 al 17 de octubre de 2008)

APERTURA DE LA REUNIÓN

1.1 La reunión del grupo de trabajo especial WG-IMAF fue celebrada del 13 al 17 de octubre de 2008 en Hobart (Australia).

1.2 Los coordinadores, Sra. K. Rivera (EEUU) y Sr. N. Smith (Nueva Zelandia), inauguraron la reunión y dieron la bienvenida a los participantes entre los que se encontraban los expertos invitados de ACAP y BirdLife International.

ORGANIZACIÓN DE LA REUNIÓN Y APROBACIÓN DE LA AGENDA

1.3 Se examinó la agenda y se convino en acentuar la importancia de los mamíferos marinos, incluir un nuevo punto en la revisión de los planes de acción para las áreas de alta mortalidad incidental y aclarar que el debate sobre la mitigación debe incluir una revisión de los métodos de pesca utilizados. Se aprobó la agenda modificada (apéndice A).

1.4 El informe fue redactado por los participantes e incluye la agenda como apéndice A y la lista de participantes como apéndice B. La lista de documentos considerados en la reunión se presenta en el informe del WG-FSA (anexo 5, apéndice C).

TRABAJO DEL GRUPO ESPECIAL WG-IMAF
DURANTE EL PERÍODO ENTRE SESIONES

1.5 La Secretaría informó sobre las actividades del grupo especial WG-IMAF realizadas durante el período entre sesiones de conformidad con el plan acordado para 2007/08 (SC-CAMLR-XXVI, anexo 6, tabla 21).

1.6 El grupo de trabajo agradeció a la Secretaría por su coordinación de las actividades del grupo especial WG-IMAF durante el período entre sesiones y a los coordinadores técnicos de los programas nacionales de observación por su apoyo. Se agradeció también a la Secretaría por el tratamiento y análisis de los datos presentados por los observadores nacionales e internacionales en el curso de la temporada de pesca de 2007/08.

1.7 El grupo de trabajo concluyó que la mayoría de las tareas planificadas para 2007/08 habían sido llevadas a cabo satisfactoriamente. La mayor parte de la información que debía obtenerse durante el período entre sesiones fue proporcionada al grupo de trabajo, en documentos de trabajo para la reunión. La lista de las tareas intersesionales vigentes fue revisada y modificada de común acuerdo para consolidar tareas específicas en los planes para el futuro. El grupo de trabajo estuvo de acuerdo en que el plan de actividades intersesionales de 2008/09, compilado por los coordinadores y el Funcionario Científico, fuese incluido como apéndice en su informe (tabla 1).
1.8 Se dio una calurosa bienvenida al Sr. J. Moir Clark (RU), a la Sra. F. Graham (Francia) y a la Sra. K. O’Regan (Australia) quienes asistían por primera vez a la reunión. El grupo de trabajo alentó a los miembros a que contribuyeran en el futuro con asesoramiento experto sobre los aspectos operacionales de la pesca, especialmente en relación con las pesquerías que utilizan el palangre artesanal y redes de arrastre.

1.9 El grupo de trabajo se mostró muy agradecido por la participación de coordinadores técnicos nacionales, quienes le brindaron su invaluable experiencia durante el debate de numerosos temas relacionados con los observadores y con la recopilación de datos. Además de la continua participación de coordinadores técnicos en reuniones futuras, el grupo especial WG-IMAF también agradecería la participación de miembros que pescan en el Área de la Convención, o en aguas adyacentes a ella, y que no han participado recientemente en una reunión del grupo especial WG-IMAF.

Asesoramiento al Comité Científico

1.10 El plan de trabajo intersesional para 2008/09 (tabla 1) resume la información de importancia para la labor del grupo especial WG-IMAF solicitada a los miembros y a otras partes (párrafo 1.7). Se invita especialmente a los miembros a que estudien la composición del grupo de trabajo y faciliten la asistencia de sus representantes a las reuniones, en especial, de los coordinadores técnicos y de los miembros que participan en actividades de pesca dentro del Área de la Convención, o en aguas adyacentes, y que no han participado recientemente en una reunión del grupo especial WG-IMAF (párrafo 1.9).

MORTALIDAD INCIDENTAL DE AVES Y MAMÍFEROS MARINOS EN LAS PESQUERÍAS DEL ÁREA DE LA CONVENCIÓN

Aves marinas

Aves marinas en las pesquerías de palangre

2.1 Se obtuvieron datos de todas las campañas de pesca de palangre realizadas en el Área de la Convención durante la temporada 2007/08, excepto las efectuadas dentro de las ZEE francesas en la Subárea 58.6 y la División 58.5.1 (Tabla 1).

2.2 La proporción de anzuelos observados fue similar a los valores del año pasado (13-100% con un promedio de 47%) (WG-FSA-08/5, tabla 2).

2.3 La extrapolación de la mortalidad total de aves marinas causada por la interacción con los artes de pesca durante la pesca de palangre dirigida a *Dissostichus* spp. en el Área de la Convención en 2007/08 fue de 1 355 petreles (91% petreles de mentón blanco (*Procellaria aequinoctialis*), 7% petreles grises (*Procellaria cinerea*) y 2% *Macronectes* spp.) (tabla 3; WG-FSA-08/5 Rev. 1, tabla 11).

2.4 El grupo de trabajo indicó que éste era el tercer año consecutivo en que no se observaba la captura de ningún albatros en las pesquerías de palangre del Área de la
Convención, y el segundo año consecutivo en que la única mortalidad incidental de aves marinas dentro del Área de la Convención provino de la pesquería de palangre que opera en las ZEE francesas.

2.5 Se observó un total de 121 aves marinas capturadas y liberadas ilesas (tablas 2 y 4), todas las capturas ocurrieron durante el virado de la línea. De ellas, 20 capturas ocurrieron en la Subárea 48.3, 2 en las Subáreas 58.6, 58.7 y en el Área 51, y 99 en las ZEE francesas de la Subárea 58.6 y División 58.5.1. Todos los barcos registraron el uso de dispositivos para ahuyentar a las aves. Los dispositivos descritos por los observadores incluyen: un cañón de agua/manguera contra incendios, un sólo botalón con un solo objeto/cinta colgante, un sólo botalón con múltiples objetos/cintas colgantes, una serie de botalones y objetos colgantes (p.ej. cortina de Brickle) y elementos sonoros (WG-FSA-08/5 Rev. 1, párrafos 6 y 7).

2.6 Durante la reunión, Australia informó que el 23 de agosto de 2008 se había observado la mortalidad adicional de un petrel gigante antártico (*M. giganteus*) a bordo del *Austral Leader II* en la División 58.5.2. Los datos de observación serán enviados a la Secretaría al término de la campaña.

Mortalidad incidental de aves marinas en las ZEE francesas de la Subárea 58.6 y División 58.5.1

2.7 Se dispuso de datos de 15 campañas realizadas en la Subárea 58.6 y de 21 campañas en la División 58.5.1 en 2007/08. Todos los barcos que operaron en las ZEE francesas utilizaron el sistema de calado automático con PLI de por lo menos 50 g m\(^{-1}\). La proporción de anzuelos observados fue 24.6% en cada una de las áreas (tabla 5) y la mortalidad total de aves marinas observada (suma de aves muertas y heridas) fue de 34 aves en la Subárea 58.6 y 304 en la División 58.5.1 (tabla 5). Las tasas correspondientes de mortalidad incidental fueron 0.0305 y 0.0585 aves/mil anzuelos (tabla 5) y la mortalidad total de aves extrapolada fue de 131 y 1 224 aves respectivamente (tabla 3).

2.8 Se indicó que esto representaba una reducción de 53 y 27% de las tasas de captura incidental en la Subárea 58.6 y en la División 58.5.1 respectivamente, comparado con la temporada anterior; esto representa una reducción de un 40% del total combinado de captura incidental estimado para estas áreas (tabla 3).

2.9 El grupo de trabajo indicó que un 32% de las aves marinas observadas que fueron capturadas estaban vivas, lo que indica que esto sucedió durante el virado (tabla 5). Esto se compara con un 48% del total de aves capturadas durante las maniobras de virado el año pasado. La mayoría (77%) de las aves fueron capturadas a principio de temporada, antes de que se implementara un dispositivo de mitigación para el virado, siendo los petreles gigantes (*Macronectes* spp.) los más capturados. La introducción de un dispositivo de mitigación a mediados de la temporada, redujo considerablemente las capturas durante el virado.

2.10 Se indicó que el dispositivo de mitigación utilizado debía ser mejorado para reducir aún más la tasa de captura durante el virado. Sobre la base de los resultados obtenidos en la División 58.5.2 (Isla Heard) adyacente, donde una combinación de la retención total de los desechos a bordo y el uso de dispositivos de mitigación casi ha eliminado las capturas de aves...
marinas (incluidos los petreles gigantes), el grupo de trabajo indicó que debería ser posible reducir totalmente las interacciones durante las maniobras de virado mejorando el dispositivo de mitigación utilizado durante estas maniobras y la manipulación de los desechos.

2.11 El grupo de trabajo discutió la definición de ave herida (CCAMLR-XXII, párrafo 5.1; SC-CAMLR-XXII, párrafo 5.39 y anexo 5, párrafos 6.213 al 6.217) a fin de determinar si la interpretación de la definición era uniforme en toda el Área de la Convención (SC-CAMLR-XXVII/BG/10). Se decidió aclarar esta cuestión explotando la definición a fin de indicar que cualquier herida abierta, sangrando o no, debe ser considerada como una herida. El grupo de trabajo pidió que la Secretaría modifique como corresponda las instrucciones del cuaderno electrónico de observación para todas las pesquerías a fin de reflejar la modificación de esta definición.

Aves marinas en las pesquerías de arrastre

Draco rayado en la Subárea 48.3

2.12 Se dispuso de datos de todas las seis campañas de pesca de arrastre realizadas en la Subárea 48.3 durante la temporada 2007/08 (WG-FSA-08/6 Rev. 1). El grupo de trabajo indicó que 100% de los barcos que participaron en esta pesquería llevaron observadores a bordo, y que se observaron 89% de los arrastres (WG-FSA-08/6 Rev. 1, tabla 2).

2.13 Para la temporada 2007/08, se notificó la mortalidad de cinco aves (tres petreles de mentón blanco y dos pingüinos rey (*Aptenodytes patagonicus*)) en la pesquería de draco rayado de la Subárea 48.3 realizada con cuatro barcos (WG-FSA-08/6 Rev. 1, tabla 3). Dos de los petreles de mentón blanco murieron durante las operaciones de virado y uno durante el calado; se desconoce el momento cuando los pingüinos murieron ya que estaban fríos cuando fueron subidos a bordo. Además, cinco aves marinas fueron liberadas vivas en la Subárea 48.3 (cuatro albatros de ceja negra (*Diomedea melanophris*) y un albatros de cabeza gris (*D. chrysostoma*)) (WG-FSA-08/6 Rev. 1, tabla 3).

2.14 El grupo de trabajo indicó que esto se compara con la mortalidad de seis aves marinas (tres liberadas vivas) en 2007 y de 33 aves (89 liberadas con vida) en 2006. La tasa de mortalidad en la Subárea 48.3 en 2008 fue de 0.024 aves por arrastre, comparado con 0.07 en 2007, 0.07 en 2006 y 0.14 en 2005 respectivamente (tabla 6). Se registró el choque de un ave (un albatros no identificado) con el cable de arrastre del *Betanzos*.

2.15 Los observadores registraron el uso de una variedad de medidas de mitigación, a saber, limpieza de la red, líneas espantapájaros, dispositivos Brady, chorros de agua, amarres y lastrado de la red (WG-FSA-08/6 Rev. 1, párrafo 10). Todos los barcos utilizaron amarres en sus redes en todos sus lances; estos amarres se hicieron de 1 a 4 m de distancia, y la luz de malla de las redes amarradas fue de 96 a 800 mm. En cuanto al lastrado de la red, tres barcos (*Betanzos, Robin M Lee y Insung Ho*) informaron que habían utilizado pesos en la red. El *Betanzos* puso cadenas de 37.5 kg a cada lado de la boca del copo, aumentando el lastre a 54.5 kg después de haberse observado cinco aves enredadas. También tenía un segundo par de cadenas de 95 kg cada una al final del copo. El *Insung Ho* fijó pesos de 250 kg a cada lado.
de la boca de la red y 322 kg en el copo. El Robin M Lee utilizó una soga con peso integrado que agregó unos 400 kg aproximadamente a la red. Además, el Robin M Lee giró durante la recogida de la red para cerrar la trama de la malla.

2.16 El grupo de trabajo indicó que el nivel de mortalidad de aves marinas en esta subárea ha permanecido bajo y pidió información adicional para aislar los factores que han contribuido a estos buenos resultados. Recomendó que los observadores describan en más detalle las medidas de mitigación y técnicas de pesca específicas utilizadas por el barco (p.ej. arrastres más cortos para reducir el tamaño de la red recogida) (párrafo 7.29(iv)(b)).

Austromerluza/draco rayado en la División 58.5.2

2.17 Se dispuso de datos de un barco que realizó tres campañas de pesca de arrastre en la División 58.5.2 durante la temporada 2007/08 (WG-FSA-08/6 Rev. 1, tabla 2). El grupo de trabajo indicó que el 100% de los barcos de pesca en esta pesquería tenían observadores, lográndose cubrir un 97% de los arrastres (tabla 7).

2.18 No se notificó mortalidad de aves marinas y un petrel damero (Daption capense) fue capturado y liberado (WG-FSA-08/6 Rev. 1, tabla 3). El barco practicó la limpieza de sus redes y utilizó el mínimo de iluminación en cubierta para reducir las interacciones con las aves marinas, además de respetar totalmente la Medida de Conservación 25-03 (WG-FSA-08/6 Rev. 1, párrafo 15).

Kril

2.19 Se dispuso de datos de ocho campañas de pesca de arrastre realizadas en el Área 48 durante la temporada 2007/08 (WG-FSA-08/6 Rev. 1). En la pesquería de kril, 50% de los barcos que pescaron en la Subárea 48.1, 20% de los que pescaron en la Subárea 48.2 (dos campañas) y 67% de los que pescaron en la Subárea 48.3 llevaron observadores a bordo en algún momento de sus campañas. No se informó la mortalidad de aves marinas ni enredos en la pesquería de kril en el Área 48 (WG-FSA-08/6 Rev. 1, tabla 2).

2.20 El grupo de trabajo observó que no se registró mortalidad de aves en el Saga Sea mientras pescaba con el sistema de arrastre contínuo en las Subáreas 48.1, 48.2 y 48.3 (tabla 7). Asimismo, no se registró mortalidad en los siguientes barcos que utilizaron métodos tradicionales de arrastre pelágico de kril: el Dalmor II y Juvel en la Subárea 48.3 y Konstruktor Koshkin en las Subáreas 48.1 y 48.2 (tabla 7). El Maksim Starostin que utilizó ambos métodos de pesca (contínuo y tradicional) en el Área 48 tampoco registró mortalidad de aves marinas (tabla 7).

2.21 El grupo de trabajo indicó que la aparentemente baja proporción de arrastres observados en algunos barcos de pesca de kril se debió al método utilizado para registrar los lances durante el arrastre contínuo. Los protocolos vigentes de la CCRVMA requieren que cada dos horas estos barcos registren arrastres separados cuando la red permanece en el agua, un barco que utiliza el sistema de arrastre contínuo durante un periodo de varios días puede

Un cuaderno de observación fue presentado por un observador nacional a bordo del Konstruktor Koshkin.
registrar cientos de arrastres, a pesar de que sólo se observó un solo lance y recogida de la red. Se indicó también que la proporción de arrastres observados seguía siendo baja cuando hubo observadores a bordo en algunos barcos que utilizaron el método de arrastre tradicional (33% en el *Konstruktor Koshkin*, 20% en el *Dalmor II*).

Aves marinas en la pesquería con nasas

2.22 En 2007/08 no se registró la mortalidad de ningún ave en ninguna de las campañas de pesca con nasas dirigidas a *D. eleginoides* (WG-FSA-08/8, párrafo 7) y a centollas en la Subárea 48.3 (WG-FSA-08/5 Rev. 1, párrafo 17).

Mamíferos marinos

Mamíferos marinos en la pesca de palangre

2.23 Se notificó la mortalidad de tres pinnípedos en el Área de la Convención en la temporada 2007/08 (WG-FSA-08/5 Rev. 1, párrafo 5). Se informó de un lobo fino antártico (*Arctocephalus gazella*) enganchado en un anzuelo que le atravesó el labio inferior, supuestamente durante el calado de la línea en el Área 48, otro ejemplar se enredó en la línea madre y ahogó en la División 58.5.2, y una foca cangrejera (*Lobodon carcinophagus*) se enredó en la línea en la Subárea 88.1.

2.24 Durante la reunión, Australia informó que el 13 de septiembre de 2008 se había observado la mortalidad adicional de un elefante marino del sur (*Mirounga leonina*) a bordo del palangrero *Austral Leader II* en la División 58.5.2. Los datos de observación serán enviados a la Secretaría al término de la campaña.

Mamíferos marinos en la pesca de arrastre

Kril

2.25 Se registró la mortalidad de seis mamíferos marinos (cinco lobos finos y uno no identificado) en la pesquería de arrastre de kril en 2007/08, todos en la Subárea 48.3 (tabla 8). Esto representa un aumento comparado con la temporada 2006/07 que no registró mortalidad de mamíferos marinos (tabla 9). Los observadores informaron acerca del uso de prácticas habituales de limpieza de la red y de dispositivos de exclusión de pinnípedos (WG-FSA-08/6 Rev. 1, párrafo 5).

2.26 El grupo de trabajo indicó que la mortalidad de mamíferos marinos observada no se utiliza actualmente para estimar totales de mortalidad como es el caso para las aves marinas (párrafos 7.4 al 7.8).
Peces

2.27 No se observó el enredo de ningún mamífero marino en las pesquerías de arrastre de peces (tabla 8; WG-FSA-08/6 Rev. 1, párrafo 14), tal como en la temporada 2006/07.

Mamíferos marinos en la pesca con nasas

2.28 No se notificó la muerte de ningún mamífero marino en las pesquerías con nasas efectuadas en el Área de la Convención (WG-FSA-08/8), tal como en la temporada 2006/07.

Información relacionada con la implementación de las Medidas de Conservación 26-01, 25-02 y 25-03

2.29 La Secretaría proporcionó información obtenida de los informes de observación sobre la aplicación de las Medidas de Conservación 26-01, 25-02 y 25-03 en 2007/08 (WG-FSA-08/7 Rev. 2). Los datos notificados no incluyen información sobre las actividades de pesca en las ZEE francesas en la Subárea 58.6 y División 58.5.1, para las cuales no se dispuso de datos.

Medida de Conservación 26-01 “Protección general del medio ambiente durante la pesca”

Zunchos plásticos de empaque

2.30 La Medida de Conservación 26-01 prohíbe el uso de zunchos plásticos para empacar las cajas de carnada. El uso de otras cintas plásticas para este fin sólo está permitido a bordo de barcos con incineradores, y todas las cintas deben ser cortadas y desechadas por ese medio. Los informes de observación reflejaron el uso de zunchos plásticos en siete campañas: Antarctic Bay, Argos Froyanes y Koryo Maru No. 11 en la Subárea 48.3; Argos Froyanes en la Subárea 48.4; Shinsei Maru No. 3 en las Divisiones 58.4.1, 58.4.2, 58.4.3a y 58.4.3b; Austral Leader II en la División 58.5.2; y Koryo Maru No. 11 en las Subáreas 58.6 y 58.7 (WG-FSA-08/7 Rev. 2, tabla 1). Los observadores informaron que en todos los barcos que utilizaron estas cintas para empacar la carnada, se las cortó y retuvo o se las incineró a bordo. Hubo cumplimiento total de la Medida de Conservación 26-01 con respecto al uso de otras cintas plásticas de empaque.

Restos de artes de pesca y basura

2.31 El grupo de trabajo notó los restos de aparejos arrojados al mar por el Viking Bay y el Koryo Maru No. 11 en la División 48.3 (WG-FSA-08/7 Rev. 2, tabla 1). Esta basura incluyó brazoladas y anzuelos. El grupo de trabajo indicó que esto tendría un efecto perjudicial adicional imposible de cuantificar para las aves y mamíferos marinos.
Medida de Conservación 25-02 “Reducción de la mortalidad incidental de aves marinas durante la pesquería de palangre o en la pesquería de investigación con palangres en el Área de la Convención”

Lastrado de la línea

2.32 En lo que respecta a los barcos que utilizaron el sistema español, dos barcos, el Hong Jin No. 707 (Subárea 88.1) y el Koryo Maru No. 11 (Subáreas 58.6 y 58.7) no cumplieron con el régimen de lastrado de la línea especificado en el párrafo 3 de la Medida de Conservación 25-02, pues colocaron sus pesos a más de 40 m de distancia (WG-FSA-08/7 Rev. 2, figura 1).

2.33 Todos los palangreros de calado automático que pesaron en las Subáreas 88.1 y 88.2 y en las Divisiones 58.4.1, 58.4.2, 58.4.3a y 58.4.3b cumplieron con el requisito de mantener la tasa mínima de hundimiento dispuesta por la Medida de Conservación 24-02 (WG-FSA-08/7 Rev. 2, tabla 7 y figura 1). Tal como en años anteriores, todos los barcos cumplieron con este requisito. El grupo de trabajo indicó que un barco que utilizó el método de calado automático (el Antarctic II en las Subáreas 88.1 y 88.2) en 2007/08, había enganchado pesos para conseguir la tasa de hundimiento requerida. Todos los demás palangreros de calado automático estaban utilizando ahora palangres con lastre integrado (PLI) (WG-FSA-08/7 Rev. 2, figura 1).

2.34 El grupo de trabajo indicó que la Medida de Conservación 25-02 no especifica actualmente un régimen de lastrado de la línea para la pesca con palangres artesanales.

Calado nocturno

2.35 Todos los barcos cumplieron en un 100% con las disposiciones relativas al calado nocturno en todas las áreas de aplicación (Subáreas 48.3, 48.4, 58.6 y 58.7) (tabla 10).

2.36 Los barcos que pescan en las Subáreas 48.6, 88.1, 88.2 y en las Divisiones 58.4.1, 58.4.2, 58.4.3a, 58.4.3b y 58.5.2, pueden calar sus palangres durante el día siempre que puedan demostrar que pueden mantener una tasa de hundimiento mínima de 0.3 m s⁻¹, o si utilizan PLI de por lo menos 50 g m⁻¹ con una tasa de hundimiento de 0.2 m s⁻¹. Todos los barcos que pesaron en estas áreas cumplieron con uno, o ambos requisitos (WG-FSA-08/7 Rev. 2, tabla 7).

Vertido de restos de pescado

2.37 Todos los barcos cumplieron con el requisito de retener los restos de pescado a bordo en las áreas donde se aplica esta regla (Subáreas 48.6, 88.1 y 88.2 y Divisiones 58.4.1, 58.4.2, 58.4.3a, 58.4.3b y 58.5.2) durante la temporada 2007/08 (tabla 10).
Anzuelos desechados

2.38 Los observadores informaron la eliminación de anzuelos en los restos de pescado en una de 37 campañas de pesca de palangre (WG-FSA-08/7 Rev. 2, tabla 1). El observador a bordo del Viking Bay que pescó en la Subárea 48.3, informó que en los dos primeros días de operaciones no se trató de sacar los anzuelos de los restos de pescado y que esta práctica sólo cambió cuando esto fue señalado a la atención del patrón de pesca. En comparación, en tres de 39 campañas observadas el año pasado se desecharon anzuelos en los restos de pescado (SC-CAMLR-XXVI, anexo 6, párrafo II.52).

2.39 El grupo de trabajo expresó que continua preocupado ante la eliminación de anzuelos en los restos de pescado, dada la notificación de que los censos de nidos nuevamente habían encontrado un elevado número de anzuelos alrededor de los nidos del albatros errante (D. exulans) en Isla Bird, en las Georgias del Sur (WG-FSA-08/25) (párrafo 12.5). El grupo de trabajo reiteró que la ingestión de anzuelos sigue afectando gravemente a las aves marinas del Área de la Convención; estos anzuelos provienen de las pesquerías de palangre que se realizan dentro y fuera del Área de la Convención.

Líneas espantapájaros

2.40 La aplicación plena de todos los elementos del requisito relativo a las líneas espantapájaros aumentó de 80% (29 de 37 campañas de pesca de palangre) en 2005/06 a 87% (34 de 39 campañas) en 2006/07, y a 94.5% (35 de 37 campañas) en 2007/08 (tabla 10).

2.41 Las líneas espantapájaros de las campañas que no cumplieron con los requisitos fallaron en el largo de las cuerdas secundarias (dos campañas: Insung No. 1 en las Divisiones 58.4.1, 58.4.2, 58.4.3a y 58.4.3b; Antartic III en las Subáreas 88.1 y 88.2) (tabla 11).

2.42 El grupo de trabajo observó que las pequeñas desviaciones en la configuración de la línea espantapájaros que impidieron un cumplimiento total de los requisitos no habían originado ningún caso de mortalidad de aves marinas. No obstante, el grupo de trabajo alentó a los barcos a esforzarse por cumplir plenamente con los requisitos.

Dispositivos para ahuyentar las aves durante el virado

2.43 El párrafo 8 de la Medida de Conservación 25-02 exige la utilización de un dispositivo diseñado para espantar a las aves de la carnada durante el virado del palangre en las áreas definidas por la CCRVMA como de riesgo de captura mediano a alto (nivel 4 ó 5) para las aves. Actualmente estas áreas son las Subáreas 48.3, 58.6 y 58.7 y las Divisiones 58.5.1 y 58.5.2.

2.44 Con la excepción de un barco (Punta Ballena, 96%) durante una campaña en la Subárea 48.3, que no utilizó dispositivos espantapájaros en todos los lances pues se consideraron peligrosos, todos los otros barcos cumplieron cabalmente con este requisito (tabla 11).
Medida de Conservación 25-03 “Reducción de la mortalidad incidental de aves y mamíferos marinos durante la pesca de arrastre en el Área de la Convención”

2.45 Los barcos que participaron en la pesca de draco rayado en la Subárea 48.3 y en la División 58.5.2 utilizaron diversas medidas de mitigación (WG-FSA-08/6 Rev. 1, párrafo 10) y, en general, cumplieron adecuadamente con la Medida de Conservación 25-03.

Cables de la red

2.46 Se recibió un informe de un barco, el *Maksim Starostin*, que utilizó cables de la red en el Área de la Convención durante la temporada 2007/08 (WG-FSA-08/7 Rev. 2). El grupo de trabajo recordó su aclaración de lo que constituye un cable de la red (SC-CAMLR-XXV, anexo 5, apéndice D, párrafo 48 y SC-CAMLR-XXVI, anexo 6, párrafo II.60), e indicó que en este caso, el *Maksim Starostin* había contravenido la Medida de Conservación 25-03. No obstante, el observador informó que esto sólo había ocurrido durante un arrastre continuo de 26 horas de duración, y no se había observado la mortalidad de aves.

Vertido de desechos

2.47 Se observó un arrastrero de kril, el *Dalmor II*, vertiendo desechos durante la recogida de la red en la Subárea 48.3. El observador a bordo de este barco informó que esto fue accidental y se debió a problemas técnicos (WG-FSA-08/7 Rev. 2, tabla 6) y que normalmente esto se evita al encenderse una luz roja en la planta procesadora cuando la red está en la superficie cerca del barco. Cuando esto sucede, la producción de harina y carne cesa inmediatamente.

2.48 El grupo de trabajo indicó que el tipo, naturaleza y definición de desechos varía tanto dentro como entre las pesquerías de peces y de kril. Esta diferencia debe ser evaluada al considerar la aplicación del párrafo 3 de la Medida de Conservación 25-03 en la pesquería de kril.

Resumen de la implementación de medidas de conservación

2.49 El grupo de trabajo indicó que en 2005 había identificado explícitamente aquellos barcos que habían implementado plenamente los requisitos de las Medidas de Conservación 25-01, 25-02 y 25-03 (SC-CAMLR-XXIV, anexo 5, apéndice O, párrafos, 48, 61 y 62). Se destacó además la circular COMM CIRC 08/109, que describió la disposición de la Medida de Conservación 41-02 relativa a la extensión de la temporada de pesca de austromerluza en la Subárea 48.3 para aquellos barcos que hayan demostrado un cumplimiento estricto de la Medida de Conservación 25-02. Para facilitar una evaluación tal del cumplimiento en la temporada próxima, el grupo de trabajo indicó que los siguientes barcos no habían implementado totalmente los requisitos de las Medidas de Conservación 26-01, 25-02, y 25-03:
i) se encontraron cintas plásticas utilizadas en el empaque de las cajas de carnada a bordo de los siguientes barcos durante sus viajes dentro del Área de la Convención: Antarctic Bay, Argos Froyanes, Shinsei Maru No. 3, Austral Leader II y Koryo Maru No. 11 (párrafo 2.30);

ii) Viking Bay y Koryo Maru No. 11 lanzaron restos de aparejos por la borda y el Viking Bay también arrojó basura al mar (párrafo 2.31);

iii) Koryo Maru No. 11 y Hong Jin No. 707 excedieron la distancia máxima entre los pesos del palangre (párrafo 2.32);

iv) Viking Bay no extrajo los anzuelos de los restos de pescado desechados (párrafo 2.38);

v) el largo de las cuerdas utilizadas por Insung No.1 y Antarctic III para ahuyentar a las aves no cumplieron con el largo mínimo especificado (párrafo 2.41);

vi) Punta Ballena no utilizó líneas espantapájaros en todos los lances (párrafo 2.44);

vii) Maksim Starostin utilizó un cable de arrastre para monitorear la red durante un arrastre de kril (párrafo 2.46);

viii) Dalmor II vertió desechos de pescado durante la recogida de la red de arrastre de kril (párrafo 2.47).

Asesoramiento al Comité Científico

2.50 La extrapolación de la mortalidad total de aves marinas causada por las interacciones con el arte de pesca durante la pesca de palangre de Dissostichus spp. en 2007/08 en el Área de la Convención dio una estimación de 1 355 petreles (91% petreles de mentón blanco, 7% de fardelas grises y 2% de especies Macronectes). Todas estas estimaciones de mortalidad correspondieron a las ZEE francesas: 131 aves en la Subárea 58.6 y 1 244 en la División 58.5.1 (párrafos 2.3 y 2.4).

2.51 Se notificó la mortalidad de cinco aves marinas en total (3 petreles de mentón blanco y 2 pingüinos rey) durante la pesca de arrastre de peces en el Área de la Convención, habiéndose producido todas las muertes durante la pesquería de dracos en la Subárea 48.3. No se notificó mortalidad incidental de aves marinas durante la pesca de arrastre de kril ni durante la pesca con nasas (párrafos 2.13, 2.18, 2.19 y 2.22).

2.52 Se registró la mortalidad de nueve pinnipedos en el Área de la Convención durante la temporada 2007/08 (WG-FSA-08/5 Rev. 1, párrafo 5): 2 lobos finos antárticos y 1 foca cangrejera en la pesquería de palangre, y 5 lobos finos antárticos y 1 foca no identificada en la pesquería de arrastre (párrafos 2.23 al 2.26).

2.53 El grupo de trabajo recomendó que el Comité Científico remitiera a SCIC la información sobre la implementación insatisfactoria de las Medidas de Conservación 26-01, 25-02 y 25-03 (párrafo 2.49 y referencias mencionadas).
2.54 Al recordar la publicación de un cartel de la CCRVMA en 2008 para educar a los pescadores sobre la necesidad de quitar los anzuelos de los restos de pescado antes de desecharlos, el grupo de trabajo recomendó que el Comité Científico pidiera a los miembros de la Comisión que distribuyeran activamente este cartel – y el cartel de los desechos marinos publicado por la CCRVMA apenas esté terminado – entre sus pescadores que operan en áreas donde se encuentran aves y mamíferos marinos del Área de la Convención, y se aseguraran de que estos carteles fueran exhibidos en sus barcos (párrafos 2.31, 2.39 y 12.12).

EXAMEN DE LOS PLANES DE ACCIÓN PARA ELIMINAR LA MORTALIDAD DE AVES MARINAS

Plan de acción de Francia para reducir/eliminar la mortalidad de aves marinas en la Subárea 58.6 y División 58.5.1

3.1 El grupo de trabajo examinó el plan de acción elaborado por Francia para reducir la mortalidad incidental de aves marinas en la Subárea 58.6 y División 58.5.1 (SC-CAMLR-XXVII/8). Como fuera indicado por Francia el año pasado (SC-CAMLR-XXVII, párrafo 5.7), el objetivo del plan de acción era reducir a la mitad el nivel de mortalidad incidental para 2010 (SC-CAMLR-XXVI, párrafo 5.3). Dicho plan contiene acciones relacionadas con los cinco elementos descritos a continuación:

- prescripción de medidas de mitigación
- instrumentos normativos
- educación y capacitación
- recopilación de datos
- investigación y desarrollo.

3.2 Entre las acciones más importantes están: un estudio cooperativo para evaluar el problema de la mortalidad incidental de aves marinas en la pesquería francesa y encontrar soluciones y recomendaciones; un análisis de los efectos ambientales, espaciales, temporales y operacionales de la mortalidad incidental de los petreles de mentón blanco y de los petreles grises ocurrida en la pesquería de palangre realizada en la Subárea 58.6 y en la División 58.5.1; mejoras sustanciales de las medidas de mitigación en uso (especialmente los dispositivos de mitigación usados durante el virado y líneas espantapájaros), establecimiento de vedas de pesca en ciertas áreas/temporadas, mejoras en la recopilación y notificación de datos, coordinación entre TAAF y el grupo especial WG-IMAF, y formación de un grupo de trabajo técnico independiente para brindar asesoramiento a TAAF.

3.3 El Sr. C. Marteau (Francia) informó que en respuesta a las recomendaciones de mejorar el rendimiento de las líneas espantapájaros (SC-CAMLR-XXVII/BG/10), a finales de la temporada 2007/08 se efectuaron modificaciones para utilizar múltiples líneas espantapájaros y aumentar el área cubierta por estas líneas. El grupo de trabajo indicó que había barcos que estaban utilizando hasta 10 líneas espantapájaros, incluidas extensiones fuera de borda para aumentar la amplitud del área cubierta, y que esto con toda seguridad será más efectivo en la reducción de la mortalidad de petreles gris y de mentón blanco que la instalación de un sistema de botalón y tirantes como fue recomendado (SC-CAMLR-XXVI,
anexo 6, párrafo II.26(v)). También se indicó que en la temporada 2008/09 la altura de sujeción de las líneas espantapájaros sería aumentada para maximizar el área cubierta por dichas líneas.

3.4 El grupo de trabajo también entendió que las prácticas de gestión de desechos habían sido modificadas permitiéndose el vertido de desechos en sólo dos ocasiones durante las operaciones de pesca: una vez terminados los lances del día y antes de comenzar las maniobras de virado, o después de finalizado un lance y antes de comenzar el siguiente. El grupo de trabajo reiteró que la mejor práctica para reducir la atracción de las aves al barco y evitar así las interacciones de las aves con los artes de pesca, sigue siendo la retención de todos los desechos.

3.5 El Sr. Marteau presentó datos que demostraron la coincidencia entre la mortalidad incidental por pesca en la ZEE francesa y la temporada de reproducción del petrel de mentón blanco, e indicó que se establecerá otro cierre en la División 58.5.1 del 1 de febrero al 10 de marzo de 2009 (en la temporada 2007/08 el cierre ocurrió del 15 de febrero al 15 de marzo) a fin de proteger el tiempo de más vulnerabilidad para el petrel de mentón blanco. El grupo de trabajo consideró muy útil esta información en el contexto de la ordenación de pesquerías y el posible cierre de temporadas para reducir la mortalidad incidental de aves marinas en el período crítico de reproducción. El grupo de trabajo pidió a Francia que suministrara cifras similares para la Subárea 58.6 y la División 58.5.1 en 2009, mostrando la coincidencia del esfuerzo de pesca semanal por sector y las tasas de mortalidad incidental de aves marinas en las temporadas de reproducción del petrel gris y del petrel de mentón blanco.

3.6 El grupo de trabajo revisó el plan de acción y otros seis trabajos con información y análisis de la mortalidad incidental de aves marinas en la ZEE francesa (SC-CAMLR-XXVII/10, 12 y BG/8, 10, 11 y 12). Estos trabajos fueron presentados en francés y el grupo de trabajo reconoció que la traducción al inglés realizada por la Secretaría había facilitado enormemente el debate del grupo especial WG-IMAF. El grupo de trabajo resumió en la tabla 12 el avance logrado en la implementación de las recomendaciones contenidas en estos trabajos y las recomendaciones del Comité Científico (SC-CAMLR-XXVI, párrafo 5.6).

3.7 El grupo de trabajo supuso que la disminución de la mortalidad incidental observada se debió principalmente a un aumento de la gestión y a la implementación del plan de acción. La puesta en práctica simultánea de varias medidas hacen imposible la cuantificación de la contribución de cada medida a la reducción de las tasas de captura. Si bien este conjunto de medidas puede servir para reducir la mortalidad incidental a los niveles deseados, el hecho de que no se sepa cómo cada medida contribuyó a la mitigación total podría generar un problema de modificarse las prácticas de pesca en el futuro.

3.8 El grupo no pudo determinar los umbrales específicos de mortalidad incidental utilizados en el control de gestión en tiempo real. El grupo de trabajo reconoció la complejidad de estas decisiones de ordenación y la necesidad de mantener la flexibilidad en tiempo real. Algunos de estos factores son: informes diarios o semanales de tasas de captura incidental específicas para cada barco y número de aves capturadas, área y fecha de pesca (con respecto a los riesgos asociados a las interacciones con los petreles grises y de mentón blanco), el monto y cuota de captura de peces objetivo.

3.9 El grupo de trabajo agradeció al Sr. Marteau y al Dr. S. Waugh por su aporte al estudio cooperativo y la considerable ayuda brindada por la Sra. Graham durante la reunión.
Asesoramiento al Comité Científico

3.10 El grupo de trabajo pidió a Francia que presentara el documento SC-CAMLR-XXVII/BG/8 en inglés a WG-SAM (SC-CAMLR-XXVI, párrafo 5.6(ii)) para que el grupo de trabajo abordara el modelado en el contexto de proporcionar asesoramiento de ordenación (párrafos 3.6 y 8.7).

3.11 Los resultados preliminares y el progreso logrado por Francia en la implementación del plan de acción son muy alentadores. El grupo de trabajo reconoció que algunas de las recomendaciones aún están siendo consideradas y muchas de ellas ya han sido implementadas. Parece ser que se pueden alcanzar reducciones significativas, y quizás una tasa de mortalidad cercana a cero, si se continúa actuando con diligencia y respetando estrictamente el plan de acción. El grupo de trabajo aguarda con interés el trabajo que realizará conjuntamente con TAAF durante el período entre sesiones, y espera poder brindarle el apoyo necesario.

3.12 El grupo de trabajo pidió a Francia que cuando presentara su informe de avance sobre la implementación del plan de acción en 2009 a la CCRVMA, incluyera cifras para mostrar la coincidencia del esfuerzo de pesca semanal por sector y las tasas de mortalidad incidental de aves marinas. Este año se presentaron cifras similares al grupo especial WG-IMAF que fueron muy útiles para sus discusiones (párrafo 3.5).

3.13 El grupo de trabajo indicó que mantenía su opinión de que si Francia implementaba todos los elementos del asesoramiento de la CCRVMA con relación a las mejores prácticas de mitigación de la mortalidad incidental de aves marinas, los niveles de mortalidad observados en la ZEE francesa se reducirían considerablemente a niveles cercanos a cero.

MORTALIDAD INCIDENTAL DE AVES Y MAMÍFEROS MARINOS EN PESQUERÍAS FUERA DEL ÁREA DE LA CONVENCIÓN

4.1 El grupo de trabajo discutió la mortalidad incidental de aves marinas en pesquerías fuera del Área de la Convención en relación con la petición permanente de la CCRVMA a los miembros de notify los detalles y la magnitud de la mortalidad de especies de aves marinas que se reproducen dentro del Área de la Convención, pero ocasionada por las pesquerías que se realizan fuera de la misma (SC-CAMLR-XXIV/BG/28, punto 3.2). Asimismo, se pide a los miembros, a las Partes no contratantes y a las organizaciones internacionales que proporcionen información sobre el esfuerzo de la pesca de palangre y la eficacia de las medidas de mitigación utilizadas en el Océano Austral fuera del Área de la Convención.

4.2 Se recibieron informes escritos de Nueva Zelandia (WG-FSA-08/47) y Australia (WG-FSA-08/37 Rev. 1). El grupo de trabajo recibió complacido estos informes e indicó que ambos miembros habían aplicado medidas de mitigación y métodos que habían sido utilizados por la CCRVMA para reducir significativamente la mortalidad incidental de aves marinas dentro del Área de la Convención.
Asesoramiento al Comité Científico

4.3 Dado que los niveles de mortalidad de aves marinas del Área de la Convención en zonas al norte de la misma siguen siendo considerablemente altos comparado con los niveles que se dan dentro del Área de la Convención, el grupo de trabajo reiteró una vez más el llamado a los miembros para que cumplieran con el requisito de notificar la mortalidad incidental de aves y mamíferos marinos del Área de la Convención provocada por la pesca que se realiza fuera de ella (Resolución 22/XXV, párrafo 3; SC-CAMLR-XXV, apéndice D, tabla 20, punto 3.2). A los miembros que presentarán informes en 2009 se les exhorta a dar mayor prioridad a la información relativa a la mortalidad incidental (detallando en lo posible el número por especie), y al uso de medidas de mitigación y estrategias de ordenación similares a las utilizadas en las pesquerías de la CCRVMA, o que pudieran ser de pertinencia para tales pesquerías.

4.4 No se recibieron datos sobre la mortalidad incidental de mamíferos marinos del Área de la Convención provocada por la pesca que se realiza fuera de la misma.

MORTALIDAD INCIDENTAL DE AVES MARINAS DURANTE LA PESCA INDNR EN EL ÁREA DE LA CONVENCIÓN

5.1 La estimación de la mortalidad incidental de aves marinas de la pesca INDNR en el Área de la Convención es difícil y requiere de varias suposiciones, porque no se conocen las tasas de mortalidad pertinentes. Sin embargo, en años anteriores, el grupo de trabajo ha estimado esta mortalidad utilizando el promedio de la tasa de captura de todas las campañas realizadas en un periodo dado en las pesquerías reglamentadas en un área en particular, y la tasa de captura más alta de cualquier campaña de la pesquería reglamentada en ese periodo. El método empleado para estimar la mortalidad incidental de aves marinas en las actividades de pesca INDNR dentro del Área de la Convención se describe en detalle en SC-CAMLR-XXV/BG/27 y en SC-CAMLR-XXII, anexo 5, párrafos 6.112 al 6.117.

5.2 La mortalidad incidental de aves marinas en las pesquerías de palangre INDNR ha sido estimada cada año a partir de 1996. En SC-CAMLR-XXVI/BG/32 se detailan las estimaciones más recientes (2007) de la mortalidad potencial de aves marinas en la pesca de palangre INDNR en el Área de la Convención.

5.3 El grupo de trabajo indicó que durante la temporada 2007/08, se informó que por lo menos cinco de los seis barcos INDNR avistados en el Área de la Convención estaban usando redes de enmalle (WG-FSA-08/10 Rev. 2). Se debatió cómo se podría estimar la mortalidad incidental consiguiente habida cuenta que no se conocía:

i) el tipo y número de redes de enmalle utilizadas y modo de despliegue del arte;

ii) la composición de especies de aves marinas afectadas por este tipo de redes, notándose que la probabilidad de capturar pingüinos es mayor que los palangres y redes de arrastre;

iii) las tasas probables de mortalidad incidental durante las operaciones de pesca con redes de enmalle en aguas antárticas;
iv) un método apropiado para estimar la mortalidad incidental para los artes de enmalle.

5.4 Se estimó que sin esta información no podían obtenerse estimaciones razonables. El grupo de trabajo indicó que agradecería cualquier información adicional de aquellos miembros que operan pesquerías legítimas con redes de enmalle y que estuvieran en condiciones de proporcionar algunos datos empíricos u orientación que sirviera para este propósito en el futuro.

5.5 La evaluación anual del riesgo provocado por la pesca en subáreas y divisiones de la CCRVMA realizada por el grupo especial WG-IMAF (SC-CAMLR-XXVI/BG/31) actualmente considera que las operaciones de pesca de arrastre y palangre representan un riesgo para las especies de albatros y petreles, pero la pesca con redes de enmalle no ha sido considerada.

5.6 Independientemente del conocimiento que se tenga sobre la mortalidad incidental asociada con los barcos de pesca INDNR con redes de enmalle, el grupo de trabajo expresó gran preocupación por la alta probabilidad de que haya interacciones con las aves marinas, especialmente si la pesca ocurriera en áreas de alto riesgo y en épocas de reproducción de albatros, petreles y pingüinos. Es importante reconocer que la incapacidad para estimar la mortalidad incidental asociada con la pesca INDNR con redes de enmalle no quiere decir que sea más baja de lo que se habría esperado si todos los barcos de pesca INDNR notificados hubieran utilizado artes de palangre.

5.7 Debido a que muchas especies de aves marinas se enfrentan a una posible extinción como resultado de la mortalidad asociada con las operaciones de pesca, el grupo de trabajo nuevamente pidió a la Comisión que continúe tomando medidas para prevenir la mortalidad incidental de aves marinas ocasionada por los barcos de pesca INDNR en la próxima temporada de pesca.

Asesoramiento al Comité Científico

5.8 Este año no se calculó la mortalidad incidental de aves marinas durante la pesca INDNR dentro del Área de la Convención – como se efectuó previamente para la pesca de palangre – ya que la mayoría del esfuerzo de pesca INDNR observado fue realizado por barcos de pesca con redes de enmalle y no se cuenta con información para efectuar extrapolaciones para este tipo de arte de pesca (párrafo 5.3).

5.9 El grupo de trabajo agradecerá cualquier información adicional suministrada por los miembros que operan pesquerías legítimas con redes de enmalle y que estuvieran en condiciones de proporcionar algunos datos empíricos u orientación que pudieran ayudar en este sentido en el futuro (párrafo 5.4). Además, la información relativa a las medidas tomadas en contra de los barcos de pesca INDNR ayudaría a WG-IMAF a describir la interacción entre la pesca con redes de enmalle y las aves marinas.

5.10 El grupo de trabajo expresó gran preocupación por la mortalidad potencial de aves marinas ocasionada por la pesca INDNR con redes de enmalle, y reconoció que la
incapacidad para estimar esta mortalidad no quiere decir que sea más baja de lo que se habría esperado si todos los barcos de pesca INDNR notificados hubieran utilizado artes de palangre (párrafo 5.6).

INVESTIGACIONES Y EXPERIENCIAS RELACIONADAS CON LAS MEDIDAS DE MITIGACIÓN

Palangres

6.1 WG-FSA-08/44 informó los resultados de una comparación preliminar de la CPUE de austromerluzas y ciertas especies no objetivo de la pesca de palangre con el sistema español y con palangres artesanales en la Subárea 48.3. La CPUE (kg/mil anzuelos y kg/lance) de austromerluzas fue mayor para la pesca con palangres artesanales comparado con el sistema español cuando se observó la presencia de cetáceos. Esta diferencia se hizo mayor a medida que aumentó el número de cetáceos, destacando el potencial de este arte para reducir la depredación causada por cetáceos. La proporción de la captura secundaria con respecto a la captura total fue mayor (en número) para el sistema español cuando se observaron cetáceos durante el virado. No obstante, los palangres artesanales con cachaloteras produjeron más heridas a las rayas y austromerluzas. El grupo de trabajo se mostró a favor de realizar más pruebas con muestras más grandes en el futuro y alentó a que, en la medida de lo posible, las comparaciones de los dos métodos de pesca en el futuro incluyeran no sólo los efectos en las especies de peces objetivo y no objetivo, sino también en otras particularidades del medio ambiente tales como: aves marinas y pinnípedos, bentos, pérdida de artes, contaminación marina y otras consideraciones operacionales.

6.2 WG-FSA-08/60 proporcionó una revisión de las características del sistema de calado automático para aclarar las medidas de conservación de la CCRVMA que se relacionan con este método de pesca. El documento proporcionó descripciones útiles del arte utilizado y de los procedimientos operacionales, incluidos diagramas y un glosario de los términos relacionados con el calado automático. El grupo de trabajo reconoció la utilidad del documento y alentó a los miembros a presentar revisiones similares de los otros métodos de pesca de palangre utilizados en el Área de la Convención, como el sistema español y los palangres artesanales, el uso de nasas y métodos de arrastre para la pesca de draco rayado, austromerluza y kril, incluido el método de arrastre continuo.

6.3 El grupo de trabajo discutió el sistema de lastrado de la línea que podría requerirse para los palangres artesanales (párrafo 2.34). Basado en descripciones anteriores del arte y de su tasa de hundimiento (SC-CAMLR-XXVI, anexo 6, párrafos II.81 a II.91 y II.100), el grupo de trabajo recomendó especificar un sistema de lastrado de la línea para este tipo de arte de pesca. Las especificaciones son las siguientes: los barcos que utilizan exclusivamente el sistema de palangre artesanal (no una combinación de palangres artesanales y sistema español dentro del mismo palangre) deberán utilizar pesos en el extremo de las líneas secundarias (o espineles). Los pesos deberán ser pesos tradicionales de por lo menos 6 kg, o pesos de acero sólido de por lo menos 5 kg. Los barcos que utilizan alternativamente el sistema español y el sistema de palangre artesanal deberán utilizar: (i) para el sistema español, el lastrado de la línea deberá atenerse al párrafo 3 de la Medida de Conservación 25-02; (ii) para el sistema de palangre artesanal se deben colocar pesos tradicionales ya sea de 8.5 kg, o de acero sólido de 5 kg en el extremo de los espineles y a una distancia no mayor de 80 m.
Arrastre

6.4 El grupo de trabajo revisó la información registrada en los informes de campaña sobre las medidas de mitigación utilizadas en las pesquerías de arrastre y preparó asesoramiento en relación con cambios menores a los cuadernos de observación, con miras a conseguir mejor información sobre el uso de medidas de mitigación durante el lance y recogida de la red. Los cambios recomendados fueron proporcionados directamente a la Secretaría.

6.5 El grupo de trabajo indicó que los datos de cuatro temporadas de operaciones indicaron que el amarre de la red es una medida muy eficaz y de fácil aplicación y que si se combina con la limpieza de la red y la adición de pesos a la misma, era responsable de la continua reducción de la mortalidad incidental en la pesquería de arrastre del draco rayado. Adviertiendo que los cambios de la Medida de Conservación 42-01 adoptados el año pasado habían hecho obligatorio el uso del amarre de la red en la pesquería de arrastre del draco rayado en la Subárea 48.3 en 2007/08 (CCAMLR XXVI, párrafo 13.72; Medida de Conservación 42-01, párrafo 7 (Subárea 48.3)), el grupo de trabajo reiteró la recomendación del Comité Científico de probar su utilidad, según proceda, en otras pesquerías de arrastre pelágicas en el Área de la Convención (SC-CAMLR-XXVI, anexo 6, párrafo 5.29(v)).

6.6 El Sr. B. Baker (ACAP) puso al día al grupo de trabajo con respecto a la segunda reunión del grupo de trabajo de ACAP sobre la captura incidental de aves marinas (SBWG) realizada del 22 al 25 de agosto de 2008 en Hermanus, Sudáfrica (WG-FSA-08/61). En esa reunión Nueva Zelanda presentó una revisión de medidas para reducir la mortalidad incidental de aves marinas en las pesquerías de arrastre (AC4 Doc 55, www.acap.aq), con miras a que ACAP recomendara las mejores prácticas para la mitigación de dicha mortalidad. La revisión subrayó el trabajo realizado en las pesquerías de arrastre en el Área de la Convención de la CCRVMA, en particular, la manipulación de los restos de pescado y las medidas para reducir los enredos en las redes de arrastre en las pesquerías pelágicas.

6.7 El SBWG de ACAP identificó cuatro áreas principales de investigación para reducir la mortalidad incidental de aves marinas en las pesquerías de arrastre:

i) gestión del vertido de restos de pescado
ii) métodos para reducir enredos de aves marinas durante la recogida de la red
iii) mayor eficacia de las líneas espantapájaros
iv) estudio de la eficacia de las prácticas de amarre y lastrado de la red.

Asesoramiento al Comité Científico

6.8 El grupo de trabajo recomendó que la medida para mitigar la mortalidad incidental y la depredación formulada por Chile fuera notificada como “palangres artesanales con cachaloteras” (párrafo 6.1).

6.9 El grupo de trabajo solicitó al Comité Científico que pidiera a TASO una descripción técnica de los métodos de arrastre continuo utilizados en la pesca de kril dentro del Área de la Convención, que incluyera el arte utilizado, las operaciones de pesca y los detalles de la elaboración del producto y eliminación por la borda y descripciones detalladas de otros tipos de artes de pesca (párrafo 6.2).
6.10 El grupo de trabajo reiteró la recomendación del Comité Científico de probar la utilidad de los amarres de la red, según proceda, en otras pesquerías de arrastre pelágicas que se realizan dentro del Área de la Convención (SC-CAMLR-XXVI, párrafo 5.29(v)) (párrafo 6.5).

6.11 El grupo de trabajo recomendó que la Medida de Conservación 25-02 fuera modificada para que incluyera disposiciones relativas al lastrado de las líneas utilizadas en los barcos que pescan con el sistema de palangre artesanal (párrafo 6.3).

INFORMES DE OBSERVACIÓN Y RECOPILACIÓN DE DATOS

Datos de observación de aves anilladas

7.1 El grupo de trabajo indicó que si bien varios observadores a bordo de palangreros habían notificado observaciones de aves anilladas durante la temporada 2007/08, sólo tres de ellos pudieron registrar los detalles de los anillos (WG-FSA-08/5 Rev. 1, párrafo 10). No se observaron aves anilladas desde los barcos arrastreros (WG-FSA-07/8 Rev. 1, párrafo 11). La información sobre aves anilladas figura en el informe de campaña del observador.

7.2 El grupo de trabajo indicó que las observaciones de aves anilladas desde los barcos de pesca habían ayudado en las investigaciones sobre la procedencia y actividad de las aves marinas que interactúan con las flotas de pesca (v.g. Croxall et al., 1999; Otley et al., 2007).

7.3 El grupo de trabajo recomendó que en el futuro los observadores registren en sus informes de campaña la siguiente información acerca de cualquier ave anillada que observen: fecha y posición geográfica de la observación (de preferencia latitud y longitud), número de anillos, número de identificación en cada anillo, color de cada anillo, si es de material plástico o metal, lugar del cuerpo donde se colocó el anillo (v.g. pata izquierda o derecha), cualquier rasgo característico o visible que pueda identificar el anillo, foto(s) del anillo si es posible, condición del ave cuando fue observada (p.ej. en el agua, en vuelo, capturada en el arte de pesca), y el destino del ave y del anillo después del encuentro (p.ej. si el ave murió y se le sacó el anillo, o si fue liberada con el anillo).

Extrapolación de la mortalidad incidental total de mamíferos marinos

7.4 El grupo de trabajo indicó que debido a la naturaleza de los incidentes de mortalidad incidental de mamíferos marinos, los observadores probablemente están en situación de detectar y registrar todos estos incidentes mientras están embarcados. Por lo tanto, sólo se requiere la extrapolación de la mortalidad incidental total de mamíferos marinos en las pesquerías que no tienen un 100% de cobertura de observación. Por lo tanto, el grupo de trabajo sólo consideró los requisitos y el diseño de un protocolo para la extrapolación de la mortalidad incidental total de mamíferos marinos para la pesquería de arrastre de kril.

7.5 El grupo de trabajo notó que la cobertura de observación en la pesquería de kril había sido limitada tanto en su alcance como en lo que se refiere a los barcos y áreas, subáreas y divisiones. La limitada cobertura de observación no permite una consideración plena de los factores que influyen en la mortalidad incidental de mamíferos marinos.
7.6 Los factores que fueron considerados potencialmente importantes en la estimación general de la mortalidad incidental total de mamíferos son: método de pesca, duración del arrastre, velocidad del arrastre, luz de malla del ala de la red, diseño y ubicación del dispositivo de exclusión de pinnípedos, la naturaleza del procesamiento y tipos de productos elaborados, las prácticas de giro del barco, y abundancia relativa de pinnípedos en el área explotada.

7.7 El grupo de trabajo indicó que dadas las diferencias operacionales entre el método de arrastre continuo y el método de arrastre tradicional utilizado en la pesca de kril, la extrapolación debe hacerse por separado para los dos métodos. Se estimó que un escalar inicial para el método de arrastre continuo sería la duración del arrastre y para el método tradicional, el número de arrastres. Lo ideal sería calcular las extrapolaciones por barco y estratos explotados. El grupo de trabajo indicó que la extrapolación indicativa de la mortalidad incidental total de mamíferos marinos podría basarse en un arte de pesca y en la estratificación del área de pesca, siempre que se aplicara una cobertura de observación sistemática a la pesquería de kril.

7.8 El grupo de trabajo indicó que una vez que se disponga de más datos de observación, se debería examinar si existen diferencias en las interacciones de varios grupos de mamíferos marinos en una misma pesquería (v.g. entre familias de pinnípedos como Phocidae y Otariidae).

Progreso del protocolo de recopilación de datos sobre el cable de la red en los arrastres efectuados dentro del Área de la Convención

7.9 El grupo de trabajo evaluó los datos sobre las colisiones de aves marinas con el cable de la red recopilados en las pesquerías de arrastre efectuadas en el Área de la Convención en 2007/08. Se recopilaron datos de 157 de los 227 (69%) arrastres de dracos en la Subárea 48.3. Se registró una colisión de un albatros con el cable en el agua. Estos datos indican que las colisiones con el cable de arrastre representan un riesgo mínimo para las aves en la pesquería de arrastre dirigida al draco rayado en la Subárea 48.3. Asimismo, se recopilaron datos de 49 de los 347 (14%) arrastres de austromerluza y de dracos en la División 58.5.2 y de 248 de los 375 (66%) arrastres de kril (incluidos los artes de pesca tradicional y continua) realizados en las Subáreas 48.1, 48.2 y 48.3.

7.10 El grupo de trabajo indicó que se recopilaron datos sobre colisiones con el cable de arrastre en casi un 70% de los arrastres dirigidos al draco rayado y al kril en las Subáreas 48.1, 48.2 y 48.3. Esto representa un aumento en relación con el 59% conseguido en 2006/07 en la pesquería de arrastre de dracos en la Subárea 48.3 y un aumento de 0% a 66% en la pesquería de arrastre de kril (SC-CAMLR-XXVI, anexo 6, párrafo II.122). El grupo de trabajo felicitó a los observadores y a los coordinadores técnicos por la mejor implementación de este protocolo. Los datos indican que, a diferencia de las pesquerías de arrastre realizadas fuera del Área de la Convención, las colisiones contra el cable de arrastre representan un riesgo mínimo para las aves en la pesquería de arrastre dirigida al draco rayado en la Subárea 48.3.

7.11 El grupo de trabajo indicó que la recomendación proporcionada en 2007/08 (SC-CAMLR-XXVI, anexo 6, párrafo II.123) para mejorar la calidad de los datos recopilados
atendiendo a aspectos específicos del protocolo dio los resultados esperados. Sin embargo, una revisión de los datos indicó que es necesario tener cuidado al registrarlos, para asegurarse que el casillero que indica la presencia o ausencia de aves (“sí/no”) concuerde con el casillero donde se registra la estimación de su abundancia.

Modificación del protocolo de colisiones con el cable de la red en la pesca de kril con arrastre continuo

7.12 El grupo de trabajo recibió una solicitud del grupo especial TASO (SC-CAMLR-XXVII/BG/6, párrafo 3.7) y del WG-EMM (anexo 4, párrafo 4.53) para que aclarase la aplicación del protocolo de colisiones con el cable de la red utilizado en los arrastreros de kril que utilizan el método de arrastre continuo.

7.13 Tomando nota del éxito en la aplicación del protocolo de recopilación de datos sobre colisiones con el cable de la red en la mayoría de las pesquerías de arrastre, el grupo de trabajo recomendó que se adapte el protocolo a los barcos arrastreros que utilizan el método de arrastre continuo. Los protocolos actuales sólo disponen la observación de los cables de la red una vez al día como mínimo, durante horas de luz diurna, y por un período de 15 minutos después del lance de la red. En el caso de los arrastres continuos, es posible que esto sólo se haga una vez en un período de varios días, dejando sin observar periodos extensos del arrastre.

7.14 El grupo de trabajo consideró que el protocolo debería ser utilizado durante 2008/09 para detectar si hay riesgo de colisiones con el cable de la red durante la pesca continua de kril. Por lo tanto, se decidió que los cables de la red fueran observados en los momentos de mayor riesgo, es decir, después de que la red se ha sumergido y se lava la cubierta, cuando se vierten desechos al mar, cuando el barco está girando, o cualquier otro evento similar indicado por los observadores.

7.15 El grupo de trabajo indicó que las observaciones deben hacerse diariamente por un período de 15 minutos durante estos eventos de alto riesgo y después de lanzada la red. Si no se puede dedicar 15 minutos a la observación de estos eventos de alto riesgo durante las horas de luz diurna, se deberá seleccionar un período aleatorio de 15 minutos para observar el cable de la red mientras haya luz diurna. Los datos recopilados serán revisados y analizados en reuniones futuras del grupo especial WG-IMAF, y si fuese necesario, se harán las revisiones pertinentes del protocolo.

7.16 El grupo de trabajo recomendó un cambio a los protocolos actuales de notificación de observaciones realizadas a bordo de los barcos de pesca de kril que utilizan el sistema de arrastre continuo, ya que la información debe diferenciar entre el momento en que la red entra en el agua y el momento en que se saca del agua, y cuando la red permanece en el agua pero se registra un nuevo arrastre cada dos horas (párrafo 2.21).

Recopilación de datos sobre la extensión del área cubierta por las líneas espantapájaros

7.17 El grupo de trabajo recomendó varias modificaciones de los métodos de estimación de la extensión del área cubierta por las líneas espantapájaros, a fin de uniformar y mejorar la
calidad de los datos recogidos por los observadores en los formularios L2 del cuaderno electrónico de observación científica, de acuerdo con el apéndice de la Medida de Conservación 25-02. Los métodos para estimar el área cubierta por la línea espantapájaros son:

i) registrar con precisión el espacio entre los chicotes y contar los chicotes en toda la extensión de la línea hasta el punto en que toca el agua;

ii) desplegar otro cordel o línea graduada en metros, con un “dispositivo tensor” en el extremo, hasta llegar al punto en que la línea espantapájaros toca el agua (esto se recomienda cuando hay varias líneas espantapájaros desplegadas, o tienen una configuración tipo V);

iii) al realizar la prueba de la botella para determinar la tasa de hundimiento, registrar el tiempo desde que sale de la popa hasta cuando pasa el punto donde la línea espantapájaros toca la superficie del agua. Calcular la extensión del área cubierta tomando en cuenta la velocidad del barco.

7.18 El grupo de trabajo recomendó modificar el formulario de datos L2 del cuaderno electrónico de observación a fin de incluir la notificación del método para evaluar la extensión del área cubierta por las líneas espantapájaros.

7.19 Cuando se utiliza más de una línea espantapájaros simultáneamente, se deberá informar al observador cuál línea ha sido desplegada de acuerdo con la Medida de Conservación 25-02. Las especificaciones de esta línea deberán medirse y registrarse en la hoja de datos L2 por lo menos una vez cada siete días. Se anima además a los observadores a que registren otros datos del medio ambiente (p.ej. condiciones de viento y del mar) y describan el objeto tensor que podría afectar la extensión del área cubierta por las líneas espantapájaros.

7.20 El grupo de trabajo pidió que los miembros informaran sobre el uso y eficacia de la utilización de una combinación de múltiples líneas espantapájaros.

Prioridades del grupo especial WG-IMAF para la recopilación de datos de observación

7.21 El grupo de trabajo revisó la tabla 21 del anexo 5 de SC-CAMLR-XXVI, para incluir más detalles sobre las prioridades de recopilación de datos de observación (tabla 13).

Arrastres

7.22 El grupo de trabajo reiteró sus requisitos y prioridades con respecto a la recopilación de datos en las pesquerías de arrastre de peces según figura en la tabla 19 del anexo 6 de SC CAMLR-XXVI (tabla 14).

7.23 El grupo de trabajo identificó los siguientes requisitos y prioridades de recopilación de datos en las pesquerías de arrastre de kril:
i) observación del 100% de los lances para registrar la mortalidad incidental de aves y mamíferos marinos;

ii) registrar el uso y diseño de dispositivos de mitigación;

iii) observaciones de las colisiones con el cable de red cada 24 horas como mínimo.

Palangres

7.24 Tomando nota de que el grupo especial TASO había solicitado que todos los grupos de trabajo consideraran la potencia estadística requerida y la importancia de los distintos grados de cobertura (SC-CAMLR-XXVII/BG/6, párrafo 3.27), el grupo de trabajo recordó que ya había considerado la potencia estadística (v.g. WG-FSA-05/50) que había llevado a las recomendaciones de las tablas 19 y 20 del anexo 6 de SC-CAMLR-XXVI.

7.25 El grupo de trabajo volvió a revisar sus necesidades y prioridades relacionadas con la recopilación de datos en las pesquerías de palangre, explicó en detalle sus requerimientos y revisó su asesoramiento (tabla 15). Dada la recomendación actual en cuanto a la proporción de observaciones durante el calado y virado de los palangres (SC-CAMLR-XXVI, anexo 6, tabla 20) y las inquietudes expresadas sobre la porción relativa de tiempo que los observadores dedican diariamente a las tareas del grupo especial WG-IMAF (SC-CAMLR-XXVII/BG/6, párrafo 3.23), el grupo de trabajo actualizó su asesoramiento con respecto a las observaciones durante el calado del palangre, a saber:

i) realizar por los menos una observación sobre el uso de medidas de mitigación y la gestión de los desechos en un 100% de los calados;

ii) los observadores ya no tienen que observar el 100% de los anzuelos calados.

7.26 El grupo de trabajo recomendó que el porcentaje observado de anzuelos recobrados sea mantenido sin cambios (SC-CAMLR-XXVI, anexo 6, tabla 20), y señaló que el tiempo dedicado a las observaciones requeridas por el grupo especial WG-IMAF durante el virado también se utiliza para recoger información para otros grupos de trabajo y comités.

7.27 El grupo de trabajo reiteró que, en los informes relativos a la pesca de palangre, se distinga cuál de los tres métodos de pesca fue utilizado: el sistema español, el de calado automático o palangres artesanales, o una combinación de los mismos. Además, si se utilizó un palangre artesanal, es importante registrar si incluían cachaloteras.

Recopilación de datos sobre desechos marinos

7.28 Para facilitar la detección de la fuente de los desechos, se pidió a los observadores que proporcionen detalles y fotografías de los artes de pesca utilizados dentro del Área de la Convención. Se les pidió que registren si hay cintas de empaque de plástico a bordo, y sobre la pérdida accidental o intencional de artes de pesca, zunchos plásticos de empaque o...
cualquier otro material no biodegradable. El grupo de trabajo pidió al grupo especial TASO que elaborara un protocolo para la recopilación de un archivo de fotografías de los artes de pesca utilizados (véase el párrafo 12.9).

Asesoramiento al Comité Científico

7.29 El grupo de trabajo recomendó que:

i) en relación con asuntos de carácter general –

a) en el futuro los observadores registren en sus informes de campañas información detallada sobre cualquier ave anillada observada para que la Secretaría pueda estudiar su procedencia (párrafo 7.3);

b) se tome nota de las actualizaciones efectuadas por WG-IMAF a la matriz de tareas y prioridades de los observadores (SC-CAMLR-XXVI, anexo 5, tabla 21) y recomendaciones referentes a la cobertura de observación requerida de acuerdo con el nivel de riesgo (SC-CAMLR-XXVI, anexo 6, tabla 20) en las tablas 13 a la 15 (párrafos 7.21, 7.22 y 7.25);

c) se pida a los observadores que proporcionen fotografías de los artes utilizados en el Área de la Convención y de cualquier pérdida accidental o intencional de artes de pesca, cintas de plástico o cualquier otro material que no sea biodegradable (párrafo 7.28);

d) el grupo especial TASO elabore un protocolo para crear un archivo fotográfico de referencia sobre los artes de pesca utilizados (párrafos 7.28 y 12.9);

ii) en relación con las pesquerías de kril –

a) se requiere una cobertura de observación sistemática en la pesquería de kril para poder extrapolar la mortalidad incidental total de mamíferos marinos (párrafos 7.4 al 7.8);

b) en 2008/09 se utilice un protocolo modificado de las colisiones con el cable de la red en la pesca de kril con el método de arrastre continuo (párrafos 7.14 y 7.15);

c) a fin de atender a las prioridades del Comité Científico, los requisitos con respecto a la recopilación de datos sobre la mortalidad incidental de aves y mamíferos marinos a bordo de los arrastreros de kril (párrafo 7.23) son:

- observar el 100% de los barcos (la tabla 14 describe la proporción de lances y recogidas de la red que debe observarse);

- registrar el uso y diseño de los dispositivos de mitigación;
• observar el cable de la red por lo menos una vez cada 24 horas para detectar colisiones;

iii) en relación con las pesquerías de palangre –

a) los coordinadores técnicos alienten a los observadores a medir la línea espantapájaros una vez cada siete días, y modificar el formulario L2 y las instrucciones pertinentes a fin de incluir la técnica de medición utilizada para estimar el área cubierta por la línea espantapájaros (párrafos 7.17 y 7.18);

b) en los informes relativos a la pesca de palangre, se distinga cuál de los tres métodos de pesca fue utilizado: el sistema español, el de calado automático o palangres artesanales, o una combinación de los mismos. Además, si se utilizó un palangre artesanal, es importante registrar si incluyó cachaloteras (párrafo 7.27);

iv) en relación con las pesquerías de arrastre –

a) se aplique el protocolo de recopilación de datos sobre colisiones con el cable de la red en todas las pesquerías de arrastre dentro del Área de la Convención (SC-CAMLR-XXVI, anexo 6, párrafo II.124) en 2008/09, en particular en las pesquerías de arrastre en la División 58.5.2 (párrafos 7.9 al 7.11);

b) los observadores proporcione una descripción más detallada de las medidas de mitigación utilizadas en la pesquería de draco rayado en la Subárea 48.3 (párrafo 2.16).

ESTUDIO SOBRE EL ESTADO Y LA DISTRIBUCIÓN DE AVES Y MAMÍFEROS MARINOS

8.1 El grupo de trabajo recibió complacido una actualización sobre la cuarta reunión del comité asesor de ACAP y se alegró del progreso alcanzado por el Grupo de trabajo sobre estado y tendencias (informes de AC4 y STWG disponibles en www.acap.aq). Se ha avanzado considerablemente en la evaluación de especies de ACAP (SC-CAMLR-XXVI, anexo 6, párrafo II.127); esta evaluación será finalizada y colocada en el sitio web de ACAP antes de la reunión de las Partes de ACAP a ser celebrada en abril de 2009. El grupo de trabajo estuvo de acuerdo en que la información presentada en la Evaluación de especies (que incluye datos actualizados sobre el estado y tendencias de las poblaciones, distribución del área de alimentación e interacciones con las pesquerías) será muy útil para la futura labor del grupo especial WG-IMAF.

8.2 WG-IMAF requiere información exhaustiva y actualizada sobre el área de alimentación de las aves marinlas del Área de la Convención para sus evaluaciones del riesgo en las subáreas y divisiones de la CCRVMA. Para ello, BirdLife International se ha ofrecido a proporcionar anualmente un documento informativo breve que describe los nuevos datos agregados a su Base Mundial de Datos de Seguimiento de Procellariiformes y un resumen más detallado cada 3–4 años. El grupo de trabajo agradeció esta oferta y tiene programado considerar el primer informe anual en 2009.
8.3 El grupo de trabajo presenció la presentación de SeaBird, un modelo general para simular la dinámica de las poblaciones de aves marinas estructurado según la edad y/o etapas (WG-SAM-08/P3). El modelo ha sido aplicado a los datos demográficos del albatros de Buller (*Thalassarche bulleri*) y también se aplicará al petrel negro (*P. parkinsoni*). El grupo de trabajo destacó la posible aplicación de este modelo y especialmente que, dado que ya ha sido revisado por WG-SAM, podría ser utilizado para elaborar el asesoramiento de ordenación en el futuro.

8.4 El grupo de trabajo indicó que el texto del documento SC-CAMLR-XXVII/BG/8 estuvo disponible en francés pero una gran parte del mismo se encontraba traducido en parte al inglés como Barbraud et al. (2008). Los resultados del mismo indican una disminución de 37% en los petreles de mentón blanco en Isla Crozet que se puede atribuir al cambio climático y, en menor grado, a la mortalidad por pesca.

8.5 El grupo de trabajo hizo los siguientes comentarios sobre el análisis:

i) la simulación no reveló efecto alguno de la mortalidad incidental en la supervivencia de adultos (uno de los parámetros del modelo más sensibles a la tasa de crecimiento de la población), a pesar de que hubo pruebas de que había habido interacción con las pesquerías (adultos alimentando a sus polluelos con restos de las operaciones pesquerías);

ii) los efectos de la erradicación de ratas (limitado a esta colonia en particular) en el mayor éxito reproductor en la colonia de estudio y sus posibles repercusiones al extrapololar los resultados a otras colonias del archipiélago;

iii) la exclusión total de los efectos de la pesca INDNR en el modelo.

8.6 El grupo de trabajo agradeció a los autores por su completo enfoque y señaló que las conclusiones de este trabajo se habían basado en una hipótesis de trabajo del modelo y que el impacto relativo de la pesca comparado con el cambio climático en la disminución de la población podría variar de acuerdo con la distinta determinación de parámetros que permite el modelo.

8.7 Reconociendo la importancia de este tipo de trabajo, WG-IMAF reiteró su asesoramiento del año pasado (SC-CAMLR-XXVI, anexo 6, párrafo II.20) en el sentido que los autores deberían presentar la traducción al inglés del documento SC-CAMLR-XXVII/BG/8 (ya que describe el modelado para los petreles de mentón blanco y gris) a WG-SAM (SC-CAMLR-XXVI, párrafo 5.6(ii)) para que considere el enfoque de modelado al formular su asesoramiento de ordenación. El grupo de trabajo sugirió que se proceda de esta forma cuando se presenten trabajos similares en el futuro.

8.8 El grupo de trabajo consideró la información presentada en WG-EMM-PSW-08/5 sobre el tamaño de la población del petrel de mentón blanco en Georgia del Sur (un 70% de la población mundial (Brooke, 2004)). En 2005/06 y 2006/07 se realizaron extensos censos de las poblaciones en Georgia del Sur. Se estimó que la población actual del petrel de mentón blanco en esta localidad estaba constituida por casi un millón de parejas. El grupo de trabajo indicó que esta estimación equivale a un 50% del valor estimado en la década de los ochenta. Sin embargo, la incertidumbre en los límites de confianza en dicho cálculo no permite
calcular la magnitud de la disminución. Sin embargo, de haber disminuido un 50% en los últimos 20 años, esto representaría una reducción catastrófica de la población de petreles de mentón blanco.

8.9 El grupo de trabajo indicó que el petrel de mentón blanco es la especie de mayor mortalidad incidental en las pesquerías en general, pero que el efecto de esto en sus poblaciones es muy poco conocido, lo que en parte se debe a que existen muy pocas estimaciones de la abundancia de esta especie. El grupo de trabajo se alegró por lo tanto de la información proveniente del estudio efectuado en Georgia del Sur y destacó la importancia de la obtención de estimaciones de la abundancia de las poblaciones de petrel de mentón blanco de otras colonias de reproducción, y el seguimiento continuado de la abundancia de las poblaciones del petrel de mentón blanco en todas las colonias de reproducción.

8.10 Con relación a las aves marinas del Área de la Convención, el grupo de trabajo notó la actualización de la Lista Roja de la UICN efectuada en 2008, que resultó en cambios al estado del albatros de Tristan (D. dabbenea), que subió de la categoría amenazada a en peligro crítico, y al estado del albatros de Buller que bajó de la categoría vulnerable a especie casi amenazada (ACAP-AC4, 2008). De las 19 especies de albatros que actualmente están listadas en el anexo 1 del ACAP, cuatro (21%) están en peligro crítico, cinco (26%) amenazadas, seis (32%) vulnerables y cuatro (21%) casi amenazadas. Para las siete especies de petreles, cuatro (57%) figuran como vulnerables y tres (43%) como casi amenazadas (AC4 doc 48, anexo A). El grupo de trabajo estuvo de acuerdo con el ACAP en que la mortalidad incidental provocada por las pesquerías, las especies invasoras y las enfermedades amenazan significativamente la supervivencia y conservación de estas especies.

8.11 El grupo de trabajo notó el progreso en el cálculo del tamaño de la población de aves y mamíferos marinos efectuado durante el taller de prospecciones de depredadores del WG-EMM (WG-EMM-08/8), así como los datos puestos a disposición del taller conjunto CCAMLR-IWC (SC-CAMLR-XXVII/14 y BG/16).

Asesoramiento al Comité Científico

8.12 El grupo de trabajo subrayó la importancia fundamental de contar con información actualizada sobre el estado y la distribución de las aves marinas para las evaluaciones del riesgo de interacción con las pesquerías. El grupo de trabajo señaló su buena disposición para seguir cooperando y colaborando con ACAP y con BirdLife International, extendiendo una invitación permanente a los expertos de estas organizaciones (SC-CAMLR-XXVI, párrafo 5.56), para asegurar que la CCRVMA disponga de la mejor información científica disponible (párrafo 8.2).

EVALUACIÓN DEL RIESGO EN SUBÁREAS Y DIVISIONES DE LA CCRVMA

Información nueva relacionada con la evaluación del riesgo

9.1 Tal como en años anteriores, el grupo de trabajo evaluó las numerosas propuestas de pesquerías nuevas y exploratorias y la posibilidad de que éstas contribuyan a aumentar la mortalidad incidental de aves y mamíferos marinos (párrafos 10.2 al 10.9).
9.2 A fin de abordar este problema, el grupo de trabajo revisó las evaluaciones de las subáreas y divisiones pertinentes del Área de la Convención en relación con:

i) las fechas de las temporadas de pesca
ii) la necesidad de efectuar las operaciones pesqueras de noche solamente
iii) la magnitud del riesgo potencial de captura incidental para los albatros y petreles en general.

9.3 Cada año se llevan a cabo evaluaciones exhaustivas del riesgo potencial para las aves marinas resultante de las interacciones con las pesquerías en todas las áreas del Área de la Convención. Sin embargo, este año no se proporcionó nueva información sobre la distribución marina de las aves. Por lo tanto, las evaluaciones y el asesoramiento revisado en 2007 – que fueron combinados en un documento de referencia para el Comité Científico y a la Comisión (SC-CAMLR-XXVI/BG/31) – fueron aprobados nuevamente por el grupo de trabajo.

9.4 Un resumen de la evaluación del riesgo de las pesquerías de arrastre y de palangre del Área de la Convención para las aves marinas, realizada por el grupo especial WG-IMAF, figura en las tablas 14 y 15 respectivamente, y en la figura 1.

Metodología de evaluación del riesgo

9.5 El grupo especial WG-IMAF notó que Nueva Zelandia había proporcionado documentos que detallaban una metodología para la evaluación del riesgo, denominada Evaluación Productividad-Susceptibilidad, que examina la posibilidad de que la mortalidad por pesca influya negativamente en ciertas especies seleccionadas de aves y mamíferos marinos (WG-FSA-08/47 y 08/51). Esta metodología ha sido modificada desde las últimas evaluaciones a fin de incluir el área de solapamiento entre la distribución de la especie y el área de pesca con cinco métodos distintos de pesca dentro de la ZEE de Nueva Zelandia. La WCPFC está interesada en realizar una evaluación de este tipo para toda el área de su acuerdo. Nueva Zelandia indicó que en el futuro este método podría ser utilizado para convalidar la metodología utilizada actualmente en la evaluación del riesgo dentro de la CCRVMA.

Propuestas para modificar las medidas de conservación y el asesoramiento de ordenación para minimizar el impacto de las pesquerías en las aves marinas

9.6 En WG-FSA-08/39 se propuso continuar las investigaciones científicas realizadas en 2007/08 por el Shinsei Maru No. 3 en la División 58.4.4 durante la temporada de pesca 2008/09. La propuesta señala incorrectamente que la CCRVMA ha determinado el riesgo de interacción entre aves marinas y las pesquerías de palangre como bajo a mediano, cuando en realidad ésta área ha sido considerada de mediano riesgo (SC-CAMLR-XXVI/BG/31). La solicitud no menciona medidas de conservación relacionadas con la mortalidad incidental de aves marinas, y el grupo de trabajo ha supuesto que las investigaciones se realizarán cumpliendo plenamente con la Medida de Conservación 25-02.
9.7 WG-FSA-08/36 propuso que, en el caso de los pescadores cuyos barcos cumplen con ciertas condiciones específicas, el requisito del Protocolo C1 de la Medida de Conservación 24-02 que dispone probar la tasa de hundimiento de los PLI antes de entrar al Área de la Convención, representa una imposición que ya no se justifica. Se propone que las pruebas se realicen en cambio durante la primera semana de pesca dentro del Área de la Convención, bajo una serie de condiciones. Otros requisitos de la Medida de Conservación 24-02, incluido el requisito de efectuar pruebas regulares de la tasa de hundimiento de los PLI en el Área de la Convención y la notificación de los resultados de estas pruebas, no serían modificados, ni tampoco los requisitos que se aplican a los operadores que utilizan otros tipos de artes de palangre.

9.8 El grupo de trabajo consideró el peligro potencial de las pruebas iniciales de la tasa de hundimiento dentro del Área de la Convención. Se convino en que, siempre que las pruebas sean realizadas con anzuelos sin carnada, una variación tal no representaba un riesgo para las aves marinas en esta etapa. Sin embargo, se debía mantener un nivel de captura incidental cercano a cero en las pesquerías de la CCRVMA y, si esto no era posible, se justificaba la reconsideración de esta decisión. El grupo de trabajo recomendó revisar la Medida de Conservación 24-02 para incorporar este cambio a los Protocolos A, B y C.

9.9 WG-FSA-08/40 propuso que el barco japonés Shinsei Maru No. 3 sea eximido del requisito de efectuar pruebas de la tasa de hundimiento del palangre fuera del Área de la Convención cuando realice la pesca a fines de la temporada 2007/08 y principios de la temporada 2008/09, siempre que el barco realice pruebas regulares de la tasa de hundimiento del arte de pesca y cumpla con los requisitos pertinentes al hundimiento de sus palangres en 2007/08. Esto se debe a que el barco no tiene intenciones de salir del Área de la Convención a fines de la temporada 2007/08. El grupo de trabajo estuvo de acuerdo en que esta exención no presentaba un riesgo adicional para las aves marinas del Área de la Convención.

9.10 WG-FSA-08/45 indicó que las disposiciones relativas a la temporada de pesca y a las medidas de mitigación incluidas en la Medida de Conservación 41-03 que regula la pesca en la Subárea 48.4 no se ajustan actualmente al asesoramiento de WG-IMAF con respecto a la evaluación del riesgo dado en CCAMLR-XXIV/BG/26. El Reino Unido propuso un texto adicional a ser incluido en la Medida de Conservación 41-03 para que concuerde con la evaluación del riesgo; se permitiría así la pesca fuera de la temporada (abril–septiembre) siempre que ésta se realice de acuerdo con la Medida de Conservación 24-02. El grupo de trabajo aprobó el pequeño cambio recomendado por el primer párrafo de la Medida de Conservación 24-02 para reconocer la Subárea 48.4, y recomendó su inclusión en una revisión preliminar de la medida de conservación.

9.11 Dado que la Medida de Conservación 24-02 no incluye actualmente un protocolo para el sistema de pesca con palangres artesanales con o sin cachaloteras, el grupo de trabajo recomendó la inclusión de un nuevo protocolo en la medida de conservación para este tipo de arte de pesca.

Asesoramiento al Comité Científico

9.12 Este año no se realizaron revisiones de las evaluaciones exhaustivas del riesgo potencial de interacciones entre las aves marinas y las pesquerías de todas las áreas...
estadísticas en el Área de la Convención, ya que no se proporcionó nueva información de importancia sobre la distribución marina de las aves. Por lo tanto, las evaluaciones y el asesoramiento revisado en 2007 – que fueron combinados en un documento de referencia para el Comité Científico y a la Comisión (SC-CAMLR-XXVI/BG/31) – fueron aprobados nuevamente por el grupo de trabajo (párrafo 9.3).

9.13 El grupo de trabajo recomendó que las investigaciones en la División 58.4.4 propuestas por Japón sean efectuadas cumpliendo plenamente con la Medida de Conservación 25-02 (párrafo 9.6).

9.14 El grupo señaló que la propuesta de Japón de eximirse del requisito de efectuar pruebas de la tasa de hundimiento del palangre fuera del Área de la Convención cuando realice la pesca a fines de la temporada 2007/08 y principios de la temporada 2008/09 en la Subárea 48.6, no presentaba un riesgo adicional para las aves marinas del Área de la Convención (párrafo 9.9).

9.15 WG-FSA recomendó que se modificara la Medida de Conservación 24-02 a fin de que:

 i) incluya una relajación del requisito de efectuar pruebas iniciales de la tasa de hundimiento del palangre fuera del Área de la Convención, permitiendo que estas pruebas sean realizadas dentro de las aguas de la CCRVMA siempre que las pruebas se efectúen con anzuelos sin carnada. Esto sería aplicable a los protocolos existentes A, B y C (párrafo 9.8);

 ii) se agregue la Subárea 48.4 al párrafo 1 (párrafo 9.10);

 iii) se incorpore un nuevo protocolo para el palangre artesanal y los palangres artesanales con cachaloteras (párrafo 9.11).

MORTALIDAD INCIDENTAL DE AVES MARINAS EN LAS PESQUERÍAS NUEVAS Y EXPLORATORIAS

Pesquerías nuevas y exploratorias realizadas en 2007/08

10.1 De las 44 pesquerías de palangre exploratorias propuestas para 2007/08, solamente se realizaron 23 (WG-FSA-08/4). No se registró mortalidad incidental de aves marinas. El cumplimiento estricto de las disposiciones de las Medidas de Conservación 24-02 y 25-02 ha logrado reducir casi totalmente la captura incidental de aves marinas. Se informó sobre la captura de una foca, probablemente una foca cangrejera, en la pesquería exploratoria realizada en la Subárea 88.1 (WG-FSA-08/5 Rev. 1).
Pesquerías nuevas y exploratorias propuestas para 2008/09

10.2 La evaluación del riesgo para las aves en las pesquerías de palangre nuevas y exploratorias del Área de la Convención fue incorporada en SC-CAMLR-XXVI/BG/31 y resumida en la figura 1 y tabla 15. La tabla 15 también incluye una evaluación de los niveles de cobertura de observación recomendados.

10.3 En 2008, la CCRVMA recibió 37 notificaciones de pesquerías exploratorias de palangre presentadas por 11 países. Todas las áreas incluidas en dichas propuestas (CCAMLR-XXVII/12, tabla 1) fueron evaluadas con relación al riesgo de mortalidad incidental para las aves marinas, de conformidad con el enfoque y los criterios descritos en SC-CAMLR-XXVI/BG/31.

10.4 Todas las notificaciones de pesquerías de palangre brindaron suficiente información para determinar que cumplen plenamente con las medidas de conservación para minimizar la captura incidental de aves marinas (Medidas de Conservación 24-02 y 25-02 y las medidas pertinentes de la serie 41), y no están en desacuerdo con la evaluación del grupo especial WG-IMAF.

10.5 Una pesquería de arrastre exploratoria de kril fue notificada a la CCRVMA en 2008. El área incluida en dicha propuesta fue evaluada con relación al riesgo de mortalidad incidental para las aves marinas (Subárea 48.6, CCAMLR-XXVII/12, tabla 2), de conformidad con el enfoque y los criterios descritos en SC-CAMLR-XXVI/BG/31.

10.6 El grupo de trabajo notó que Noruega había informado que pondría en práctica las disposiciones de la Medida de Conservación 25-03 para esta pesquería. Dada la escasez de información sobre las interacciones de aves y mamíferos marinos en esta área y el nivel de riesgo asignado para la misma (SC-CAMLR-XXVI/BG/31), el grupo de trabajo recomendó además que se utilice un dispositivo de exclusión de mamíferos marinos diseñado para impedir la entrada de pinnípedos en la red en esta pesquería, y se observe por lo menos un 25% de las largadas y 75% de las recogidas de la red (tabla 14).

10.7 Dos nuevas pesquerías de centollas con nasas fueron notificadas a la CCRVMA en 2008. Las áreas incluidas en dichas propuestas (CCAMLR-XXVII/12, tabla 3) no han sido evaluadas con relación al riesgo de mortalidad incidental que las pesquerías con nasas representan para las aves marinas. Es posible que se pueda efectuar una evaluación del riesgo en el futuro, pero en esta etapa no se cuenta con suficiente información para realizarla.

10.8 El grupo de trabajo acordó que, mientras tanto, se efectúen observaciones durante las operaciones de pesca con nasas para recopilar información descriptiva sobre el potencial de que aves y mamíferos marinos mueran en la pesquerías que utilizan este método de pesca. Las observaciones de mortalidad incidental o enredo deberán centrarse en la recogida de las líneas.

10.9 El grupo de trabajo agradeció las mejores notificaciones presentadas este año, en particular, el hecho de que todas las notificaciones de pesca de palangre contenían suficiente información – comparado con 15% de propuestas cuya información no fue suficiente en 2007.
10.10 En 2005 el grupo de trabajo elaboró una lista de control para ayudar a los miembros a completar sus notificaciones de pesca de palangre (SC-CAMLR-XXIV, anexo 5, apéndice O, párrafo 193). Dado el éxito alcanzado el año pasado con dichas listas, el grupo de trabajo recomendó que se elaboraran listas similares para las notificaciones de pesca de arrastre y con nasas.

10.11 El grupo de trabajo indicó que hasta ahora no había realizado una evaluación de riesgo para los mamíferos marinos y que esta tarea había sido puesta en su programa de trabajo en el futuro. Una evaluación de riesgo tal permitirá la provisión de asesoramiento más completo sobre la mortalidad incidental relacionada con la pesca.

Asesoramiento al Comité Científico

10.12 El grupo de trabajo reiteró su recomendación de exigir que los barcos que participan en pesquerías nuevas y exploratorias de palangre y de arrastre tengan el nivel necesario de cobertura de observación de la mortalidad incidental y de otra información relacionada con la misma, según los detalles de las tablas 13 a la 15 (párrafo 10.2).

10.13 Recomendó también que se utilice el dispositivo de exclusión de mamíferos marinos diseñado para impedir que los pinnípedos entren en la red, en la pesquería exploratoria de kril que será llevada a cabo por Noruega en la Subárea 48.6, y que se efectúe la observación de por lo menos un 25% de los lances y 75% de las recogidas de la red. También recomendó que el dispositivo de exclusión de pinnípedos sea utilizado en todas las pesquerías de kril (párrafo 10.6).

10.14 El grupo recomendó que se realizaran observaciones para recopilar información descriptiva sobre la mortalidad incidental potencial en las pesquerías con nasas propuestas (párrafo 10.8).

10.15 WG-FSA recomendó que la Secretaría elaborara una lista de control, similar a la utilizada en las notificaciones de pesquerías nuevas y exploratorias de palangre, específicamente para las notificaciones de otras pesquerías nuevas y exploratorias (párrafo 10.10).

INICIATIVAS INTERNACIONALES Y NACIONALES RELACIONADAS CON LA MORTALIDAD INCIDENTAL DE AVES Y MAMÍFEROS MARINOS OCASIONADA POR LAS ACTIVIDADES DE PESCA

ACAP

11.1 El representante de ACAP (Sr. Baker) presentó un informe sobre las actividades de ACAP durante el año pasado. Las de más importancia para el grupo especial WG-IMAF son: el acercamiento de ACAP con las OROP del atún para reducir la mortalidad incidental de aves marinas en esas pesquerías y la segunda reunión del Grupo de trabajo de ACAP sobre la captura incidental de aves marinas del Comité Asesor de ACAP. Esta reunión, y las
reuniones del Comité Asesor de ACAP, de los grupos de trabajo de ACAP sobre estado y tendencias y sobre colonias de reproducción, fueron realizadas en agosto de 2008 en Sudáfrica.

11.2 Se examinó el informe del Grupo de trabajo de ACAP sobre la captura incidental de aves marinas (WG-FSA-08/61). Los resultados más importantes de esta reunión fueron:

i) la elaboración de un plan que sirva para guiar la interrelación de ACAP con las OROP, adaptándose para cada OROP en particular;

ii) un acuerdo para designar un “coordinador” para que represente a ACAP en cada reunión de las OROP y coordine la labor de otras Partes de ACAP que también son miembros de esas OROP;

iii) convenir en las prioridades que ACAP desea obtener de las OROP, en particular, información y asesoramiento experto sobre la distribución y tendencias de las poblaciones de aves marinas, estrategias para reducir la mortalidad incidental, uso de las mejores prácticas de evaluación del riesgo para evaluar la mortalidad incidental de aves marinas, protocolos de recopilación de datos de observación y estudios más convenientes con relación a las medidas de mitigación.

11.3 El funcionario científico (Dr. K. Reid) representó a la CCRVMA en la reunión del grupo de trabajo de ACAP sobre captura incidental de aves marinas, y presentó el enfoque de evaluación del riesgo de mortalidad incidental para las aves marinas aplicado por la CCRVMA. El grupo de trabajo de ACAP destacó la naturaleza integral de la metodología de recopilación de datos y evaluación utilizada por la CCRVMA, y señaló que representaban un buen modelo para ACAP. ACAP destacó que un programa de observación con una gran cobertura había sido esencial para entender el problema de la mortalidad incidental y ha sido la base del éxito en la reducción de la mortalidad incidental lograda por la CCRVMA en sus pesquerías. ACAP convinó además que el modelo era totalmente válido para otras OROP, y también podría ser utilizado por ACAP en la evaluación de información resumida sobre la mortalidad incidental presentada por las Partes de ACAP. El representante de ACAP agradeció a la CCRVMA el apoyo a su labor y la asistencia del Dr. Reid.

Iniciativas internacionales

Aplicación de la Resolución 22/XXV de la CCRVMA

11.4 El grupo de trabajo recordó que en años anteriores el Presidente de la Comisión había escrito a sus homólogos de varias OROP explicándoles el interés de la Comisión en reducir la captura incidental de las aves marinas del Área de la Convención en las pesquerías que operan fuera de dicha área. También les solicitó información sobre varios temas, a saber, las evaluaciones de la captura incidental de aves marinas que esas organizaciones hubieran podido efectuar y las medidas de mitigación empleadas en sus pesquerías. Esta correspondencia ha sido acusada por la Secretaría de una OROP.

11.5 El grupo de trabajo indicó que, como parte de los esfuerzos realizados en el período entre sesiones de 2007/08 para promover la eficaz aplicación de la Resolución 22/XXV, la Secretaría de la CCRVMA escribió a los observadores que representarían a la CCRVMA en
las reuniones de las OROP responsables de la pesca en aguas adyacentes al Área de la Convención (IOTC, ICCAT, WCPFC). Se entregó una carpeta de documentos a los observadores de la CCRVMA para ayudarles en las actividades descritas en la Resolución 22/XXV, párrafo 1 (para promover el acopio, notificación y difusión de datos anuales sobre la mortalidad incidental de aves marinas por parte de las OROP), párrafo 3 (agregar el problema de la mortalidad incidental de aves marinas al temario de las OROP) y párrafo 5 (sobre medidas para reducir o eliminar la mortalidad incidental de aves marinas). Dicha carpeta incluyó el documento de Waugh et al. (2008) que describe la metodología empleada por la CCRVMA para la evaluación del riesgo de mortalidad incidental de las aves marinas.

11.6 Al examinar los resultados alcanzados durante el periodo 2007/08, el grupo de trabajo señaló que: (i) IOTC había aceptado una propuesta para aplicar medidas de mitigación de la captura incidental más enérgicas y vinculantes; (ii) WCPFC había aprobado una propuesta presentada por algunas Partes de la CCRVMA para mejorar sus medidas de mitigación; y (iii) WCPFC e ICCAT estaban preparando una evaluación conjunta del riesgo de la captura incidental de aves marinas. Por ende, el grupo de trabajo concluyó que, con el esfuerzo mancomunado de los miembros de la CCRVMA que también son miembros de esas OROP y que habían presentado propuestas sobre la mortalidad incidental de aves marinas en esos foros, este enfoque había dado mejores resultados y la correspondencia anterior entre la Secretaría de la CCRVMA y las otras Secretarías de las OROP podría reenviarse para obtener mejores resultados.

11.7 Además, en relación con la eficacia de la Resolución 22/XXV, el grupo de trabajo recordó su asesoramiento previo en el sentido que un elemento esencial para poder avanzar es la implementación de programas robustos de observación científica para facilitar la estimación estadística de la mortalidad incidental de aves marinas y concentrar los esfuerzos por reducirla. Los datos derivados de estos programas de observación han sido esenciales para el éxito de la CCRVMA en la reducción de dicha mortalidad, y el grupo de trabajo opina que serían invaluables para el esfuerzo similar de otras OROP, y debiera ser una alta prioridad de su trabajo. El grupo de trabajo felicitó a las Partes contratantes y ONG que habían solicitado que el tema de la mortalidad incidental de aves marinas fuera incluido en la agenda de las reuniones pertinentes de otras OROP, y elogió el papel activo que estas Partes habían desempeñado en el desarrollo de la evaluación del riesgo y de las medidas de mitigación dentro de estas OROP. El grupo de trabajo pidió que se siguieran enviando notificaciones en el futuro de acuerdo con el párrafo 5 de la Resolución 22/XXV.

PAI-Aves marinas de la FAO

11.8 El Dr. B. Sullivan (BirdLife International) puso al día al grupo de trabajo con relación a la Consulta de expertos de FAO-NU celebrada del 2 al 5 de septiembre de 2008 en Bergen, (Noruega), para desarrollar de guías técnicas que representen las mejores prácticas para la elaboración de los PAI/PAN Aves marinas. La Consulta fue presidida por la Sra. Rivera y los logros de la CCRVMA en la reducción de la captura incidental de aves marinas fueron destacados en el informe de esta Consulta. Como fuera informado en 2007, estas guías extenderán la implementación de los PAI-Aves marinas a otras pesquerías y proporcionarán orientación sobre las mejores prácticas para otros artes de pesca distintos a los palangres (artes de arrastre y de enmalle) y para los planes regionales desarrollados por las OROP.
(SC-CAMLR-XXVI, anexo 6, párrafo I.65(ii)). Se pide a los miembros de la CCRVMA que apoyen la adopción de estas guías técnicas de la FAO durante la 28ª sesión de COFI (2 al 6 de marzo de 2009).

OROP y organizaciones gubernamentales internacionales

WCPFC

11.9 El grupo de trabajo señaló que, luego de la adopción de una medida de conservación y ordenación obligatoria en 2006 para reducir la captura incidental de aves marinas (WCPFC-CMM 2006-02), en la reunión de WCPFC celebrada en diciembre de 2007 se aprobó un mínimo de especificaciones técnicas para cada uno de los métodos de mitigación de la captura incidental de aves marinas listados en la medida, que se basaron en las recomendaciones y en el asesoramiento del Comité Científico de WCPFC y de su Comité Técnico y de Cumplimiento.

ICCAT

11.10 ICCAT ha continuado su desarrollo y compromiso en relación con la metodología de evaluación del riesgo, incluida la celebración de una reunión en marzo de 2008 donde se consideró, inter alia, un análisis del seguimiento de aves marinas por teledetección, y el uso de modelos demográficos y de la captura incidental. Esta metodología se describe en el párrafo II.179 del anexo 6 de SC-CAMLR-XXVI. Las especies de interés para la CCRVMA que están más amenazadas por las pesquerías de ICCAT son las seis especies de albatros de Georgia del Sur y de las Islas Tristan da Cunha, y el albatros de ceja negra de las Islas Malvinas/Falkland.

CCSBT

11.11 El grupo de trabajo indicó que la CCSBT estaba actualmente celebrando una reunión en Nueva Zelanda a la que se habían presentado propuestas para mejorar la gestión y mitigación de la captura incidental de aves marinas en las pesquerías de dicha comisión. El grupo de trabajo reiteró su preocupación de que estas pesquerías causan una elevada mortalidad de aves marinas del Área de la Convención. Dada la reciente adopción de medidas de mitigación por IOTC y WCPFC, la falta de progreso de la CCSBT en adoptar medidas de mitigación realza el marcado contraste que existe con las iniciativas de otras OROP del atún y las mejores prácticas mundiales. El grupo de trabajo nuevamente estimó que CCSBT debe abordar urgentemente el problema de la mortalidad incidental de aves marinas.
11.12 El grupo de trabajo indicó que en su reunión anual celebrada en junio de 2008, la IOTC había adoptado la Resolución 08/03 que contenía medidas obligatorias para mitigar la captura incidental de aves marinas. El grupo de trabajo notó la recomendación del Grupo de trabajo de ACAP sobre la captura incidental de aves marinas (WG-FSA-08/61) de que las medidas de mitigación de la captura incidental de aves marinas en las pesquerías de palangre pelágicas deben ser mejoradas, y que todavía no hay una estrategia de mejores prácticas de mitigación que haya sido ampliamente examinada y disponible para uso generalizado de las OROP responsables de la gestión de las pesquerías de palangre pelágicas. No obstante, esta resolución de la IOTC representa la mejor práctica utilizada actualmente por las OROP del atún y una mejora de la Resolución 06/04 de la IOTC.

11.13 Reflexionando sobre las discusiones previas con el WG-FSA en cuanto a cómo determinar el impacto de la pesca INDNR con redes de enmalle y la necesidad de contar con información de una pesquería legítima que utilice estos artes de pesca (párrafos 5.1 al 5.7), el grupo de trabajo puso de relieve información que apunta a que la IOTC es responsable de la gestión de una pesquería tal.

Iniciativas nacionales

11.14 El grupo de trabajo señaló que durante la cuarta reunión del Comité Asesor de ACAP celebrada el 22 de agosto de 2008, Sudáfrica había anunciado la adopción de su Plan de Acción Nacional para la reducción de la captura incidental de aves marinas en las pesquerías de palangre.

11.15 El grupo de trabajo observó que Nueva Zelanda había implementado reglas adicionales para reducir la mortalidad incidental en barcos palangreros, y consideró medidas nuevas para los barcos de arrastre (WG-FSA-08/47). Sobre la base de las medidas anteriores (uso de líneas espantapájaros y calado nocturno), los palangreros que pescan en aguas pelágicas pueden ahora calar sus palangres durante el día con líneas espantapájaros y un régimen prescrito de lastrado de la línea. Los palangreros de pesca demersal deben ahora utilizar líneas espantapájaros y calar sus palangres durante la noche, o bien utilizar sistemas específicos prescritos para el lastrado de las líneas durante el calado diurno. Además, éstos últimos no pueden verter restos de pescado durante el calado de las líneas y sólo pueden hacerlo por el lado opuesto a donde se recogen las líneas. A los barcos de arrastre de mayor capacidad ya se les exige el uso de medidas para mitigar las colisiones con el cable de arrastre (p.ej. líneas espantapájaros), y Nueva Zelanda continúa voluntariamente desarrollando nuevas medidas para reducir la mortalidad incidental de aves marinas en la pesca de arrastre.

11.16 Nueva Zelanda también ha simplificado la notificación de la captura incidental de aves, mamíferos marinos y otras especies protegidas para los pescadores mediante un formulario de notificación estándar obligatorio. En el pasado esta notificación era obligatoria, pudiéndose utilizar varios métodos distintos para ello.

11.17 El grupo de trabajo indicó que las nuevas medidas de mitigación dispuestas beneficiarán a las aves marinas del Área de la Convención, pues estas especies están
distribuidas en aguas neocelandesas y expuestas a las pesquerías que ocurren en dichas aguas. Además, los cambios en la notificación ayudarán a entender mejor la naturaleza y magnitud de la mortalidad incidental.

11.18 El grupo especial WG-IMAF recibió complacido una variedad de información y documentos presentados por Francia a su reunión de 2008 (punto 3 de la agenda).

11.19 El Sr. I. Hay (Australia) informó sobre el segundo año de pruebas de la pesca de palangre demersal de austromerluza frente a la Isla Macquarie, situada justo fuera del Área de la Convención. También informó acerca de las medidas de mitigación de la captura incidental utilizadas durante la prueba (WG-FSA-07/19). No se han capturado aves marinas durante los dos años de prueba, que se espera continúe en 2009.

Asesoramiento proporcionado al Comité Científico

11.20 El grupo de trabajo recomendó que:

i) se aliente a los miembros a que apoyen la adopción de estas Guías Técnicas de la FAO en la 28a sesión de COFI (2 al 6 de marzo de 2009) (párrafo 11.8);

ii) se solicite a la Comisión que considere qué otras acciones se podrían emprender para acelerar la adopción de medidas encaminadas a evitar o mitigar la mortalidad incidental de aves marinas provenientes del Área de la Convención en las pesquerías reguladas por CCSBT (párrafo 11.11);

iii) se pida a la Secretaría que explore la posibilidad de obtener datos sobre la mortalidad incidental y de esfuerzo y otros detalles, de la Secretaría de IOTC en relación con la pesca con redes de enmalle regulada por dicha organización (párrafo 11.13);

iv) el Comité Científico tome nota del papel cada vez mayor y beneficioso que juega ACAP en mejorar la gestión de las OROP en relación con la mortalidad incidental de aves marinas provenientes del Área de la Convención, que ocurre fuera de ella (párrafos 8.1 y 11.1 al 11.3);

v) además de otras actividades que pudieran surgir periódicamente:

 a) se solicite al Secretario Ejecutivo de la CCRVMA que escriba a los Secretarios Ejecutivos de las OROP que figuran en el apéndice I de la Resolución 22/XXV para reiterarles nuevamente el objetivo de la Comisión de reducir la mortalidad incidental de aves marinas del Área de la Convención que ocurre fuera de esta área (párrafos 11.5 y 11.6);

 b) se solicite al Secretario Ejecutivo de la CCRVMA que trate de que se incluya un punto que refleje el interés de la Comisión en reducir la mortalidad incidental de aves marinas provenientes del Área de la Convención que ocurre fuera de ella, en la agenda de la reunión de secretarías de Organizaciones Regionales de Pesca (RFB) a celebrarse en marzo de 2009;
c) se estimule a las Partes de la CCRVMA a que realicen o continúen realizando las actividades descritas en los párrafos 1, 3 y 5 de la Resolución 22/XXV (párrafo 11.5).

DESECHOS MARINOS Y SU EFECTO EN LAS POBLACIONES DE AVES Y MAMÍFEROS MARINOS DEL ÁREA DE LA CONVENCION

12.1 El grupo especial WG-IMAF indicó que las prioridades actuales de la CCRVMA con relación a la consideración de la mortalidad incidental de aves y mamíferos marinos incluye la consideración del efecto de la contaminación marina (incluidos artes de pesca perdidos), y agregó que en 2007 el Comité Científico le había remitido este tema (SC-CAMLR-XXVI, párrafo 6.2).

12.2 El grupo especial WG-IMAF también tomó nota de las deliberaciones del taller realizado antes de su reunión (WG-FSA-08/65), y estuvo de acuerdo en enmendar su cometido. Por consiguiente, el grupo especial WG-IMAF acordó modificar su cometido para incluir la revisión y análisis de los datos sobre la magnitud y significado del efecto directo de los desechos marinos en el Área de la Convención. El grupo especial WG-IMAF estimó que dentro de dos a cinco años más podría estar en condiciones de desarrollar metodologías de evaluación del riesgo del impacto directo de los desechos marinos en las aves y mamíferos marinos del Área de la Convención (fuente de datos sobre pérdida de aparejos, búsquedas de desechos en las playas etc.).

12.3 Con respecto a los desechos marinos, el grupo especial WG-IMAF consideró los documentos WG-FSA-08/9, 08/24, 08/25, 08/26 y 08/27. Se convino en que sería útil aclarar la definición de “desechos en relación con las colonias de aves marinas” como se propone en WG-FSA-08/9, a fin de distinguir entre los desechos que las aves marinas traen a las colonias y los que son depositados en ellas por la marea. El grupo de trabajo también acordó simplificar las categorías utilizadas para registrar los desechos marinos en las colonias de aves marinas a material encontrado “en el cuerpo de las aves marinas” y aquellos que han sido “regurgitados” en los nidos, o cerca de los mismos.

12.5 Al examinar el documento WG-FSA-08/25, el grupo de trabajo estimó que si bien los polluelos pueden ser capaces de digerir total, o parcialmente, los anzuelos, la digestión de metal puede ser perjudicial y no se sabe los efectos que puede tener en los polluelos.

12.6 Al considerar los documentos WG-FSA-08/24 a 08/27, todos sobre el sistema de seguimiento de desechos marinos del Reino Unido, el grupo de trabajo pidió que en el futuro esta información sea presentada en un solo documento.
12.7 El grupo de trabajo encontró muy reveladora la relación establecida entre el tipo y frecuencia de desechos y ciertas prácticas de pesca y los datos sobre artes perdidos. El vínculo encontrado entre los desechos y las pesquerías que los generan reafirmaría la necesidad de reforzar las medidas de gestión de desechos en esas pesquerías. El Sr. Moir Clark indicó que los pescadores que operan en la Subárea 48.3 estaban muy preocupados por la incidencia de desechos, y demostraron interés en comparar, cuando se pueda, la relación entre el tipo de operaciones de pesca y los desechos marinos.

12.8 A fin de entender mejor el origen de los desechos marinos y considerar los métodos actuales de recopilación de datos, el grupo de trabajo pidió que la Secretaría prepare durante el período entre sesiones una compilación de la información recogida últimamente por los observadores sobre los artes perdidos notificados por los barcos (v.g. últimos dos años o, según proceda, dependiendo del volumen y naturaleza de la información, de los informes de campaña y de los cuadernos de observación electrónicos). El grupo de trabajo pidió incluir una indicación del tipo y detalle de la información registrada.

12.9 Con el objeto de facilitar la identificación de desechos relacionados con la pesca, el grupo de trabajo consideró que sería conveniente crear un archivo digital de imágenes sobre artes de pesca. Este archivo podría incluir fotografías de artes de pesca tomadas por los observadores a bordo. El grupo de trabajo pidió que el grupo ad hoc TASO desarrollara un protocolo para tomar y catalogar estas fotografías para ser utilizado por los observadores. El grupo de trabajo pidió además que cuando se registren los datos sobre desechos, se fotografíen los desechos relacionados con la pesca (con indicación de la escala) para facilitar la identificación de la fuente de los mismos. El grupo de trabajo solicitó que estas fotos fueran archivadas por la Secretaría.

12.10 Tomando nota de que no todos los desechos registrados provienen de barcos de pesca, el grupo de trabajo estuvo de acuerdo en que sería conveniente que la CCRVMA se comunicara con los organismos internacionales pertinentes a fin de abordar de manera más amplia el problema de los desperdicios arrojados en aguas del Área de la Convención yadyacentes. El grupo de trabajo recomendó que la CCRVMA incluyera referencias a los desechos marinos y a la gestión de los mismos en su correspondencia con las OROP y otros organismos internacionales pertinentes.

12.11 En atención a la incidencia de los enredos de la fauna silvestre, la presencia de desechos en las colonias y los resultados presentados en los documentos WG-FSA-08/26 a 08/27, el grupo de trabajo reiteró la necesidad de que los barcos (con o sin observadores) continúen siendo diligentes en el cumplimiento de las medidas de conservación, y con las relacionadas con la gestión de los desechos marinos.

12.12 Luego del éxito del cartel sobre la eliminación de anzuelos, el grupo de trabajo acordó que se publicara un cartel similar para dar mayor relieve a la gestión de desechos en los barcos y hacer hincapié en el peligro que representa para la fauna la eliminación de desechos en el Área de la Convención. Este cartel debía incluir fotos de animales enredados (por ejemplo, pinnípedos), y de desechos varados en las playas. Debe ser publicado en todos los idiomas de la CCRVMA, además de indonesio, coreano y japonés, en tamaño A3 como mínimo y laminado. El costo de impresión y laminado de 500 carteles tamaño A3 sería $2 270 AUD ($4.50 AUD c/u), y $3 930 AUD para 1 000 carteles ($3.93 AUD c/u). El grupo de trabajo recomendó que sería preferible imprimirlos sobre plexiglás (como el cartel...
de la eliminación de anzuelos) y señaló que esto costaría $8.50 AUD/cartel, más $250 AUD por el costo de montaje. El grupo de trabajo indicó además que habría un costo adicional de franqueo de estos carteles montados en plexiglás, por ser más pesados.

12.13 Al considerar la incidencia de los enredos de pinnípedos en los zunchos plásticos de empaque, el grupo de trabajo señaló que era muy fácil cortarlos y luego amarrarlos para facilitar su eliminación, es decir, volviendo a crear un lazo. Para evitar esto se recomienda modificar la Medida de Conservación 26-01 para exigir que éstos sean cortados en trozos de 10 cm antes de su incineración.

12.14 La Secretaría volvió a solicitar a los miembros que presenten datos sobre los desechos marinos, y señaló que los datos incluidos en sus archivos actualmente se limitan al Área 48 y a la Subárea 58.7 (Isla Marion) solamente. El grupo de trabajo convino en que la recopilación y presentación de datos sobre desechos marinos a la Secretaría era una prioridad del trabajo del grupo especial WG-IMAF sobre desechos marinos.

Asesoramiento al Comité Científico

12.15 El grupo especial WG-IMAF recomendó que el Comité Científico:

 i) tomar nota de que el cometido revisado del WG-IMAF incluye la consideración de los desechos marinos en el Área de la Convención, específicamente del efecto directo de los desechos marinos en las aves y los mamíferos marinos (párrafo 12.2);

 ii) tomar nota del aumento general de la frecuencia de desechos marinos (párrafo 12.11);

 iii) acordar la implementación de las definiciones revisadas de desechos en relación con las colonias de aves marinas (párrafo 12.3), y de la edad y el sexo del lobo fino antártico, para la notificación de datos de desechos marinos (párrafo 12.4);

 iv) apoyar la creación de un archivo fotográfico de los desechos encontrados, que incluya fotos de aparejos de pesca tomadas por los observadores (párrafo 12.9);

 v) apoyar la inclusión de asesoramiento sobre desechos marinos en las comunicaciones de la CCRVMA con otras organizaciones internacionales, incluidas las OROP (párrafo 12.10);

 vi) apoyar la publicación de un cartel de tamaño A3 sobre plexiglás, para poner de relieve la importancia de la gestión de desechos de conformidad con las medidas de conservación, y las consecuencias para la fauna marina de no hacer esto en forma eficaz (párrafo 12.12);

 vii) recomendar a la Comisión que enmiende la Medida de Conservación 26-01 para asegurar que los zunchos de empaque se corten en trozos pequeños (~10 cm) antes de ser incinerados (párrafo 12.13);
viii) instara a los miembros a que proporcionen datos sobre desechos marinos a la Secretaría (párrafo 12.14).

INTERACCIONES CON OTROS GRUPOS DE TRABAJO
DEL COMITÉ CIENTÍFICO

13.1 El grupo de trabajo indicó que WG-EMM y WG-FSA habían considerado la utilización de un marco de gestión del riesgo para impedir los efectos negativos considerables de los artes de pesca de fondo en los EMV, similar al utilizado por el grupo especial WG-IMAF para minimizar el riesgo de la mortalidad incidental de aves marinas en las pesquerías (v.g. anexo 4, párrafo 3.22). El grupo especial WG-IMAF reconoció las ventajas de utilizar este tipo de enfoque basado en el riesgo para la pesquería de kril y, por ende, la consideración de diversas medidas de ordenación que tomen en cuenta el riesgo y contingencias asociados.

13.2 El grupo de trabajo estuvo de acuerdo con las prioridades de recopilación de datos de la pesquería de kril señaladas por WG-EMM en lo que se refiere a la mortalidad incidental de aves y mamíferos marinos y a la información sobre colisiones con el cable de arrastre (anexo 4, párrafo 4.66). Estas prioridades guardan relación con el asesoramiento previo del grupo especial WG-IMAF como lo ratificó el Comité Científico con respecto a las pesquerías de arrastre de kril (SC-CAMLR-XXV, párrafo 5.32).

13.3 El grupo de trabajo consideró una solicitud del grupo ad hoc TASO (SC-CAMLR-XXVII/BG/6, párrafo 3.7) para explicar la aplicación del protocolo de la CCRVMA con respecto a las colisiones con el cable de arrastre en los barcos arrastreros de kril, incluidos aquellos que pescan con el método de arrastre continuo (párrafos 7.12 al 7.16).

13.4 El grupo de trabajo especial WG-IMAF recibió con beneplácito la formación del grupo ad hoc TASO y valoró la participación de un coordinador de dicho grupo y de varios coordinadores técnicos que participaron en calidad de observadores en su reunión de este año. WG-IMAF indicó que espera continuar colaborando con este grupo.

13.5 El grupo de trabajo recibió asesoramiento de WG-SAM con respecto a un modelo general para simular la dinámica de las poblaciones de aves marinas estructurado según la edad y/o etapas (párrafo 8.3) y señaló que tiene previsto seguir su colaboración con dicho grupo en lo que se refiere al análisis de un modelo demográfico sobre las colisiones de los petreles de mentón blanco y grises con el cable de arrastre (párrafo 8.7).

13.6 Como parte del trabajo de racionalización del Comité Científico, el grupo especial WG-IMAF se reunió el 10 de octubre de 2008 en Hobart (Australia) para considerar su trabajo futuro (párrafos 15.1 and 15.5). A la reunión asistieron algunos participantes de otros grupos de trabajo del Comité Científico (WG-FSA, WG-SAM y ad hoc TASO), quienes ayudaron al grupo especial WG-IMAF en la coordinación de su esfuerzo para brindar asesoramiento al Comité Científico.
INFORMES DE PESCA

14.1 El grupo de trabajo examinó los informes de pesca redactados por el WG-FSA (anexo 5, puntos 5.1 y 5.2 de la agenda) y la información relativa a la mortalidad incidental de aves y mamíferos marinos incluida en los mismos.

14.2 El grupo de trabajo actualizó los informes de pesca sobre la base de los datos contenidos en SC-CAMLR-XXVI, anexo 6, y la información contenida en los documentos WG-FSA-08/5 Rev. 1, 08/6 Rev. 1, 08/7 Rev. 2 y 08/8.

Asesoramiento al Comité Científico

14.3 El grupo de trabajo recomendó continuar con el proceso de actualizar los informes de pesquerías, señalando que este proceso proporcionaba una constructiva colaboración con el WG-FSA, a la vez que contribuía a la racionalización de la labor de los grupos de trabajo del Comité Científico.

RACIONALIZACIÓN DE LA LABOR DEL COMITÉ CIENTÍFICO

15.1 El grupo de trabajo examinó el informe de los coordinadores del taller de un día (10 de octubre de 2008, Hobart, Australia) para examinar el futuro del grupo especial WG-IMAF (WG-FSA-08/65). Durante el taller se consideró el cometido de WG-IMAF (SC-CAMLR-XXVI, párrafo 5.59) de acuerdo con lo acordado por la Comisión (CCAMLR-XXVI, párrafo 4.92) y se discutió una variedad de temas relacionados con la labor futura del grupo especial WG-IMAF.

15.2 El grupo de trabajo especial WG-IMAF se alegró del uso que otros grupos de trabajo han hecho de su enfoque de evaluación basado en el riesgo para abordar otros asuntos relativos a la mortalidad incidental enfrentados por la CCRVMA. No obstante, señaló que si el cometido del grupo especial WG-IMAF se expande para incluir este trabajo, se requerirá de experiencia adicional que el grupo especial WG-IMAF no dispone actualmente.

15.3 El grupo de trabajo especial WG-IMAF recomendó que entre los objetivos de conservación más generales de la CCRVMA (artículo II de la Convención de CRVMA), su trabajo anual continúe enfocándose en funciones básicas tales como:

i) el examen y seguimiento anual de la mortalidad incidental de aves y mamíferos marinos en las pesquerías del Área de la Convención;

ii) el examen y seguimiento anual de la información relacionada con la eficacia de la implementación de medidas de conservación específicas;

iii) estudios y pruebas experimentales de los artes de pesca y métodos de mitigación;

iv) la evaluación y asesoramiento de los cambios requeridos en los informes de observación y en la recopilación de datos;
v) la evaluación del riesgo para las aves marinas de la CCRVMA en áreas, subáreas y divisiones;

vi) la coordinación y colaboración con ACAP;

vii) la revisión del nivel y significado del impacto directo de los desechos marinos en el Área de la Convención.

15.4 El grupo de trabajo especial WG-IMAF deliberó sobre la frecuencia, duración y ciclo de sus reuniones para considerar estas funciones básicas y los nuevos requisitos para la consideración del problema de los desechos marinos, y resolvió que si bien no había necesidad de cambiar el programa actual de reuniones, esto debiera ser evaluado cada cierto tiempo.

15.5 El grupo de trabajo destacó la importancia de la interacción con otros grupos de trabajo del Comité Científico (WG-FSA, WG-SAM, ad hoc TASO y WG-EMM), y recomendó mantener su flexibilidad con respecto a la programación de sus reuniones consultando con la Secretaría en lo que respecta a la provisión de recursos para las reuniones.

15.6 El grupo de trabajo indicó que la consideración y revisión de su cometido debería incluirse como un tema de su agenda anual.

15.7 El grupo de trabajo recomendó el siguiente cometido revisado para WG-IMAF:

El propósito de WG-IMAF es contribuir a la conservación de aves y mamíferos marinos del Área de la Convención por medio del asesoramiento brindado al Comité Científico de la CCRVMA. Para lograr esto, WG-IMAF tendrá como cometido:

i) revisar y analizar datos sobre el grado y la importancia del efecto directo de las interacciones y la mortalidad incidental relacionada con la pesca;

ii) examinar la eficacia de las medidas de mitigación utilizadas actualmente en el Área de la Convención, y considerar su refinamiento, tomando en cuenta la experiencia adquirida tanto dentro como fuera del Área de la Convención;

iii) revisar y analizar datos sobre el grado y la importancia del efecto directo de los desechos marinos en el Área de la Convención;

iv) colaborar y trabajar en coordinación con ACAP para lograr una situación favorable con respecto a la conservación de aves marinas del Área de la Convención;

v) preparar un resumen de lo anterior para la consideración del Comité Científico;

vi) proporcionar al Comité Científico asesoramiento en lo que se refiere a:

a) mejoras de los requisitos pertinentes a la presentación de datos que se aplican actualmente en el Área de la Convención;

b) mejoras de las medidas utilizadas para evitar la mortalidad incidental, y la interacción con las actividades de pesca en el Área de la Convención;
c) cooperación con ACAP;

d) maneras de mejorar el estado de conservación de las aves y los mamíferos marinos del Área de la Convención afectados directamente por la pesca realizada fuera del Área de la Convención.

15.8 El grupo de trabajo recomendó que, a fin de reflejar la larga existencia de este grupo especial, su calendario anual de reuniones, y la naturaleza de su labor, se lo debía llamar simplemente WG-IMAF.

15.9 El grupo de trabajo recomendó que para reflejar su condición de grupo de trabajo permanente del Comité Científico, los documentos que se presenten a las reuniones de WG-IMAF deberían llamarse documentos de WG-IMAF en lugar de documentos de WG-FSA como se hace actualmente.

15.10 El grupo de trabajo recalcó la importancia y necesidad de interactuar con otros grupos de trabajo del Comité Científico. Independientemente de la condición definida del WG-IMAF, el grupo de trabajo recomendó continuar llevando a cabo sesiones conjuntas con el WG-FSA, y con otros grupos de trabajo, según fuera necesario, para discutir temas de interés común.

Asesoramiento al Comité Científico

15.11 El grupo de trabajo solicita que el Comité Científico apruebe el cometido revisado de WG-IMAF (párrafo 15.7), las tareas principales a realizarse anualmente (párrafo 15.3), la recomendación de cambiar el nombre del grupo de trabajo (párrafo 15.8), el cambio de nombre de los documentos de WG-IMAF (párrafo 15.9), y la celebración de sesiones conjuntas de WG-IMAF con otros grupos de trabajo del Comité Científico, según sea necesario (párrafo 15.10).

ASUNTOS VARIOS

16.1 Al final de esta reunión el Sr. Smith cesará en sus funciones de coordinador y la Sra. Rivera continuará sirviendo de coordinadora. Se agradeció al Sr. Smith por su trabajo y significativa contribución a la labor del grupo especial WG-IMAF durante los cuatro años en que se desempeñó como coordinador. Se nombró al Sr. N. Walker (Nueva Zelanda) como coordinador de WG-IMAF para que trabaje en conjunto con la Sra. Rivera.

Asesoramiento al Comité Científico

16.2 El Sr. Walker debe ser nombrado coordinador de WG-IMAF, tras el retiro del Sr. Smith.
APROBACIÓN DEL INFORME Y CLAUSURA DE LA REUNIÓN

17.1 Se aprobó el informe de la reunión de 2008 del grupo especial WG-IMAF.

17.2 El grupo de trabajo guardó un minuto de silencio en memoria de la Dra. Edith Fanta quien falleció en mayo de 2008. La Dra. Fanta será recordada por su inteligente aporte de muchos años a la labor del grupo especial WG-IMAF y su discreción y dedicación durante su presidencia del Comité Científico desde 2005 a la fecha de su muerte.

17.3 Al cerrar la reunión, la Sra. Rivera y el Sr. Smith agradecieron a los participantes por su contribución al éxito de tan constructiva reunión, y a la Secretaría por su profesionalismo en el apoyo brindado.

17.4 En nombre del grupo de trabajo, el Sr. Hay agradeció a la Sra. Rivera y al Sr. Smith por su habilidad y dedicación en la orientación de la labor del grupo especial WG-IMAF durante el año. También se felicitó a los coordinadores por su esfuerzo para asegurar el éxito del taller que examinó el futuro del grupo especial WG-IMAF.

17.5 Se dio por terminada la reunión.

REFERENCIAS

Tabla 1: Plan de trabajo del grupo especial WG-IMAF durante el período entre sesiones de 2008/09.

<table>
<thead>
<tr>
<th>Tarea/Tema</th>
<th>Párrafos del informe del WG-IMAF</th>
<th>Prioridad</th>
<th>Miembros</th>
<th>Secretaría</th>
<th>Consecución</th>
<th>Acción específica</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Planificación y coordinación del trabajo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Elaborar una lista de comprobaciones, similar a la utilizada en las notificaciones de pesquerías nuevas y exploratorias de palangre, en particular para las notificaciones de otras pesquerías nuevas y exploratorias.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.15 Mediana</td>
<td>Secretaría</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Integración de la labor de WG-IMAF y ACAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Mantener el diálogo con ACAP sobre asuntos de interés común y programar el traspaso de las tareas pertinentes.</td>
<td>Alta</td>
<td>Coordinadores</td>
<td>Secretaría</td>
<td></td>
<td>ACAP</td>
<td></td>
</tr>
<tr>
<td>3. Actividades de investigación y desarrollo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Pedir a BirdLife International que proporcione un breve resumen anual de datos de su base de datos de seguimiento sobre la distribución de aves marinas del Océano Austral. Planificar con Birdlife Internacional una revisión más detallada de la base de datos cada tres años a ser entregada en 2010/11.</td>
<td>8.2</td>
<td>para IMAF-09</td>
<td>Coordinadores</td>
<td>Funcionario Científico</td>
<td>Julio 09</td>
<td>Pedir información a BirdLife International en julio 09 para redactar documento de trabajo para WG-IMAF-09. Entregar toda información nueva a WG-IMAF. Coordinadores establecer contacto con BirdLife International en cuanto a la revisión de tres años.</td>
</tr>
<tr>
<td>3.2 Elaborar un documento metodológico sobre los pasos requeridos para realizar una evaluación del riesgo para los mamíferos marinos.</td>
<td>9.5</td>
<td>para IMAF-09</td>
<td>Australia, Nueva Zelandia</td>
<td>Funcionario Científico (coordinador)</td>
<td></td>
<td>R. Gales, B. Baker, N. Walker</td>
</tr>
<tr>
<td>3.3 Preparar y distribuir un cartel para difundir el problema de los desechos marinos.</td>
<td>2.54, 12.12 2009</td>
<td></td>
<td>Secretaría</td>
<td>Dic. 08/ Enero 09</td>
<td></td>
<td>La Secretaría deberá distribuir el cartel a través de los coordinadores técnicos a todos los palangreros que operan en el Área de la Convención.</td>
</tr>
</tbody>
</table>

(continúa)
Tabla 1 (continuación)

<table>
<thead>
<tr>
<th>Tarea/Tema</th>
<th>Párrafos del informe del WG-IMAF</th>
<th>Prioridad</th>
<th>Miembros</th>
<th>Secretaría</th>
<th>Consecución</th>
<th>Acción específica</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4 Informar sobre la implementación del plan de acción y entregar un informe de su avance. Incluir figuras para mostrar la yuxtaposición del esfuerzo de pesca semanal por sector y las tasas de mortalidad incidental de aves marinas. Indicar la situación en que se encuentra su implementación con respecto a lo recomendado en la tabla 12.</td>
<td>3.11, 3.12, tabla 12</td>
<td>Alta</td>
<td>Francia</td>
<td></td>
<td>Informar a IMAF-09</td>
<td></td>
</tr>
<tr>
<td>3.5 Entregar a WG-SAM una traducción del documento SC-CAMLR-XXVII/BG/8 (Evaluación del impacto de las pesquerías en las poblaciones de petreles en las ZEE francesas).</td>
<td>3.10</td>
<td>Alta</td>
<td>Francia</td>
<td></td>
<td>Reunión de WG-SAM en julio de 2009</td>
<td></td>
</tr>
</tbody>
</table>

4. Información de fuera del Área de la Convención

4.1 Elaborar un formulario estándar para notificar datos sobre la mortalidad incidental fuera del Área de la Convención de las aves y mamíferos marinos que se reproducen dentro de ella.

5. Cooperación con organizaciones internacionales

5.1 Escribir a los Secretarios Ejecutivos de las OROP que figuran en el apéndice 1 de la Resolución 22/XXV para reiterar el interés de la Comisión de reducir la mortalidad incidental de aves marinas del Área de la Convención que ocurre en aguas fuera de la misma. En la comunicación con las OROP y otros organismos internacionales pertinentes, abordar el tema del vertido de desechos en aguas dentro y fuera del Área de la Convención.

11.20(v)(a) y 12.1

Secretario Ejecutivo

Nov. 08 / Sep. 09

Comunicar a los observadores de la CCRVMA los comentarios requeridos sobre materias relacionadas con WG-IMAF (niveles de la captura incidental de aves marinas y medidas de mitigación)

(continúa)
<table>
<thead>
<tr>
<th>Tarea/Tema</th>
<th>Párrafos del informe del WG-IMAF</th>
<th>Prioridad</th>
<th>Miembros</th>
<th>Secretaria</th>
<th>Consecución</th>
<th>Acción específica</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>11.20(v)(b) Pedir la inclusión de un punto en la agenda de la reunión de secretarías de Organizaciones Regionales de Pesca (RFB) a celebrarse en marzo de 2009 para reflejar el interés de la Comisión en que las OROP consideren la mortalidad incidental de aves marinas.</td>
<td>Alta</td>
<td>Secretario Ejecutivo</td>
<td>Nov. 08 Sep. 09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Obtención y análisis de datos</td>
<td>6.1 Pedir información sobre las operaciones de pesca con redes de enmalle, la mortalidad incidental de aves marinas asociada etc., para ayudar en el desarrollo de un método para estimar la mortalidad incidental de aves marinas causada por la pesca INDNR con redes de enmalle en el Área de la Convención.</td>
<td>5.3, 11.13, 11.20(iii)</td>
<td>Miembros, IOTC</td>
<td>Nov. 08</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.2 Compilar información recogida por los observadores (incluidos los informes de campaña y datos C2) sobre artes perdidos notificados por los barcos en los últimos tres años.</td>
<td>12.8 Alta</td>
<td>Secretaría</td>
<td>Sep. 09</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.3 Efectuar una revisión descriptiva de los métodos de arrastre continuo, incluyendo el vertido de desechos y cuestiones relativas a la ordenación.</td>
<td>6.9 Alta</td>
<td>Miembros (Noruega)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.4 Efectuar una revisión descriptiva de los métodos de pesca utilizados en el Área de la Convención, como el sistema español y los palangres artesanales, el uso de nasas y métodos de arrastre para la pesca del draco rayado. Esta revisión sería similar a la efectuada para el método de calado automático de palangres en 2008 y sería presentada como documento de trabajo a WG-IMAF.</td>
<td>6.2 Mediana</td>
<td>Miembros</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabla 2: Mortalidad incidental de aves observada en las pesquerías de palangre de *Dissostichus* spp. en el Área 51, las Subáreas 48.3, 48.4, 58.6, 58.7, 88.1, 88.2 y Divisiones 58.4.1, 58.4.2, 58.4.3 y 58.5.2 en la temporada 2007/08, incluye información sobre su mitigación. Método de pesca: A – automático; Sp – español; T – palangre artesanal, N – calado nocturno; D – calado diurno (incluye amanecer y atardecer náutico); O – banda opuesta al virado; S – banda del virado.

<table>
<thead>
<tr>
<th>Barco</th>
<th>Fechas de pesca</th>
<th>Método</th>
<th>Calados</th>
<th>No. de anzuelos (miles)</th>
<th>No. de aves capturadas observadas</th>
<th>Mortalidad de aves observada (aves/miles de anzuelos)</th>
<th>Líneas espan-tapájaros utilizadas (%)</th>
<th>Vertido de desechos durante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subárea 48.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antarctic Bay</td>
<td>28/5–22/8/08</td>
<td>Sp</td>
<td>247</td>
<td>100</td>
<td>302.6</td>
<td>1215.8 24</td>
<td>(1) O</td>
<td></td>
</tr>
<tr>
<td>Argos Froyanes</td>
<td>14/5–28/8/08</td>
<td>A</td>
<td>281</td>
<td>100</td>
<td>556.1</td>
<td>1790.4 31</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>Argos Georgia</td>
<td>3/5–31/8/08</td>
<td>A</td>
<td>300</td>
<td>100</td>
<td>478.1</td>
<td>1539.0 31</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>Argos Helena</td>
<td>1/5–31/8/08</td>
<td>A</td>
<td>360</td>
<td>100</td>
<td>395.6</td>
<td>1759.0 22</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>Tronio</td>
<td>1/5–29/8/08</td>
<td>Sp</td>
<td>200</td>
<td>100</td>
<td>393.9</td>
<td>1702.0 23</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>Jacqueline</td>
<td>4/5–23/8/08</td>
<td>Sp</td>
<td>281</td>
<td>100</td>
<td>385.2</td>
<td>1548.5 24</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>Koryo Maru No. 11</td>
<td>2/5–6/9/08</td>
<td>Sp</td>
<td>215</td>
<td>100</td>
<td>545.9</td>
<td>2097.6 26</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>Punta Ballena</td>
<td>15/5–7/9/08</td>
<td>A</td>
<td>193</td>
<td>100</td>
<td>256.3</td>
<td>1184.7 21</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>San Aspiring</td>
<td>1/5–5/6/08</td>
<td>A</td>
<td>77</td>
<td>100</td>
<td>318.7</td>
<td>725.0 43</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>San Aspiring</td>
<td>18/6–12/8/08</td>
<td>A</td>
<td>133</td>
<td>100</td>
<td>547.1</td>
<td>1200.0 45</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>Viking Bay</td>
<td>1/5–28/8/08</td>
<td>Sp</td>
<td>263</td>
<td>100</td>
<td>397.4</td>
<td>1538.4 25</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>Subárea 48.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argos Froyanes</td>
<td>21/4–12/5/08</td>
<td>A</td>
<td>63</td>
<td>100</td>
<td>111.8</td>
<td>313.2 35</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>San Aspiring</td>
<td>3/4–23/4/08</td>
<td>A</td>
<td>45</td>
<td>100</td>
<td>142.5</td>
<td>342.0 41</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>Área 51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banzare</td>
<td>16/4–9/6/08</td>
<td>T</td>
<td>32</td>
<td>100</td>
<td>410.4</td>
<td>410.4 100</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>Divisiones 58.4.1, 58.4.2, 58.4.3a, 58.4.3b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tromso</td>
<td>2/12–16/2/08</td>
<td>Sp</td>
<td>18</td>
<td>100</td>
<td>581.1</td>
<td>922.3 63</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>Antillas Reefer</td>
<td>16/12–21/2/08</td>
<td>Sp</td>
<td>28</td>
<td>97</td>
<td>136.5</td>
<td>765.7 17</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>Banzare</td>
<td>6/1–27/2/08</td>
<td>T</td>
<td>11</td>
<td>50</td>
<td>304.9</td>
<td>304.9 100</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>Paloma V</td>
<td>21/12–17/2/08</td>
<td>Sp</td>
<td>0</td>
<td>69</td>
<td>261.8</td>
<td>814.5 32</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>Janas</td>
<td>18/5–26/5/08</td>
<td>A</td>
<td>15</td>
<td>15</td>
<td>40.6</td>
<td>75.0 44</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>Insung No. 1</td>
<td>20/12–12/3/08</td>
<td>Sp</td>
<td>0</td>
<td>138</td>
<td>888.1</td>
<td>980.0 90</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>Shinsei Maru No. 3</td>
<td>30/12–19/2/08</td>
<td>T</td>
<td>53</td>
<td>134</td>
<td>339.8</td>
<td>673.4 50</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>Insung No. 2</td>
<td>4/12–25/2/08</td>
<td>Sp</td>
<td>6</td>
<td>125</td>
<td>671.4</td>
<td>918.9 73</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>División 58.5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austral Leader II</td>
<td>25/5–28/6/08</td>
<td>A</td>
<td>36</td>
<td>66</td>
<td>132.6</td>
<td>336.6 39</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>Janas</td>
<td>29/5–27/08</td>
<td>A</td>
<td>45</td>
<td>114</td>
<td>347.9</td>
<td>743.0 44</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>Subáreas 58.6, 58.7, Área 51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koryo Maru No. 11</td>
<td>9/2–30/3/08</td>
<td>Sp</td>
<td>76</td>
<td>76</td>
<td>269.2</td>
<td>667.7 40</td>
<td>(0) O</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continúa)
<table>
<thead>
<tr>
<th>Subárea 88.1, 88.2</th>
<th>Barco</th>
<th>Fechas de pesca</th>
<th>Método</th>
<th>Calados</th>
<th>N</th>
<th>D</th>
<th>Total</th>
<th>%N</th>
<th>Calados</th>
<th>% observado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ave “capturada” de acuerdo con la definición de la Comisión de CCAMLR-XXIII, párrafos 10.30 y 10.31.</td>
<td>Información obtenida del informe de la campaña.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Esto se refiere a los barcos que también pescaron en menor medida en la Subárea 88.1 durante esta campaña.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2 (continuación):

<table>
<thead>
<tr>
<th>Barco</th>
<th>Fechas de pesca</th>
<th>Método</th>
<th>Calados</th>
<th>N</th>
<th>D</th>
<th>Total</th>
<th>%N</th>
<th>Calados</th>
<th>% observado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ave “capturada” de acuerdo con la definición de la Comisión de CCAMLR-XXIII, párrafos 10.30 y 10.31.</td>
<td>Información obtenida del informe de la campaña.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Esto se refiere a los barcos que también pescaron en menor medida en la Subárea 88.1 durante esta campaña.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subárea</td>
<td>Año</td>
<td>Mortalidad extrapolada</td>
<td>Tasa de mortalidad obs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subárea 48.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>210*</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>21</td>
<td>0.032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>30</td>
<td>0.013*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>27</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>8</td>
<td>0.0015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>27</td>
<td>0.0003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>13</td>
<td>0.0015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>0</td>
<td>0.0011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subárea 48.4</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subárea 48.6</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subáreas 58.6, 58.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subárea 58.6 ZEE francesa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>no hay</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>no hay</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>no hay</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>no hay</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>no hay</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>datos</td>
<td>1243*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>datos</td>
<td>720*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>datos</td>
<td>343*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>datos</td>
<td>242</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>datos</td>
<td>235</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>datos</td>
<td>314</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>datos</td>
<td>131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subáreas 88.1, 88.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divisiones 58.4.1, 58.4.2, 58.4.3a, 58.4.3b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>División 58.5.1 ZEE francesa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>División 58.5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortalidad total de aves</td>
<td>6589</td>
<td>1355Δ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Excluyendo la campaña experimental de lastrado de la línea del Argos Helena.
+ No se registró el número de anzuelos y los valores dados provienen del número total de anzuelos calados.
Δ A partir de 2008, el valor de mortalidad total de aves marinas incluye las aves de la Subárea 58.6 y División 58.5.1 (SC-CAMLR-XXVI, párrafo 5.6(iii)).
Tabla 4: Mortalidad incidental de aves marinas observada en la pesca de palangre de *Dissostichus* spp. en la Subárea 58.6 y División 58.5.1 durante la temporada 2007/08 (de septiembre a agosto). N – calado nocturno; D – calado diurno (incluido el amanecer y el atardecer náutico).

<table>
<thead>
<tr>
<th>Barco</th>
<th>Período de pesca</th>
<th>No. observado de aves capturadas</th>
<th>% calados con líneas espantapájaros</th>
<th>Altura del punto de sujeción sobre el agua (m)</th>
<th>Distancia entre cuerdas secundarias (m)</th>
<th>No. de cuerdas secundarias en cada línea</th>
<th>Líneas espantapájaros</th>
<th>Cuerdas secundarias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Muertas</td>
<td>Heridas</td>
<td>Ilesas</td>
<td>Muertas</td>
<td>Heridas</td>
<td>Ilesas</td>
<td>Muertas</td>
<td>Heridas</td>
</tr>
<tr>
<td>Subárea 58.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barco 1</td>
<td>6/4–22/5/08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Barco 2</td>
<td>12/11–24/11/07</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 2</td>
<td>8/2–24/2/08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 2</td>
<td>1/5–20/5/08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 3</td>
<td>15/2–27/2/08</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 3</td>
<td>7/5–31/5/08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 5</td>
<td>5/2–20/2/08</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Barco 5</td>
<td>29/3–8/4/08</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 6</td>
<td>22/2–17/3/08</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 6</td>
<td>7/7–15/7/08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 7</td>
<td>31/10–8/11/07</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 7</td>
<td>3/2–11/2/08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 7</td>
<td>7/5–26/5/08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Barco 11</td>
<td>25/10–01/11/07</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 11</td>
<td>16/02, 15/04,</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>11/03, 17/05/08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>División 58.5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barco 1</td>
<td>7/9–13/11/07</td>
<td>23</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 1</td>
<td>13/12–13/2/08</td>
<td>61</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 1</td>
<td>1/5–13/6/08</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 2</td>
<td>18/9–9/11/07</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 2</td>
<td>17/12–4/2/08</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 2</td>
<td>16/3–27/4/08</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 3</td>
<td>8/9–20/10/07</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 3</td>
<td>8/12–12/2/08</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 3</td>
<td>4/4–1/5/08</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 5</td>
<td>5/9–11/11/07</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 5</td>
<td>20/12–1/2/08</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 5</td>
<td>27/4–9/6/08</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Barco 6</td>
<td>3/9–1/12/07</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

(continúa)
Tabla 4 (continuación)

<table>
<thead>
<tr>
<th>Barco</th>
<th>Período de pesca</th>
<th>No. observado de aves capturadas</th>
<th>% calados con líneas espanta-pájaros</th>
<th>Altura del punto de sujeción sobre el agua (m)</th>
<th>Distancia entre cuerdas secundarias (m)</th>
<th>No. de cuerdas secundarias en cada línea</th>
<th>No. de líneas</th>
<th>Longitud total (m)</th>
<th>Longitud aparente fuera del agua (m)</th>
<th>Diámetro (mm)</th>
<th>Longitud mínima (m)</th>
<th>Longitud máxima (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Muertas N</td>
<td>D</td>
<td>Heridas N</td>
<td>D</td>
<td>Ilesas N</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barco 6</td>
<td>15/1, 20/3, 14/2, 31/3/08</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>7</td>
<td>1.2</td>
<td>130</td>
</tr>
<tr>
<td>Barco 6</td>
<td>12/5–2/7/08</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>10</td>
<td>2.5</td>
<td>77</td>
</tr>
<tr>
<td>Barco 7</td>
<td>3/9–29/10/07</td>
<td>14</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>8</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Barco 7</td>
<td>14/12–31/1/08</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>8</td>
<td>24</td>
<td>15</td>
</tr>
<tr>
<td>Barco 7</td>
<td>30/3–3/5/08</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>7</td>
<td>3.5</td>
<td>15</td>
</tr>
<tr>
<td>Barco 11</td>
<td>1/9–29/9/07</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Barco 11</td>
<td>3/11–6/1/08</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>5</td>
<td>3.5</td>
<td>15</td>
</tr>
<tr>
<td>Barco 11</td>
<td>16/3–10/4/08</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>13</td>
</tr>
</tbody>
</table>

División 58.5.1 (cont.)																		
Barco 6	15/1, 20/3, 14/2, 31/3/08	23	0	0	0	1	0	100	0	7	1.2	130	10	165	60	12	0.8	1.5
Barco 6	12/5–2/7/08	7	0	0	0	0	0	100	0	10	2.5	77	3	220	150	5	0.2	8
Barco 7	3/9–29/10/07	14	0	3	0	7	0	100	0	8	3	8	6	150	100	12	4	8
Barco 7	14/12–31/1/08	9	0	0	0	0	0	100	0	8	24	15	6	220	70	12	6	12
Barco 7	30/3–3/5/08	26	0	0	0	4	0	100	0	7	3.5	15	6	150	60	8	3	8
Barco 11	1/9–29/9/07	1	0	0	7	0	100	0	7	5	10	2	100	50	6	1	4	
Barco 11	3/11–6/1/08	12	0	0	0	2	0	100	0	5	3.5	15	3	100	50	6	1	4
Barco 11	16/3–10/4/08	8	0	1	0	1	0	100	0	7	4	13	4	100	55	10	0.5	6.5

Total: 298 | 6 | 88
<table>
<thead>
<tr>
<th>Barco</th>
<th>Fechas de pesca</th>
<th>Método</th>
<th>Palangres calados</th>
<th>No. de anzuelos (miles)</th>
<th>No. observado de aves capturadas</th>
<th>Mortalidad de aves observada (incluye aves heridas) (aves/mil anzuelos)</th>
<th>Línea esp. utilizada (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subárea 58.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barco 1</td>
<td>6/4–22/5/08</td>
<td>A</td>
<td>110 0 110 100</td>
<td>158.66 662.65 23.94</td>
<td>NC 0 0 0 1 0</td>
<td>0.0000 0 0.0000 100 0</td>
<td></td>
</tr>
<tr>
<td>Barco 2</td>
<td>12/11–24/11/07</td>
<td>A</td>
<td>38 0 38 100</td>
<td>57.16 238.04 24.01</td>
<td>NC 0 0 1 5 0</td>
<td>0.0175 0 0.0175 100 0</td>
<td></td>
</tr>
<tr>
<td>Barco 2</td>
<td>8/2–24/2/08</td>
<td>A</td>
<td>49 0 49 100</td>
<td>49.45 197.80 25.00</td>
<td>NC 0 0 0 0 0</td>
<td>0.0000 0 0.0000 100 0</td>
<td></td>
</tr>
<tr>
<td>Barco 2</td>
<td>1/5–20/5/08</td>
<td>A</td>
<td>39 0 39 100</td>
<td>62.60 250.54 24.99</td>
<td>NC 0 0 0 0 0</td>
<td>0.0000 0 0.0000 100 0</td>
<td></td>
</tr>
<tr>
<td>Barco 3</td>
<td>15/2–27/2/08</td>
<td>A</td>
<td>29 0 29 100</td>
<td>70.25 266.85 26.33</td>
<td>NC 15 0 0 0 0</td>
<td>0.2135 0.2135 100 0</td>
<td></td>
</tr>
<tr>
<td>Barco 3</td>
<td>7/5–31/5/08</td>
<td>A</td>
<td>45 0 45 100</td>
<td>104.95 451.50 23.24</td>
<td>NC 0 0 0 0 0</td>
<td>0.0000 0 0.0000 100 0</td>
<td></td>
</tr>
<tr>
<td>Barco 5</td>
<td>5/2–20/2/08</td>
<td>A</td>
<td>54 0 54 100</td>
<td>73.75 215.75 24.90</td>
<td>NC 1 0 0 1 0</td>
<td>0.0186 0.0186 100 0</td>
<td></td>
</tr>
<tr>
<td>Barco 5</td>
<td>29/3–8/4/08</td>
<td>A</td>
<td>25 0 25 100</td>
<td>37.30 142.37 26.20</td>
<td>NC 6 0 0 1 0</td>
<td>0.1609 0.1609 100 0</td>
<td></td>
</tr>
<tr>
<td>Barco 6</td>
<td>22/2–17/3/08</td>
<td>A</td>
<td>67 0 67 100</td>
<td>135.91 530.40 25.62</td>
<td>NC 3 0 0 2 0</td>
<td>0.0515 0.0515 100 0</td>
<td></td>
</tr>
<tr>
<td>Barco 6</td>
<td>7/7–15/7/08</td>
<td>A</td>
<td>23 0 23 100</td>
<td>36.20 180 20.11</td>
<td>NC 0 0 0 0 0</td>
<td>0.0000 0 0.0000 100 0</td>
<td></td>
</tr>
<tr>
<td>Barco 7</td>
<td>31/10–8/11/07</td>
<td>A</td>
<td>31 0 31 100</td>
<td>39.11 164.60 23.76</td>
<td>NC 0 0 0 0 0</td>
<td>0.0000 0 0.0000 100 0</td>
<td></td>
</tr>
<tr>
<td>Barco 7</td>
<td>3/2–11/2/08</td>
<td>A</td>
<td>33 0 33 100</td>
<td>33.20 132.75 25.01</td>
<td>NC 0 0 0 0 0</td>
<td>0.0000 0 0.0000 100 0</td>
<td></td>
</tr>
<tr>
<td>Barco 7</td>
<td>7/5–26/5/08</td>
<td>A</td>
<td>46 0 46 100</td>
<td>68.80 284.85 24.15</td>
<td>NC 0 0 0 1 0</td>
<td>0.0000 0 0.0000 100 0</td>
<td></td>
</tr>
<tr>
<td>Barco 11</td>
<td>25/10–1/11/07</td>
<td>A</td>
<td>13 0 13 100</td>
<td>68.50 222.15 25.65</td>
<td>NC 0 0 0 0 0</td>
<td>0.0000 0 0.0000 100 0</td>
<td></td>
</tr>
<tr>
<td>Barco 11</td>
<td>16/2, 15/4, 11/3, 17/5/08</td>
<td>A</td>
<td>152 0 152 100</td>
<td>187.27 733.69 25.52</td>
<td>NC 3 0 1 0 0</td>
<td>0.0214 0.0214 100 0</td>
<td></td>
</tr>
</tbody>
</table>

División 58.5.1							
Barco 1	7/9–13/11/07	A	173 0 173 100	389.95 1 592.50 24.49	NC 23 0 2 14 0	0.0641 0 0.0641 100 0	
Barco 1	13/12–3/12/08	A	133 0 133 100	344.97 1 371.45 25.15	NC 61 0 0 2 0	0.1768 0 0.1768 100 0	
Barco 1	1/05–13/6/08	A	29 0 29 100	76.13 304.75 24.98	NC 12 0 0 1 0	0.1576 0 0.1576 100 0	
Barco 2	18/9–9/11/07	A	134 0 134 100	74.89 299.42 25.01	NC 3 0 0 5 0	0.0401 0.0401 100 0	
Barco 2	17/12–4/2/08	A	146 0 146 100	287.49 1 135.99 25.31	NC 6 0 0 0 0	0.0138 0.0138 100 0	
Barco 2	22/1–7/5/08	A	114 0 114 100	228.44 923.02 24.75	NC 17 0 0 0 1	0.0744 0.0744 100 0	
Barco 3	8/9–20/10/07	A	72 0 72 100	251.54 1 022.18 24.61	NC 5 0 0 0 3	0.0199 0.0199 100 0	
Barco 3	8/12–2/2/08	A	121 0 121 100	431.55 1 704.57 25.32	NC 31 0 0 0 1	0.0718 0.0718 100 0	
Barco 3	4/4–1/5/08	A	45 0 45 100	143.59 604.28 23.76	NC 17 0 0 0 0	0.1184 0.1184 100 0	
Barco 5	5/9–11/11/07	A	147 0 147 100	398.50 1 576.78 25.27	NC 10 0 0 0 19	0.0251 0.0251 100 0	

(continúa)
<table>
<thead>
<tr>
<th>Barco</th>
<th>Fechas de pesca</th>
<th>Método</th>
<th>Palangres calados</th>
<th>No. de anzuelos (miles)</th>
<th>No. observado de aves capturadas (%)</th>
<th>Mortalidad de aves observada (incluye aves heridas) (aves/mil anzuelos)</th>
<th>Línea esp. utilizada (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>División 58.5.1 (cont.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barco 5</td>
<td>20/12–1/2/08</td>
<td>A</td>
<td>108 0 108 100</td>
<td>227.31 930.85 24.42</td>
<td>NC</td>
<td>13 0 0 0 2 0</td>
<td>0.0572 0.0572 100 0</td>
</tr>
<tr>
<td>Barco 5</td>
<td>27/4–9/6/08</td>
<td>A</td>
<td>96 0 96 100</td>
<td>205.55 816.85 25.16</td>
<td>NC</td>
<td>2 0 0 0 0 0</td>
<td>0.0097 0.0097 100 0</td>
</tr>
<tr>
<td>Barco 6</td>
<td>3/9–1/12/07</td>
<td>A</td>
<td>198 0 198 100</td>
<td>473.90 2 095.50 22.62</td>
<td>NC</td>
<td>0 0 0 0 18 0</td>
<td>0.0000 0.0000 100 0</td>
</tr>
<tr>
<td>Barco 6</td>
<td>15/1, 20/3, 14/2, 31/3/08</td>
<td>A</td>
<td>90 0 90 100</td>
<td>270.05 1 047.00 25.79</td>
<td>NC</td>
<td>23 0 0 0 1 0</td>
<td>0.0852 0.0852 100 0</td>
</tr>
<tr>
<td>Barco 6</td>
<td>12/5–2/7/08</td>
<td>A</td>
<td>80 0 80 100</td>
<td>211.75 852.38 24.84</td>
<td>NC</td>
<td>7 0 0 0 0 0</td>
<td>0.0331 0.0331 100 0</td>
</tr>
<tr>
<td>Barco 7</td>
<td>3/9–29/10/07</td>
<td>A</td>
<td>140 0 140 100</td>
<td>298.50 1 315.13 22.70</td>
<td>NC</td>
<td>14 0 3 0 7 0</td>
<td>0.0570 0.0570 100 0</td>
</tr>
<tr>
<td>Barco 7</td>
<td>14/12–31/01/08</td>
<td>A</td>
<td>112 0 112 100</td>
<td>291.60 1 165.13 25.03</td>
<td>NC</td>
<td>0 0 0 0 0 0</td>
<td>0.0309 0.0309 100 0</td>
</tr>
<tr>
<td>Barco 7</td>
<td>30/3–3/5/08</td>
<td>A</td>
<td>73 0 73 100</td>
<td>161.00 651.50 24.71</td>
<td>NC</td>
<td>26 0 0 0 4 0</td>
<td>0.1615 0.1615 100 0</td>
</tr>
<tr>
<td>Barco 11</td>
<td>1/9–29/9/07</td>
<td>A</td>
<td>66 0 66 100</td>
<td>100.92 403.47 25.01</td>
<td>NC</td>
<td>1 0 0 0 7 0</td>
<td>0.0099 0.0099 100 0</td>
</tr>
<tr>
<td>Barco 11</td>
<td>3/11–6/1/08</td>
<td>A</td>
<td>185 0 185 100</td>
<td>238.27 953.27 24.99</td>
<td>NC</td>
<td>12 0 0 0 2 0</td>
<td>0.0504 0.0504 100 0</td>
</tr>
<tr>
<td>Barco 11</td>
<td>16/3–10/4/08</td>
<td>A</td>
<td>89 0 89 100</td>
<td>94.05 368.79 25.50</td>
<td>NC</td>
<td>8 0 1 0 1 0</td>
<td>0.0957 0.0957 100 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 351 100</td>
<td>5 199.94 21 134.79 24.60</td>
<td>298 6 88</td>
<td>0.0585</td>
<td>0.0585</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 6: Totales y tasas de mortalidad incidental de aves marinas (BPT: aves/arrastre) y composición de especies de la captura incidental registrada por observadores en pesquerías de arrastre del Área de la Convención de la CCRVMA en las últimas seis temporadas. DIC – albatros de cabeza gris; DIM – albatros de ceja negra; PRO – petrel de mentón blanco; MAH – petrel gigante subantártico; KPY – pingüino rey; PTZ – petrel desconocido; DAC – petrel damero; MAI – petrel gigante del sur.

<table>
<thead>
<tr>
<th>Temporada</th>
<th>Área</th>
<th>Especie objetivo</th>
<th>Viajes observados</th>
<th>Arrastres</th>
<th>BPT</th>
<th>Aves muertas</th>
<th>Total muertas</th>
<th>Vivas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DIC DIM PRO MAH KPY PTZ DAC MAI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002/03</td>
<td>48.3</td>
<td>E. superba</td>
<td>6</td>
<td>1928</td>
<td>1073</td>
<td>56</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>C. gunnari</td>
<td>3</td>
<td>184</td>
<td>182</td>
<td>99</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>58.5</td>
<td>D. eleginoides</td>
<td>8</td>
<td>1311</td>
<td>1309</td>
<td>100</td>
<td><0.11</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. gunnari</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003/04</td>
<td>48</td>
<td>E. superba</td>
<td>1</td>
<td>334</td>
<td>258</td>
<td>77</td>
<td><0.10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>E. superba</td>
<td>6</td>
<td>1145</td>
<td>829</td>
<td>72</td>
<td><0.10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>C. gunnari</td>
<td>6</td>
<td>247</td>
<td>238</td>
<td>96</td>
<td>0.37</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>58.5</td>
<td>D. eleginoides</td>
<td>5</td>
<td>1218</td>
<td>1215</td>
<td>100</td>
<td><0.10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. gunnari</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004/05</td>
<td>48.2</td>
<td>E. superba</td>
<td>2</td>
<td>391</td>
<td>285</td>
<td>73</td>
<td><0.10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>C. gunnari</td>
<td>7</td>
<td>337</td>
<td>277</td>
<td>82</td>
<td><0.14</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>E. superba</td>
<td>5</td>
<td>1451</td>
<td>842</td>
<td>58</td>
<td><0.10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>58.5</td>
<td>D. eleginoides</td>
<td>6</td>
<td>1303</td>
<td>1301</td>
<td>100</td>
<td><0.11</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. gunnari</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005/06</td>
<td>48.1</td>
<td>E. superba</td>
<td>2</td>
<td>1127</td>
<td>839</td>
<td>74</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>C. gunnari</td>
<td>5</td>
<td>585</td>
<td>457</td>
<td>78</td>
<td>0.07</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>E. superba</td>
<td>2</td>
<td>395</td>
<td>181</td>
<td>46</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>58.5</td>
<td>D. eleginoides</td>
<td>3</td>
<td>1086</td>
<td>1086</td>
<td>100</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. gunnari</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006/07</td>
<td>48.1</td>
<td>E. superba</td>
<td>2</td>
<td>656</td>
<td>418</td>
<td>64</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>C. gunnari</td>
<td>4</td>
<td>102</td>
<td>91</td>
<td>89</td>
<td>0.07</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>E. superba</td>
<td>4</td>
<td>580</td>
<td>194</td>
<td>33</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>58.5</td>
<td>D. eleginoides</td>
<td>3</td>
<td>1005</td>
<td>936</td>
<td>93</td>
<td><0.01</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. gunnari</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007/08</td>
<td>48.1</td>
<td>E. superba</td>
<td>4</td>
<td>2877</td>
<td>233</td>
<td>8^1</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>C. gunnari</td>
<td>6</td>
<td>232</td>
<td>206</td>
<td>89</td>
<td>0.024</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>E. superba</td>
<td>4</td>
<td>1058</td>
<td>81</td>
<td>8^1</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>58.5</td>
<td>D. eleginoides</td>
<td>3</td>
<td>723</td>
<td>700</td>
<td>97</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. gunnari</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 El bajo número de arrastres ha sido el resultado del método de pesca con arrastres continuos, ver párrafo 2.21.
Tabla 7: Totales y tasas de mortalidad incidental de aves marinas (BPT: aves/arrastre) y composición de especies de la captura incidental registrada por observadores en pesquerías de arrastre del Área de la Convención de la CCRVMA en la temporada 2007/08. KPY – pingüino rey; PRO – petrel de mentón blanco; DAC – petrel damero.

<table>
<thead>
<tr>
<th>Subárea/ División</th>
<th>Barco (especie objetivo)</th>
<th>Fechas de la campaña</th>
<th>Arrastres</th>
<th>BPT</th>
<th>Aves muertas</th>
<th>Total muertas</th>
<th>Vivas (combinadas)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calados</td>
<td>Observ.</td>
<td>KPY</td>
<td>PRO</td>
<td>DAC</td>
</tr>
<tr>
<td>48.1, 48.2</td>
<td>Saga Sea (KRI)¹</td>
<td>4/12–20/1/08</td>
<td>774</td>
<td>8²</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Saga Sea (KRI)¹</td>
<td>31/1–30/3/08</td>
<td>884</td>
<td>15²</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Konstraktor Koshkin (KRI)</td>
<td>13/3–28/4/08</td>
<td>565</td>
<td>185</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Saga Sea (KRI)¹</td>
<td>7/4–2/7/08</td>
<td>1219</td>
<td>25²</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>2877</td>
<td>233</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>48.3</td>
<td>Betanzos (ANI)</td>
<td>16/2–1/3/08</td>
<td>31</td>
<td>31</td>
<td>0.10</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Robin M Lee (ANI)</td>
<td>20/1–25/1/08</td>
<td>5</td>
<td>5</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Robin M Lee (ANI)</td>
<td>23/4–28/5/08</td>
<td>76</td>
<td>72</td>
<td>0.01</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sil (ANI)</td>
<td>20/1–26/1/08</td>
<td>6</td>
<td>6</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sil (ANI)</td>
<td>30/4–24/5/08</td>
<td>55</td>
<td>48</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Insung Ho (ANI)</td>
<td>18/1–2/2/08</td>
<td>59</td>
<td>44</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>232</td>
<td>206</td>
<td>0.02</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>48.3</td>
<td>Maksim Starostin (KRI)¹</td>
<td>6/8–31/8/08</td>
<td>56</td>
<td>11²</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Saga Sea (KRI)¹</td>
<td>6/7–3/9/08</td>
<td>733</td>
<td>10²</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Juvel (KRI)</td>
<td>27/8–12/9/08</td>
<td>14</td>
<td>14</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Dalmor II (KRI)</td>
<td>5/7–28/7/08</td>
<td>255</td>
<td>46</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>1058</td>
<td>81</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>58.5.2</td>
<td>Southern Champion (ANI/TOP)</td>
<td>7/4–4/5/08</td>
<td>168</td>
<td>168</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Southern Champion (ANI/TOP)</td>
<td>22/1–10/2/08</td>
<td>113</td>
<td>113</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Southern Champion (ANI/TOP)</td>
<td>30/5–24/7/08</td>
<td>442</td>
<td>419</td>
<td>0.00</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>723</td>
<td>700</td>
<td>0.00</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

¹ Método de arrastre continuo.
² El bajo número de arrastres ha sido el resultado del método de pesca con arrastres continuos, ver párrafo 2.21.
Tabla 8: Totales y tasas de mortalidad incidental de pinnípedos (SPT: pinnípedos/arrastre) y composición de especies registrada por los observadores de las pesquerías de arrastre del Área de la Convención de la CCRVMA en la temporada 2007/08. SXX – foca no identificada; SEA – lobo fino antártico.

<table>
<thead>
<tr>
<th>Subárea/División</th>
<th>Barco (especie objetivo)</th>
<th>Fechas de la campaña</th>
<th>Arrastres</th>
<th>Muertos</th>
<th>Total muertos</th>
<th>Vivos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calados</td>
<td>SPT</td>
<td>SXX</td>
<td>SEA</td>
</tr>
<tr>
<td>48.1,48.2</td>
<td>Saga Sea (KRI)(^1)</td>
<td>4/12–20/1/08</td>
<td>774</td>
<td>8(^2)</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Saga Sea (KRI)(^1)</td>
<td>31/1–30/3/08</td>
<td>884</td>
<td>15(^2)</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Konstruktur Kashkin (KRI)</td>
<td>13/3–28/4/08</td>
<td>565</td>
<td>185</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Saga Sea (KRI)(^1)</td>
<td>7/4–2/7/08</td>
<td>1219</td>
<td>25(^3)</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>2877</td>
<td>233</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>48.3</td>
<td>Betanzos (ANI)</td>
<td>16/2–1/3/08</td>
<td>31</td>
<td>31</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Robin M Lee (ANI)</td>
<td>20/1–25/1/08</td>
<td>5</td>
<td>5</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Robin M Lee (ANI)</td>
<td>23/4–28/5/08</td>
<td>76</td>
<td>72</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sil (ANI)</td>
<td>20/1–26/1/08</td>
<td>6</td>
<td>6</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sil (ANI)</td>
<td>30/4–24/5/08</td>
<td>55</td>
<td>48</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Insing Ho (ANI)</td>
<td>18/1–2/2/08</td>
<td>59</td>
<td>44</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>232</td>
<td>206</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>48.3</td>
<td>Maksim Starostin (KRI)(^1)</td>
<td>6/8–31/8/08</td>
<td>56</td>
<td>11(^2)</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Saga Sea (KRI)(^1)</td>
<td>6/7–3/9/08</td>
<td>733</td>
<td>10(^2)</td>
<td>0.10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Juvel (KRI)</td>
<td>27/8–12/9/08</td>
<td>14</td>
<td>14</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Dalmor II (KRI)</td>
<td>5/7–28/7/08</td>
<td>255</td>
<td>46</td>
<td>0.13</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>1058</td>
<td>81</td>
<td>0.07</td>
<td>6</td>
</tr>
<tr>
<td>58.5.2</td>
<td>Southern Champion (ANI/TOP)</td>
<td>7/4–4/5/08</td>
<td>168</td>
<td>168</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Southern Champion (ANI/TOP)</td>
<td>22/1–10/2/08</td>
<td>113</td>
<td>113</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Southern Champion (ANI/TOP)</td>
<td>30/5–24/7/08</td>
<td>442</td>
<td>419</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>723</td>
<td>700</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^1\) Método de arrastre continuo.

\(^2\) El bajo número de arrastres ha sido el resultado del método de pesca con arrastres continuos, ver párrafo 2.21.
Tabla 9:
Totales y tasas de mortalidad incidental de pinnípedos (SPT: pinnípedos/arrastre) y composición de especies de la captura incidental registrada por los observadores de las pesquerías de arrastre del Área de la Convención de la CCRVMA en las últimas siete temporadas. SLP – foca leopardo; SEA – lobo fino antártico; SES – elefante marino del sur; SXX – foca no identificada.

<table>
<thead>
<tr>
<th>Temporada</th>
<th>Área</th>
<th>Especie objetivo</th>
<th>Viajes observados</th>
<th>Arrastres</th>
<th>SPT</th>
<th>Muertos</th>
<th>Total muertos</th>
<th>Vivos (combinados)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Calados</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Observ.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001/02</td>
<td>48.3</td>
<td>E. superba</td>
<td>5</td>
<td>992</td>
<td></td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>58.5</td>
<td>C. gunnari</td>
<td>5</td>
<td>460</td>
<td></td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. eleginoides</td>
<td>6</td>
<td>904</td>
<td></td>
<td>0.001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. gunnari</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002/03</td>
<td>48.3</td>
<td>E. superba</td>
<td>6</td>
<td>1928</td>
<td></td>
<td>0.03</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>C. gunnari</td>
<td>3</td>
<td>184</td>
<td></td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>58.5</td>
<td>D. eleginoides</td>
<td>8</td>
<td>1311</td>
<td></td>
<td>0.003</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. gunnari</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003/04</td>
<td>48</td>
<td>E. superba</td>
<td>1</td>
<td>334</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>E. superba</td>
<td>6</td>
<td>1145</td>
<td></td>
<td>0.17</td>
<td>142</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>C. gunnari</td>
<td>6</td>
<td>247</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>58.5</td>
<td>D. eleginoides</td>
<td>5</td>
<td>1218</td>
<td></td>
<td>0.002</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. gunnari</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004/05</td>
<td>48.2</td>
<td>E. superba</td>
<td>2</td>
<td>391</td>
<td></td>
<td>0.06</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>C. gunnari</td>
<td>7</td>
<td>337</td>
<td></td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>E. superba</td>
<td>5</td>
<td>1451</td>
<td></td>
<td>0.006</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>58.5</td>
<td>D. eleginoides</td>
<td>6</td>
<td>1303</td>
<td></td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. gunnari</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005/06</td>
<td>48.1</td>
<td>E. superba</td>
<td>2</td>
<td>1127</td>
<td></td>
<td>0.001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>C. gunnari</td>
<td>5</td>
<td>585</td>
<td></td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>E. superba</td>
<td>2</td>
<td>395</td>
<td></td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>58.5</td>
<td>D. eleginoides</td>
<td>3</td>
<td>1086</td>
<td></td>
<td>0.00</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. gunnari</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continúa)
<table>
<thead>
<tr>
<th>Temporada</th>
<th>Área</th>
<th>Especie objetivo</th>
<th>Viajes observados</th>
<th>Arrastres</th>
<th>SPT</th>
<th>Muertos</th>
<th>Total muertos</th>
<th>Vivos</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006/07</td>
<td>48.1/2</td>
<td>E. superba</td>
<td>2</td>
<td>656</td>
<td>418</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>C. gunnari</td>
<td>4</td>
<td>102</td>
<td>91</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>E. superba</td>
<td>4</td>
<td>580</td>
<td>194</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>58.5.2</td>
<td>D. eleginoides</td>
<td>3</td>
<td>1005</td>
<td>936</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. gunnari</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007/08</td>
<td>48.1/2</td>
<td>E. superba</td>
<td>4</td>
<td>2877</td>
<td>233</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>C. gunnari</td>
<td>6</td>
<td>232</td>
<td>206</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>48.3</td>
<td>E. superba</td>
<td>4</td>
<td>1058</td>
<td>81</td>
<td>0.07</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>58.5.2</td>
<td>D. eleginoides</td>
<td>3</td>
<td>723</td>
<td>700</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. gunnari</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 El bajo número de arrastres ha sido el resultado del método de pesca con arrastres continuos, ver párrafo 2.21.
Tabla 10: Resumen del nivel del cumplimiento de la Medida de Conservación 25-02 (2007), según los datos de observación científica correspondientes a las temporadas de 1996/97 a 2007/08. Los valores entre paréntesis representan el % de los registros completos de observación. na – no corresponde.

<table>
<thead>
<tr>
<th>Área/ temporada</th>
<th>Lastrado de la línea (sólo sistema español)</th>
<th>% de calados nocturnos</th>
<th>Vertido de desechos por banda opuesta al virado (%)</th>
<th>Cumplimiento de disposición relativa a la línea espantapájaros (%)</th>
<th>Tasa de captura total (aves/mil anzuelos)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% de cumplimiento</td>
<td>Mediana del peso (kg)</td>
<td>Mediana del espacio entre los pesos (m)</td>
<td>En general</td>
<td>Altura del punto de sujeción</td>
</tr>
<tr>
<td>Subárea 48.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996/97</td>
<td>0 (91)</td>
<td>5.0</td>
<td>45</td>
<td>81</td>
<td>0 (91)</td>
</tr>
<tr>
<td>1997/98</td>
<td>0 (100)</td>
<td>6.0</td>
<td>42.5</td>
<td>90</td>
<td>31 (100)</td>
</tr>
<tr>
<td>1998/99</td>
<td>5 (100)</td>
<td>6.0</td>
<td>43.2</td>
<td>80</td>
<td>71 (100)</td>
</tr>
<tr>
<td>1999/00</td>
<td>1 (91)</td>
<td>6.0</td>
<td>44</td>
<td>92</td>
<td>76 (100)</td>
</tr>
<tr>
<td>2000/01</td>
<td>21 (95)</td>
<td>6.8</td>
<td>41</td>
<td>95</td>
<td>95 (95)</td>
</tr>
<tr>
<td>2001/02</td>
<td>63 (100)</td>
<td>8.6</td>
<td>40</td>
<td>99</td>
<td>100 (100)</td>
</tr>
<tr>
<td>2002/03</td>
<td>100 (100)</td>
<td>9.0</td>
<td>39</td>
<td>98</td>
<td>100 (100)</td>
</tr>
<tr>
<td>2003/04</td>
<td>87 (100)</td>
<td>9.0</td>
<td>40</td>
<td>98</td>
<td>100 (100)</td>
</tr>
<tr>
<td>2004/05</td>
<td>100 (100)</td>
<td>9.5</td>
<td>45</td>
<td>99</td>
<td>100 (100)</td>
</tr>
<tr>
<td>2005/06</td>
<td>100 (100)</td>
<td>10.0</td>
<td>40</td>
<td>100</td>
<td>100 (100)</td>
</tr>
<tr>
<td>2006/07</td>
<td>100 (100)</td>
<td>9.8</td>
<td>39</td>
<td>100</td>
<td>100 (100)</td>
</tr>
<tr>
<td>2007/08</td>
<td>100 (100)</td>
<td>9.5</td>
<td>38.5</td>
<td>100</td>
<td>100 (100)</td>
</tr>
<tr>
<td>Subárea 48.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005/06</td>
<td>Auto solamente</td>
<td>na</td>
<td>na</td>
<td>100</td>
<td>100 (100)</td>
</tr>
<tr>
<td>2006/07</td>
<td>Auto solamente</td>
<td>na</td>
<td>na</td>
<td>100</td>
<td>100 (100)</td>
</tr>
<tr>
<td>2007/08</td>
<td>Auto solamente</td>
<td>na</td>
<td>na</td>
<td>100</td>
<td>100 (100)</td>
</tr>
<tr>
<td>Subárea 48.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003/04</td>
<td>100 (100)</td>
<td>7.0</td>
<td>20</td>
<td>41</td>
<td>No hay vertido</td>
</tr>
<tr>
<td>2004/05</td>
<td>100 (100)</td>
<td>6.5</td>
<td>19.5</td>
<td>29</td>
<td>No hay vertido</td>
</tr>
<tr>
<td>2005/06</td>
<td>Auto solamente</td>
<td>na</td>
<td>na</td>
<td>36</td>
<td>No hay vertido</td>
</tr>
<tr>
<td>2006/07</td>
<td>Auto solamente</td>
<td>na</td>
<td>na</td>
<td>44</td>
<td>No hay vertido</td>
</tr>
<tr>
<td>Divisiones 58.4.1, 58.4.2, 58.4.3a, 58.4.3b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002/03</td>
<td>Auto solamente</td>
<td>na</td>
<td>na</td>
<td>24</td>
<td>No hay vertido</td>
</tr>
<tr>
<td>2003/04</td>
<td>Auto solamente</td>
<td>na</td>
<td>na</td>
<td>0</td>
<td>No hay vertido</td>
</tr>
<tr>
<td>2004/05</td>
<td>33 (100)</td>
<td>7.9</td>
<td>40</td>
<td>26</td>
<td>No hay vertido</td>
</tr>
<tr>
<td>2005/06</td>
<td>16 (100)</td>
<td>7.2</td>
<td>48</td>
<td>16</td>
<td>No hay vertido</td>
</tr>
<tr>
<td>2006/07</td>
<td>20 (100)</td>
<td>7.7</td>
<td>40</td>
<td>10</td>
<td>Un barco, 4%</td>
</tr>
<tr>
<td>2007/08</td>
<td>71 (100)</td>
<td>8.5</td>
<td>40</td>
<td>10</td>
<td>100 (100)</td>
</tr>
</tbody>
</table>

(continúa)
<table>
<thead>
<tr>
<th>Área/ temporada</th>
<th>Lastrado de la línea (sólo sistema español)</th>
<th>% de cumplimiento</th>
<th>Mediana del peso (kg)</th>
<th>Mediana del espacio entre los pesos (m)</th>
<th>% de calados nocturnos</th>
<th>Vertido de desechos por banda opuesta al virado (%)</th>
<th>Cumplimiento de disposición relativa a la línea espantapájaros (%)</th>
<th>Tasa de captura total (aves/mil anzuelos)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>En general</td>
<td>Altura del punto de sujeción</td>
<td>Largo total</td>
</tr>
<tr>
<td>División 58.4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999/00</td>
<td></td>
<td>0 (100)</td>
<td>5</td>
<td>45</td>
<td>50</td>
<td>0 (100)</td>
<td>100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td>0 0</td>
</tr>
<tr>
<td>División 58.5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002/03</td>
<td>Auto solamente</td>
<td>na</td>
<td>na</td>
<td>100</td>
<td>No hay vertido</td>
<td>100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>2003/04</td>
<td>Auto solamente</td>
<td>na</td>
<td>na</td>
<td>99</td>
<td>No hay vertido</td>
<td>100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>2004/05</td>
<td>Auto solamente</td>
<td>na</td>
<td>na</td>
<td>50 (^8)</td>
<td>No hay vertido</td>
<td>100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>2005/06</td>
<td>Auto solamente</td>
<td>na</td>
<td>na</td>
<td>53 (^8)</td>
<td>No hay vertido</td>
<td>100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>2006/07</td>
<td>Auto solamente</td>
<td>na</td>
<td>na</td>
<td>54 (^8)</td>
<td>No hay vertido</td>
<td>100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>2007/08</td>
<td>Auto solamente</td>
<td>na</td>
<td>na</td>
<td>45 (^8)</td>
<td>No hay vertido</td>
<td>100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>Subáreas 58.6, 58.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996/97</td>
<td></td>
<td>0 (60)</td>
<td>6</td>
<td>35</td>
<td>52</td>
<td>69 (87)</td>
<td>10 (66) 100 (60) 100 (60) 100 (60) 100 (60) 100 (60)</td>
<td>0.52 0.39</td>
</tr>
<tr>
<td>1997/98</td>
<td></td>
<td>0 (100)</td>
<td>6</td>
<td>55</td>
<td>93</td>
<td>87 (94)</td>
<td>9 (92) 91 (92) 11 (75) 100 (75) 100 (75) 90 (83)</td>
<td>0.08 0.11</td>
</tr>
<tr>
<td>1998/99</td>
<td></td>
<td>0 (100)</td>
<td>8</td>
<td>50</td>
<td>84 (^2)</td>
<td>100 (89)</td>
<td>0 (100) 100 (90) 100 (90) 100 (90) 100 (90) 100 (90)</td>
<td>0.05 0</td>
</tr>
<tr>
<td>1999/00</td>
<td></td>
<td>0 (83)</td>
<td>6</td>
<td>88</td>
<td>72</td>
<td>100 (93)</td>
<td>8 (100) 91 (92) 0 (92) 92 (92) 92 (92) 91 (92)</td>
<td>0.03 0.01</td>
</tr>
<tr>
<td>2000/01</td>
<td></td>
<td>18 (100)</td>
<td>5.8</td>
<td>40</td>
<td>78</td>
<td>100 (100)</td>
<td>64 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td>0.01 0.04</td>
</tr>
<tr>
<td>2001/02</td>
<td></td>
<td>66 (100)</td>
<td>6.6</td>
<td>40</td>
<td>99</td>
<td>100 (100)</td>
<td>100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td>0 0</td>
</tr>
<tr>
<td>2002/03</td>
<td></td>
<td>0 (100)</td>
<td>6.0</td>
<td>41</td>
<td>98</td>
<td>50 (100)</td>
<td>100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td><0.01 0</td>
</tr>
<tr>
<td>2003/04</td>
<td></td>
<td>100 (100)</td>
<td>7.0</td>
<td>20</td>
<td>83</td>
<td>100 (100)</td>
<td>50 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td>0.03 0.01</td>
</tr>
<tr>
<td>2004/05</td>
<td></td>
<td>100 (100)</td>
<td>6.5</td>
<td>20</td>
<td>100</td>
<td>100 (100)</td>
<td>100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td>0.149 0</td>
</tr>
<tr>
<td>2005/06</td>
<td></td>
<td>100 (100)</td>
<td>9.1</td>
<td>40</td>
<td>100</td>
<td>100 (100)</td>
<td>100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td>0 0</td>
</tr>
<tr>
<td>2006/07</td>
<td></td>
<td>100 (100)</td>
<td>10.4</td>
<td>40</td>
<td>100</td>
<td>100 (100)</td>
<td>100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td>0 0</td>
</tr>
<tr>
<td>2007/08</td>
<td></td>
<td>0 (100)</td>
<td>11</td>
<td>56</td>
<td>100</td>
<td>100 (100)</td>
<td>100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td>0 0</td>
</tr>
<tr>
<td>Subáreas 88.1, 88.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996/97</td>
<td>Auto solamente</td>
<td>na</td>
<td>na</td>
<td>50</td>
<td>0 (100)</td>
<td>100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>1997/98</td>
<td>Auto solamente</td>
<td>na</td>
<td>na</td>
<td>71</td>
<td>0 (100)</td>
<td>100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>1998/99</td>
<td>Auto solamente</td>
<td>na</td>
<td>na</td>
<td>1 (^3)</td>
<td>100 (100)</td>
<td>100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>1999/00</td>
<td>Auto solamente</td>
<td>na</td>
<td>na</td>
<td>6 (^4)</td>
<td>No hay vertido</td>
<td>67 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>2000/01</td>
<td>1 (100)</td>
<td>12</td>
<td>40</td>
<td>18 (^4)</td>
<td>No hay vertido</td>
<td>100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>2001/02</td>
<td>Auto solamente</td>
<td>na</td>
<td>na</td>
<td>33 (^4)</td>
<td>No hay vertido</td>
<td>100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100)</td>
<td>0 0</td>
<td></td>
</tr>
</tbody>
</table>

(continúa)
<table>
<thead>
<tr>
<th>Área/ temporada</th>
<th>Lastrado de la línea (sólo sistema español)</th>
<th>% de cumplimiento</th>
<th>Mediana del peso (kg)</th>
<th>Mediana del espacio entre los pesos (m)</th>
<th>% de calados nocturnos</th>
<th>Cumplimiento de disposición relativa a la línea espantapájaros (%)</th>
<th>Tasa de captura total (aves/mil anzuelos)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>En una ocasión por un barco</td>
<td>Noche</td>
</tr>
<tr>
<td>Subáreas 88.1, 88.2 (cont.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002/03</td>
<td></td>
<td>100 (100)</td>
<td>9.6</td>
<td>41</td>
<td>214</td>
<td>100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 0 0</td>
<td></td>
</tr>
<tr>
<td>2003/04</td>
<td>89 (100)</td>
<td>9</td>
<td>40</td>
<td>214</td>
<td>Un barco, 24%</td>
<td>59 (100) 82 (100) 86 (100) 61 (81) 100 (100) 0 <0.01</td>
<td></td>
</tr>
<tr>
<td>2004/05</td>
<td>33 (100)</td>
<td>9.0</td>
<td>45</td>
<td>14</td>
<td>Un barco, 1%</td>
<td>64 (100) 100 (100) 100 (100) 60 (94) 94 (100) 0 0</td>
<td></td>
</tr>
<tr>
<td>2005/06</td>
<td>100 (100)</td>
<td>9.2</td>
<td>35</td>
<td>14</td>
<td>No hay vertido</td>
<td>85 (92) 100 (92) 85 (92) 92 (92) 100 (92) 0 0</td>
<td></td>
</tr>
<tr>
<td>2006/07</td>
<td>100 (100)</td>
<td>10</td>
<td>36</td>
<td>44</td>
<td>Un barco, 1%</td>
<td>93 (100) 100 (100) 100 (100) 93 (93) 100 (100) 0 0</td>
<td></td>
</tr>
<tr>
<td>2007/08</td>
<td>67 (100)</td>
<td>10</td>
<td>37</td>
<td>114</td>
<td>No hay vertido</td>
<td>92 (100) 100 (100) 100 (100) 92 (100) 100 (100) 0 0</td>
<td></td>
</tr>
</tbody>
</table>

1 Incluye el calado diurno – y la captura incidental de aves marinas correspondiente – en los experimentos de lastrado de la línea a bordo del *Argos Helena* (WG-FSA-99/5).
2 Incluye algunos calados diurnos realizados conjuntamente con un deslizador submarino por el *Eldfisk* (WG-FSA-99/42).
3 La Medida de Conservación 169/XVII permitió a barcos neocelandeses realizar calados diurnos al sur de 65°S en la Subárea 88.1 para experimentar con un sistema de lastrado de la línea.
4 Las Medidas de Conservación 216/XX, 41-09 y 41-10 permiten el calado diurno al sur de 65°S en la Subárea 88.1, si se demuestra una tasa de hundimiento de 0.3 m s⁻¹.
5 Las Medidas de Conservación 41-05 y 41-11 permiten el calado diurno en la División 58.4.1 y 58.4.2 si el barco cumple con la Medida de Conservación 24-02.
6 La Medida de Conservación 41-04 permite el calado diurno si el barco cumple con la Medida de Conservación 24-02.
7 La Medida de Conservación 25-02 (2003, 2007) fue actualizada en 2003 y se reemplazó el requisito de utilizar un mínimo de cinco cuerdas secundarias por línea, por cuerdas secundarias de longitud mínima.
8 La Medida de Conservación 41-08 permite el calado durante el día si el barco cumple con la Medida de Conservación 24-02.
9 El *Tronio* vertió desechos de pescado en siete ocasiones debido a una falla mecánica.

<table>
<thead>
<tr>
<th>Nombre del barco</th>
<th>Período de pesca</th>
<th>Método de pesca</th>
<th>Cumplimiento de disposiciones de la CCRVMA</th>
<th>Cumplimiento de las disposiciones sobre líneas espantapájaros</th>
<th>Largo de cuerdas secundarias (m)</th>
<th>% calados que usaron líneas espantapájaros</th>
<th>% calados con dispositivos para ahuyentar a las aves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subárea 48.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antarctic Bay</td>
<td>28/5–22/8/08</td>
<td>Español</td>
<td>Y</td>
<td>Y (8)</td>
<td>Y (150)</td>
<td>7</td>
<td>Y (5)</td>
</tr>
<tr>
<td>Argos Froyanes</td>
<td>14/5–28/8/08</td>
<td>Auto</td>
<td>Y</td>
<td>Y (7)</td>
<td>Y (166)</td>
<td>11</td>
<td>Y (4)</td>
</tr>
<tr>
<td>Argos Froyanestas</td>
<td>1/5–30/8/08</td>
<td>Español</td>
<td>Y</td>
<td>Y (8)</td>
<td>Y (158)</td>
<td>13</td>
<td>Y (5)</td>
</tr>
<tr>
<td>Argos Georgia</td>
<td>2/5–26/8/08</td>
<td>Español</td>
<td>Y</td>
<td>Y (8)</td>
<td>Y (171)</td>
<td>10</td>
<td>Y (5)</td>
</tr>
<tr>
<td>Punta Ballena</td>
<td>15/5–7/9/08</td>
<td>Auto</td>
<td>Y</td>
<td>Y (7)</td>
<td>Y (155)</td>
<td>7</td>
<td>Y (5)</td>
</tr>
<tr>
<td>San Aspiring</td>
<td>1/5–5/6/08</td>
<td>Auto</td>
<td>Y</td>
<td>Y (8.2)</td>
<td>Y (213)</td>
<td>24</td>
<td>Y (5)</td>
</tr>
<tr>
<td>San Aspiring</td>
<td>18/6–12/8/08</td>
<td>Auto</td>
<td>Y</td>
<td>Y (8.2)</td>
<td>Y (205)</td>
<td>22</td>
<td>Y (4)</td>
</tr>
<tr>
<td>Viking Bay</td>
<td>1/5–28/8/08</td>
<td>Español</td>
<td>Y</td>
<td>Y (7)</td>
<td>Y (172)</td>
<td>12</td>
<td>Y (4)</td>
</tr>
<tr>
<td>Subárea 48.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argos Froyanes</td>
<td>21/4–12/5/08</td>
<td>Auto</td>
<td>Y</td>
<td>Y (7)</td>
<td>Y (166)</td>
<td>11</td>
<td>Y (4)</td>
</tr>
<tr>
<td>San Aspiring</td>
<td>3/4–23/4/08</td>
<td>Auto</td>
<td>Y</td>
<td>Y (8.2)</td>
<td>Y (213)</td>
<td>24</td>
<td>Y (5)</td>
</tr>
<tr>
<td>Divisiones 58.4.1, 58.4.2, 58.4.3a, 58.4.3b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tronio 3</td>
<td>2/12–16/2/08</td>
<td>Español</td>
<td>Y</td>
<td>Y (7.2)</td>
<td>Y (160)</td>
<td>12</td>
<td>Y (5)</td>
</tr>
<tr>
<td>Antillas Reever</td>
<td>16/12–21/2/08</td>
<td>Español</td>
<td>Y</td>
<td>Y (7)</td>
<td>Y (150)</td>
<td>11</td>
<td>Y (5)</td>
</tr>
<tr>
<td>Banzare</td>
<td>6/1–27/2/08</td>
<td>Artesanal</td>
<td>Y</td>
<td>Y (8.5)</td>
<td>Y (155)</td>
<td>30</td>
<td>Y (5)</td>
</tr>
<tr>
<td>Paloma V</td>
<td>21/12–17/2/08</td>
<td>Español</td>
<td>Y</td>
<td>Y (7)</td>
<td>Y (150)</td>
<td>7</td>
<td>Y (5)</td>
</tr>
<tr>
<td>Janus</td>
<td>18/5–26/5/08</td>
<td>Auto</td>
<td>Y</td>
<td>Y (7)</td>
<td>Y (184)</td>
<td>29</td>
<td>Y (4.5)</td>
</tr>
<tr>
<td>Insung No. 1</td>
<td>20/12–12/3/08</td>
<td>Español</td>
<td>Y</td>
<td>Y (7)</td>
<td>Y (150)</td>
<td>10</td>
<td>Y (5)</td>
</tr>
<tr>
<td>Shinsei Maru No. 3</td>
<td>30/12–19/2/08</td>
<td>Artesanal</td>
<td>Y</td>
<td>Y (7.5)</td>
<td>Y (151)</td>
<td>6</td>
<td>Y (5)</td>
</tr>
<tr>
<td>Insung No. 2</td>
<td>4/12–25/2/08</td>
<td>Español</td>
<td>Y</td>
<td>Y (7)</td>
<td>Y (150)</td>
<td>14</td>
<td>Y (5)</td>
</tr>
<tr>
<td>División 58.5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austral Leader II</td>
<td>25/5–28/6/08</td>
<td>Auto</td>
<td>Y</td>
<td>Y (7.2)</td>
<td>Y (150)</td>
<td>20</td>
<td>Y (5)</td>
</tr>
<tr>
<td>Janus</td>
<td>29/5–27/7/08</td>
<td>Auto</td>
<td>Y</td>
<td>Y (7)</td>
<td>Y (184)</td>
<td>29</td>
<td>Y (4.5)</td>
</tr>
<tr>
<td>Subáreas 58.6, 58.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koryo Maru No. 11</td>
<td>9/2–30/3/08</td>
<td>Español</td>
<td>Y</td>
<td>Y (8)</td>
<td>Y (170)</td>
<td>10</td>
<td>Y (4.6)</td>
</tr>
</tbody>
</table>

(continúa)
<table>
<thead>
<tr>
<th>Nombre del barco</th>
<th>Período de pesca</th>
<th>Método de pesca</th>
<th>Cumplimiento de disposiciones de la CCRVMA</th>
<th>Cumplimiento de las disposiciones sobre líneas espantapájaros</th>
<th>% calados que usaron líneas espantapájaros</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Altura del punto de sujeción sobre el agua (m)</td>
<td>Largo total (m)</td>
<td>No. de cuerdas secundarias en cada línea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subáreas 88.1, 88.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avro Chieftain</td>
<td>24/12–14/2/08</td>
<td>Auto</td>
<td>Y</td>
<td>Y (7.2)</td>
<td>22</td>
</tr>
<tr>
<td>Janas</td>
<td>1/12–20/2/08</td>
<td>Auto</td>
<td>Y</td>
<td>Y (7)</td>
<td>18</td>
</tr>
<tr>
<td>Jung Woo No. 2</td>
<td>5/12–17/2/08</td>
<td>Español</td>
<td>Y</td>
<td>Y (7.8)</td>
<td>10</td>
</tr>
<tr>
<td>Ross Mar</td>
<td>1/12–1/2/08</td>
<td>Auto</td>
<td>Y</td>
<td>Y (7)</td>
<td>22</td>
</tr>
<tr>
<td>Ross Star</td>
<td>14/1–1/3/08</td>
<td>Auto</td>
<td>Y</td>
<td>Y (7.7)</td>
<td>7</td>
</tr>
<tr>
<td>San Aotea II</td>
<td>11/1–20/2/08</td>
<td>Auto</td>
<td>Y</td>
<td>Y (7.6)</td>
<td>19</td>
</tr>
<tr>
<td>San Aspiring</td>
<td>2/12–16/2/08</td>
<td>Auto</td>
<td>Y</td>
<td>Y (7.5)</td>
<td>24</td>
</tr>
<tr>
<td>Antarctic III</td>
<td>8/12–8/12/08</td>
<td>Auto</td>
<td>N</td>
<td>Y (7)</td>
<td>10</td>
</tr>
<tr>
<td>Argos Georgia</td>
<td>1/12–15/2/08</td>
<td>Auto</td>
<td>Y</td>
<td>Y (7.6)</td>
<td>7</td>
</tr>
<tr>
<td>Argos Helena</td>
<td>1/12–11/2/08</td>
<td>Auto</td>
<td>Y</td>
<td>Y (8)</td>
<td>13</td>
</tr>
<tr>
<td>Argos Froyanes</td>
<td>1/12–28/2/08</td>
<td>Auto</td>
<td>Y</td>
<td>Y (7.5)</td>
<td>10</td>
</tr>
<tr>
<td>Hong Jin No. 707</td>
<td>3/12–19/2/08</td>
<td>Español</td>
<td>Y</td>
<td>Y (7)</td>
<td>25</td>
</tr>
<tr>
<td>Yantar</td>
<td>10/1–10/3/08</td>
<td>Artesanal</td>
<td>Y</td>
<td>Y (7)</td>
<td>7</td>
</tr>
</tbody>
</table>

1. En seis lances el Punta Ballena no empleó un dispositivo para ahuyentar a las aves ya que las condiciones extremas del tiempo hicieron peligrosa su utilización.
2. No se aplica una medida de Conservación en esta área.
3. Estos barcos también pescaron en menor medida en la Subárea 88.1 durante esta campaña.
<table>
<thead>
<tr>
<th>Recomendación del Comité Científico o de Francia</th>
<th>Descripción</th>
<th>Condición</th>
<th>Comentarios/notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SC-CAMLR-XXVI, 5.6(i)</td>
<td>Datos de observación</td>
<td>En desarrollo</td>
<td>Se están recopilando datos adicionales: detalles del despliegue de un dispositivo de mitigación durante el virado, características de las líneas espantapájaros y tasas de hundimiento de las líneas.</td>
</tr>
<tr>
<td>2 SC-CAMLR-XXVI, 5.6(ii)</td>
<td>Análisis de la población de petreles</td>
<td>Terminado</td>
<td>SC-CAMLR-XXVII/BG/8 contiene el análisis completo; Francia presentó todos los documentos requeridos a WG-IMAF en 2008 y presentará una versión en inglés a WG-SAM para su reunión de 2009.</td>
</tr>
<tr>
<td>3 SC-CAMLR-XXVI, 5.6(iii)</td>
<td>Datos brutos de la captura incidental</td>
<td>Terminado</td>
<td>Este año Francia ha presentado todo el conjunto de datos de la temporada de pesca 2007/08.</td>
</tr>
<tr>
<td>4 SC-CAMLR-XXVI, 5.6(iv)</td>
<td>Análisis de problemas específicos de los barcos</td>
<td>Terminado</td>
<td>Ver SC-CAMLR-XXVII/12 y BG/10.</td>
</tr>
<tr>
<td>5 SC-CAMLR-XXVI, 5.6(v)</td>
<td>Ampliación del conjunto de medidas utilizado, en especial durante el virado</td>
<td>En desarrollo</td>
<td>Uso de la eficaz cortina de Brickle (mitigación durante el virado) en todos los barcos; la gestión de los desechos de pescado ha cambiado desde septiembre de 2008, el vertido de desechos sólo puede hacerse entre dos virados; mejor construcción de líneas espantapájaros para cumplir con las normas de la CCRVMA.</td>
</tr>
<tr>
<td>6 SC-CAMLR-XXVI, 5.6(vi)</td>
<td>Estudios adicionales con WG-IMAF</td>
<td>Permanente</td>
<td>Estrecha colaboración entre IMAF y TAAF. Establecimiento de un grupo de trabajo independiente en el que participarían pescadores, científicos y personal administrativo de TAAF.</td>
</tr>
<tr>
<td>7 SC-CAMLR-XXVI, 5.6(vii)</td>
<td>Enfocar la gestión de manera que se base en los resultados del análisis de los datos</td>
<td>Permanente</td>
<td>Mejoras a las líneas espantapájaros, dispositivos de mitigación durante el virado, prácticas de vertido de desechos; la recopilación y análisis adicional de los datos proporcionará información para considerar otras posibles estrategias de gestión; informe semanal de observadores sobre la captura incidental (informes diarios del petrel gris y de mentón blanco durante la época de reproducción).</td>
</tr>
<tr>
<td>8 SC-CAMLR-XXVI, 5.6(viii)</td>
<td>Presentar plan de acción</td>
<td>Terminada</td>
<td>SC-CAMLR-XXVII/8 ya presentado y en proceso de implementación.</td>
</tr>
<tr>
<td>9 SC-CAMLR-XXVI, 5.6(ix)</td>
<td>Presentar documento sobre requisitos normativos</td>
<td>Terminada</td>
<td>SC-CAMLR-XXVII/BG11</td>
</tr>
</tbody>
</table>

(continúa)
<table>
<thead>
<tr>
<th>Recomendación del Comité Científico o de Francia</th>
<th>Descripción</th>
<th>Condición</th>
<th>Comentarios/notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 SC-CAMLR-XXVII/12 (DeLord et al. estudio de los efectos ambientales, espaciales, temporales y operacionales 2003–2006)</td>
<td>Veda de pesca en período crítico de cría de ambas especies de petreles: 15 de febrero a 15 de marzo y 50 días en parte de mayo y todo junio</td>
<td>En desarrollo</td>
<td>La veda de un mes del 15 de febrero al 15 de marzo (2003 a 2008) se extenderá del 1 de febrero al 10 de marzo en 2009. No existe un cierre específico de la pesquería durante el periodo de cría de los polluelos del petrel gris. Existe una posibilidad que ciertos sectores sean cerrados durante los periodos de máxima mortalidad en esas áreas (SC-CAMLR-XXVII/BG/11).</td>
</tr>
<tr>
<td>11 SC-CAMLR-XXVII/12</td>
<td>Control del esfuerzo en temporadas</td>
<td>En desarrollo</td>
<td>Veda de la pesca del 1 de febrero al 10 de marzo de 2009. Existe la posibilidad de cerrar las zonas más vulnerables, trasladar los barcos de pesca o reducir el esfuerzo en términos de la cantidad de anzuelos.</td>
</tr>
<tr>
<td>12 SC-CAMLR-XXVII/12</td>
<td>Minimizar el acceso de las aves marinas a la carnada (v.g. PLI más pesados, 150 g m$^{-1}$)</td>
<td>En desarrollo</td>
<td>Desde 2005 se exige el uso de PLI (50 g m$^{-1}$) en todos los barcos permitiendo una tasa de hundimiento mayor de 0.2 m s$^{-1}$ (estándar de la CCRVMA). El uso de PLI más pesados de 50 g m$^{-1}$ no es viable o posible. Se está considerando la aplicación manual de pesos a los PLI durante los periodos de mayor riesgo. Se registrarán la tasa de hundimiento de todos los barcos en las próximas dos temporadas.</td>
</tr>
<tr>
<td>13 SC-CAMLR-XXVII/12</td>
<td>Un mínimo de tres líneas espantapájaros</td>
<td>Terminada</td>
<td>Existen reglas que disponen el uso de un mínimo de dos líneas espantapájaros en todos los barcos pero en general se utilizan tres o más.</td>
</tr>
<tr>
<td>14 SC-CAMLR-XXVII/12</td>
<td>Dispositivo de mitigación durante el virado</td>
<td>Terminada</td>
<td>Se exige que todos los barcos empleen un dispositivo de mitigación durante el virado (v.g. cortina de Brickle).</td>
</tr>
<tr>
<td>15 SC-CAMLR-XXVII/BG/10 (Waugh et al. estudio colaborativo)</td>
<td>Calado de la línea</td>
<td>En desarrollo</td>
<td>Recomendación: Aumentar la extensión cubierta, aumentar la tasa de hundimiento, agregar pesos durante períodos más críticos, reducir/eliminar el vertido de desechos de pescado, calado submarino, vertido de desechos de pescado por lotes, estrategias para la gestión de desechos, v.g. almacenar durante el virado y verter antes del próximo virado, moler, pulverizar.</td>
</tr>
<tr>
<td>16 SC-CAMLR-XXVII/BG/10</td>
<td>Mitigación durante el virado</td>
<td>En desarrollo</td>
<td>Recomendaciones: mejorar la cortina de Brickle, emplear los procedimientos de notificación de la CCRVMA, reducir/eliminar el vertido de desechos de pescado durante el virado, vertido de desechos de pescado por lotes, programa activo de investigación, estudiar ajuste del diseño de la cortina de Brickle para cada barco.</td>
</tr>
</tbody>
</table>

(continúa)
<table>
<thead>
<tr>
<th>Recomendación del Comité Científico o de Francia</th>
<th>Descripción</th>
<th>Condición</th>
<th>Comentarios/notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 SC-CAMLR-XXVII/BG/10</td>
<td>Eliminación de anzuelos</td>
<td>En desarrollo</td>
<td>Recomendaciones: aumentar la conciencia, carteles de difusión, mejorar los sistemas de filtrado/tratamiento de residuos.</td>
</tr>
<tr>
<td>18 SC-CAMLR-XXVII/BG/10</td>
<td>Manejo de los desechos</td>
<td>En desarrollo</td>
<td>Recomendaciones: vertido de desechos de pescado por lotes, almacenar durante el virado y verter antes del próximo virado, mejorar los sistemas de filtrado/tratamiento de residuos.</td>
</tr>
<tr>
<td>19 SC-CAMLR-XXVII/BG/10</td>
<td>Cortinas durante el virado</td>
<td>En desarrollo</td>
<td>Recomendaciones: instalar la estructura necesaria para erigir una cortina para el virado, usar diseño y ajustarlo a medida para los barcos similares a los neozelandeses, emplear cortinas durante toda la maniobra de virado.</td>
</tr>
<tr>
<td>20 SC-CAMLR-XXVII/BG/10</td>
<td>Flujo de información</td>
<td>Permanente</td>
<td>Recomendaciones: aumentar el intercambio entre la CCRVMA y TAAF, establecer un grupo de trabajo para asesorar a TAAF, continuar el intercambio entre TAAF y científicos, intercambio de personal entre barcos franceses y de Nueva Zelanda o Australia. Científicos de WG-IMAF revisaron la propuesta para un estudio en cooperación y varios científicos participaron en el estudio. TAAF ha participado en las reuniones anuales de WG-IMAF desde 2003.</td>
</tr>
<tr>
<td>21 SC-CAMLR-XXVII/BG/10</td>
<td>Marco estratégico</td>
<td>Permanente</td>
<td>Recomendaciones: Desarrollar un plan de acción estratégico que incluya: objetivos para reducir la captura incidental, tomar medidas de mejores prácticas, grupo de trabajo experto en captura incidental, programa de investigación, régimen de sanciones, y programas educativos y de difusión.</td>
</tr>
<tr>
<td>22 SC-CAMLR-XXVII/BG/10</td>
<td>Programa de estudio propuesto</td>
<td>En desarrollo</td>
<td>Recomendaciones: Elaborar programa para considerar el manejo de desechos, mejorar diseño de las líneas espantapájaros en relación con el material empleado y la extensión cubierta, y mejorar tasas de hundimiento.</td>
</tr>
<tr>
<td>23 SC-CAMLR-XXVII/BG/10</td>
<td>Configuración de la líneas espantapájaros</td>
<td>En desarrollo</td>
<td>Recomendaciones: examen del material de las cuerdas secundarias, mejorar extensión cubierta por las líneas espantapájaros, explorar soluciones específicas para cada barco, colocar desatorcedores a las cuerdas secundarias, múltiples líneas espantapájaros (5 o más), aumentar la altura de sujeción a 7 m o más, uso de botalón fuera de borda, considerar la dirección del viento cuando al desplegar líneas espantapájaros, llevar más líneas y material de repuesto a bordo.</td>
</tr>
</tbody>
</table>

1 **En negrita** indica que el asunto está terminado o en desarrollo. **En cursiva** que está siendo considerado. **En letra normal**, que no se ha tomado ninguna acción.
<table>
<thead>
<tr>
<th>Grupo de usuarios</th>
<th>Tipo de datos</th>
<th>Descripción</th>
<th>Uso</th>
<th>Óptima recolección</th>
<th>Limitaciones prácticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortalidad incidental (alta prioridad)</td>
<td>Registrar la mortalidad de aves y mamíferos marinos.</td>
<td>Estimación de la mortalidad de aves y mamíferos marinos causada por la pesca en el Área de la Convención.</td>
<td>Observar recogida de todos los arrastres de kril y una proporción razonable de los arrastres de peces y anzuelos recogidos de los palangres según las tablas 14 y 15.</td>
<td>Limitaciones de tiempo Consideraciones de seguridad Malas condiciones del tiempo</td>
<td></td>
</tr>
<tr>
<td>Interacción de aves y mamíferos marinos con los ars de pesca (alta prioridad)</td>
<td>Registrar los enredos y lesiones de de aves y mamíferos marinos.</td>
<td>Estimación de la mortalidad de aves y mamíferos marinos causada por la pesca en el Área de la Convención.</td>
<td>Observar recogida de todos los arrastres de kril y una proporción razonable de los arrastres de peces y anzuelos recogidos de los palangres según las tablas 14 y 15.</td>
<td>Limitaciones de tiempo Consideraciones de seguridad Malas condiciones del tiempo</td>
<td></td>
</tr>
<tr>
<td>Colisiones con el cable de arrastre.</td>
<td>Estimación del riesgo de las colisiones con el cable de arrastre para las aves marinas dentro del Área de la Convención.</td>
<td>Observar una vez cada 24 horas, como mínimo, las colisiones con el cable de arrastre</td>
<td>Limitaciones de tiempo Consideraciones de seguridad Malas condiciones del tiempo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interacción de mamíferos marinos con los barcos y artes de pesca.</td>
<td>Evaluación del impacto ecológico causado por la depredación.</td>
<td>Observar una vez durante el virado (conjuntamente con otras observaciones durante el virado).</td>
<td>Limitaciones de tiempo Consideraciones de seguridad Malas condiciones del tiempo Mala visibilidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementación de medidas de mitigación (mediana prioridad pero también requerido por SCIC)</td>
<td>Descripción y especificación de las medidas de mitigación (datos L2).</td>
<td>Evaluación del funcionamiento de las medidas para examinar el logro de requisitos mínimos.</td>
<td>Una vez cada siete días (conjuntamente con las pruebas de la botella).</td>
<td>Calado nocturno impide evaluar la extensión cubierta Malas condiciones del tiempo Consideraciones de seguridad</td>
<td></td>
</tr>
<tr>
<td>Pruebas con TDR y botella (datos L10).</td>
<td>Evaluación de las tasas de hundimiento.</td>
<td>Una prueba cada 24 horas y cuatro pruebas en un sólo palangre una vez cada 7 días (junto con las observaciones de la mitigación).</td>
<td>Malas condiciones del tiempo Calado nocturno para la prueba de la botella Consideraciones de seguridad</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabla 14: Resumen de la evaluación del riesgo de enredo para las aves marinas en las redes utilizadas en las pesquerías pelágicas de arrastre de peces en el Área de la Convención (ver asimismo la figura 1).

<table>
<thead>
<tr>
<th>Nivel de riesgo</th>
<th>Mitigación requerida</th>
<th>Cobertura de observación recomendada</th>
</tr>
</thead>
</table>
| 1 – bajo | • Cumplimiento estricto de la medida de conservación estándar sobre la captura incidental de aves marinas\(^2\).
• Los barcos que capturen un total de tres aves en cualquier temporada deberán considerar la utilización de redes amarradas para reducir la captura de aves durante el lance.
• Se prohíbe el vertido de desechos durante el calado y virado del arte de arrastre y, siempre que sea posible, éstos deberán guardarse a bordo de la embarcación. | 20% de los calados
50% de los virados |
| 2 – mediano a bajo | • Cumplimiento estricto de la medida de conservación estándar sobre la captura incidental de aves marinas\(^2\).
• Los barcos que capturen un total de tres aves en cualquier temporada deberán considerar la utilización de redes amarradas para reducir la captura de aves durante el lance.
• Se prohíbe el vertido de desechos durante el calado y virado del arte de arrastre y, siempre que sea posible, éstos deberán guardarse a bordo de la embarcación. | 25% de los calados
75% de los virados |
| 3 – mediano | • Cumplimiento estricto de la medida de conservación estándar sobre la captura incidental de aves marinas\(^2\).
• Los barcos que capturen un total de tres aves en cualquier temporada deberán considerar la utilización de redes amarradas para reducir la captura de aves durante el lance.
• Se prohíbe el vertido de desechos durante el calado y virado del arte de arrastre y, siempre que sea posible, éstos deberán guardarse a bordo de la embarcación. | 40% de los calados
90% de los virados |
| 4 – mediano a alto | • Cumplimiento estricto de la medida de conservación estándar sobre la captura incidental de aves marinas\(^2\).
• Los barcos que capturen un total de tres aves en cualquier temporada deberán utilizar redes amarradas y considerar la opción de agregar peso al copo para reducir la captura de aves marinas durante el lance de la red.
• Se prohíbe el vertido de desechos durante el calado y virado del arte de arrastre y, siempre que sea posible, éstos deberán guardarse a bordo de la embarcación. | 45% de los calados
90% de los virados |
| 5 – alto | • Cumplimiento estricto de la medida de conservación estándar sobre la captura incidental de aves marinas\(^2\).
• Amarrar la red y considerar la opción de agregar peso al copo para reducir la captura de aves marinas durante el lance de la red.
• Se prohíbe el vertido de desechos durante el calado y virado del arte de arrastre y, siempre que sea posible, éstos deberán guardarse a bordo de la embarcación. | 50% de los calados
90% de los virados |

\(^1\) Por “riesgo” se entiende el riesgo de captura para las aves marinas si no existe mitigación para una abundancia dada de aves marinas.
\(^2\) Medida de Conservación 25-03.
Tabla 15: Resumen de la evaluación del riesgo de las pesquerías de palangre del Área de la Convención para las aves marinas (ver la figura 1).

<table>
<thead>
<tr>
<th>Nivel de riesgo</th>
<th>Mitigación requerida</th>
<th>Cobertura de observación</th>
</tr>
</thead>
</table>
| 1 – bajo | • Cumplimiento estricto de la medida de conservación estándar sobre la captura incidental de aves marinas.
• No es necesario restringir la temporada de pesca de palangre.
• Se permite el calado diurno siempre que se cumpla con la tasa de hundimiento requerida.
• Se prohíbe el vertido de desechos. | 20% de anzuelos recobrados
100% de los calados |
| 2 – mediano a bajo | • Cumplimiento estricto de la medida de conservación estándar sobre la captura incidental de aves marinas.
• No es necesario restringir la temporada de pesca de palangre.
• Se permite el calado diurno siempre que se cumpla con la tasa de hundimiento requerida y los límites de captura de aves marinas.
• Se prohíbe el vertido de desechos. | 25% de anzuelos recobrados
100% de los calados |
| 3 – mediano | • Cumplimiento estricto de la medida de conservación estándar sobre la captura incidental de aves marinas.
• Restricción de la pesca de palangre al período fuera de la temporada de reproducción de las especies amenazadas cuando ésta se conozca o sea necesario, a menos que se cumpla siempre con la tasa de hundimiento requerida.
• Se permite el calado diurno siempre que se cumpla estrictamente con la tasa de hundimiento y los límites de captura de aves marinas.
• Se prohíbe el vertido de desechos. | 40% de anzuelos recobrados
100% de los calados |
| 4 – mediano a alto | • Cumplimiento estricto de la medida de conservación estándar sobre la captura incidental de aves marinas.
• Restricción de la pesca de palangre al período fuera de la temporada de reproducción de cualquiera de las especies amenazadas.
• Estricto cumplimiento de la tasa de hundimiento de la línea en todo momento.
• No se permite el calado diurno.
• Se prohíbe el vertido de desechos. | 45% de anzuelos recobrados
100% de los calados |
| 5 – alto | • Cumplimiento estricto de la medida de conservación estándar sobre la captura incidental de aves marinas.
• Restricción de la pesca de palangre al período fuera de la temporada de reproducción de cualquiera de las especies amenazadas.
• Cierre de las áreas identificadas como de alto riesgo.
• Estricto cumplimiento de la tasa de hundimiento de la línea en todo momento.
• No se permite el calado diurno.
• Se aplican límites estrictos a la captura incidental de aves marinas.
• Se prohíbe el vertido de desechos. | 50% de anzuelos recobrados
100% de los calados |

1 Medida de Conservación 25-02, con la posibilidad de exención de las disposiciones del párrafo 5, de conformidad con la Medida de Conservación 24-02.
2 Posiblemente se requerirá la presencia de dos observadores.
3 Una vez por calado los observadores deberán verificar y registrar si se están utilizando medidas de mitigación y si se están vertiendo desechos.
Figura 1: Evaluación del riesgo potencial de interacción entre aves marinas, especialmente albatros, y las pesquerías de palangre dentro del Área de la Convención. Nivel de riesgo 1: bajo, 2: mediano a bajo, 3: mediano, 4: mediano a alto, 5: alto. Las áreas sombreadas representan áreas de lecho marino en el intervalo de 500 a 1 800 m de profundidad.
AGENDA

Grupo de Trabajo Especial sobre la Mortalidad Incidental Asociada con la Pesca
(Hobart, Australia, 13 al 17 de octubre de 2008)

1. Asuntos preliminares y trabajo del WG-IMAF durante el período entre sesiones
2. Mortalidad incidental de aves y mamíferos marinos en las pesquerías del Área de la Convención
 2.1 Aves marinas
 2.1.1 Palangres
 2.1.2 Arrastres
 2.1.3 Otros métodos de pesca
 2.2 Mamíferos marinos
 2.2.1 Palangres
 2.2.2 Arrastres
 2.2.3 Otros métodos de pesca
 2.3 Información relacionada con la aplicación de las Medidas de Conservación 25-02, 25-03, 26-01 y 24-02
3. Revisión de los planes de acción para eliminar la mortalidad de aves marinas
 3.1 ZEE francesas
4. Mortalidad incidental de aves y mamíferos marinos en las pesquerías realizadas fuera del Área de la Convención
 4.1 Palangres
 4.2 Arrastres
 4.3 Otros métodos de pesca
5. Mortalidad incidental de aves y mamíferos marinos en las pesquerías INDNR en el Área de la Convención
6. Investigaciones y experiencias relacionadas con las medidas de mitigación
 6.1 Palangres
 6.2 Arrastres
 6.3 Otros métodos de pesca
7. Informes de observación y recopilación de datos
8. Estudios del estado y la distribución de las aves marinas
9. Evaluación del riesgo en las subáreas y divisiones de la CCRVMA
10. Mortalidad incidental de aves y mamíferos marinos en las pesquerías nuevas y exploratorias
 10.1 Pesquerías nuevas y exploratorias realizadas en 2007/08
 10.2 Pesquerías nuevas y exploratorias propuestas para 2008/09
11. Iniciativas nacionales e internacionales relacionadas con la mortalidad de aves y mamíferos marinos en las pesquerías
 11.1 Cooperación con ACAP
 11.2 Iniciativas internacionales
 11.3 Iniciativas nacionales

12. Desechos marinos y su efecto en las poblaciones de aves y mamíferos marinos del Área de la Convención

13. Interacciones con otros grupos de trabajo del Comité Científico

14. Informes de pesquerías

15. Racionalización de la labor del Comité Científico

16. Otros asuntos

17. Aprobación del informe y clausura de la reunión.
APÉNDICE B

LISTA DE PARTICIPANTES

Grupo de Trabajo Especial sobre la Mortalidad Incidental Asociada con la Pesca
(Hobart, Australia, 13 al 17 de octubre de 2008)

BAKER, Barry (Sr.) ACAP Interim Secretariat
 GPO Box 824
 Hobart Tasmania 7001
 Australia
 barry.baker@latitude42.com.au

GALES, Rosemary (Dra.) Biodiversity Conservation Branch
 Department of Primary Industries and Water
 GPO Box 44
 Hobart Tasmania 7001
 Australia
 rosemary.gales@dpiw.tas.gov.au

GRAHAM, Felicity (Sra.) C/- Territoire des Terres Australes
 et Antarctiques Françaises
 BP 400
 1, rue Gabriel Dejean
 97410 Saint-Pierre
 La Réunion
 France
 fsm@utas.edu.au

HAY, Ian (Sr.) Australian Antarctic Division
 Department of the Environment, Water,
 Heritage and the Arts
 Channel Highway
 Kingston Tasmania 7050
 Australia
 ian.hay@aad.gov.au

HEINECKEN, Chris (Sr.) CapFish
 PO Box 50035
 Waterfront
 Cape Town 8002
 South Africa
 chris@capfish.co.za
MARTEAU, Cédric (Sr.)
Territoire des Terres Australes et Antarctiques Françaises
BP 400
1, rue Gabriel Dejean
97410 Saint-Pierre
La Réunion
France
cedric.marteau@taaf.fr

MOIR Clark, James (Sr.)
MRAG Ltd
18 Queen Street
London W1J 5PN
United Kingdom
j.clark@mrag.co.uk

O’REGAN, Keryn (Sra.)
Australian Fisheries Management Authority
Observer Section
PO Box 7051
Canberra Business Centre
Canberra ACT
Australia 2610
keryn.o’regan@afma.gov.au

PAPWORTH, Warren (Sr.)
ACAP Interim Secretariat
GPO Box 824
Hobart Tasmania 7001
Australia
warren.papworth@acap.aq

PIERRE, Johanna (Dra.)
Aquatic and Threats Unit
Department of Conservation
PO Box 10-420
Wellington 6143
New Zealand
jpierre@doc.govt.nz

RIVERA, Kim (Sra.)
(Coordinadora, WG-IMAF)
National Marine Fisheries Service
PO Box 21668
Juneau, AK 99802
USA
kim.rivera@noaa.gov
ROBERTSON, Graham (Dr.)
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
graham.robertson@aad.gov.au

SMITH, Neville (Sr.)
(Coordinador, WG-IMAF)
Ministry of Fisheries
PO Box 1020
Wellington
New Zealand
neville.smith@fish.govt.nz

SULLIVAN, Ben (Dr.)
BirdLife International
C/- Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
ben.sullivan@rspb.org.uk

SULLIVAN, Kevin (Dr.)
(Presidente del Comité Científico)
Ministry of Fisheries
PO Box 1020
Wellington
New Zealand
sullivak@fish.govt.nz

WALKER, Nathan (Sr.)
Ministry of Fisheries
PO Box 1020
Wellington
New Zealand
nathan.walker@fish.govt.nz
SECRETARÍA

Secretario Ejecutivo
Denzil Miller
Asuntos generales de oficina y conferencias
Rita Mendelson
Asistente
Richard Miller

Ciencias
Funcionario científico
Keith Reid
Análisis de los datos de observación científica
Eric Appleyard
Asistente de investigación
Jacquelyn Turner

Administración de Datos
Administrador de datos
David Ramm
Asistente de administración de datos
Lydia Millar
Administrador/Programador de la base de datos
Simon Morgan

Ejecución y cumplimiento
Funcionario de cumplimiento
Natasha Slicer
Asistente de cumplimiento
Ingrid Karpinskyj

Administración y Finanzas
Administrador
Ed Kremzer
Asistente de finanzas
Christina Macha

Comunicaciones
Funcionaria de comunicaciones
Genevieve Tanner
Asistente de publicaciones y sitio web
Doro Forck
Traductora y coordinadora del equipo español
Ana María Merino
Traductora (español)
Margarita Fernández
Traductora (español)
Marcia Fernández
Traductora y coordinadora del equipo francés
Gillian von Bertouch
Traductora (francés)
Bénédicte Graham
Traductora (francés)
Floride Pavlovic
Traductora (francés)
Michèle Roger
Traductora y coordinadora del equipo ruso
Natalia Sokolova
Traductora (ruso)
Ludmilla Thornett
Traductor (ruso)
Vasily Smirnov

Sitio web y servicios de información
Sitio web y servicios de información
Rosalie Marazas
Asistente de servicios de información
Philippa McCulloch

Tecnología de la información
Administrador de tecnología de la información
Fernando Cariaga
Asistente de la tecnología de la información
Tim Byrne
INFORME DEL GRUPO DE TRABAJO
DE ESTADÍSTICA, EVALUACIÓN Y MODELAGO
(San Petersburgo, Rusia, 14 al 22 de julio de 2008)
ÍNDICE

INTRODUCCIÓN .. 577
Apertura de la reunión ... 577
Aprobación de la agenda y organización de la reunión ... 577

ESTIMACIÓN DE PARÁMETROS .. 578
Parámetros utilizados en la evaluación de austromerluzas 578
Datos de la talla y el peso de las austromerluzas al este de la Antártida 578
Áreas de lecho marino en la Subárea 48.3 .. 579

MÉTODOS PARA LA EVALUACIÓN DEL STOCK Y DE PARÁMETROS BIOLÓGICOS .. 579
Pesquerías exploratorias en el Área 58 ... 579
Stock de austromerluzas del Mar de Ross .. 581
Asesoramiento de ordenación .. 585
Kril .. 585
Pinnípedos, pingüinos y aves voladoras ... 586

ASESORAMIENTO SOBRE LOS MÉTODOS ÚTILES PARA EL TRABAJO DEL COMITÉ CIENTÍFICO DE LA CCRVMA .. 587
Diseños de investigación en las pesquerías exploratorias 587
Establecimiento de límites de captura precautorios en las pesquerías exploratorias cuando no se han realizado estudios científicos .. 588
Enfoques para minimizar los efectos que tiene el cambio de prácticas de pesca en las evaluaciones .. 589
Uso de los BRT en la biorregionalización ... 589
Respuesta de las poblaciones del petrel de mentón blanco y del petrel gris a las pesquerías y a factores ambientales .. 590
Taller CCAMLR-IWC .. 591

HERRAMIENTAS PARA EL MODELADO DE POBLACIONES, CADENAS ALIMENTARIAS Y EL ECOSISTEMA .. 592
Modelos de población de Dissostichus spp. .. 592
Modelos de la red alimentaria centrada en el kril .. 593
Ajuste de los modelos al calendario de sucesos .. 593
Actualizaciones del modelo FOOSA ... 595
Actualización del modelo SMOM .. 596
Aplicación de FOOSA en EPOC ... 597
Otras consideraciones relativas a la labor de asignación por UOPE 598
Un modelo empírico de evaluación del ecosistema ... 598
Modelos de redes alimentarias centradas en peces ... 599
Modelos de ecosistemas ... 600
Otros modelos ... 600
<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVALUACIÓN DE ESTRATEGIAS DE ORDENACIÓN</td>
<td>600</td>
</tr>
<tr>
<td>Dissostichus spp.</td>
<td>600</td>
</tr>
<tr>
<td>Champsocephalus gunnari</td>
<td>601</td>
</tr>
<tr>
<td>Euphausia superba</td>
<td>601</td>
</tr>
<tr>
<td>Marco para las evaluaciones de la Etapa 1</td>
<td>601</td>
</tr>
<tr>
<td>Índices de rendimiento</td>
<td>606</td>
</tr>
<tr>
<td>Resumen de las evaluaciones del riesgo</td>
<td>607</td>
</tr>
<tr>
<td>Labor futura</td>
<td>610</td>
</tr>
<tr>
<td>OTROS ASUNTOS</td>
<td>611</td>
</tr>
<tr>
<td>Control de revisiones</td>
<td>611</td>
</tr>
<tr>
<td>CCAMLR Science</td>
<td>611</td>
</tr>
<tr>
<td>Presentación de documentos a las reuniones de los grupos de trabajo</td>
<td>612</td>
</tr>
<tr>
<td>LABOR FUTURA</td>
<td>612</td>
</tr>
<tr>
<td>ASESORAMIENTO AL COMITÉ CIENTÍFICO</td>
<td>615</td>
</tr>
<tr>
<td>Asesoramiento al WG-FSA</td>
<td>615</td>
</tr>
<tr>
<td>Asesoramiento al grupo especial WG-IMAF</td>
<td>616</td>
</tr>
<tr>
<td>Asesoramiento al WG-EMM</td>
<td>616</td>
</tr>
<tr>
<td>Solicitud a TASO</td>
<td>617</td>
</tr>
<tr>
<td>Recomendaciones generales</td>
<td>617</td>
</tr>
<tr>
<td>APROBACIÓN DEL INFORME Y CLAUSURA DE LA REUNIÓN</td>
<td>617</td>
</tr>
<tr>
<td>REFERENCIAS</td>
<td>618</td>
</tr>
<tr>
<td>APÉNDICE A: Lista de participantes</td>
<td>620</td>
</tr>
<tr>
<td>APÉNDICE B: Agenda</td>
<td>626</td>
</tr>
<tr>
<td>APÉNDICE C: Lista de documentos</td>
<td>628</td>
</tr>
</tbody>
</table>
INTRODUCCIÓN

Apertura de la reunión

1.1 La segunda reunión de WG-SAM tuvo lugar del 14 al 22 de julio de 2008 en el Instituto Estatal de Investigación y Diseño para el Desarrollo y Operación de Flotas de Pesca (Giprorybflot), en San Petersburgo (Rusia). La reunión fue convocada por el Dr. A. Constable (Australia).

1.2 El Prof. V. Romanov, Director General de Giprorybflot, dio la bienvenida a los participantes y presentó una visión general de la labor del Instituto. Éste es un centro de vanguardia en investigaciones y desarrollo pesquero, y participó directamente en la construcción y operación de la flota de pesca de la antigua Unión Soviética. Las actividades de Giprorybflot abarcan más de 70 años e incluyen el diseño de barcos de pesca, equipos y plantas de elaboración de productos pesqueros, el desarrollo de especificaciones técnicas y estándares para la industria, y la investigación en los campos de la tecnología post recolección, de informática y de sistemas de información.

1.3 El Dr. Constable agradeció al Prof. Romanov por su cálida acogida, y a Giprorybflot por la organización de la reunión con el respaldo del Comité de Pesquerías del Estado. El Dr. Constable también dio la bienvenida a los participantes (apéndice A).

1.4 El grupo de trabajo hizo una pequeña pausa en memoria de la Dra. Edith Fanta quien falleció en mayo de 2008. La Dra. Fanta será recordada por su contribución a las ciencias antárticas, por su dedicación y mesura en la dirección del Comité Científico, del cual fue Presidenta desde 2005 hasta la fecha de su muerte, así como por la orientación que proporcionó a los grupos de trabajo.

Aprobación de la agenda y organización de la reunión

1.5 Se examinó la agenda provisional que fue aprobada sin cambios (apéndice B).

1.6 Los documentos presentados a la reunión y los documentos de WG-EMM que los autores remitieron a la consideración de WG-SAM, se presentan en el apéndice C. A petición del coordinador, los documentos presentados al taller de prospecciones de depredadores del WG-EMM (Hobart, Australia, 16 al 20 de junio de 2008) fueron remitidos a WG-SAM para su información y consideración bajo el punto 5.2 (modelos de la red alimentaria dependiente del kril).

1.7 WG-SAM también decidió considerar los aspectos técnicos de los documentos WG-EMM-08/30 y 08/44 que fueron presentados después de vencido el plazo de presentación de documentos a WG-SAM.
1.8 Las deliberaciones de WG-SAM bajo los puntos 5.2 (Herramientas para la elaboración de modelos de poblaciones, red alimentaria y ecosistemas) y 6.3 (Evaluación de las estrategias de ordenación) fueron dirigidas por el Dr. C. Jones (coordinador anterior de WG-SAM) pues el Dr. Constable había estado directamente involucrado en el desarrollo de los métodos de ordenación basados en el ecosistema (WG-SAM-08/15 y 08/16).

1.9 El informe fue preparado por los Dres. D. Agnew (RU) y A. Brandão (Sudáfrica), el Sr. A. Dunn (Nueva Zelanda), los Dres. P. Gasyukov (Rusia), M. Goebel (EEUU), S. Hanchet (Nueva Zelanda), S. Hill (RU) y R. Hillary (RU), el Sr. J. Hinke (EEUU), y los Dres. C. Jones (EEUU), S. Kasatkina (Rusia), S. Kawaguchi (Australia), D. Middleton (Nueva Zelanda), É. Plagányi (Sudáfrica), D. Ramm (Administrador de datos), K. Reid (Funcionario Científico), C. Reiss (EEUU), G. Watters (EEUU) y D. Welsford (Australia).

ESTIMACIÓN DE PARÁMETROS

Parámetros utilizados en la evaluación de austromerluzas

2.1 El grupo de trabajo consideró los documentos WG-SAM-08/8 y 08/14 bajo este punto de la agenda. Se decidió que los detalles de las discusiones en torno a WG-SAM-08/8 fueran presentados bajo el punto 3.2 (párrafos 3.16 al 3.25) y con respecto a WG-SAM-08/14, bajo el punto 5.1 (párrafos 5.1 al 5.8).

Datos de la talla y el peso de las austromerluzas al este de la Antártida

2.2 El Dr. V. Bizikov (Rusia) presentó en nombre de los autores el documento WG-SAM-08/9, que describe un estudio de Dissostichus mawsoni capturado en la UIPE 5841G. El trabajo describió los resultados de la utilización de los pesos individuales de austromerluzas registrados en la planta procesadora, conjuntamente con los factores de conversión y las relaciones talla-peso, para calcular la frecuencia de tallas de toda la captura (2 000 peces). Esto no coincidió en algunos aspectos, concretamente en el número de peces en el intervalo de tallas de 50 a 90 cm, con la frecuencia de tallas medida por el observador científico (300 peces).

2.3 Dada la disparidad entre los peces de talla más pequeña medidos por los observadores y las tallas reconstruidas, surgió la duda en cuanto a si los observadores efectivamente detectaron peces de menor tamaño. En respuesta se indicó que rara vez se capturan peces pequeños por lo tanto es más fácil que sean pasados por alto por los observadores pero se descubren durante el procesado dado el gran número de peces que se mide durante este proceso.

2.4 El grupo de trabajo también notó que los datos de observación pueden demostrar un sesgo sistemático, por ejemplo, si el muestreo científico se realiza de las secciones del palangre caladas a más profundidad, o si se escogen más peces pequeños para el marcado, eliminándolos de las muestras tomadas para calcular la frecuencia de tallas. El grupo de trabajo alentó a los miembros a que investiguen la posibilidad de encontrar este tipo de errores en los conjuntos de datos de observación.
2.5 El grupo de trabajo acotó además que la labor previa del WG-FSA había mostrado que la talla de los peces procesados era un aspecto importante que debía ser considerado a la hora de calcular los factores de conversión (SC-CAMLR-XXI/BG/27), y por lo tanto se deberán considerar los factores de conversión en función de la talla cuando se estén reconstruyendo las distribuciones de las tallas a partir de las austromerluzas procesadas.

2.6 El grupo de trabajo pidió a los miembros que presenten estudios sobre el efecto de la talla de los peces en los factores de conversión en las pesquerías de *Dissostichus* spp.

2.7 El grupo de trabajo también pidió que WG-FSA considerara cómo la reconstrucción de la distribución de tallas descrita anteriormente afectará las evaluaciones de pesquerías, y solicitó que TASO considere la viabilidad de recolectar todos los datos de los pesos individuales de peces procesados notificados por los barcos palangreros en toda el Área de la Convención.

Áreas de lecho marino en la Subárea 48.3

2.8 El Dr. Agnew presentó el documento WG-SAM-08/10, que describe el desarrollo de un conjunto de datos batimétricos actualizados de la zona de Georgia del Sur y Rocos Cormorán, basado en el uso de los datos batimétricos obtenidos por la cartografía de barrido de haces múltiples efectuada por barcos de investigación y por sondeo ultrasónico de un solo haz efectuado por barcos comerciales y de investigación.

2.9 El grupo de trabajo indicó que este conjunto de datos compilado recientemente ha sido utilizado para actualizar las estimaciones del área de lecho marino de la plataforma de <500 m de profundidad, y será utilizado para refinar las estimaciones de biomasa de las especies de peces demersales de las prospecciones de arrastre, y para ayudar a determinar la estratificación necesaria de dichas prospecciones. El conjunto de datos revisado reveló que las estimaciones de punto de la profundidad en cartas anteriores eran incorrectas, y que las áreas de lecho marino calculadas y utilizadas en las prospecciones anteriores eran entre 0.9 y 1.33 veces más grandes que los valores calculados del conjunto de datos revisados.

2.10 El grupo de trabajo recomendó que los miembros consideren la compilación de datos batimétricos para actualizar las cartas batimétricas de otras áreas para las que existen datos más recientes obtenidos con ecosondas de haces múltiples o de un solo haz y donde se realizan prospecciones de arrastre.

MÉTODOS PARA LA EVALUACIÓN DEL STOCK
Y DE PARÁMETROS BIOLÓGICOS

Pesquerías exploratorias en el Área 58

3.1 El Dr. Agnew presentó el documento WG-SAM-08/4, que aplicó cuatro enfoques distintos para estimar el tamaño del stock en las Divisiones 58.4.1 y 58.4.2: análisis comparativo de la CPUE, reducciones localizadas del stock, un modelo de población de reclutamiento constante y datos de marcado y recaptura. El análisis presentado en WG-SAM-08/4 también contribuyó al conocimiento de otros asuntos importantes para la evaluación,
tales como la identidad del stock y el reclutamiento. No obstante, se indicó que algunos de los registros de *Dissostichus eleginoides* en estas divisiones pueden en realidad tratarse de *D. mawsoni* identificado incorrectamente como *D. eleginoides*.

3.2 El método menos eficaz fue el que utilizó los datos de marcado y recaptura ya que se han recogido muy pocas marcas de esta pesquería, a pesar de haberse liberado 3 000 peces marcados, lo que supone poblaciones mucho más grandes que las calculadas con los otros tres métodos. Evidentemente, algunas suposiciones del método son incorrectas ya que, por ejemplo, los peces pueden estar alejándose rápidamente de las UIPE donde fueron marcados (dos de los cuatro peces recapturados cruzaron los límites de las UIPE, uno llegó a viajar hasta 150 km y otro 1 690 km después de 1 año en libertad), las tasas de mortalidad natural y de marcado pueden ser más altas de lo que se suponía, la pesca puede estar todavía muy localizada para recuperar las marcas, o es posible que haya problemas en la implementación del programa lo que produciría una variación en la calidad de los datos.

3.3 El análisis comparativo de la CPUE se vale del hecho de que algunos barcos han pescado tanto en el Mar de Ross como en las Divisiones 58.4.1/58.4.2 y supone que la capturabilidad de estos barcos en ambas áreas es la misma. Así, la CPUE normalizada en las UIPE de la División 58.4.1/58.4.2 puede traducirse en una estimación de la densidad de austromerluzas comparándola con la densidad estimada en el Mar de Ross. El análisis de reducción se vale de las reducciones locales de los stocks de austromerluzas en pequeñas regiones dentro de las UIPE para estimar la biomasa y densidad en estas regiones. Ambos métodos se basan en cálculos del área explotable dentro de las UIPE para estimar la biomasa de toda la población.

3.4 WG-SAM pidió que se refinaran estos enfoques para explorar y caracterizar la incertidumbre en las evaluaciones que podrían ser utilizadas por el WG-FSA para considerar los niveles de captura precautorios. En particular, se deberá caracterizar la incertidumbre de la CPUE, de las estimaciones de biomasa, del área explotable y de la distribución de la densidad de austromerluzas a través de una UIPE.

3.5 La caracterización de la incertidumbre en la estimación del área explotable y en la distribución de la densidad será una tarea difícil. WG-SAM-08/4 supuso que el área explotable en una UIPE estaba en el estrato de 500 m a 2 000 m de profundidad y que la densidad encontrada por la flota es la misma en toda el área explotable de una UIPE. No obstante, en la mayoría de los casos, la distribución real de la pesca se limitó a una pequeña parte del área explotable en el estrato entre 800 y 1800 m de profundidad, y hay muy poca información como para conocer la distribución de la densidad de austromerluzas en toda el área explotable de una UIPE. Se presume que la densidad de austromerluzas no es uniforme a través del área y probablemente sea mayor en las áreas seleccionadas por la flota de pesca.

3.6 WG-SAM-08/5 describió una metodología general para realizar evaluaciones de stocks cuando los datos que pueden actuar de nexo entre el inicio de la recolección de datos y los programas de marcado son limitados (en términos de la estructura edad/talla y el número de marcas colocadas y recuperadas). Se describió además el momento cuando estos datos pueden ser utilizados para una evaluación del stock basada en los datos de edad/talla. Como ejemplo de la potencial utilidad de este enfoque, se realizó una evaluación inicial del stock de *D. eleginoides* en la División 58.4.3a que incorpora los datos de captura (estimaciones de la pesca legal e INDNR) y los datos disponibles de marcado y recaptura.
3.7 Si bien este enfoque contó con el apoyo general, se tuvo muy en claro que al efectuar evaluaciones con datos tan limitados, se debe tener especial cuidado en evitar la posibilidad de que errores en los datos más importantes (peces recapturados por ejemplo) tengan una gran influencia en los resultados de la evaluación y en cualquier posible límite de captura establecido. Con respecto a los resultados pertinentes al stock de *D. eleginoides* de la División 58.4.3a, se indicó que, aún cuando se considere el potencial de pequeños errores en los datos esenciales, el límite de captura de 250 toneladas actualmente vigente en esta área puede ser demasiado alto, dado que los límites de captura derivados de las evaluaciones (suponiendo un stock discreto con datos mixtos de marcado) no excedieron de 120 toneladas.

3.8 El grupo de trabajo estuvo de acuerdo que la incertidumbre del priori en el parámetro de forma Pella-Tomlinson debe ser considerada en las futuras aplicaciones del enfoque descrito en WG-SAM-08/5.

3.9 WG-SAM-08/6 presentó un método sencillo para ajustar los límites de captura y las tasas de marcado (por tonelada de peces extraídos) a fin de lograr una estimación de abundancia lo suficientemente precisa del programa de marcado. Se probó el modelo comparando la variación esperada en la abundancia de austromerluzas en la Subárea 48.3 obtenida con este método y aquella derivada de la evaluación del stock propiamente tal. Los resultados fueron comparables pero demostraron que el modelo probablemente subestimaría ligeramente el CV previsto de la abundancia. No obstante, se indicó que la información sobre la varianza “adicional” de las evaluaciones del stock podría proporcionar un factor de conversión adecuado para dar cuenta de esta aparente subestimación de la incertidumbre. En una aplicación más directa del modelo, se utilizaron las estimaciones del tamaño inicial del stock y las tasas de marcado de austromerluzas en la Subárea 48.4 para determinar si el límite de captura actual (100 toneladas) daría un CV de la abundancia estimada de un 30% aproximadamente, encontrándose que era muy probable que esto sucediera.

3.10 El grupo de trabajo estuvo de acuerdo en que se podría utilizar este tipo de conjunto de datos de evaluación del stock que está emergiendo para elaborar un enfoque para la gestión de las pesquerías nuevas y exploratorias mediante los tres enfoques descritos en WG-SAM-08/4, 08/5 y 08/6. Se pueden utilizar los análisis de la CPUE relativa para obtener estimaciones aproximadas de la biomasa inicial a partir de las cuales se podría ajustar la tasa de marcado y el límite de captura. Esto permitirá el desarrollo de la pesca y el acopio de datos de marcado que podrán ser utilizados en una evaluación inicial del stock para determinar el límite de captura de manera más fiable. Con el tiempo, se obtendrían datos para efectuar una evaluación más realista estructurada en los datos de edad/talla. Se pidió a los miembros que presentaran análisis de estos enfoques al WG-FSA, y discusiones acerca de cómo tomar en cuenta la incertidumbre en el desarrollo ordenado de las pesquerías exploratorias.

Stock de austromerluzas del Mar de Ross

3.11 El Dr. Agnew presentó el documento WG-SAM-08/7 que analizaba los datos de marcado de la pesquería de austromerluza del Mar de Ross. Se compiló un conjunto de datos para los años 2003–2006 de todas las posibles combinaciones del país que efectuó el marcado, el país que recuperó marcas, el año de marcado y el año de recaptura, para las marcas colocadas y recuperadas en las mismas UIPE en el talud de la Subárea 88.1. La tasa de recaptura se expresó como marcas capturadas/marcas liberadas/peces controlados (capturados). El trabajo utilizó técnicas de regresión para determinar los efectos de la nación que colocó la marca y aquella que la recuperó, en las tasas de recaptura notificadas.
3.12 Hubo un gran número de combinaciones de año de liberación, año de recaptura, UIPE, país que liberó la marca y país que la recuperó, disponiéndose de 193 recapturas para el análisis. El documento indicó que la pesca no había sido lo suficientemente similar entre países, zonas y en el tiempo como para permitir un análisis definitivo. En muchos casos, los efectos producidos por el país que liberó la marca y el que la recuperó no fueron significativos. Sin embargo, en los casos en que se dieron diferencias significativas, las tasas de recaptura generalmente fueron más altas para los peces marcados y recapturados por barcos neocelandeses, y aparentemente las tasas de recaptura fueron más altas cuando el país que colocó la marca resultó ser el que la recuperó.

3.13 El grupo de trabajo agradeció al autor del análisis e indicó que los resultados apoyaban y ampliaban aquellos notificados por científicos neocelandeses en WG-FSA-2007 (WG-FSA-07/40). Ambos análisis concluían que los efectos del país contribuían a la alta variabilidad en las tasas de recaptura. El Dr. Hanchet propuso examinar la variabilidad en las tasas de recaptura de marcas en Georgia del Sur a fin de determinar si la variabilidad observada en el Mar de Ross era comparable con la experimentada en otras partes del Área de la Convención.

3.14 Hubo varias sugerencias para examinar y/o mejorar las tasas de detección. Éstas incluyeron: el uso de marcas PIT en un subconjunto de peces marcados, el uso de un sistema de incentivos para alentar la notificación de marcas, y la experimentación directa para comparar las tasas de recaptura de los barcos que pescan lado a lado. Estos enfoques contaron con apoyo general pero se indicó que podrían afectar las tasas de notificación del barco. El grupo de trabajo remitió estos puntos a la consideración de TASO y de WG-FSA.

3.15 El grupo de trabajo indicó que la evaluación actual del Mar de Ross solamente utilizó los datos de marcar de los barcos neocelandeses y reconoció la importancia de considerar datos de otros barcos. Sin embargo, dado el considerable efecto que el factor país tiene en el modelo, y otros posibles problemas relacionados con la calidad de los datos, fue difícil determinar cuáles otras flotas deberían ser incluidas en las futuras evaluaciones con el modelo. También se dijo que los problemas con la calidad de los datos probablemente se daban a nivel de barco más que a nivel de país o flota.

3.16 El Dr. Gasyukov presentó el documento WG-SAM-08/8 que describe y compara algunas propiedades del modelo TISVPA presentado en el trabajo de los Dres. V. Vasiliev y K. Shust (Rusia), y del modelo CASAL. El trabajo consideró algunas de las ventajas de los métodos de estimación del modelo TISVPA comparado con el modelo CASAL. Los autores indicaron que los métodos de estimación utilizados en TISVPA fueron diseñados para estimar los parámetros de manera fiable a partir de la mediana de las desviaciones absolutas y la winsorización. Los autores indicaron que estos métodos pueden ser más convenientes que los métodos más tradicionales que utilizan la probabilidad, pueden ser más eficaces cuando los datos contienen ruido o un elevado número de valores atípicos, y los resultados del uso de tales métodos pueden ser más robustos y menos propensos a contener errores. No obstante, los autores también señalaron que la implementación actual del TISVPA tuvo ciertas dificultades para combinar los distintos componentes de la función objetivo, como se hace actualmente con CASAL.

3.17 El documento propuso evaluar los modelos TISVPA y CASAL con los parámetros utilizados para la evaluación de D. mawsoni en el Mar de Ross. Los autores indicaron que sería necesario desarrollar ya sea un modelo operacional para D. mawsoni en el Mar de Ross, o utilizar el software existente para simular los conjuntos de datos con los errores surgidos por
la aplicación de distintos tratamientos estadísticos. Estos datos podrían luego ser utilizados para comparar los resultados de ambos modelos, y para ayudar al grupo de trabajo a entender el por qué de las distintas estimaciones del tamaño del stock y de los límites de captura producidas por los modelos. El documento propuso que el grupo de trabajo considere el desarrollo de un nuevo enfoque que pudiera conllevar al establecimiento de un método de evaluación que incluyera métodos robustos de estimación (características de TISVPA) y una correcta integración de los datos en términos estadísticos, valiéndose de las probabilidades (características de CASAL).

3.18 El Dr. Gasyukov señaló que el modelo CASAL había sido probado extensamente por científicos neozelandeses y por el WG-FSA, y ha sido utilizado para evaluar los stocks tanto en Nueva Zelanda como en la CCRVMA. El modelo TISVPA ha sido probado extensamente en los grupos de trabajo de métodos de evaluación de ICES y ha sido incluido en la lista de software disponible de los grupos de trabajo de ICES. El Dr. Gasyukov agregó que era importante entender por qué los modelos producen distintas estimaciones del estado del stock cuando se les aplica a los datos de una misma región.

3.19 El Dr. Hillary reconoció que la estabilidad del modelo con respecto a los valores atípicos era una cualidad importante en las evaluaciones. Sin embargo, consideraba que las inquietudes descritas en el documento se relacionaban más con las probabilidades normales que con las probabilidades multinomiales y binomiales con dispersión excesiva utilizadas en CASAL. También cuestionó la cita de Hillary y Agnew (2006) pues esa referencia no brinda un método para calcular la abundancia absoluta a partir de los datos de marcado.

3.20 El grupo de trabajo señaló que no quedaba claro si los diferentes resultados obtenidos con los modelos TISVPA y CASAL se debían a las diferencias propias de los modelos, a las diferencias en los datos de entrada, a las diferencias en las ponderaciones dadas a los distintos conjuntos de datos, o a una combinación de todos estos factores.

3.21 El Dr. Jones señaló que en 2007, WG-SAM había proporcionado guías generales sobre el procedimiento a seguir en la revisión de los nuevos métodos (SC-CAMLR-XXVI, anexo 7, párrafo 6.3). Más aún, WG-FSA había puntualizado la información que tendría que ser proporcionada a WG-SAM para hacer posible la revisión del método TISVPA (SC-CAMLR-XXVI, anexo 5, párrafo 4.27):

 i) Se necesita compilar un documento completo describiendo el método y su implementación basado en el trabajo actual, y presentarlo a WG-SAM junto con un examen adicional sobre su aplicación de acuerdo con los siguientes puntos.

 ii) Se necesita desarrollar datos simulados (teóricos) para una variedad de situaciones hipotéticas con relación a la interacción pesquería-stock; y estos datos deben ser luego analizados con CASAL y TISVPA a fin de poder comparar los resultados de los dos métodos utilizando datos de características conocidas de la población y de la pesquería.

 iii) Se necesita proporcionar los detalles matemáticos y estadísticos de cómo se generan los datos de entrada para TISVPA a partir de los conjuntos de datos disponibles utilizados en CASAL, incluido cualquier agrupamiento de los datos tanto en el espacio como en el tiempo.
iv) Se necesita proporcionar una descripción de los métodos para derivar los índices de la CPUE, y de su estandarización para tomar en cuenta las diferencias y variabilidad entre barcos, épocas del año, lugar de pesca, etcétera.

v) Se necesitan detalles de cómo se aborda la incertidumbre tanto en las evaluaciones del stock como en la evaluación del rendimiento.

3.22 El grupo de trabajo reconoció que esto no se había efectuado y, puesto que los autores no estaban presentes, no pudo completar la evaluación del método TISVPA.

3.23 El grupo de trabajo estuvo de acuerdo en que muchas veces era instructivo utilizar otros modelos. Recordó que en el pasado había hecho comparaciones detalladas de las evaluaciones de los stocks de austromerluza en la Subárea 48.3 con los modelos CASAL y ASPM. En este caso, cuando los modelos utilizaron los mismos conjuntos de datos, los resultados fueron muy similares. El grupo de trabajo indicó la importancia de se probaran los modelos con los mismos conjuntos de datos y de entender el tratamiento y ajuste posterior de estos datos en cada modelo.

3.24 El Dr. Constable indicó que en WG-SAM-08/8, los autores del método TISVPA habían indicado su compromiso con respecto al procedimiento solicitado por WG-SAM y se les debe alentar a que entreguen la información necesaria para que WG-SAM pueda revisar exhaustivamente el método en su próxima reunión. Agregó que el uso de datos obtenidos de un modelo operacional era un importante aspecto del proceso de convalidación, y que se podría utilizar simCASAL (Bull et al., 2008) para este fin.

3.25 El grupo de trabajo reiteró su asesoramiento del año pasado y recomendó que los autores llevaran a cabo el programa de trabajo para la evaluación del modelo descrito en WG-FSA.

3.26 El Dr. Middleton presentó el documento WG-SAM-08/13 que desarrolló mediciones de la calidad de los datos de episodios de pesca, de la captura y del muestreo biológico de las campañas de pesca. La aplicación de estos índices a los datos de la pesquería de austromerluza del Mar de Ross mostró la variación substancial que en algunos casos se da en la calidad de los datos de distintas campañas. Un análisis de conglomerados de estas mediciones identificó dos grupos de viajes distintos. Las tasas de recuperación de marcas de los viajes clasificados dentro de un grupo fueron sistemática y substancialmente más altas que aquellas del otro grupo.

3.27 Se propuso que estas mediciones fuesen utilizadas de dos formas. En primer lugar, las mediciones individuales pueden ofrecer una orientación sobre el uso que se podría dar en una evaluación a conjuntos de datos específicos de un viaje. El grupo de trabajo notó que la calidad requerida de los datos variaría dependiendo de la naturaleza del análisis y que los efectos de dicha variación deberían ser considerados caso por caso. En segundo lugar, un análisis de conglomerados de estas mediciones identificó dos grupos de viajes distintos. Las tasas de recuperación de marcas de los viajes clasificados dentro de un grupo fueron sistemática y substancialmente más altas que aquellas del otro grupo.

3.28 El Dr. Watters indicó que la diversidad de la captura registrada podría servir como variable sustitutiva de la atención dada al proceso de búsqueda de ejemplares marcados en la captura. El grupo de trabajo alentó la refinación de la metodología, conjuntamente con la
presentada en WG-SAM-08/7, a fin de obtener una base para escoger los conjuntos de datos de marcado para las evaluaciones. El grupo de trabajo recomendó que WG-FSA entregue asesoramiento específico acerca de las estadísticas consideradas más útiles para determinar la calidad de los datos con respecto a las evaluaciones.

3.29 El Dr. Constable sugirió que en vez de eliminar datos, se podrían incluir ambos grupos en una evaluación como pesquerías distintas. En primer lugar, se podría efectuar pruebas de sensibilidad con los distintos conjuntos de datos por separado y en combinación, para explorar el grado en que la evaluación podría verse afectada por estas diferencias. El Sr. Dunn estuvo de acuerdo en que esto podría ser posible a mediano plazo. El Dr. Agnew se inclinó por seguir evaluando los efectos de retener datos de baja calidad en las evaluaciones. El grupo de trabajo consideró que era un enfoque conveniente y recomendó seguir trabajando durante el período entre sesiones para identificar otros conjuntos de datos que podrían ser utilizados en la próxima evaluación de la pesquería de austromerluza en el Mar de Ross.

3.30 El grupo de trabajo notó que la metodología tendría otros usos aparte de la selección de datos para la evaluación de poblaciones. Entre ellos, el uso de datos de la pesquería por otros grupos de trabajo como WG-EMM, y en la gestión de la función y capacitación de observadores. El grupo de trabajo también consideró que un sistema centralizado para la Secretaría evalúe la calidad de los datos podría servir para informarse rápidamente acerca de la calidad de los datos de viajes individuales, y simplificar la tarea de determinar la calidad de los datos para otros grupos de trabajo. El grupo de trabajo recomendó que el grupo ad hoc TASO considerara los asuntos planteados en este documento.

Asesoramiento de ordenación

3.31 El grupo de trabajo remitió a la consideración del grupo ad hoc TASO y del WG-FSA las propuestas para examinar y/o mejorar las tasas de detección (párrafo 3.14).

3.32 El grupo de trabajo recomendó que WG-FSA brindara asesoramiento específico acerca de las mediciones más convenientes para determinar la calidad de los datos para las evaluaciones (párrafo 3.28).

3.33 El grupo de trabajo recomendó que el grupo ad hoc TASO considerara los asuntos planteados en WG-SAM-08/13 en lo que se refiere a la calidad de los datos (párrafos 3.26 al 3.28).

Kril

3.34 La Dra. Kasatkina presentó el documento WG-SAM-08/P1 que describió propuestas para el tratamiento de los datos de las prospecciones de kril. Se propone aplicar una distribución delta de Aitcheson para estimar características estadísticas de los valores de captura de las prospecciones de arrastre incluidos el promedio, la desviación estándar, los intervalos de confianza y la función de densidad de probabilidad (distribución delta). Esto involucró la estratificación posterior del área explorada para determinar los estratos con igual probabilidad de detectar ciertos valores de densidad de biomasa del kril. El trazado de tales estratos para densidades de kril específicas debiera hacerse mediante funciones de densidad...
de probabilidad (PDF en sus siglas en inglés) de los datos de la prospección. Se propone que la estimación subsiguiente de la biomasa y la suma de las estimaciones de biomasa de los estratos descritos mejorará la precisión de los resultados de la prospección.

3.35 La Dra. Kasatkina también presentó el documento WG-SAM-08/P2 que indicó además que el muestreo representativo sólo puede efectuarse en áreas con distribuciones de organismos marinos estadísticamente homogéneas. El autor sugirió que se incluya una estratificación de la próxima prospección con estratos de distribución estadísticamente homogénea de las especies objetivo, basadas en los datos de observaciones previas; y asignar el esfuerzo de muestreo en estos estratos. Este documento recomendó minimizar el error en las estimaciones de densidad derivada de las prospecciones acústicas mediante métodos de promedios estadísticos si un componente aleatorio del error es más del doble del componente regular.

3.36 El Dr. Agnew puso en duda que algunas de las propuestas descritas en WG-SAM-08/P1 pudieran servir para el análisis de los datos de captura de las pesquerías comerciales. Sin embargo, el grupo de trabajo no fue capaz de interpretar el documento para aclarar esta posibilidad.

3.37 Puesto que los documentos WG-SAM-08/P1 y 08/P2 fueron presentados en ruso, el grupo de trabajo pidió al autor que preparara un manuscrito en inglés que los combinará para la próxima reunión del WG-SAM, e incluyera ejemplos de análisis para poder hacer una comparación de los métodos de tratamiento de datos propuestos y tradicionales. La comparación de datos del método tradicional y de este método puede ser útil para tratar de entender las posibles ventajas de una prospección de arrastre, y cómo podría ser mejor que una prospección acústica.

Pinnípedos, pingüinos y aves voladoras

3.38 El Dr. Goebel informó sobre el taller de prospecciones de depredadores llevado a cabo del 16 al 20 de junio de 2008 en Hobart, Australia. El taller fue convocado por el Dr. C. Southwell (Australia) y contó con la participación de 17 personas. Se consideraron 12 trabajos relacionados con pingüinos, pinnípedos y aves voladoras. Las 11 especies consideradas en el taller fueron seleccionadas sobre la base de su abundancia total y consumo de kril según Croxall et al. (1985): pingüinos (4), pinnípedos (2) y aves voladoras (5). Se les examinó con respecto a parámetros biológicos en lo que se refiere a estimaciones de abundancia, distribución, incertidumbres en los métodos de estimación y lagunas en el conocimiento actual. El taller concluyó con cuatro categorías de recomendaciones para el WG-EMM, a saber: inmediatas (10), a corto plazo durante el periodo entre sesiones (4), a mediano plazo durante el periodo entre sesiones (4), y trabajo futuro (4). La labor futura contempla más que la estimación de abundancia de depredadores para determinar el consumo de presas de cada especie depredadora. El informe total estuvo disponible como documento WG-EMM-08/8.
ASESORAMIENTO SOBRE LOS MÉTODOS ÚTILES
PARA EL TRABAJO DEL COMITÉ CIENTÍFICO DE LA CCRVMA

Diseños de investigación en las pesquerías exploratorias

4.1 El plan de investigación para las pesquerías exploratorias en las Divisiones 58.4.1 y 58.4.2 fue diseñado para concentrar la pesca en una de cada dos UIPE en un intento por mejorar el conocimiento sobre la distribución de los stocks de austromerluza en estas áreas, y para elaborar evaluaciones basadas en los datos de marcado y recaptura. El primer objetivo ha sido alcanzado en parte, pero a pesar de haberse colocado más de 3 000 marcas, las tasas de recaptura son mucho más bajas que lo que se podía esperar y los datos de marcado sugieren actualmente tamaños de población mucho más grandes que cualquiera de los otros métodos presentados en WG-SAM-08/4. Está claro que algunas de las suposiciones subyacentes del experimento de marcado y recaptura no se han cumplido (ver párrafo 3.2).

4.2 Por lo tanto, el grupo de trabajo informó a WG-FSA que, dados los resultados actuales, es poco probable que los datos de marcado y recaptura entreguen estimaciones precisas de la abundancia local o del tamaño del stock a corto plazo. Sin embargo, se debe continuar los experimentos de marcado de manera que si se llegara a entender mejor la mortalidad del marcado y el desplazamiento, estos datos podrán ser utilizados ya sea en las evaluaciones integradas (como las evaluaciones CASAL en el Mar de Ross) o los métodos descritos en WG-SAM-08/5.

4.3 El grupo de trabajo indicó que el WG-FSA podría considerar la posibilidad de brindar asesoramiento de ordenación para las Divisiones 58.4.1 y 58.4.2 mediante métodos comparables que se valen de la CPUE y de las reducciones locales (WG-SAM-08/4), que podrían servir para el desarrollo de evaluaciones preliminares a corto plazo, con las enmiendas descritas en los párrafos 3.4 y 3.5. El grupo de trabajo también pidió que WG-FSA considerara métodos para adquirir información adicional necesaria para refinar estos métodos. Esto podría incluir la descripción de planes de investigación específicos, incluidas las posiciones de los lances y configuraciones similares de los artes utilizados en los lances de investigación, para mejorar la información obtenida sobre la distribución de la densidad de austromerluzas a través de todas las UIPE y dentro de los caladeros de pesca más probables.

4.4 En lo que respecta a la División 58.4.3a, WG-SAM recomendó que los métodos descritos en WG-SAM-08/5 podían ser utilizados este año para elaborar el asesoramiento de ordenación para la pesquería de Dissostichus spp. en esta división.

4.5 El grupo de trabajo también deliberó sobre el límite de 10 toneladas aplicado a la pesca de austromerluza con fines de investigación para los barcos de pesca comercial que operan en pesquerías que de otro modo no serían asequibles. No se consideró este límite en términos de permitir los arrastres de investigación.

4.6 Los resultados de WG-FSA-07 (SC-CAMLR-XXVI, anexo 5, párrafos 5.10 al 5.23) y WG-SAM-08/6 demuestran que el límite de captura de 10 toneladas no es lo suficientemente alto como para permitir estimaciones útiles del tamaño de la población a partir de los datos de marcado y recaptura, a no ser que las tasas de marcado sean muy altas (más de 10 marcas por tonelada) y las actividades de investigación persistan, demostrando el compromiso de pescar en una sola área durante varias temporadas de pesca.
4.7 Las operaciones de pesca de investigación que tienen un límite de 10 toneladas también podrían servir para estudiar la distribución y densidad de austromerluzas en un área dada. Para ello, se deberán conocer bien las características operacionales de las embarcaciones, se deberán calar muchas líneas cortas (máximo de 5 000 anzuelos) en vez de unas pocas más largas, y en lo posible la posición de las líneas debería ser determinada con antelación para atenerse ya sea a un lugar fijo o a un diseño aleatorio con objetivos definidos.

4.8 El marcado a la razón menor de 3 marcas por tonelada podría beneficiar la investigación aumentando la información sobre el desplazamiento de austromerluzas en vez de generando estimaciones del tamaño del stock, pero se requeriría un elevado número de peces marcados para que la probabilidad de recuperación de las marcas sea suficiente para estos estudios.

4.9 La interpretación de los datos provenientes de la pesca de investigación con un límite de 10 toneladas realizada con barcos nuevos en áreas nuevas puede ser difícil, pero los datos de los barcos con varios años de experiencia y que notifican datos detallados y de muy buena calidad de áreas conocidas (evaluadas) pueden interpretarse con más facilidad.

Establecimiento de límites de captura precautorios en las pesquerías exploratorias cuando no se han realizado estudios científicos

4.10 El grupo de trabajo notó las dificultades del uso de datos de marcado de las pesquerías exploratorias en las evaluaciones de las Divisiones 58.4.1 y 58.4.2 y de otras divisiones. El grupo de trabajo propuso un método a ser considerado por el WG-FSA para avanzar hacia una evaluación en estas áreas y en áreas de características similares:

i) En ausencia de datos fidedignos de marcado, los métodos presentados en WG-SAM-08/4 – que hacen comparaciones entre las áreas evaluadas y no evaluadas y las reducciones de los stocks locales –, modificados para incorporar la incertidumbre indicada, podrían ser utilizados como sustitutos para llegar a una estimación inicial de la densidad de la población.

ii) El método descrito en WG-SAM-08/6 podría ser luego utilizado para determinar la tasa de marcado necesaria.

iii) Una vez que se hayan recopilado datos de marcado y se hayan hecho las suposiciones correctas (vg. suposiciones sobre el nivel de mezcla y la superposición del tamaño y la distribución espacial de los peces marcados y los que normalmente son extraídos por la pesquería), los métodos presentados en WG-SAM-08/5 podrían ser utilizados para refinar la evaluación hasta que se cuente con otras series cronológicas de datos de calidad suficiente para permitir el desarrollo de métodos de evaluación integrados basados en la edad o en la talla.

4.11 Sin embargo, el grupo de trabajo señaló la importancia de que estos enfoques tomen en cuenta adecuadamente la incertidumbre puesto que, intentos previos que se valieron del área de lecho marino y de la densidad de las poblaciones en la Subárea 48.3 resultaron en una estimación más alta de rendimiento en el Mar de Ross (SC-CAMLR-XIX, anexo 5, tabla 32)
que la obtenida con la evaluación integrada subsiguiente que utiliza los datos de marcado conjuntamente con la suposición de que se trata de una mezcla homogénea (SC-CAMLR-XXVI, anexo 5, apéndice I).

Enfoques para minimizar los efectos que tiene el cambio de prácticas de pesca en las evaluaciones

4.12 El grupo de trabajo reconoció que había dos situaciones en que las prácticas de pesca podían cambiar:

i) En el caso de cambios graduales, éstos deben ser vigilados y controlados para que haya la suficiente superposición entre los artes nuevos y viejos, a fin de generar buenas estimaciones del efecto relativo del cambio de arte (vg. la capturabilidad o la selectividad relativa del arte) en las evaluaciones. En las evaluaciones de austromerluza, este período de superposición deberá ser de por lo menos cinco años. Se podría lograr una transición más rápida efectuando pruebas experimentales que incluyan controles de los efectos de distintos artes y de la creciente capacidad a medida que los barcos aprenden a utilizar otros tipos nuevos de artes, para no tener que separarlos estadísticamente.

ii) En el caso de requerirse cambios repentinos, como cuando se aplica un nuevo método de mitigación, esta aplicación generalmente se hará después de que el método de mitigación haya sido sometido a las pruebas necesarias. Estas pruebas experimentales también deberán ser utilizadas para investigar el efecto del nuevo método en la capturabilidad y selectividad, nuevamente controlando el mayor número de otros efectos de los artes como sea posible.

Uso de los BRT en la biorregionalización

4.13 El Dr. Hanchet presentó una reseña de WG-SAM-08/12, que aplicó una técnica estadística de múltiples variables llamada BRT para predecir la distribución espacial valiéndose de datos biológicos discontinuos. El método permite la inclusión de relaciones complejas entre la abundancia y los datos medioambientales que dependen de la escala, y se aplica a mediciones de una especie abundante de zooplancton (*Oithona similis*) obtenidas por medio de un CPR, utilizado principalmente al Este de la Antártida, y de 13 conjuntos de datos del medio ambiente. Este modelo fue posteriormente utilizado para predecir la abundancia y presencia/ausencia de zooplancton en lugares donde no se dispuso de datos CPR.

4.14 Los autores concluyeron que este método era capaz de detectar y definir exitosamente una relación entre las condiciones ambientales a gran escala y a largo plazo y los patrones biológicos observados de la distribución y abundancia de *O. similis*. Los autores destacaron factores que afectan la correlación entre los datos medioambientales y las distribuciones biológicas, y que apuntan a que las especies de mayor tamaño y longevidad o las especies capaces de encontrar sus hábitats preferidos, en ambientes que exhiben menos cambios en el espacio y en el tiempo en pequeña escala, con toda seguridad exhibirán una correlación más fuerte con los datos medioambientales.
4.15 El grupo de trabajo en general estuvo de acuerdo en que el método BRT puede ser aplicado en la biorregionalización y en la biogeografía, así como en el modelado del ecosistema. Sin embargo, se plantearon varias cuestiones relacionadas con la utilidad de esta técnica, así como la incertidumbre en la extrapolación de los conjuntos de datos locales a mayores escalas.

4.16 La mayoría de los participantes en el grupo de trabajo estuvo de acuerdo en que la convalidación cruzada utilizada por los autores resultaba apropiada, y algunos notaron que esta estrategia debería ser utilizada siempre que fuera posible cuando se tratara de realizar este tipo de análisis, sin importar si se hace o no uso exclusivo del método de BRT.

4.17 Se expresó cierta preocupación en cuanto a la presentación de la incertidumbre cuando se hacen extrapolaciones a escalas mayores. El grupo de trabajo notó que los gráficos de cajas y bigotes resultaban útiles en este sentido, y se propuso que la ilustración espacial de los residuales podría servir para examinar los patrones de sesgo e incertidumbre en las predicciones de los BRT. Además, se propuso que la variabilidad en los conjuntos de datos más generales que forman las capas de datos – que también contienen incertidumbre – debe ser incluida en la simulación.

4.18 El grupo de trabajo también deliberó acerca de la utilidad de los valores del solapamiento medioambiental, y algunos miembros indicaron que una prueba formal de la sensibilidad de estas curvas de superposición podría resultar útil. Otros estimaron que esta información podía ser invertida y utilizada para predecir el posible solapamiento ambiental. Esto podría convertirse en el fundamento de una prueba formal de tipo estadístico y de la predicción de las distribuciones espaciales con el BRT.

4.19 El grupo de trabajo alentó a los autores de WG-SAM-08/12 a continuar refinando este enfoque y propuso que esto podría facilitarse a través de un grupo de correspondencia con la participación de expertos en estadística familiarizados con los BRT.

Respuesta de las poblaciones del petrel de mentón blanco y del petrel gris a las pesquerías y a factores ambientales

4.20 El grupo ad hoc WG-IMAF ha pedido un análisis detallado de las respuestas de las poblaciones de petreles a las pesquerías y a factores ambientales (SC-CAMLR-XXVI, anexo 6, párrafo I.8ii)). No se presentaron documentos sobre este tema en particular; sin embargo WG-SAM-08/P3 presentó un modelo de la dinámica de las poblaciones de aves marinas que podría ser utilizado por WG-IMAF.

4.21 El Sr. Dunn expuso un manual de usuario preliminar para SeaBird, un programa de software para el modelado general de la dinámica de las poblaciones de aves marinas basado en la edad y/o etapas del ciclo de vida (WG-SAM-08/P3). Si bien este modelo aún está en desarrollo, ha sido utilizado en la evaluación de la población del albatros de Buller (*Thalassarche bulleri*) en Nueva Zelanda. El software está diseñado para modelar las poblaciones de aves marinas y evaluar como la pesca afecta su variabilidad. Fue desarrollado para integrar una amplia variedad de datos y generar resultados en los cuales se podrían basar las decisiones de ordenación. Las especificaciones del modelo dan flexibilidad, permitiendo que una población esté estructurada de acuerdo con la edad, etapa del ciclo de vida, sexo o
comportamiento (vg. reproductora o no reproductora). Las interacciones con las pesquerías pueden ser modeladas y el usuario puede escoger la secuencia de los eventos en los años de la simulación. La estimación puede hacerse ya sea por el método de la máxima verosimilitud o por métodos bayesianos.

4.22 SeaBird y CASAL comparten muchas características, como por ejemplo, el modelo se divide en tres secciones (población, estimación y resultados), se comparte el concepto de divisiones dentro de un año (i.e. intervalos de tiempo menores de un año), y también el bloque de comandos utilizado para los archivos de entrada. Diferencias entre SeaBird y CASAL incluyen: conceptos relacionados con los parámetros de los modelos que son fundamentales y explícitos en SeaBird, pero limitados (e implícitos) o ausentes en CASAL; la manera como SeaBird trata las observaciones de marcado y recaptura, cuando la muestra no es considerada aleatoria y el objetivo principal es estimar las probabilidades de supervivencia y transición y no la abundancia, y finalmente, el concepto de capturabilidad en CASAL equivale a la visibilidad en SeaBird.

4.23 El Sr. Dunn indicó que, puesto que SeaBird permitía una gran flexibilidad al especificar la dinámica de la población, de las observaciones y de la inicialización, los modeladores deberán tener especial cuidado en asegurarse de que la estructura del modelo y los datos de entrada sean especificados correctamente. El Sr. Dunn también indicó que el paquete de software, el manual y el código de fuente estaban disponibles previa solicitud y los autores se habían ofrecido para ayudar a los que deseen desarrollar modelos valiéndose de SeaBird.

4.24 El grupo de trabajo agradeció a los autores de WG-SAM-08/P3 por su valiosa contribución.

Taller conjunto CCAMLR-IWC

4.25 El Dr. Constable presentó un breve resumen acerca del cometido y metas del taller CCAMLR-IWC a realizarse del 11 al 15 de agosto de 2008 en Hobart, Australia, aludiendo a documentos presentados a la consideración del WG-EMM (WG-SAM-08/14 y 08/15). Recalcó que CCAMLR-IWC acogía otros posibles participantes y estaba dispuesto a considerar la participación a distancia a través de correspondencia durante la reunión. Recalcó la opinión de que el taller es parte de un proceso en curso para ayudar al desarrollo de modelos y obtener metadatos. Se espera que uno de los resultados sea un conjunto de metadatos que se colocará en el sitio web de la CCRVMA y al que podrán acceder todos los modeladores de la CCRVMA.

4.26 El Dr. R. Holt (EEUU) expresó la inquietud de que las normas de acceso de datos de la CCRVMA y de la IWC eran distintas y que esto debía ser considerado por el taller.
Modelos de población de *Dissostichus* spp.

5.1 El Sr. Dunn presentó el documento WG-SAM-08/14 que describe el desarrollo de un modelo estadístico de la dinámica de la población, espacialmente explícito, estructurado según la frecuencia de edades de la captura, para modelar el desplazamiento – Modelo de población espacialmente explícito (SPM en sus siglas en inglés). El SPM simula el desplazamiento agregado y puede ser utilizado en muchas áreas, y es aplicado como modelo discreto de la condición por intervalo de tiempo que representa de manera explícita en el espacio la estructura de edades de la población basada en las cohortes. Los parámetros del modelo se refieren tanto a procesos demográficos (i.e. determinación de la edad, reclutamiento y mortalidad), como a procesos de desplazamiento definidos como el producto de un conjunto de funciones de preferencia basadas en atributos conocidos de la ubicación espacial. El SPM fue diseñado para ser flexible, permitir la estimación de parámetros de la población y el desplazamiento basados en observaciones localizadas o en una acumulación de observaciones en el espacio, que han sido optimizadas para agilizar el procesamiento informático.

5.2 Se presentó un modelo espacial preliminar del desplazamiento de *D. mawsoni* en el Mar de Ross utilizando el software de SPM. El modelo tomó en cuenta un solo sexo y clasificó a los peces como inmaduros, maduros o desovantes. Las observaciones incluidas en el modelo fueron la proporción de edades en capturas comerciales en escala espacial explícita y los índices de la CPUE. Los autores indicaron que los resultados del modelo eran preliminares, pero que los resultados iniciales eran alentadores. El modelo preliminar captó aspectos principales del conocimiento actual sobre la distribución de *D. mawsoni*, lo que sugiere que los peces inmaduros se encontraron al sur del Mar de Ross en la plataforma continental, los peces maduros en el talud continental y los peces desovantes en los bancos septentrionales del Mar de Ross. Los resultados también sugirieron que la parametrización del desplazamiento basado en la latitud, la profundidad y la distancia brinda un ajuste mucho mejor de las observaciones que un modelo que no toma en cuenta la profundidad.

5.3 El Sr. Dunn indicó que el SPM es un modelo de estimación que permite el uso de AIC/BIC o de otros métodos estadísticos para comparar modelos entre sí, lo que podría ayudar a definir modelos operacionales plausibles del desplazamiento que podrían ser utilizados para examinar los modelos de evaluación.

5.4 El grupo de trabajo indicó que se debían desarrollar algunos aspectos del modelo preliminar, a saber, la inclusión de datos explícitos espacialmente sobre el marcado y el estado de madurez, y que se debía considerar el efecto de distintos niveles de agregación espacial. Se deberá dar cierta consideración a cómo se podría incluir la variabilidad regional en el reclutamiento, los coeficientes de capturabilidad (*q*) y otros procesos en el modelo. Más aún, se deberán desarrollar métodos para derivar valores espacialmente explícitos del error de muestreo y métodos para incluir el error de tratamiento adicional.

5.5 El grupo de trabajo pidió que se siguiera perfeccionando el SPM, incluidos los procesos y las clases observadas para incorporar la variabilidad de las clases anuales, las relaciones entre el stock y el reclutamiento, así como observaciones de marcado, recaptura y estado de madurez. El grupo de trabajo indicó que la ejecución del algoritmo de MCMC en
SPM no está completa, y se podría seguir investigando la paralelización de algoritmos para MCMC. Además, a fin de considerar la idoneidad del modelo de evaluación, se deberá modificar el SPM para permitir la simulación de observaciones de los parámetros estructurales del desplazamiento.

5.6 Finalmente, una vez que se hayan elaborado modelos adecuados para la población de *D. mawsoni* del Mar de Ross con el SPM, se deberá examinar el modelo actual de evaluación (SC-CAMLR-XXVI, anexo 5, apéndice I) mediante una prueba de simulación a fin de tomar en cuenta las incertidumbres actuales del modelo de evaluación.

5.7 El Sr. Dunn también describió los métodos y resultados de la convalidación del modelo, incluido comprobaciones de la implementación, las pruebas por unidades durante el desarrollo y la evaluación del software mediante comparaciones. La convalidación efectuada con comparaciones del software sugirió que los procesos contemplados en el SPM replicaban los resultados derivados de otros modelos de población y del desplazamiento ejecutados en código S+/R.

5.8 El grupo de trabajo indicó que el uso del procedimiento de prueba por unidad representaba un avance en términos del desarrollo de códigos para el software creado para ser utilizado por los grupos de trabajo del Comité Científico, y que era un enfoque que los miembros podrían utilizar dándole confianza al grupo de trabajo de que los futuros refinamientos mantendrían la integridad del código en el que se basa el software.

Modelos de la red alimentaria centrada en el kril

5.9 Se han elaborado tres métodos para el modelado de la red alimentaria centrada en el kril. (EPOC, FOOSA, SMOM). El grupo de trabajo examinó el progreso de estos modelos, en particular, con respecto a su uso en la evaluación de la subdivisión del límite de captura de kril en el Área 48 por UOPE, de aquí en adelante llamada “asignación por UOPE”. Las secciones a continuación discuten estos avances.

Ajuste de los modelos al calendario de sucesos

5.10 Durante su reunión de 2007, WG-SAM propuso que sería conveniente tener un calendario de puntos de referencia para el Área 48 a la hora de evaluar los modelos. Se elaboró un calendario de sucesos, respaldado por WG-EMM (SC-CAMLR-XXVI, anexo 4, párrafo 6.45), a fin de contar con un conjunto de expectativas que debían cumplirse en los modelos a ser utilizados en la asignación por UOPE, en particular, con relación a las últimas tendencias en la dinámica de las poblaciones de depredadores y kril (1970–2007) basadas en las tasas de crecimiento de la población y las fechas de los cambios (SC-CAMLR-XXVI, anexo 7, párrafo 5.24).

El Dr. Hill presentó el documento WG-EMM-08/10, que interpretó el calendario en términos cuantitativos (números) que podrían ser utilizados en los modelos. Este proceso constó de dos etapas. En primer lugar, para las poblaciones de pingüinos, pinnipédos y cetáceos, se estimó la abundancia por año y UOPE a partir de la literatura referente al tema. En segundo lugar, las estimaciones de abundancia fueron calculadas con retroactividad hasta 1970 y proyectadas hasta 2007 mediante un modelo de crecimiento exponencial basado en la tasa de cambio presentada en el calendario. En el caso de los cetáceos, las tasas de crecimiento descritas en el calendario fueron actualizadas mediante estimaciones recientes tomadas de la literatura disponible.

El grupo de trabajo notó que el calendario numérico proporcionado en WG-EMM-08/10 brinda un punto de partida común para FOOSA y SMOM, a partir del cual se puede efectuar comparaciones con las predicciones del calendario. El grupo de trabajo reconoció la utilidad de contar con un conjunto inicial de condiciones ya que permitía la comparación de los modelos. Reconoció que solamente las estimaciones de punto proporcionadas en WG-EMM-08/10 fueron utilizadas para ajustar FOOSA y SMOM. Sin embargo, se deberá distinguir entre el uso del calendario para obtener un punto inicial común para las comparaciones de las tendencias históricas, y el uso del calendario para obtener un conjunto de valores de parámetros que serán utilizados para derivar resultados en el futuro.

El grupo de trabajo cuestionó la ventaja de agrupar a los depredadores en grupos genéricos, y la manera de interpretar los parámetros basados en estos grupos genéricos. Si bien el grupo de trabajo reconoció que se debía llegar a un equilibrio entre la complejidad del modelo y la necesidad de avanzar, no queda claro si el uso de grupos genéricos de depredadores o la nueva parametrización de una red alimentaria disgregada acarrearía una menor incertidumbre en los resultados del modelo. En general, se sugirió que la disgregación de los grupos genéricos de depredadores podría aumentar la complejidad del modelo (y por ende la incertidumbre) debido al mayor número de interacciones ecológicas que requerirían de una parametrización. El grupo de trabajo notó que los parámetros de grupos genéricos presentados en Hill et al. (2007) y utilizados en WG-EMM-08/13 y WG-SAM-08/17 correspondían a ciertas UOPE específicas, es decir, que la composición de los grupos genéricos de depredadores no es la misma en todas las UOPE. La Dra. Plagányi propuso construir modelos operacionales con distintas resoluciones taxonómicas en lugar de grupos genéricos de depredadores. En particular, se podría representar una sola especie indicadora en la parametrización. Los modelos operacionales de este tipo podrían incluirse en el conjunto de referencia para las evaluaciones de las estrategias de ordenación.

El grupo de trabajo recordó que el calendario creado por WG-SAM no brinda ninguna indicación acerca de cómo los stocks de peces en el campo del modelado han cambiado en el tiempo (SC-CAMLR-XXVI, anexo 7, párrafo 5.25). Sin embargo, los datos existentes podrían servir para actualizar el calendario a fin de incluir las expectativas generales sobre la dinámica de las poblaciones de peces. El grupo de trabajo identificó numerosas fuentes de datos que podrían ser incluidos en el calendario, como por ejemplo, datos de las prospecciones acústicas realizadas anualmente por AMLR, datos acústicos de CCAMLR-2000 y datos de las series cronológicas de los peces demersales de Georgia del Sur.

En cuanto a la actualización del calendario, el grupo de trabajo indicó que durante la revisión de datos disponibles para los modelos de ecosistema que se hará durante el próximo taller a ser celebrado conjuntamente entre los comités científicos de la CCRVMA y de IWC,
se podría proponer la necesidad de hacer ajustes generales al calendario. El grupo de trabajo indicó que recibiría de buen grado tales ajustes al calendario, pero que sería esencial suspender periódicamente estos cambios para poder refinar el modelo y probar su eficacia, y para formular asesoramiento sobre la asignación por UOPE.

5.16 Se destacaron dos inquietudes generales acerca del ajuste de todos los modelos al calendario. En primer lugar, se puso en duda cuán realista era la tendencia de la biomasa de kril especificada. El Dr. Constable advirtió que los datos disponibles sobre la abundancia de kril no apoyarían la conclusión de que ha habido una reducción de la abundancia en el Área 48 dados los CV (que a menudo no son notificados) de las estimaciones históricas de la abundancia de kril. El grupo de trabajo propuso por lo tanto que WG-EMM revisara la evidencia que apoyaba esta supuesta tendencia. En segundo lugar, el Dr. Hillary propuso otro método para evaluar el grado de correspondencia entre el calendario y los resultados del modelo. En vez de condicionar el modelo a la interpretación numérica del calendario descrito en WG-EMM-08/10, es posible condicionar los modelos a las tasas de crecimiento descritas en el calendario comenzando con las estimaciones empíricas de la abundancia de depredadores proporcionadas en el último documento.

Actualizaciones del modelo FOOSA

5.17 El Dr. Watters presentó la versión actualizada de FOOSA (WG-EMM-08/13). En particular, el Dr. Watters habló sobre cómo los autores han abordado los problemas notados anteriormente en WG-SAM-07 relacionados con el condicionamiento y convalidación del modelo. La nueva capacidad incluyó la posibilidad de vincular el éxito del reclutamiento de los depredadores con las condiciones de la alimentación durante el invierno. Esto fue posible incluyendo en el modelo un término para condicionar el reclutamiento al éxito de la alimentación de los depredadores durante el primer invierno de su vida, como lo sugieren los resultados en Hinke et al. (2007) por ejemplo. Esta formulación concuerda con el requisito descrito en el calendario de que el éxito de la reproducción de los pingüinos no esté necesariamente relacionado con el éxito de la alimentación durante el verano (SC-CAMLR-XXVI, anexo 7, párrafo 5.24(i)(b)).

5.18 Además, el Dr. Watters revisó el conjunto básico de cuatro parametrizaciones utilizadas en esta versión de FOOSA para formular condiciones para la evaluación de riesgos. Estas realizaciones incluyen el contraste entre el movimiento \(m \) o ausencia del movimiento \(n \) de kril a través de las UOPE, y la suposición de una relación estable \(s \) o lineal \(l \) entre el éxito de la alimentación de adultos y la razón entre el número real de reproductores y el total del grupo de adultos de cada población. En todos los casos, se utilizó una tendencia \(t \) en la abundancia de kril para activar el modelo.

5.19 El conjunto básico de parámetros derivados del calendario descrito en WG-EMM-08/10 fue desarrollado ajustando los parámetros del reclutamiento de los stocks de depredadores. Los autores discutieron cómo parametrizaron la considerable incertidumbre de estos parámetros. El Dr. Watters también indicó que los parámetros del kril y de peces no fueron estimados, sino que se supuso que el reclutamiento del kril fue independiente del tamaño del stock en casi la mayor parte del rango de tamaños de la población y fue modelado sin tomar en cuenta el error de tratamiento. La mortalidad de kril se modeló como una
función de la depredación solamente. El calendario también especificó que la abundancia de kril exhibió un cambio en un intervalo de tiempo, y el condicionamiento del modelo se realizó suponiendo un cambio de un 50% en el reclutamiento de kril.

5.20 Después del examen del modelo, el Dr. Watters planteó la pregunta de cómo se debían ponderar los distintos casos en términos de su verosimilitud. Indicó que un método para ponderar los distintos casos podría basarse en criterios estadísticos (por ejemplo, ¿toman en cuenta los parámetros ajustados las suposiciones del calendario?) y ecológicos (por ejemplo ¿arrojan los parámetros ajustados estimaciones verosímiles de la productividad de los depredadores?). Sin embargo, es probable que ahora estos métodos sean arbitrarios. El grupo de trabajo reconoció que los métodos para ponderar los distintos casos debían ser considerados en el futuro.

5.21 Por último, el grupo de trabajo reconoció que FOOSA era capaz de tomar en cuenta las expectativas pertinentes a las poblaciones de depredadores del calendario, dado que el kril es el factor que condiciona el sistema. Sin embargo, surgió una duda en cuanto a la capacidad de predecir tanto la dinámica del kril como de los depredadores simultáneamente. El Dr. Watters indicó que ya se está efectuando trabajo importante para representar de manera más fiable la dinámica del kril en el modelo, como fue requerido en el plan de trabajo a futuro (ver WG-EMM-08/51).

5.22 El grupo de trabajo agregó que las simulaciones a largo plazo sirven para evaluar si los parámetros del modelo dan como resultado poblaciones viables a largo plazo en el modelo. Estas simulaciones sirven para brindar una verificación interna sobre la coherencia del modelo.

5.23 La Dra. Plagányi presentó algunos aspectos del trabajo presentado en WG-SAM-08/17 y WG-EMM-08/44. El primer trabajo describe una versión actualizada del modelo operacional espacial para múltiples especies (SMOM en sus siglas en inglés) para modelar la dinámica que existe entre el kril, los depredadores y la pesquería, y el segundo trabajo describe cómo se condicionó SMOM en el calendario de eventos. La presentación se concentró en los esfuerzos por modelar la dinámica del kril y la captura de peces en SMOM y cómo la labor para condicionar SMOM difiere de trabajos similares para condicionar el modelo FOOSA. Se especificó un conjunto de referencia de las parametrizaciones de SMOM a partir de límites verosímiles de las tasas de supervivencia de depredadores. Estas parametrizaciones fueron condicionadas al calendario ajustando un parámetro de la pendiente que caracteriza la sensitividad del éxito reproductor de los depredadores a la abundancia de kril (para cada combinación de tasas de supervivencia, se calculó un parámetro de la pendiente para cada una de las especies de cetáceos, pinnípedos, pingüinos y peces), y mediante la estimación de las abundancias iniciales (1970) de peces en cada UOPE.

5.24 Se consideraron dos modelos de la dinámica del kril en las aplicaciones de SMOM. En el primer modelo, se especificó una serie de datos de biomasa de kril sobre la base del calendario (i.e. una serie que describe explícitamente un cambio en un intervalo de tiempo) que fue utilizada para condicionar la dinámica de los depredadores de abajo hacia arriba. El condicionamiento de este modelo en el calendario fue relativamente fácil poniendo
simplemente la biomasa de kril como variable condicionante. Este enfoque también fue utilizado para condicionar FOOSA en el calendario. En el segundo modelo, se usaron dos series cronológicas de datos de la temperatura de la superficie del mar para modelar las variaciones temporales en las tasas de crecimiento intrínsecas de la población de kril de un grupo de UOPE del sur (en las Subáreas 48.1 y 48.2) y un grupo de UOPE del norte (en la Subárea 48.3). Este modelo también pudo ser colocado en el calendario pero se requirió una variación súbita en el reclutamiento de kril. El grupo de trabajo estuvo de acuerdo en que SMOM fue capaz de reproducir la dirección y fechas de los cambios observados en la abundancia de depredadores en el calendario.

5.25 La captura histórica de peces fue considerada explícitamente en SMOM. Esto contrasta con la aplicación de FOOSA, que por ahora no trata de tomar en cuenta la captura histórica de peces. Se compiló la captura histórica de peces en general, por UOPE (se utiliza el género peces en la estructura del modelo para representar una mezcla de especies, pero se supone que la composición de peces en cuestión varía en las distintas UOPE) a partir de información de los Boletines Estadísticos de la CCRVMA y notificada en WG-SAM-08/17.

5.26 El grupo de trabajo señaló dos motivos de preocupación relacionados con los métodos utilizados para condicionar SMOM. En primer lugar se consideró que los intentos de modelar las tasas de crecimiento de kril en función de las condiciones ambientales (p.ej. la temperatura) eran un paso importante, pero que el enfoque actual era una aplicación simplista, por lo que se recomendó refinarlo. En segundo lugar, el grupo de trabajo indicó que los intentos de modelar una dinámica de los peces sobre la base de las capturas de la pesquería podrían resultar difíciles dada la naturaleza genérica del grupo de peces que actualmente está siendo representado en los modelos. Con respecto a la agregación del grupo de peces, se cuestionó si era conveniente disgregar el grupo de peces.

Aplicación de FOOSA en EPOC

5.27 El Dr. Constable proporcionó una reseña de la aplicación que hizo de FOOSA en EPOC, notando que resultó más parecida a FOOSA que a una implementación directa (WG-SAM-08/15). Describió cómo se generalizaron varias de las funciones para dar más flexibilidad en la especificación de las condiciones que podían investigarse al evaluar las estrategias de ordenación para el kril. Esta implementación con una meta en particular brinda una oportunidad para incluir más especies de depredadores y presas en la red alimentaria y proporcionar flexibilidad en lo que se refiere al número de estadios de un depredador que se alimenta de kril. Entre las diferencias fundamentales de la estructura del modelo está una función de reclutamiento de los depredadores más generalizada para asegurar que la abundancia de depredadores que da un máximo de reclutamiento es capaz de cambiar con la capacidad de carga ecológica de los depredadores, y un modelo de consumo para los depredadores que toma específicamente en cuenta las posibles diferencias en las tasas de consumo de los depredadores dentro de una temporada en distintas UOPE. El Dr. Constable también mostró la implementación general de EPOC en su forma actual.

5.28 El grupo de trabajo comentó que la implementación tipo FOOSA en EPOC incluye características más complejas que aquellas implementadas en FOOSA, y que esta complejidad podría añadir otro nivel de incertidumbre. El Dr. Constable indicó que, como estructura operacional para el modelado, las características agregan diversidad a las condiciones que
pueden investigarse en la evaluación de las estrategias de ordenación. Como tal, brinda al usuario la capacidad de variar explícitamente la parametrización del modelo basándose en consideraciones matemáticas o ecológicas, o bien limitar el modelo a ciertas condiciones. También significa que se puede alcanzar más transparencia en las decisiones sobre la estructura de los modelos para una diversidad de modeladores y ecologistas, porque las ecuaciones son explícitas y entregan un patrón para probar un rango más amplio de hipótesis. Se propuso una estrategia de utilidad para la evaluación de las ventajas de aumentar la complejidad del modelo y facilitar la transmisión de los resultados del modelado que consiste en agregar gradualmente distintos rasgos o características a las simulaciones. Este proceso también brindaría una oportunidad para examinar si la estructura del modelo debe ser reajustada sobre la base de los conjuntos de parámetros recientes. Dadas las diferencias entre FOOSA y su implementación en EPOC, el grupo de trabajo reconoció que la presentación del análisis de un caso desarrollado de la implementación tipo FOOSA en EPOC ayudaría a comparar los otros enfoques de modelado (FOOSA y SMOM).

Otras consideraciones relativas a la labor de asignación por UOPE

5.29 Otros asuntos específicos discutidos por el grupo de trabajo se centraron en cómo se podrían representar las poblaciones de cetáceos en los modelos, cómo las parametrizaciones del reclutamiento de peces podrían resultar en efectos estabilizadores que permitirían la recuperación de las poblaciones cuando se cesa la pesca en el modelo, y cuán importante era tomar en cuenta el potencial de que los grupos de depredadores vuelvan a recolonizar áreas donde sus poblaciones han sido agotadas. Ademáes, se discutió el rol del flujo de kril desde y hacia las áreas fuera de las UOPE, el potencial de los depredadores de alimentarse fuera de las UOPE, y si se aplicaron factores de forzado ambiental a aquellos componentes del modelo.

5.30 El grupo de trabajo estuvo de acuerdo en que había una importante diferencia entre las estructuras de modelado, tales como EPOC, y los modelos construidos para un objetivo específico como FOOSA y SMOM. Se indicó que la implementación tipo FOOSA en EPOC era lo suficientemente diferente de FOOSA como para darle otro nombre.

5.31 El grupo de trabajo indicó que el desarrollo continuado de modelos podría resultar en múltiples versiones de los modelos que son considerados por los grupos de trabajo del Comité Científico en distintos momentos del desarrollo de modelos. Para una mejor gestión del desarrollo y distribución de los modelos, se acordó en general que se elaborara algún tipo de mecanismo para archivar cada “versión” del modelo a medida que éste se va actualizando. Se deberá incluir además el software y los conjuntos de datos que incluyen la formulación de los parámetros de cada versión, y se pensó que, como mínimo, se debían enviar los conjuntos de parámetros a la Secretaría.

Un modelo empírico de evaluación del ecosistema

5.32 El Dr. Constable presentó un modelo empírico de evaluación del ecosistema descrito en WG-SAM-08/16 (otros aspectos de este trabajo fueron discutidos bajo el punto 6.3). El modelo pretende caracterizar la red alimentaria en términos estadísticos, y requiere menos suposiciones que la mayoría de los otros modelos del ecosistema. El modelo describe la biomasa de kril en función de la mortalidad por pesca y un conjunto jerárquico de términos
del error que describen distintas fuentes de variación de procesos (vg. efectos relativos a las UOPE y efectos anuales independientes). Se puede hacer que la mortalidad por pesca afecte la futura biomasa de kril mediante un término de autorregresión, y la dependencia de la densidad de la población de kril puede modelarse mediante un término que compara el nivel actual de abundancia con el promedio de la abundancia a largo plazo. El modelo no caracteriza explícitamente el efecto de los depredadores en el kril, pero sí es explícito en cuanto al efecto que la disponibilidad de kril tiene en los depredadores. En el modelo estos efectos influyen en uno o más índices del éxito de los depredadores (vg. índices individuales del CEMP o los CSI) a través de una función lo suficientemente flexible para producir patrones que se asemejen a las bien conocidas respuestas funcionales de alimentación tipo II y III de Holling. Si bien el modelo fue aplicado como un modelo de simulación en WG-SAM-08/16, el Dr. Constable indicó que se pretende desarrollarlo para que sirva como un modelo de estimación.

5.33 El grupo de trabajo reconoció lo novedoso de este enfoque de modelado descrito en WG-SAM-08/16. Generalmente se considera que los modelos de ecosistemas son más útiles como modelos operacionales para la evaluación de estrategias de ordenación que como modelos de evaluación (vg. FAO, 2008). Así, el modelo descrito en WG-SAM-08/16 es original y prometedor en el sentido que se propone utilizarlo como modelo de evaluación. El grupo de trabajo alentó a los autores del trabajo a continuar su trabajo al respecto.

5.34 Después de respaldar la continuación del trabajo con el modelo descrito en WG-SAM-08/16, el grupo de trabajo propuso que durante este proceso los autores consideren tres puntos adicionales. Primero, el grupo de trabajo indicó la dificultad de evaluar totalmente el modelo durante esta reunión dado el alcance del trabajo presentado en este documento y el tiempo disponible. Se pidió a los autores que mantuvieran informado al grupo de trabajo acerca del progreso con la estrategia de modelación y posteriormente le entregaran un ejemplo práctico detallado al grupo. Segundo, el grupo de trabajo propuso que los autores consideraran enfoques para volver a parametrizar y, posiblemente simplificar el modelo. Por ejemplo, se propuso que los autores consideraran una estrategia de reparametrización conocida como centramiento jerárquico (Gelfand et al., 1995, 1996) y modelos alternativos para simular la dependencia de la densidad y/o los futuros efectos de la pesca a futuro que estén estructurados como recorridos aleatorios. Finalmente, el grupo de trabajo propuso que sería útil generar datos (con error) del modelo y luego tratar de efectuar una estimación para determinar si se pueden calcular los verdaderos valores de los parámetros.

Modelos de redes alimentarias centradas en peces

5.35 No se presentó ningún trabajo al WG-SAM sobre modelos de la red alimentaria centrada en peces. Sin embargo, el Dr. Hanchet indicó que un trabajo que describió una actualización de un modelo de ecosistema trófico de flujo de carbono del Mar de Ross había sido presentado al WG-EMM (WG-EMM-08/42). Los autores estiman que el modelo representa un primer paso en el estudio de los efectos de la pesca de D. mawsoni en el ecosistema. Se indicó en este trabajo que el objetivo a futuro es desarrollar un modelo verosímil realista en grado mínimo que serviría para estudiar y proporcionar asesoramiento para ordenar los efectos de la pesquería de D. mawsoni en el ecosistema del Mar de Ross.
Modelos de ecosistemas

5.36 No se presentaron otras estrategias de modelado del ecosistema a la consideración del grupo de trabajo. WG-SAM alentó a los miembros a refinar los modelos que podrían ser utilizados para comprender la dinámica de los ecosistemas y las consecuencias de las estrategias de ordenación en los recursos antárticos.

Otros modelos

5.37 El Sr. Dunn presentó el documento WG-SAM-08/P3, un manual preliminar para el usuario de SeaBird, un software para modelar las poblaciones de aves marinas. Esto se trató en más profundidad bajo el punto 4.5. No se presentó ningún otro documento al grupo de trabajo bajo este punto de la agenda.

EVALUACIÓN DE ESTRATEGIAS DE ORDENACIÓN

Dissostichus spp.

6.1 El Dr. Brandão presentó el documento WG-SAM-08/11, que describe un conjunto de referencia de cuatro modelos operacionales de los estados actuales del recurso austromerluza en la región de las Islas Príncipe Eduardo (Subáreas 58.6/58.7), a saber; “Optimista”, “Mediano”, “Menos pesimista” y “Pesimista”. Estos modelos se utilizan para investigar los resultados de un procedimiento de ordenación propuesto que utiliza dos fuentes de datos, la tendencia del índice de la CPUE y la talla promedio de los peces capturados en la pesca de palangre para proporcionar los futuros límites de captura, con el objeto principal de generar una probabilidad razonable de obtener un aumento de la tasa de captura, cualquiera que fuese el estado actual del recurso. Los resultados del procedimiento de ordenación propuesto demostraron ser razonablemente robustos al someterlos a diversas pruebas de sensibilidad, si bien en términos de la conservación empeoran si la pendiente supuesta en el conjunto de referencia es considerablemente menor. Las pruebas de sensibilidad también indican que es necesario realizar el seguimiento de la frecuencia de tallas de las capturas futuras para evitar un cambio en la selectividad y hacia una captura mayor de peces de más edad.

6.2 El grupo de trabajo señaló que sería de interés comparar los resultados del procedimiento de ordenación con los criterios de decisión de la CCRVMA. Sugirió asimismo que sería muy instructivo disponer de un índice estadístico basado en una menor probabilidad de que el valor final de la CPUE sea menor que los niveles más recientes.

6.3 El grupo de trabajo indicó que la incertidumbre de las proyecciones de la CPUE para la condición “Menos pesimista” es mayor que para las otras condiciones, y que esto debe ser estudiado más a fondo. Una posibilidad es que la varianza estimada de los índices CPUE sea mucho mayor para el modelo operacional “Menos pesimista” que para los otros modelos operacionales y que esta varianza sea utilizada para proyectar la CPUE a futuro.
Champsocephalus gunnari

6.4 No se presentaron documentos de trabajo a WG-SAM para evaluar las estrategias de ordenación de *C. gunnari*, y por lo tanto el grupo de trabajo no contó con información para considerar este tema.

Euphausia superba

Marco para las evaluaciones de la Etapa 1

6.5 El grupo de trabajo su recomendación anterior al WG-EMM y al Comité Científico que la pesquería de kril en el Área 48 debería desarrollarse por etapas (SC-CAMLR-XXVI, anexo 7, párrafos 5.7 al 5.51). Esta recomendación fue aprobada a continuación, con la expectativa de que este año se proporcionaría asesoramiento más extenso, en la forma de una evaluación del riesgo, de cómo proceder con la Etapa 1 de subdivisión del límite de captura precautorio entre las UOPE del Área 48 (SC-CAMLR-XXVI, párrafo 3.36).

6.6 El Dr. Watters presentó el documento WG-EMM-08/30, que describe una evaluación del riesgo diseñada expresamente para proporcionar asesoramiento sobre las estrategias para subdividir el límite de captura precautorio por UOPE en la Etapa 1. La evaluación del riesgo fue efectuada con FOOSA, utilizando el conjunto de referencia de cuatro parametrizaciones condicionadas en el calendario (WG-EMM-08/13). La evaluación del riesgo se ciñó a las guías técnicas especificadas en WG-SAM-07 casi al pie de la letra, con modificaciones menores que incluyen:

i) la introducción del error de aplicación, mediante la inclusión de error aleatorio en las cantidades utilizadas para calcular límites de captura para cada UOPE en particular (es decir, las estimaciones iniciales de la biomasa de kril y del consumo de los depredadores);

ii) índices del rendimiento para el kril basados en los criterios de decisión existentes y que tengan relación tanto con la abundancia antes de la explotación (como lo estipulan los criterios de decisión actuales) como con los resultados de experimentos o pruebas comparables que no contemplan la pesca o explotación;

iii) un vector de las ponderaciones de verosimilitud utilizadas para estimar los promedios del modelo.

6.7 La labor descrita en el documento WG-EMM-08/30 centra la atención en los pormenores metodológicos y técnicos y en su influencia en la interpretación de resultados. Los resultados no se discuten per se.

6.8 Inicialmente, las preguntas del grupo de trabajo se concentraron en entender las condiciones iniciales utilizadas en simulaciones preliminares en la evaluación del riesgo. El Dr. Watters informó al grupo de trabajo que las condiciones iniciales eran las mismas a través de todas las simulaciones de un modelo dado, es decir, el punto de partida de la evaluación de riesgo para cada uno de los conjuntos de parámetros estaba fijo. Sin embargo, el proceso utilizado para afinar y desarrollar el conjunto de cuatro parametrizaciones de referencia de la evaluación produjo diferencias en los puntos de partida de las parametrizaciones. Se puede
considerar que estos cuatro puntos de partida provienen de una distribución de condiciones iniciales, aunque la varianza entre parametrizaciones de estos puntos de partida posiblemente sólo representa parcialmente la verdadera incertidumbre de las condiciones iniciales. Se utilizó el mismo conjunto de errores de tratamiento para simular la variabilidad aleatoria del reclutamiento de kril y la abundancia a través de las cuatro parametrizaciones del conjunto de referencia.

6.9 El Dr. Agnew señaló que las predicciones de las parametrizaciones del modelo FOOSA sin tomar en cuenta el movimiento de kril indicaron que era posible que se violara la parte del criterio de decisión referente al agotamiento de kril (es decir, que durante la temporada de pesca, la biomasa del stock desovante de kril disminuiría a menos de 20% de la mediana del stock virgen en más de 10% del período) porque esos conjuntos de parámetros dan a entender que existen tendencias descendientes continuadas de la abundancia de kril. Sin embargo, si se evalúa el riesgo de violar el criterio de decisión para el kril en relación con las predicciones de pruebas comparables que no contemplan la pesca o explotación, se reduce sustancialmente el riesgo. El grupo de trabajo indicó que el Comité Científico no ha recomendado que los índices decimales de kril sean comparados con pruebas o simulaciones que no contemplan la pesca. A pesar de ello, el grupo de trabajo estuvo de acuerdo en que estos índices métricos podrían ser utilizados en la evaluación del impacto de la pesca cuando otros factores causan tendencias en el sistema (párrafo 6.16).

6.10 La discusión resumida en el párrafo anterior condujo a una consideración más a fondo de las suposiciones utilizadas para derivar los niveles de \(\gamma \) a partir del modelo de rendimiento de kril. El grupo de trabajo estuvo de acuerdo en que se debe informar al WG-EMM, el Comité Científico y la Comisión que el nivel de \(\gamma \) (0.093) acordado actualmente y aplicado al recurso kril en el Área 48 fue derivado suponiendo que la variabilidad interanual de la biomasa de kril continuará en el futuro, pero sin tener en cuenta una tendencia ocasionada por factores externos como el cambio climático.

6.11 El Dr. Constable presentó el documento WG-SAM-08/16, con los detalles del desarrollo de un procedimiento de ordenación precautorio centrado en el ecosistema para las pesquerías de kril, en base a la extensa experiencia acumulada en la CCRVMA. El procedimiento se basa en un modelo empírico de evaluación del ecosistema, un criterio de decisión para determinar los límites de captura a escala local en base a una estrategia de recolección y una evaluación del rendimiento de una sola especie, y el método para implementar el procedimiento. El criterio de decisión para fijar los límites de captura para una estrategia de recolección dada expresa las condiciones que se deben conseguir y las incertidumbres que se deben manejar. Es una extensión natural del enfoque precautorio actual de la CCRVMA para el kril y puede utilizar conjuntos de datos existentes, incluidas las prospecciones de \(B_0 \), el seguimiento localizado de la densidad de kril y del rendimiento de los depredadores, el seguimiento de zonas de alimentación de depredadores y las series cronológicas de las capturas de la pesquería.

6.12 El Dr. Constable indicó que este procedimiento proporciona un marco común para incorporar datos, métodos de evaluación y posibles enfoques de modelación para la evaluación del rendimiento. En consecuencia, su forma es tal que se pueden actualizar las recomendaciones sobre las estrategias de recolección de kril a medida que se refina cualquier componente del procedimiento, incluida la provisión de datos, la implementación de nuevas evaluaciones o modelos de proyección, o revisiones de los criterios de decisión. Este marco da un carácter formal a las decisiones necesarias para manejar un conjunto de modelos de la
red alimentaria a fin de proporcionar asesoramiento precautorio adecuado sobre cómo estructurar espacialmente las pesquerías de kril para dar cuenta de las necesidades de los depredadores. Satisface la necesidad primaria de tratar la incertidumbre, ya sea mediante la obtención de mejores estimaciones de los parámetros incorporados en los modelos o mediante la alteración de la estrategia de recolección.

6.13 El Dr. Constable indicó además que una estrategia de recolección preferida, que para comenzar no es sostenible debido a la incertidumbre con respecto a su efecto en el ecosistema, puede llegar a ser una opción adecuada si se reduce esta incertidumbre. Es posible concebir que el procedimiento descrito en WG-SAM-08/16 sea utilizado en un sistema de ordenación interactivo y estructurado en una escala espacial, para asegurar que la CCRVMA sea capaz de responder a las tendencias del ecosistema, incluidas las que emanan de la pesca o del cambio climático.

6.14 El grupo de trabajo señaló el alcance de la labor descrita en el documento WG-SAM-08/16, y la examinó durante una discusión extensa que incluyó los siguientes temas:

i) la definición de los términos utilizados por el grupo de trabajo. Específicamente, el grupo de trabajo recomendó que la terminología debería, en la medida de lo posible, concordar con la terminología de otros foros internacionales (vg. Rademeyer et al., 2007, apéndice 1). Además, el informe del grupo de trabajo podría contener un glosario de términos, una vez creado;

ii) la implementación e interpretación de los índices normalizados compuestos del CEMP (CSI) dentro del marco propuesto en WG-SAM-08/16 (párrafos 6.26 al 6.30);

iii) la aclaración de cómo el procedimiento de ordenación basado en el ecosistema propuesto en WG-SAM-08/16 podría ser utilizado para proporcionar recomendaciones sobre la asignación espacial de las capturas de kril este año utilizando los resultados de FOOSA y SMOM para desarrollar los CSI (párrafos 6.26 al 6.30);

iv) si los criterios de decisión y los parámetros de control asociados deberían ser fijos o si deberían evolucionar con el tiempo. El grupo de trabajo estuvo de acuerdo en que sería necesario considerar la evolución, en particular si la Comisión pide cambios. El grupo de trabajo indicó que sería difícil determinar cuáles deberían ser los valores de tales parámetros de control en el futuro (párrafo 6.24);

v) si se pretende que el marco sea aplicable a todos los depredadores o solamente a aquellos cuyas zonas de alimentación son limitadas en épocas específicas de su ciclo de vida (vg. durante la época de reproducción). El grupo de trabajo estuvo de acuerdo en que la interpretación anterior concordaba mejor con el artículo II de la Convención.

6.15 La discusión en curso se centró luego en tres cuestiones específicas.

6.16 En primer lugar el grupo de trabajo consideró si el punto de referencia de los criterios de decisión debería ser la condición del stock antes de la explotación o el estado pronosticado
de pruebas o simulaciones que no contemplan la explotación. En principio, el grupo de trabajo estuvo de acuerdo en que el rendimiento de los depredadores podía ser evaluado en relación a ambos, pero no se alcanzó un consenso sobre cuál era preferible. WG-SAM-08/16 propuso un criterio de decisión en base a estados del stock existentes antes de la explotación para determinar la desviación de la condición básica original. La alternativa es basar los criterios de decisión en una serie cronológica de pronósticos de simulaciones sin explotación (párrafo 6.9) porque tiene el potencial de eliminar las tendencias, los efectos transitorios de las parametrizaciones del modelo, los efectos del clima y los efectos de otras propiedades dinámicas que no son generadas por la estrategia de ordenación que está siendo evaluada.

6.17 El grupo de trabajo recordó la labor anterior realizada por el subgrupo de trabajo de estadísticas para definir los valores que caen fuera de aquellos observados normalmente (VOGON) (SC-CAMLR-XV, anexo 4, apéndice H; SC-CAMLR-XVI, anexo 4, apéndice D, párrafo 2.9) y discutió si este concepto también sería útil para definir puntos de referencia para los criterios de decisión. El grupo de trabajo opinó que el concepto de VOGON y su derivación serviría para definir estos puntos de referencia. El grupo de trabajo estuvo de acuerdo en que el establecimiento de referencias básicas debería incluir la consideración de la variación a través de varias escalas espaciales.

6.18 En segundo lugar el grupo de trabajo consideró si un criterio de decisión debería tratar de manera explícita el rendimiento de la pesca (es decir, no estar limitado al rendimiento de los depredadores). WG-SAM-08/16 propuso un criterio de decisión que no trata explícitamente el rendimiento de la pesca. Sin embargo, el Dr. Constable indicó que WG-SAM-08/16 muestra cómo se podría utilizar el rendimiento de la pesca para elegir entre las distintas estrategias de recolección cuando éstas, incluidos los límites de captura espaciales, contemplan el mismo nivel de precaución. Por ejemplo, la consideración del rendimiento de la pesca, junto con otros factores relativos al comercio, la ejecución y el cumplimiento, podría tener como resultado que se prefiriese un límite de captura menor. Así, los índices del rendimiento de la pesca son importantes porque complementan los resultados de los cálculos utilizados para determinar el efecto de un criterio de decisión. El grupo de trabajo estuvo de acuerdo en que sería posible incluir explícitamente los índices del rendimiento de las pesquerías en criterios de decisión a nivel de ecosistema. El grupo de trabajo también convino en que se debería estudiar este tipo de criterio de decisión, y señaló que IWC ya ha tratado este tema, y que valdría la pena examinar el enfoque de esta organización.

6.19 En tercer lugar el grupo de trabajo consideró cómo incorporar el enfoque precautorio en las varias etapas de un marco decisorio a nivel de ecosistema. WG-SAM-08/16 propuso un criterio de decisión en el cual el enfoque precautorio es incorporado en la etapa final, al elaborar resúmenes de los resultados de modelos o evaluaciones (por ejemplo, tomando el vigésimo percentil de la distribución de tasas de recolección sugerida por un conjunto de resultados). El grupo de trabajo señaló que es difícil acomodar el enfoque precautorio en otras partes del criterio de decisión debido a los posibles sesgos de los modelos de proyección y evaluación. También indicó que:

i) los modelos inevitablemente tienen sesgos, imprevistos o no, a favor de la pesquería o del ecosistema;

ii) se debe aplicar el criterio de precaución para conseguir los objetivos del artículo II;
iii) sería conveniente contar con un criterio de decisión que fuese resistente a los sesgos en ambas direcciones y que fuese a la vez precautorio.

6.20 La Dra. Plagányi proporcionó un resumen del documento WG-EMM-08/44, que presentó un marco para la utilización de SMOM y sus resultados en el desarrollo de índices apropiados del riesgo, que puedan servir para generar los índices de rendimiento. La Dra. Plagányi presentó la lista siguiente de requisitos para el marco de evaluación de los procedimientos de ordenación:

i) consenso en lo que se refiere a los objetivos generales de la ordenación de las poblaciones en la región bajo consideración;

ii) consenso en lo que se refiere a los datos (observaciones) disponibles de relevancia para la dinámica de estas poblaciones (por ejemplo, WG-EMM-08/10);

iii) desarrollo de una amplia variedad de modelos operacionales (por ejemplo, FOOSA, SMOM y EPOC);

iv) el ajuste (acondicionamiento) de cada uno de estos modelos a los datos acordados;

v) la ponderación de los modelos operacionales verosímiles en base a consideraciones a priori y su ajuste a los datos;

vi) la especificación de estadísticas en lo que se refiere a los resultados de los diversos procedimientos de ordenación propuestos que deberán ser evaluados y comparados;

vii) consenso en lo que se refiere a las guías y/o valores umbrales que deben cumplir los procedimientos de ordenación para ser aceptables en relación con los objetivos acordados para la ordenación;

viii) el desarrollo de procedimientos de ordenación posibles;

ix) pruebas de cada uno de los procedimientos de ordenación propuestos mediante proyecciones a futuro por cierto número de años con cada modelo operacional, bajo las acciones de ordenación resultantes cada año del procedimiento de ordenación;

x) comparación de las estadísticas del rendimiento para cada procedimiento de ordenación propuesto obtenidas con todos los modelos operacionales dada la ponderación, y elección del procedimiento de ordenación que mejor consigue los objetivos generales.

6.21 El grupo de trabajo estuvo de acuerdo en que vale la pena seguir trabajando para conseguir que todos los enfoques de modelado sean considerados en la provisión de asesoramiento de ordenación. El grupo acordó que el marco presentado por la Dra. Plagányi podría ser adaptado por SC-CAMLR para guiar la labor futura en las etapas subsiguientes y propuso considerar este tema en una reunión futura. Al hacer esto, el grupo de trabajo deberá también compilar una lista o cuadro del progreso logrado en relación con cada etapa.
6.22 El grupo de trabajo convino en que si los distintos modelos proporcionan distintas recomendaciones, sería importante tomar mayores precauciones al fijar los límites de captura para cada UOPE.

6.23 El grupo de trabajo acordó que si bien el documento WG-EMM-08/30 y los resultados de la deliberaciones de este año se podrían utilizar para hacer recomendaciones en la Etapa 1 de la asignación de límites de captura por UOPE, WG-EMM deberá discutir la verosimilitud relativa de cada parametrización del conjunto de referencia. WG-EMM-08/30 proporcionó cierta indicación de las ponderaciones de verosimilitud que podrían ser asignadas a cada conjunto de referencia.

6.24 Al considerar la continuación de la labor de asignación de cuotas de captura por UOPE (Etapa 2 y etapas posteriores), el grupo de trabajo indicó que:

i) los modelos actuales y los conjuntos de referencia considerados por WG-SAM contienen varias suposiciones, parametrizaciones y estructuras que deberán ser actualizadas o revisadas en el futuro a medida que mejoren las pruebas científicas;

ii) el desarrollo de criterios de decisión debe considerar la interpretación de la frase “mantenimiento de las relaciones ecológicas” en el artículo II;

iii) al acordar criterios de decisión, se deberá juzgar la magnitud de los parámetros de control, por ejemplo la probabilidad de que se desvíen de la línea de base, a fin de conseguir el nivel deseado de precaución.

6.25 El grupo de trabajo convino en informar al WG-EMM y al Comité Científico sobre los temas que deben ser considerados en la formulación de criterios de decisión a nivel de ecosistema. El grupo de trabajo también estuvo de acuerdo en que el marco propuesto en WG-SAM-08/16 había cubierto esos temas a fondo, y debería ser considerado por WG-EMM.

Índices de rendimiento

6.26 El grupo de trabajo señaló que la mayoría de las simulaciones con los modelos producen tendencias en la dinámica del ecosistema después del período de afinación o calibración inicial. Por lo tanto, podría resultar conveniente construir índices de rendimiento para los componentes biológicos del ecosistema que hacen comparaciones con las normas basadas en pruebas que no contemplan la pesca (párrafo 6.16). El grupo de trabajo advirtió que la comparación con normas previstas a futuro aumenta la dependencia en las predicciones de los modelos.

6.27 El recurso peces tiene gran influencia en la dinámica en general de las pasadas actuales con los modelos FOOSA y SMOM, pero debido a la escasez de datos de observación de la dinámica de los peces, no se han incorporado las condiciones pertinentes en los modelos. Hay varias diferencias estructurales en la parametrización de los peces en FOOSA y SMOM y esto es de utilidad a la hora de representar la incertidumbre de este grupo. No obstante, el rol del recurso peces en el ecosistema sigue siendo una fuente importante de incertidumbre. Por ejemplo, la dinámica de los mictófidos puede ser muy importante en algunas UOPE, como depredadores de kril y como presa de los depredadores tope.
6.28 El grupo de trabajo indicó que cuando se interpretan los resultados de los modelos en lo que se refiere a las recomendaciones para la Etapa 1, WG-EMM deberá tener en cuenta la escasez de datos sobre peces mesopelágicos al desarrollar abundancias genéricas de peces en el calendario.

6.29 El grupo de trabajo señaló que varias cuestiones relacionadas con el desarrollo de índices compuestos de rendimiento (incluidos los CSI) merecen mayor consideración:

i) ¿Existe la posibilidad de que se hagan desaparecer detalles importantes al agrupar datos de varias áreas, periodos de tiempo y poblaciones?

ii) ¿Cómo pueden tratarse los lapsos de tiempo (por ejemplo, desde el momento en que ocurre un efecto de la pesca hasta el momento en que se mide el índice del rendimiento) durante el desarrollo de los índices compuestos?

iii) ¿Se deberían ponderar o no los componentes del índice compuesto?

iv) ¿Cómo se puede evitar que los índices compuestos sean confundidos por factores que no se relacionan con los efectos de la pesca en el kril?

6.30 El grupo de trabajo acordó utilizar los resultados de FOOSA para desarrollar un ejemplo de CSI a fin de clarificar estas cuestiones, en base a los resultados de un modelo de ecosistema (párrafo 6.37).

Resumen de las evaluaciones del riesgo

6.31 El grupo de trabajo revisó la utilización de los índices del riesgo derivados de las evaluaciones con FOOSA en relación a las condiciones listadas en la sección 5.2 de este informe. La discusión se enfocó en los resultados gráficos y, en relación con el artículo II de la Convención, en los criterios de decisión para la asignación de límites de captura del recurso kril. Dado que estas evaluaciones resumidas se ajustan exactamente a las especificaciones de WG-SAM de 2007, el grupo de trabajo aprobó su utilización.

6.32 La Dra. Plagányi proporcionó una reseña de la labor de modelado con SMOM para producir situaciones de riesgo que pudiesen ser comparadas directamente con los resultados del modelo FOOSA presentados en el documento WG-EMM-08/30. La Dra. Plagányi utilizó datos de simulación para estudiar la probabilidad de que la abundancia de los depredadores disminuya a menos del 75% del valor que tendría en una situación comparable pero sin explotación, para varias tasas de explotación de las opciones de pesca 2, 3 y 4. Esta simulación fue considerada como la más similar al caso “nst” presentado en la figura 6 del documento WG-EMM-08/30.

6.33 Al comparar los gráficos de la evaluación de riesgo de los dos marcos de modelación, el grupo de trabajo constató satisfecho que los resultados de ambos marcos de modelación se asemejaban bastante para las condiciones simuladas.

6.34 Sin embargo, se observaron ciertas diferencias, y los miembros del grupo de trabajo pidieron que se aclare si: (i) estas diferencias se relacionaban con diferencias estructurales de los enfoques de modelación o (ii) si las diferencias se relacionaban con los parámetros y
condiciones iniciales. La Dra. Plagányi señaló que parte de las diferencias se relacionaban con la aplicación de un concepto genérico del recurso pez en los modelos (párrafo 5.25). Además, la supervivencia de los adultos y de los juveniles se trata de manera diferente en cada modelo. Otras cuestiones técnicas para aclarar aún más el alcance de las similitudes y las diferencias entre los modelos se refieren a la ponderación dada a la verosimilitud relativa de los modelos en el conjunto de referencia, cómo se da cuenta del error de aplicación, cómo se implementa la subdivisión de la captura para cada una de las opciones de pesca, la capacidad relativa de cada grupo de depredadores para competir, y las condiciones referentes al desplazamiento de kril. Los autores de ambos modelos y varios de los participantes del grupo de trabajo reconocieron que el desplazamiento de kril es un componente importante de la incertidumbre, y ha sido discutido anteriormente por el WG-EMM (SC-CAMLR-XXV, anexo 4). Estas discusiones especificaron las diferencias entre las simulaciones que consideran el movimiento y las que no lo consideran presentadas en WG-EMM-08/30.

6.35 El Dr. Watters indicó que si bien es apropiado considerar las diferencias entre modelos, los enfoques de modelación incorporan distintas incertidumbres estructurales y que estas diferencias pueden apuntar a resultados fiables. Por ejemplo, ambos modelos pronosticaron riesgos relativamente pequeños en cuanto al nivel crítico de activación para las opciones de pesca 2 y 3.

6.36 El grupo de trabajo discutió a continuación los tipos de recomendaciones que podrían proporcionarse a WG-EMM, y sus limitaciones. Estuvo de acuerdo en que FOOSA y SMOM son válidos y que la mayor parte de las diferencias en los resultados de los modelos tenían una explicación adecuada. Sobre esta base, el grupo de trabajo convinó en que ambos enfoques de modelación podían ser utilizados para proporcionar una indicación del riesgo a la consideración del WG-EMM. El grupo de trabajo también sugirió que se facilitaría la resolución de las diferencias entre los resultados de los modelos si los expertos del WG-EMM diesen una indicación de cuáles parámetros podrían requerir una revisión para alinear los parámetros de entrada de cada modelo. El grupo de trabajo también propuso que WG-EMM podría encargarse de clasificar la verosimilitud de los modelos.

6.37 El Dr. Constable proporcionó una reseña de su labor. Estudió la utilización de los resultados del modelo FOOSA para desarrollar índices CSI, examinar el rendimiento del ecosistema, y proporcionar índices del riesgo asociado a varios procedimientos de ordenación (como los representados por las opciones de pesca 2, 3 y 4). El Dr. Constable sugirió que el CSI era una medida adecuada del riesgo debido al alto grado de incertidumbre asociado con la utilización de los modelos de ecosistema disponibles para evaluar el efecto de las pesquerías en poblaciones individuales de depredadores a nivel de UOPE. Sin embargo, el CSI debería detectar los efectos de la pesca al integrar las respuestas de los depredadores de todas las áreas. Como fuera indicado en WG-SAM-08/16, el objetivo del CSI es proporcionar una medida de la variación del ecosistema y una indicación de cómo la pesca podría causar una desviación de la dinámica de la red alimenticia en relación con la variación normal. Por lo tanto, el CSI presentado al grupo de trabajo incorporó la variabilidad de la dinámica de los depredadores en simulaciones que no contemplaron la pesca para definir la variabilidad básica o normal. La referencia a la simulación que no considera la pesca ayuda a eliminar el sesgo que pueda tener el modelo.

6.38 Los resultados para el índice CSI presentado al grupo de trabajo se basaron en el reclutamiento de los depredadores. La serie de reclutamiento para cada depredador fue normalizada en relación con la edad de reclutamiento para poder relacionar directamente el
reclutamiento a la abundancia de kril que lo está afectando. Se notó que este tipo de índice, como cualquier otra medida del rendimiento, será sensible a varios factores incluidos (i) hasta qué punto el sistema centrado en el kril es un sistema abierto, que mantiene un suministro constante del recurso a través del tiempo, representado por “bañeras” en el modelo; (ii) la amplitud de la zona en la cual los depredadores buscan alimento en el sistema; y (iii) la dependencia de los depredadores en el kril en lo que se refiere al éxito de su reproducción.

6.39 En su ponencia, el Dr. Constable trató los temas mencionados por el grupo de trabajo (párrafo 6.29), incluidos:

i) la posibilidad de que la agregación para producir índices compuestos (CSI) haga desaparecer detalles importantes (la inclusión de depredadores que por lo general no responden a la abundancia de kril restará verosimilitud al índice). Esto debe ser considerado al agregar datos de varias especies y áreas. Es importante que el índice abarque, en su mayor parte, depredadores de áreas donde éstos responden a la abundancia de kril (véase también de la Mare y Constable, 2000);

ii) lapsos de tiempo entre los efectos de la pesca en las poblaciones de kril y la respuesta de los depredadores – WG-SAM-08/16 indicó que era necesario normalizar la serie cronológica de las respuestas de los depredadores, como el reclutamiento, para poder relacionarlas directamente a los cambios en el kril;

iii) la ponderación de los componentes del índice CSI – es difícil ponderar individualmente las respuestas de los depredadores mediante ponderaciones marginales. Es más fácil ajustar la utilización de los índices CSI mediante ponderaciones binarias (inclusión o exclusión) para determinar cuáles depredadores deberían ser incluidos y de cuáles áreas. Similarmente, el grado en que la respuesta de un depredador en varias UOPE es agregada antes de su inclusión en el índice CSI es una decisión que potencialmente aumentará o disminuirá la contribución del depredador al índice;

iv) la influencia de los factores de confusión – estos tendrán menor importancia si las respuestas de los depredadores se relacionan directamente con la abundancia de kril. La detección de tendencias en el sistema requeriría de comparaciones con condiciones básicas en la parte inicial de una serie cronológica. Sin embargo, la detección de los efectos de la pesca puede requerir de una comparación de las opciones de pesca con condiciones básicas durante el mismo período de proyección pero sin contemplar la explotación. Los efectos dependientes de la densidad posiblemente no afectarán el CSI si la serie cronológica de la respuesta de los depredadores es la suma de las respuestas de una población, como fuera recomendado en WG-SAM-08/16.

6.40 El Dr. Constable demostró que al calcular la diferencia entre las funciones de distribución acumuladas de los valores del CSI de las pruebas que contemplan y no contemplan la explotación al final del periodo de pesca, la diferencia relativa podría proporcionar información sobre el efecto de las estrategias de recolección. El Dr. Constable ilustró cómo los efectos de la pesca pueden observarse si se fija un nivel crítico del CSI en, por ejemplo, el décimo percentil inferior del CSI en la simulación que no contempla la explotación en el último año del periodo de pesca designado. La probabilidad de estar por
debajo de ese nivel crítico al final del periodo de pesca podría ser utilizada como una indicación de los efectos esperados de la pesca en esa simulación (WG-SAM-08/16). Se mostraron gráficos de la relación entre la tasa de recolección (γ) y esta probabilidad. Los gráficos proporcionan una indicación del riesgo de desviarse de la variación natural para cada nivel de pesca con los artes de pesca y modelo de simulación especificados.

6.41 El grupo de trabajo convino en que este enfoque es interesante y que WG-EMM podría considerar en mayor detalle los niveles relativos de riesgo.

6.42 Los miembros del grupo de trabajo discutieron si sería posible, y cómo se podría disgregar los valores regionales del CSI a nivel de UOPE, o a nivel de grupos de depredadores o presas. La Dra. Plagányi señaló que será importante convalidar los pronósticos del CSI, trabajando en un ejemplo del CSI a la inversa para demostrar que a partir de un CSI, el grupo de trabajo puede interpretar correctamente la dinámica subyacente del ecosistema a nivel de las UOPE. El Dr. Constable indicó que ya se han presentado resultados de la labor inicial al respecto (por ejemplo, de la Mare y Constable, 2000).

6.43 Se consideró que varias interrogantes cabían dentro del ámbito del WG-EMM, incluidas, inter alia:

i) ¿Hasta qué punto la dinámica de depredadores genéricos refleja la dinámica de las especies consideradas, y cómo se reconcilia la escala regional del CSI con la escala de ordenación a nivel de UOPE?

ii) ¿Hasta qué punto las recomendaciones proporcionadas por los modelos son afectadas por la consideración de una población de kril abierta o cerrada? y ¿hasta qué punto es adecuado el tratamiento de la incertidumbre para resolver esta cuestión?

6.44 WG-SAM examinó varios métodos que podrían ser utilizados por el WG-EMM para guiar la asignación de la captura por UOPE. Estos métodos incluyen nuevos avances (por ejemplo, el CSI) y la implementación de evaluaciones del riesgo descritas por WG-SAM en 2007. WG-SAM recomendó que estos métodos sean considerados por WG-EMM al formular sus recomendaciones.

Labor futura

6.45 El grupo de trabajo indicó que gran parte de la labor realizada con FOOSA, SMOM y EPOC proporciona una base para la evaluación de procedimientos de ordenación de kril en las etapas subsiguientes de la labor de asignación de la captura por UOPE. Alentó a los miembros a continuar esta labor y a presentar sus resultados a WG-SAM y a WG-EMM.
OTROS ASUNTOS

Control de revisiones

7.1 El Sr. Dunn describió cómo los sistemas de control de revisiones (versiones) permiten manejar múltiples revisiones de la información dentro de una base de datos central. Indicó que dos aplicaciones modernas incluyen el sistema CVS (Sistema de Versiones Concurrentes) y Subversión, y dio una demostración del sistema de control de revisiones CVS.

7.2 Los sistemas de control de revisiones permiten que las organizaciones y los individuos manejen documentos digitales tales como códigos originales de programas, manuales, hojas de datos u otras formas de información electrónica de manera controlada y que asegura su recuperación a futuro. El Sr. Dunn señaló que CASAL, SPM, y otros programas de importancia desarrollados en Nueva Zelandia para ser utilizados por los grupos de trabajo del Comité Científico eran mantenidos con un sistema de control de revisiones.

7.3 El grupo de trabajo indicó que la utilización de estos sistemas permite un mayor grado de transparencia en la comparación de los códigos de las versiones, facilitaba la recuperación del código original si surgieran problemas, y permitía la fácil comprobación del agente que hizo los cambios y la fecha de los mismos (véase el párrafo 5.31).

7.4 El grupo de trabajo recomendó que el WG-FSA y el WG-EMM considerasen cómo podrían hacer uso de un sistema similar para documentar y archivar su labor.

CCAMLR Science

7.5 En su calidad de nuevo Editor Jefe de la revista CCAMLR Science, el Dr. Reid reiteró que el objetivo de la revista es comunicar los resultados de las actividades científicas realizadas en el ámbito de la CCRVMA a la comunidad científica en general, y que sirva como medio de publicidad a la CCRVMA, y para alentar a los científicos a participar en la labor de nuestra organización.

7.6 El grupo de trabajo reconoció que debería haber una clara distinción entre los documentos de trabajo del grupo y los documentos publicados en la revista CCAMLR Science que han sido sometidos a una revisión paritaria. La revista deberá tener una distribución más amplia – y se debe dar mayor peso a la clara descripción del contexto de la labor y a la provisión de conclusiones y consecuencias de importancia general y no sólo para la comunidad de la CCRVMA.

7.7 El Dr. Reid recordó a los eventuales autores que deben asegurarse de que tienen autorización para publicar en el dominio público cualquier información entregada de conformidad con las Normas de Acceso y Utilización de los Datos de la CCRVMA. A fin de asegurar que se cumple con este requisito, el formulario de presentación de documentos a ser publicados en la revista CCAMLR Science llevará un casillero para indicar que se cuenta con autorización para publicar (y hacer referencia a los documentos de los grupos de trabajo).
7.8 El Dr. Reid pidió que todos los grupos de trabajo dieran su opinión o comentarios acerca de la presentación de documentos a ser publicados y del proceso editorial de la revista *CCAMLR Science* para poder redactar y presentar un trabajo a la reunión del Comité Científico este año.

Presentación de documentos a las reuniones de los grupos de trabajo

7.9 El grupo de trabajo consideró el tema de los plazos de presentación para los documentos de trabajo y estuvo de acuerdo en que éstos podrían ser aceptados después del plazo establecido en circunstancias excepcionales. Una de éstas sería cuando los documentos contengan información de importancia para que el grupo de trabajo pueda proporcionar su asesoramiento al Comité Científico en ese año en particular, teniendo en cuenta que cuando los miembros tienen previsto un atraso en la presentación de sus documentos, deberán comunicarse con el coordinador del grupo de trabajo para evaluar la importancia del documento para el grupo de trabajo.

7.10 Junto con coincidir en que se requiere flexibilidad en cuanto a los plazos de presentación de documentos de trabajo, el grupo de trabajo señaló que esta flexibilidad no debiera comprometer la evaluación oportuna de estos trabajos por parte de los miembros antes de la reunión.

7.11 El grupo de trabajo indicó que hay duplicación de la información requerida en el formulario de presentación de documentos y en la sinopsis que deben ser presentados junto con los documentos al grupo de trabajo. La Secretaría estuvo de acuerdo en considerar la posible revisión de los formularios de presentación antes de la reunión del Comité Científico este año.

LABOR FUTURA

8.1 El grupo de trabajo agradeció a los participantes por las innovaciones en sus contribuciones, incluido, *inter alia*:

i) la metodología para la evaluación de la calidad de los datos (párrafo 3.26);

ii) los enfoques para la evaluación de las pesquerías exploratorias de la Subárea 58.4 (párrafos 3.1 al 3.10);

iii) un modelo de la dinámica demográfica espacialmente explícito (párrafo 5.1);

iv) una evaluación de la aplicación del TISVPA (párrafo 3.16);

v) la posible utilización de los modelos de árbol de regresión aumentado (BRT) en la biorregionalización, la biogeografía y el modelado (párrafo 4.13);

vi) un modelo generalizado de la dinámica demográfica de las aves marinas estructurado por edad o por etapas (párrafo 4.21);
vii) los modelos FOOSA, SMOM y EPOC (párrafo 5.9);

viii) el desarrollo de procedimientos de ordenación centrados en el ecosistema (sección 5);

ix) una evaluación de las estrategias de ordenación (sección 6).

8.2 El grupo de trabajo alentó a los participantes y a los miembros a considerar la labor futura de los grupos de trabajo y del Comité Científico, indicando que algunas tareas podrían ser remitidas a otros grupos de trabajo directamente para su consideración, incluido, *inter alia*:

i) De pertinencia para el WG-FSA –

 a) estudiar la posibilidad de que se produzcan sesgos sistemáticos en los conjuntos de datos de observación (párrafo 2.4);

 b) estudio del efecto de la talla de los peces en los factores de conversión utilizados en las pesquerías de *Dissostichus* spp. (párrafo 2.6);

 c) desarrollo de mapas batimétricos actualizados de otras áreas aparte de la Subárea 48.3 para las cuales se dispone de datos provenientes de ecosondas de haz múltiple o simple y en las cuales se efectúan prospecciones de arrastre (párrafo 2.10);

 d) desarrollo de enfoques para estimar el tamaño del stock y proporcionar asesoramiento sobre los límites precautorios de captura en las Divisiones 58.4.1 y 58.4.2 (párrafos 3.4 y 3.10);

 e) identificar otros conjuntos de datos de marcado que puedan ser incorporados en la próxima evaluación de la pesquería de austromerluza en el Mar de Ross (párrafo 3.29);

 f) continuar el desarrollo del modelo demográfico espacial (SPM en sus siglas en inglés), incluidos los procesos y clases observadas a fin de incorporar la variabilidad de las clases anuales, las relaciones entre el stock y el reclutamiento, las observaciones del marcado y recaptura de peces marcados, y el estadio de madurez (párrafo 5.5);

 g) refinar el plan de ordenación para la región de las Islas Príncipe Eduardo, y comparar los resultados del procedimiento con los criterios de decisión de la CCRVMA (párrafo 6.2).

ii) De pertinencia para el WG-EMM –

 a) considerar métodos para determinar las ponderaciones, en base a criterios ecológicos y estadísticos (párrafo 5.20);

 b) presentación de un caso de estudio desarrollado a partir de la aplicación similar a FOOSA en EPOC para facilitar la comparación de sus resultados y rendimiento con los de FOOSA y SMOM (párrafo 5.28);
c) continuar el desarrollo de FOOSA, SMOM y EPOC (párrafo 6.45);

d) archivar versiones de FOOSA, SMOM y EPOC, y de los conjuntos de datos que incluyen formulaciones de parámetros, en la Secretaría (párrafos 5.31 y 7.4).

iii) En general:

a) considerar la utilización del procedimiento para probar unidades en los futuros programas informáticos para facilitar la comprobación de que se mantiene la integridad de las funciones en lo que se refiere a los códigos del software (párrafo 5.8).

8.3 El grupo de trabajo también:

i) instó a los autores del método TISVPA (WG-SAM-08/8) a llevar a cabo el programa de trabajo requerido para evaluar el modelo descrito por el WG-FSA (párrafo 3.25);

ii) alentó al autor de WG-SAM-08/P1 y 08/P2 a redactar un documento combinado en inglés para presentarlo a la próxima reunión de WG-SAM, con ejemplos de los análisis (párrafo 3.37);

iii) alentó a los autores de WG-SAM-08/12 a continuar desarrollando el método de los BRT y propuso que esto se hiciera a través de un grupo de trabajo por correspondencia que incluyera expertos en estadísticas familiarizados con el tema (párrafo 4.19);

iv) también alentó el desarrollo del novedoso enfoque de modelación que trata de caracterizar la red alimenticia desde el punto de vista de la estadística y que requiere menos suposiciones que la mayoría de los otros modelos del ecosistema (WG-SAM-08/16) (párrafos 5.33 y 5.34).

8.4 El Dr. Gasyukov indicó que la implementación de modelos debe ser convalidada y comprobada a fin de determinar que la aplicación refleja las descripciones matemáticas y de procedimiento presentadas en los documentos de trabajo. Esto es importante para los modelos en los cuales se basa el asesoramiento. Indicó también que los modelos a ser utilizados en la asignación por UIPE aún no han sido convalidados de esta manera y pidió que WG-SAM realizara la labor de convalidación requerida.

8.5 El Dr. Constable se encargará de reunir durante el período entre sesiones un grupo de los miembros del grupo de trabajo que se interesen en formular un procedimiento para la convalidación basado en SC-CAMLR-XXVI, anexo 7, párrafo 8.19, y revisar el progreso a la fecha en lo que se refiere a los modelos existentes. Se proporcionará un informe a WG-SAM el próximo año para que pueda determinar cómo se deberá proceder con la labor de convalidación.

8.6 El grupo de trabajo estuvo de acuerdo en que es hora de que los otros grupos de trabajo consideren la labor y asesoramiento desarrollados durante la reunión. También se confirmó que era necesario tener flexibilidad y mantener la agenda relativamente abierta, para que pueda ser acordada anualmente por los coordinadores de todos los grupos de trabajo y
sujeta a la revisión y aprobación del Comité Científico (SC-CAMLR-XXVI, anexo 7, párrafo 6.6). No obstante, indicó que hay muchos aspectos del punto 9 que requerirán un refinamiento de los métodos estadísticos, de evaluación y modelado, y alentó a los miembros a presentar los trabajos pertinentes para su consideración el próximo año.

ASESORAMIENTO AL COMITÉ CIENTÍFICO

9.1 Las recomendaciones del grupo de trabajo para el Comité Científico y sus otros grupos auxiliares se resumen a continuación. En general, se subrayan los puntos principales con referencia a los párrafos que contienen los detalles pertinentes. En el punto 8 también se propone asesoramiento sobre la labor futura emanada de las deliberaciones del grupo de trabajo.

ASesoramiento al WG-FSA

9.2 Considerar el impacto de la utilización de distribuciones de tallas reconstruidas a partir de los datos de factoría y procesamiento, como se describe en las evaluaciones de pesquerías (párrafo 2.7).

9.3 Métodos de evaluación biológica y del estado del stock:
 i) desarrollo de enfoques para evaluar las pesquerías nuevas y exploratorias, incluida la consideración de cómo dar cuenta de la incertidumbre para conseguir una expansión ordenada de las pesquerías exploratorias (párrafo 3.10);
 ii) considerar maneras de examinar o mejorar las tasas de detección de marcas (incluidos los métodos identificados en el párrafo 3.14);
 iii) proporcionar guías específicas sobre los índices más útiles para distinguir la calidad de los datos para las evaluaciones (párrafos 3.28 y 3.30);
 iv) explorar el grado en el cual la evaluación de Dissostichus spp. en el Mar de Ross pueda verse afectada por la utilización de distintos conjuntos de datos de marcado y recaptura (párrafo 3.29).

9.4 Diseño de investigación en las pesquerías exploratorias:
 i) el marcado deberá continuar en las Divisiones 58.4.1 y 58.4.2, si bien los datos de marcado–recaptura posiblemente no proporcionarán una evaluación exacta de la abundancia local o del tamaño del stock a corto plazo (párrafos 4.1 y 4.2);
 ii) se deberá comparar el índice de la CPUE y la merma local como punto de partida del desarrollo de evaluaciones preliminares en las Divisiones 58.4.1 y 58.4.2, y considerar cómo perfeccionar estos métodos (párrafo 4.3);
iii) se deberá utilizar el marco de las evaluaciones preliminares de las pesquerías exploratorias (WG-SAM-08/5) para proporcionar asesoramiento de ordenación para la pesquería de *Dissostichus* spp. en la División 58.4.3a (párrafo 4.4);

iv) se deberá considerar la utilidad y los requisitos para la pesca de investigación de los barcos palangreros cuando operan con un limite de captura de 10 toneladas (párrafos 4.6 al 4.9);

v) se deberá considerar la utilización del procedimiento descrito en el párrafo 4.10 para efectuar evaluaciones en las pesquerías exploratorias cuando hay problemas con el uso de datos de marcado (párrafo 4.11);

vi) considerar enfoques experimentales para entender cómo los cambios en las prácticas pesqueras afectan el índice de la CPUE (párrafo 4.12).

Asesoramiento al grupo especial WG-IMAF

9.5 Considerar la aplicación de SeaBird en el modelado de poblaciones (WG-SAM-08/P3) (párrafos 4.20 al 4.24).

Asesoramiento al WG-EMM

9.6 FOOSA, SMOM y EPOC:

i) utilización del calendario de WG-SAM y el calendario numérico de acontecimientos para perfeccionar los modelos de la red alimenticia centrados en el kril y discutir su desarrollo posterior (párrafos 5.12 al 5.16);

ii) FOOSA y SMOM son capaces de representar las tendencias de las poblaciones de depredadores especificadas en el calendario, manteniendo al kril como factor condicionante principal del sistema (párrafos 5.21 y 5.24);

iii) la implementación similar a FOOSA en EPOC podría proporcionar una comparación útil con los enfoques de modelación de FOOSA y SMOM (párrafos 5.28 y 5.30);

iv) WG-EMM deberá examinar las pruebas, y por ende la incertidumbre asociada, de la tendencia del kril representada en el calendario (párrafo 5.16).

9.7 Asesoramiento sobre la asignación de límites de captura por UOPE:

i) las recomendaciones generales se proporcionan en los párrafos 6.5 al 6.45;

ii) FOOSA y SMOM pueden ser utilizados para proporcionar asesoramiento sobre la asignación de límites de captura por UOPE, pero WG-EMM debería discutir la verosimilitud relativa de cada opción (párrafos 6.5 al 6.45).
Solicitud a TASO

9.8 i) Considerar la viabilidad de recopilar los datos del peso de todos los peces procesados de los barcos palangreros que operan en el Área de la Convención (párrafo 2.7).

ii) Considerar maneras de mejorar la detección y la notificación de la recuperación de marcas (párrafo 3.14).

Recomendaciones generales

9.9 i) Perfeccionar las metodologías para evaluar la calidad de los datos (párrafos 3.28 y 3.30).

ii) Desarrollar o refinar los modelos que puedan ser utilizados para entender la dinámica del ecosistema y las consecuencias de los enfoques de ordenación para los recursos antárticos (párrafo 5.36).

iii) Considerar la implementación de sistemas de control de las revisiones para manejar las múltiples revisiones del código de programación, los documentos y los archivos de datos en una base de datos central (párrafos 7.3 y 7.4; véase también el párrafo 5.31).

iv) Recomendar la adopción de una terminología común con otros foros en lo que se refiere a los procedimientos de evaluación (párrafo 6.14).

APROBACIÓN DEL INFORME Y CLAUSURA DE LA REUNIÓN

10.1 Se aprobó el informe de la reunión del WG-SAM.

10.2 El Dr. Constable agradeció a todos los participantes de la reunión que resultó ser tan interesante, llena de desafíos y una fuente de inspiración, por la diversidad de las ideas y las contribuciones. Todo esto había proporcionado una buena base para la labor de modelación y de evaluación.

10.3 El Dr. Constable también agradeció a los relatores, indicando que al haberse trabajado en equipos, casi todos los participantes habían contribuido al proceso de redacción del informe, muy conciso y exacto. Agradeció también a la Sra. L. Zaslavskaya por facilitar la reunión y por su flexibilidad y eficiencia en la organización de transporte. El Dr. Constable expresó su aprecio por la decisión del coordinador del WG-EMM de dedicar dos días adicionales a la reunión de WG-SAM de este año, e indicó que gracias a esto se había progresado bastante, y mejorado la calidad de las recomendaciones que WG-SAM pudo proporcionar a WG-EMM. Agradeció también al Dr. Jones por presidir discusiones muy complejas, y a la Secretaría por sus recomendaciones, su orientación y apoyo.

10.4 El Dr. Constable indicó que si bien el WG-SAM todavía no “estaba en tierra firme” en lo que se refiere a su papel como grupo de trabajo y a sus relaciones de trabajo con los demás
grupos, había avanzado mucho este año, ayudado en gran parte por la participación eficaz de los expertos en cálculos de todos los grupos que trabajaron en los distintos puntos de la agenda.

10.5 El Dr. Holt, en nombre de los participantes, expresó su agradecimiento al coordinador y le felicitó por su labor de preparación y liderazgo, teniendo en cuenta particularmente su contribución histórica al desarrollo del grupo de trabajo. En respuesta a los comentarios del Dr. Constable acerca de que WG-SAM todavía no “estaba bien plantado”, el Dr. Holt señaló que consideraba que el grupo en efecto ya estaba en tierra firme, pero que el desafío ahora era determinar su propia capacidad.

10.6 Se dio por clausurada la reunión.

REFERENCIAS

LISTA DE PARTICIPANTES
Grupo de Trabajo de Estadística, Evaluación y Modelado
(San Petersburgo, Rusia, 14 al 22 de julio de 2008)

AGNEW, David
Division of Biology
Imperial College London
Prince Consort Road
London SW7 2BP
United Kingdom
d.agnew@imperial.ac.uk

AKIMOTO, Naohiko
(Julio 21)
Japan Overseas Fishing Association
NK-Bldg, 6F, 3-6, Kanda Ogawa-cho, Chiyoda-ku
Tokyo
101-0052 Japan
naohiko@sol.dti.ne.jp

BIZIKOV, Viacheslav
VNIRO
17a V. Krasnoselskaya
Moscow 107140
Russia
bizikov@vniro.ru

BRANDÃO, Anabela
Department of Mathematics and Applied Mathematics
University of Cape Town
Private Bag 7001
Rondebosch
South Africa
anabela.brandao@uct.ac.za

CONSTABLE, Andrew
(Coordinador) Antarctic Climate and Ecosystems Cooperative Research Centre
Australian Antarctic Division
Department of Environment, Water, Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
andrew.constable@aad.gov.au
DUNN, Alistair National Institute of Water and Atmospheric Research (NIWA)
Private Bag 14-901
Kilbirnie
Wellington
New Zealand
a.dunn@niwa.co.nz

GASYUKOV, Pavel AtlantNIRO
5 Dmitry Donskoy Street
Kaliningrad 236000
Russia
pg@atlant.baltnet.ru

GOEBEL, Michael US AMLR Program
Southwest Fisheries Science Center
3333 N Torrey Pines Court
La Jolla, CA 92037
USA
mike.goebel@noaa.gov

HANCHET, Stuart National Institute of Water and Atmospheric Research (NIWA)
PO Box 893
Nelson
New Zealand
s.hanchet@niwa.co.nz

HILL, Simeon British Antarctic Survey
Natural Environment Research Council
High Cross, Madingley Road
Cambridge CB3 0ET
United Kingdom
sih@bas.ac.uk

HILLARY, Richard Division of Biology
Imperial College London
Prince Consort Road
London SW7 2BP
United Kingdom
r.hillary@imperial.ac.uk
HINKE, Jefferson
Marine Biology Research Division
Scripps Institution of Oceanography
UC San Diego
9500 Gilman Drive
La Jolla, CA 92093
USA
jefferson.hinke@noaa.gov

HOLT, Rennie
US AMLR Program
Southwest Fisheries Science Center
8604 La Jolla Shores Drive
La Jolla, CA 92037
USA
rennie.holt@noaa.gov

ICHII, Taro
National Research Institute of Far Seas Fisheries
2-12-4, Fukuura, Kanazawa-ku
Yokohama, Kanagawa
236-8648 Japan
ichii@affrc.go.jp

ICHII, Taro
(desde el 21 de julio)
National Research Institute of Far Seas Fisheries
2-12-4, Fukuura, Kanazawa-ku
Yokohama, Kanagawa
236-8648 Japan
ichii@affrc.go.jp

JONES, Christopher
US AMLR Program
Southwest Fisheries Science Center
8604 La Jolla Shores Drive
La Jolla, CA 92037
USA
chris.d.jones@noaa.gov

KASATKINA, Svetlana
AtlantNIRO
5 Dmitry Donskoy Street
Kaliningrad 236000
Russia
ks@atlant.baltnet.ru

KAWAGUCHI, So
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
so.kawaguchi@aad.gov.au
KNUTSEN, Tor
Institute of Marine Research
Research Group Plankton
Nordnesgaten 50
PO Box 1870 Nordnes
5817 Bergen
Norway
tor.knutsen@imr.no

KREMENYUK, Dmitry
Federal Agency for Fisheries
of the Russian Federation
12 Rozhdestvensky Blvd
Moscow 107996
Russia
d.kremenyuk@fishcom.ru

MARTÍNEZ, Patricia
Instituto Nacional de Investigación
y Desarrollo Pesquero (INIDEF)
Paseo Victoria Ocampo No. 1
7600 Mar del Plata
Argentina
martinez@inidep.edu.ar

MIDDLETON, David
Dr David Middleton
NZ Seafood Industry Council (‘SeaFIC’)
Private Bag 24-901
Wellington
New Zealand
middletond@seafood.co.nz

NAGANOBU, Mikio
(Since 21 July)
Southern Ocean Living Resources
Research Section
National Research Institute of Far Seas Fisheries
2-12-4, Fukuura, Kanazawa
Yokohama, Kanagawa
236-8648 Japan
naganobu@affrc.go.jp

PLAGÁNYI, Éva
Department of Mathematics
and Applied Mathematics
University of Cape Town
Private Bag 7701
Rondebosch
South Africa
eva.plaganyi-lloyd@uct.ac.za
PSHENICHNOV, Leonid
YugNIRO
2 Sverdlov Street
Kerch 983000
Ukraine
lkp@bikent.net

REISS, Christian
US AMLR Program
Southwest Fisheries Science Center
8604 La Jolla Shores Drive
La Jolla, CA 92037
USA
christian.reiss@noaa.gov

SKARET, Georg
Institute of Marine Research
Nordnesgaten 50
PO Box 1870 Nordnes
5817 Bergen
Norway
georg.skaret@imr.no

SPIRIDONOV, Vasily
WWF-Russia
(desde el 21 de julio)
Nikolyamskaya 19(3)
Moscow 109260
Russia
vspiridonov@wwf.ru

TATARNIKOV, Viacheslav
VNIRO
17a V. Krasnoselskaya
Moscow 107140
Russia
fishing@vniro.ru
utat@mail.ru

TRATHAN, Phil
British Antarctic Survey
(desde el 21 de julio)
High Cross, Madingley Road
Cambridge CB3 0ET
United Kingdom
pnt@bas.ac.uk

WATTERS, George
Southwest Fisheries Science Center
(Coordinador del WG-EMM)
Protected Resources Division
8604 La Jolla Shores Drive
La Jolla, CA 92037
USA
george.watters@noaa.gov
WEEBER, Barry
(desde el 21 de julio)
Antarctic Marine Project
3 Finnimore Terrace
Vogeltown
Wellington
New Zealand
b.weeber@paradise.net.nz

WELSFORD, Dirk
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
dirk.welsford@aad.gov.au

WÖHLER, Otto
Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP)
Paseo Victoria Ocampo No. 1
7600 Mar del Plata
Argentina
owoehler@inidep.edu.ar

Secretaría:
Denzil Miller (Secretario Ejecutivo) CCRVMA
David RAMM (Administrador de datos) PO Box 213
Keith REID (Funcionario científico) North Hobart 7002
Genevieve TANNER (Comunicaciones) Tasmania Australia
Rosalie MARAZAS (Sitio web y servicios de información) ccamlr@ccamlr.org
AGENDA

Grupo de Trabajo de Estadística, Evaluación y Modelado
(San Petersburgo, Rusia, 14 al 22 de julio de 2008)

1. Introducción
 1.1 Apertura de la reunión
 1.2 Aprobación de la agenda y organización de la reunión

2. Estimación de parámetros

3. Métodos de evaluación del stock y biológicos

4. Asesoramiento sobre los métodos útiles para el trabajo de SC-CAMLR
 4.1 Diseños de investigación en las pesquerías exploratorias
 4.2 Establecimiento de límites de captura precautorios en las pesquerías exploratorias cuando no se han realizado estudios científicos
 4.3 Enfoques para minimizar los efectos que tiene el cambio de prácticas de pesca en las evaluaciones
 4.4 Uso de los BRT en la biorregionalización
 4.5 Respuesta de las poblaciones del petrel de mentón blanco y del petrel gris a las pesquerías y a factores ambientales

5. Herramientas para el modelado de poblaciones, cadenas alimentarias y el ecosistema
 5.1 Modelos de población de Dissostichus spp.
 5.2 Modelos de la red alimentaria centrada en el kril
 5.3 Modelos de redes alimentarias centradas en peces
 5.4 Modelos de ecosistemas

6. Evaluación de estrategias de ordenación
 6.1 Dissostichus spp.
 6.2 Champsocephalus gunnari
 6.3 Euphausia superba
 6.3.1 Marco para las evaluaciones de la Etapa 1
 6.3.2 Índices de rendimiento
 6.3.3 Resumen de las evaluaciones del riesgo
 6.3.4 Labor futura

7. Asuntos varios
 7.1 Procedimiento de evaluación multinanual de Dissostichus spp.
 7.2 Pesquerías y modelos de ecosistemas en la Antártida (FEMA)
 7.3 Pesca de fondo y ecosistemas marinos vulnerables
 7.4 Informe y archivo del trabajo de convalidación, verificación y evaluación
 7.5 CCAMLR Science
8. Labor futura
 8.1 Plan de trabajo a largo plazo
 8.2 Otros asuntos

9. Asesoramiento al Comité Científico
 9.1 WG-EMM
 9.2 WG-FSA
 9.3 Grupo especial WG-IMAF
 9.4 General

10. Aprobación del informe y clausura de la reunión.
LISTA DE DOCUMENTOS

Grupo de Trabajo de Estadística, Evaluación y Modelado
(San Petersburgo, Rusia, 14 al 22 de julio de 2008)

WG-SAM-08/1 Preliminary Agenda and Annotated Preliminary Agenda for the 2008 Meeting of the Subgroup on Assessment Methods

WG-SAM-08/2 List of participants

WG-SAM-08/3 List of documents

WG-SAM-08/4 Analysis of the potential for an assessment of toothfish stocks in Divisions 58.4.1, 58.4.2
D.J. Agnew, C. Edwards, R. Hillary, R. Mitchell (UK) and L.J. López Abellán (Spain)

WG-SAM-08/5 Exploratory assessment methods for exploratory fisheries: an example case using catch, IUU catch and tagging data for Subarea 58.4.3a
R.M. Hillary (UK)
(CCamlr Science, submitted)

WG-SAM-08/6 Defining tag rates and TACs to obtain suitably precise abundance estimates for new and exploratory fisheries in the CCAMLR Convention Area
R.M. Hillary (UK)
(CCamlr Science, submitted)

WG-SAM-08/7 Analysis of Ross Sea tagging and recapture rates
D.J. Agnew (UK)

WG-SAM-08/8 Towards the balanced stock assessment of Antarctic toothfish in the Ross Sea
D. Vasilyev and K. Shust (Russia)

WG-SAM-08/9 Reconstruction of size and weight composition of Antarctic toothfish (Dissostichus mawsoni) from the data on processed commercial catches of longliners using conversion factor I. Istomin, K. Shust and V. Tatarnikov (Russia)

WG-SAM-08/10 Revised estimates of the area of the South Georgia and Shag Rocks shelf (CCAMLR Subarea 48.3)
M. Belchier and P. Fretwell (UK)
(CCamlr Science, submitted)
WG-SAM-08/11 A proposed management procedure for the toothfish (*Dissostichus eleginoides*) resource in the Prince Edward Islands vicinity
A. Brandão and D.S. Butterworth (South Africa)
(*CCAMLR Science*, submitted)

WG-SAM-08/12 Extrapolating continuous plankton recorder data through the Southern Ocean using boosted regression trees
M.H. Pinkerton, A.N.H. Smith (New Zealand), B. Raymond, G. Hosie (Australia) and B. Sharp (New Zealand)

WG-SAM-08/13 Development of a methodology for data quality assessment
D.A.J. Middleton and A. Dunn (New Zealand)

WG-SAM-08/14 Development of a spatially explicit age-structured statistical catch-at-age population dynamics model for modelling movement of Antarctic toothfish in the Ross Sea
A. Dunn and S. Rasmussen (New Zealand)
(*CCAMLR Science*, submitted)

WG-SAM-08/15 Implementation of FOOSA (KPFM) in the EPOC modelling framework to facilitate validation and possible extension of models used in evaluating krill fishery harvest strategies that will minimise risk of localised impacts on krill predators
A. Constable (Australia)

WG-SAM-08/16 An ecosystem-based management procedure for krill fisheries: a method for determining spatially-structured catch limits to manage risk of significant localised fisheries impacts on predators
A. Constable and S. Candy (Australia)
(*CCAMLR Science*, submitted)

WG-SAM-08/17 An updated description and parameterisation of the spatial multi-species operating model (SMOM)
É.E. Plagányi and D.S. Butterworth (South Africa)

Otros documentos:

WG-SAM-08/P1 Resources evaluation of Antarctic krill *Euphausia superba* Dana using areal trawling and hydro-acoustic data
L.A. Kovalchuk (Ukraine)

WG-SAM-08/P2 Methodology of evaluating the aquatic life resources
L.A. Kovalchuk (Ukraine)
WG-SAM-08/P3 SeaBird: Draft User Manual V1.00-2008/06/18
D. Fu and R.I.C.C. Francis (New Zealand)
(Final Fisheries Report to the New Zealand Ministry of Fisheries)

WG-EMM-PSW-08/4 A population estimate of macaroni penguins (*Eudyptes chrysolophus*) at South Georgia
P.N. Trathan (United Kingdom)

WG-EMM-PSW-08/5 The white-chinned petrel (*Procellaria aequinoctialis*) on South Georgia: population size, distribution and global significance
A.R. Martin, S. Poncet, C. Barbraud, P. Fretwell and E. Foster (United Kingdom)

WG-EMM-PSW-08/6 Abundance estimates for crabeater, Weddell and leopard seals at the Antarctic Peninsula and in the western Weddell Sea (90°–30°W, 60°–80°S)
J. Forcada and P.N. Trathan (United Kingdom)

WG-EMM-PSW-08/7 Spatial and temporal variation in attributes of Adélie penguin breeding populations: implications for uncertainty in estimation of the abundance of breeding penguins from one-off counts
C. Southwell, J. McKinlay, R. Pike, D. Wilson, K. Newbery and L. Emmerson (Australia)

WG-EMM-PSW-08/8 Estimating the number of pre- and intermittent breeders associated with the Béchervaise Island Adélie penguin population
L. Emmerson and C. Southwell (Australia)

WG-EMM-PSW-08/9 Aspects of population structure, dynamics and demography of relevance to abundance estimation: Adélie penguins
L. Emmerson and C. Southwell (Australia)

WG-EMM-PSW-08/10 Flying seabirds in Area 48: a review of population estimates, coverage and potential gaps in survey extent and methods
D. Wilson (Australia)

WG-EMM-PSW-08/11 Seasonal estimation of abundance by bootstrapping inexact research data (seabird): a method for assessing abundance and uncertainty from historical count data using Adélie penguins as a case study
J.P. McKinlay and C.J. Southwell (Australia)

WG-EMM-PSW-08/12 A brief summary of Adélie penguin count data from east Antarctica
C. Southwell and J. McKinlay (Australia)
WG-EMM-PSW-08/13 Incomplete search effort as a potential source of bias in broad-scale estimates of penguin abundance derived from published count data: a case study for Adélie penguins in east Antarctica
C. Southwell, D. Smith and A. Bender (Australia)

WG-EMM-PSW-08/14 Antarctic fur seal pup production and population trends in the South Shetland Islands with special reference to sources of error in pup production estimates
M.E. Goebel (USA), D.E. Torres C. (Chile), A. Miller, J. Santora, D. Costa (USA) and P. Diaz (Chile)

WG-EMM-PSW-08/15 Timing of clutch initiation in *Pygoscelis* penguins on the Antarctic Peninsula: towards an improved understanding of off-peak census correction factors

WG-EMM-08/8 Report of the Predator Survey Workshop
(Hobart, Australia, 16 to 20 June 2008)

WG-EMM-08/9 Report from Invited Expert to WG-EMM-PSW-08
R. Fewster

WG-EMM-08/10 Reference observations for validating and tuning operating models for krill fishery management in Area 48
S. Hill (United Kingdom), J. Hinke (USA), É. Plagányi (South Africa) and G. Watters (USA)

WG-EMM-08/11 Proposed small-scale management units for the krill fishery in Subarea 48.4 and around the South Sandwich Islands
P.N. Trathan, A.P.R. Cooper and M. Biszczuk (United Kingdom)

WG-EMM-08/12 Allocating the precautionary catch limit for krill amongst the small-scale management units in Area 48: the implications of data uncertainties
P.N. Trathan and S.L. Hill (United Kingdom)

WG-EMM-08/13 Developing four plausible parameterisations of FOOSA (a so-called reference set of parameterisations) by conditioning the model on a calendar of events that describes changes in the abundances of krill and their predators in the Scotia Sea
G. Watters, J. Hinke (USA) and S. Hill (United Kingdom)

WG-EMM-08/14 Developing models of Antarctic marine ecosystems in support of CCAMLR and IWC
A. Constable (Australia)
WG-EMM-08/15 CCAMLR-IWC Workshop to review input data for Antarctic marine ecosystem models: update on progress 2008
A. Constable and N. Gales (Co-conveners)

WG-EMM-08/40 Krill fishery behaviour in the 1999/2000 season
S. Kawaguchi (Australia)

WG-EMM-08/44 Conditioning SMOM using the agreed calendar of observed changes in predator and krill abundance: a further step in the development of a management procedure for krill fisheries in Area 48
É.E. Plagányi and D.S. Butterworth (South Africa)
COMETIDO
Subgrupo de Prospecciones Acústicas y Métodos de Análisis (SG-ASAM)
El Comité Científico recomendó el siguiente cometido para la reunión de SG-ASAM en 2009.

Tareas generales para el subgrupo:

i) Formular, examinar y actualizar, según proceda, los protocolos para:

 a) diseñar prospecciones acústicas para estimar índices de abundancia de las especies designadas, incluidas las prospecciones y recopilación de datos a bordo de arrastreros comerciales de kril;

 b) analizar los datos de prospección acústica para estimar la biomasa de las especies designadas, incluida la evaluación de la incertidumbre (sesgos y varianza) de las estimaciones;

 c) archivar datos acústicos, incluidos los datos recopilados durante las prospecciones acústicas, las observaciones acústicas de las estaciones de arrastre, y mediciones in situ del índice de reverberación del blanco;

El Comité Científico también identificó los puntos (ii), (iii) y (iv) como las tareas específicas de mayor prioridad para el subgrupo:

ii) Formular asesoramiento para cuantificar la incertidumbre en las estimaciones de B_0 de kril, que incluye:

 • evaluar los avances en el desarrollo de modelos del índice de reverberación del kril, y otras nuevas observaciones sobre el kril (SC-CAMLR-XXVI, anexo 8, párrafo 84);

 • convalidar técnicas de identificación acústica compilando un conjunto de datos acústicos convalidados con datos de la red y determinando si los métodos de identificación del blanco están sesgados;

 • evaluar y considerar la información disponible y los métodos actuales para medir la orientación y propiedades físicas del kril, utilizando los análisis del ángulo de inclinación de las prospecciones científicas efectuadas recientemente;

 • desarrollar una función de densidad de probabilidad de la estimación de B_0 basada en el conocimiento actual de la incertidumbre del valor de varios parámetros.
iii) Documentar los protocolos acordados que se utilizan actualmente en la evaluación de la B_0 de kril;

iv) Examinar el uso de datos acústicos auxiliares (vg. de prospecciones de peces, de pesquerías exploratorias y de ecosondas empleados en pesquerías comerciales) y los métodos analíticos necesarios con miras a:

- documentar protocolos para el tratamiento e interpretación de los datos acústicos de las pesquerías exploratorias, y su análisis;

- obtener estimaciones de la biomasa de kril de áreas que normalmente no son exploradas.

v) Evaluar los resultados de las prospecciones acústicas del API en 2008, basados en un resumen de todos los datos acústicos recopilados durante el API y los metadatos relacionados, presentados a la CCRVMA para ser preparados por la Secretaría (SC-CAMLR-XXVI, anexo 8, párrafo 84; SC-CAMLR-XXVI/BG/3, párrafo 22), y brindar asesoramiento específico al Comité Científico sobre el valor de los datos acústicos del API, y su análisis, para la estimación de la biomasa del kril (SC-CAMLR-XXVI/BG/3, párrafo 22);

vi) Evaluar los avances en el desarrollo de modelos del índice de reverberación del blanco y nuevas observaciones relacionadas con las especies de peces antárticos, incluidos los dracos y mictófidos (SC-CAMLR-XXVI, anexo 8, párrafo 84);

vii) Solucionar los problemas identificados con la estimación de la abundancia de dracos del área barrida, incluida la aplicación del factor de corrección de la altura de la relinga superior de la red de arrastre utilizada en las prospecciones de *Champsocephalus gunnari* (anexo 5, párrafos 3.26 y 13.20).
DEBATE DEL COMITÉ CIENTÍFICO SOBRE LA COBERTURA DE OBSERVACIÓN EN LA PESQUERÍA DE KRIL
(de los informes del Comité Científico)
DEBATE DEL COMITÉ CIENTÍFICO SOBRE LA COBERTURA DE OBSERVACIÓN EN LA PESQUERÍA DE KRIL
(de los informes del Comité Científico)

2.5 El WG-EMM recomendó que se siguieran empleando observadores científicos internacionales en tantos barcos de pesca de kril como fuera posible. Algunos participantes consideraron que se requeriría un alto nivel de observación para adquirir la información necesaria con el objeto de determinar los protocolos de muestreo, y esto debía aplicarse por igual en todas las pesquerías de kril (anexo 4, párrafos 3.29 y 3.30).

De SC-CAMLR-XXIV (2005)

2.7 El Comité Científico consideró el tema de la designación obligatoria de observadores científicos de la CCRVMA a bordo de todos los barcos de pesca de kril en el Área de la Convención, que fue mencionado por WG-EMM y WG-FSA (anexo 4, párrafos 3.45 y 3.55; anexo 5, párrafo 11.3(iii)).

2.8 El Comité Científico tomó nota de que el WG-EMM había acordado en principio, que se requiere también con urgencia designar observadores científicos de la CCRVMA en todos los barcos que pescan kril (anexo 4, párrafo 3.45) para aumentar al máximo la cobertura espacial y temporal de observación de la pesquería, y para entender bien la evolución de la pesquería moderna de kril, especialmente dados los cambios recientes en los métodos de pesca y en la tecnología de elaboración del producto (anexo 4, párrafos 3.45 y 3.46). Sin embargo, no se ha alcanzado consenso sobre el tema (anexo 4, párrafos 3.46 y 3.55).

2.9 El Comité Científico indicó asimismo la recomendación de WG-FSA de asignar observadores científicos de la CCRVMA en todos los barcos de pesca de kril (anexo 5, párrafo 11.3(iii)).

2.10 El Comité Científico indicó que los datos de las observaciones realizadas a bordo de los barcos que pescan en el Área de la Convención se utilizan para obtener:

i) Información precisa sobre las tasas de captura utilizadas en la normalización del CPUE; desde que se adoptó una cobertura de observación de 100% en la pesquería de <i>D. eleginoides</i> en la Subárea 48.3 se ha podido notar una mejora en la calidad de la información obtenida;

ii) Datos de la frecuencia de tallas necesarios para elucidar la naturaleza de la interacción entre la pesquería y las especies capturadas; estos datos han servido en la implementación de evaluaciones integradas de <i>Dissostichus</i> spp. en las Subáreas 48.3 y 88.1, que ayudan a entender los cambios en la estructura del stock durante la etapa de desarrollo de la pesquería;
iii) Información para estimar las diferencias entre los barcos, ésta se utiliza en la normalización de la serie cronológica de CPUE y en distintas evaluaciones integradas;

iv) Información de captura y tallas, como se describe anteriormente, para ayudar a determinar la superposición entre las pesquerías y los depredadores en una escala regional.

El Comité Científico corroboró la importancia de esto para la labor de evaluación realizada con el fin de brindar asesoramiento a la Comisión.

2.11 El Dr. Shin indicó que si bien apreciaba las ventajas de la recopilación de datos de observación para la investigación científica, no compartía la misma opinión en relación con la magnitud de las mejoras que los datos de observación aportarían a la evaluación de las pesquerías de kril y de otras pesquerías. Señaló además que la pesca de kril es una empresa comercial, y pueden haber restricciones en lo que respecta a la entrega de datos científicos de parte de la pesquería.

2.12 El Dr. Holt dio a entender que, desde el punto de vista científico, no había duda alguna sobre las ventajas de designar observadores científicos en todos los barcos de pesca de kril. Sin embargo, hace ya algunos años que no se ha podido resolver esta cuestión por razones que tienen muy poco que ver con sus aspectos científicos. Por ejemplo, la protección de la confidencialidad de los datos representa un obstáculo para algunos países. El Dr. Holt propuso remitir este tema a la consideración de la Comisión ya que el Comité Científico difícilmente podría eliminar estos obstáculos.

2.13 El Dr. M. Naganobu (Japón) expresó que no estaba de acuerdo con la designación obligatoria de observadores científicos internacionales a bordo de todos los barcos de pesca de kril, por las siguientes razones:

i) Japón ha firmado varios acuerdos internacionales, en virtud de los cuales observadores científicos extranjeros ya recopilan datos a bordo de barcos japoneses, y estos acuerdos son lo suficientemente efectivos;

ii) El cumplimiento del requisito de una cobertura de observación científica internacional de 100% a bordo de todos los barcos de pesca de kril puede tener repercusiones financieras considerables;

iii) Existen problemas, emanados de la obligación de respetar el derecho de las compañías pesqueras de proteger la confidencialidad de la información sobre la pesca;

iv) Actualmente, el nivel de la captura total de kril es estable, siendo substancialmente menor que la captura precautoria, y por lo tanto no hay una necesidad urgente de aumentar el volumen de los datos que se están recopilando.

2.14 Los Profesores J. Beddington y Croxall (Reino Unido) expresaron su sorpresa ante la naturaleza y el contenido de algunas de las contribuciones a este debate y notaron que:

i) El informe de WG-EMM indicó que aparentemente todos los miembros, excepto Japón, habían en principio aprobado la noción de que se debería exigir la
designación de observadores científicos a bordo de todos los barcos de pesca de kril (anexo 4, párrafo 3.46); las reservas de Japón aparentemente se refieren solamente a la confidencialidad comercial, y este es un asunto que debe ser referido a la Comisión para su consideración;

ii) El informe de WG-FSA indicó que había consenso entre los miembros en cuanto a exigir la cobertura de observación a bordo de todos los barcos que participan en la pesquería de kril en el Área de la Convención (anexo 5, párrafo 11.3 y apéndice S, párrafo 31);

iii) Las reservas expresadas ahora por algunos miembros, incluso por los mismos representantes que estuvieron presentes en las reuniones de los grupos de trabajo, se refieren a una combinación de objeciones nuevas, la mayoría de las cuales se refieren a asuntos que no caben dentro de la competencia del Comité Científico, y objeciones antiguas que han sido debatidas exhaustivamente en años anteriores.

2.15 Sin embargo, los Profesores Beddington y Croxall reconocieron que si bien aparentemente había consenso sobre los méritos de aumentar el nivel de observación en los barcos de pesca de kril en el Área de la Convención desde el punto de vista científico, es posible que algunas de las dudas sobre la manera de implementar esto para conseguir dichos objetivos sean válidas.

2.16 Para atender a estas inquietudes, el Reino Unido propuso realizar un estudio científico en el cual, en el primer año de su realización, cada barco que participe en la pesquería de kril en el Área de la Convención deberá llevar un observador científico a bordo para realizar las tareas que el Comité Científico les encarga o requiere habitualmente. Para este estudio piloto de un año de duración, se desarrollarán protocolos y los resultados serán analizados por un grupo especial establecido por los grupos de trabajo del Comité Científico. Posteriormente, este grupo recomendaría al Comité Científico los niveles de observación científica apropiados para cada tarea especificada y para el programa de observación de la pesquería de kril en general.

2.17 El Dr. V. Siegel (Comunidad Europea) apoyó la propuesta del Reino Unido, la cual podría representar una opción conveniente para acelerar el proceso de mejorar la recopilación de datos científicos en la pesquería de kril. Indicó que la CCRVMA no debe caer en la trampa de la complacencia solo porque la captura de kril en años recientes se ha estabilizado, al mismo tiempo que la pesquería está entrando en una nueva etapa y ha adoptado nuevas técnicas pesqueras. El Comité Científico por lo tanto tendrá que disponer de suficiente información como para poder proporcionar asesoramiento de ordenación apropiado. Indicó asimismo que la mayoría de las objeciones a la cobertura de observación del 100% por parte de observadores científicos de la CCRVMA en la pesquería de kril (relacionadas con las finanzas y confidencialidad, etc.) no son de la competencia del Comité Científico y deberán ser consideradas por la Comisión.

2.18 El Sr. L. Pshenichnov (Ucrania) indicó que una opción aceptable sería incluir un requisito en las medidas de conservación para que se designen por lo menos observadores científicos nacionales a bordo de todos los barcos de pesca de kril, siempre y cuando recopilen datos de conformidad con el Sistema de Observación Científica Internacional de la CCRVMA.
2.19 El Dr. Shin indicó que probablemente no se llegaría a un acuerdo unánime con respecto a la recomendación de un 100% de cobertura en todos los barcos de pesca de kril, y no consideraba conveniente tratar de que se aprobase dicha recomendación en las circunstancias actuales. Agregó que en el espacio de una década la captura anual de kril había variado muy poco, mientras que el límite de captura se había cuadruplicado en el caladero de pesca principal. Con respecto a la captura secundaria de pinnípedos, se están encontrando soluciones y el problema es ahora mucho más manejable. La opinión de su delegación es que apremia mucho más asegurar que los datos recopilados por los observadores sean analizados y los resultados sean presentados a tiempo; y que sería de mayor utilidad determinar cuáles son los datos requeridos con urgencia y deliberar sobre cómo se podría mejorar la situación. Agregó que la pesca de kril se lleva a cabo durante periodos de tiempo prolongados y cubre vastas áreas, de manera que el coste de tener observadores en una plataforma de este tipo presentaría un desafío mucho mayor en términos logísticos y económicos.

2.20 El Dr. A. Constable (Australia) indicó que sería conveniente establecer un procedimiento mediante el cual la Secretaría de la CCRVMA acreditara y coordinara las actividades de los observadores científicos en todos los barcos de pesca de kril.

2.21 El Comité Científico acordó que la presencia de observadores internacionales a bordo de todos los barcos de pesca de kril permitiría la recopilación de información científica de utilidad para formular el asesoramiento de ordenación para la pesquería de kril basado en el enfoque de ecosistema.

2.22 Al mismo tiempo, el Comité Científico no pudo llegar a un consenso en cuanto a la urgencia de incluir este requisito en el Sistema de Observación Científica Internacional de la CCRVMA, puesto que su conveniencia en términos del balance entre la utilidad científica y los costes aún no estaba clara para algunos participantes.

2.23 El Comité Científico también encontró que la mayoría de los problemas que podrían representar un obstáculo para la introducción de una disposición obligatoria en relación con la cobertura de observación científica en todos los barcos de pesca (problemas de costes, y confidencialidad de los datos recopilados a bordo de los barcos de pesca) no caben dentro de la competencia del Comité Científico y debieran ser decididos por la Comisión.

2.24 La mayoría de los miembros del Comité Científico decidieron apoyar la propuesta presentada por el Reino Unido y realizar un experimento durante el primer año que sea posible, para poder organizar el trabajo de los observadores científicos en todos los barcos de pesca de kril durante esta temporada (párrafo 2.16).

Asesoramiento a la Comisión

2.32 El Comité Científico recomendó que:

iii) Se tome nota de que la utilización de observadores científicos internacionales a bordo de los barcos de pesca de kril permitiría la recopilación de información científica de utilidad para elaborar el asesoramiento de ordenación para la pesquería de kril basado en el ecosistema (párrafo 2.21);
iv) Se tome nota de que los problemas que siguen dificultando la introducción de un sistema obligatorio de observación científica a bordo de barcos de pesca de kril no pueden ser resueltos por el Comité Científico puesto que son de la competencia de la Comisión (párrafo 2.23).

2.33 El Comité Científico observó que la mayoría de los miembros apoyaron la propuesta de organizar, apenas sea posible, la designación experimental de observadores científicos de la CCRVMA para que lleven a cabo observaciones en todos los barcos de pesca de kril durante la temporada de pesca en cuestión, con el objeto de evaluar la utilidad científica y la eficacia de la aplicación de un sistema que exija la presencia de observadores científicos a bordo de todos los barcos de pesca de kril en el futuro (párrafo 2.24).

De SC-CAMLR-XXV (2006)

2.14 El Comité Científico señaló que tanto el WG-EMM (anexo 4, párrafo 3.80) como el WG-FSA (anexo 5, párrafo 10.3) recomendaron aumentar la cobertura de observación en la flota de pesca de kril. Recordó también su discusión del año pasado sobre el empleo de observadores científicos en barcos de pesca de kril (SC-CAMLR-XXIV, párrafos 2.7 al 2.24), que indicaba específicamente los puntos de desacuerdo en relación con la designación obligatoria de observadores en los barcos de pesca de kril.

2.15 El Comité Científico indicó que actualmente hay tres cuestiones relativas a la pesquería de kril cuya resolución tiene alta prioridad:

 i) El entendimiento de la diferencia entre las selectividades de los distintos aparejos de pesca de kril (párrafo 2.9);

 ii) La determinación del nivel de la captura secundaria de larvas de peces en la pesquería de kril (párrafo 2.12);

 iii) La determinación de la frecuencia de los choques de las aves con el cable de arrastre de la red, y de la mortalidad incidental de pinnípedos (párrafos 5.31 y 5.32).

2.16 Al considerar estos tres temas, el Comité Científico estuvo de acuerdo en que es posible que haya diferencias entre la captura secundaria de larvas de peces y la mortalidad incidental de aves marinas y pinnípedos de los distintos métodos de arrastre y las distintas configuraciones de aparejos utilizados en esta pesquería. Por lo tanto, convinieron en que la observación científica por parte de todos los miembros era necesaria para resolver estas cuestiones.

2.17 Algunos miembros, sin embargo, opinaron que las observaciones relativas a la captura secundaria de larvas de peces y la captura incidental de aves y mamíferos marinos no son más importantes que las observaciones más directas relacionadas con el recurso mismo. Indicaron asimismo que actualmente el efecto de la captura de larvas de peces en la dinámica de esos stocks no ha sido evaluado, y que sería conveniente que los grupos de trabajo hicieran esta evaluación con los datos existentes antes de prestar atención al seguimiento de la captura secundaria de larvas de peces en la pesquería de kril. El Dr. M. Naganobu (Japón) indicó que Japón hace 10 años ha estado proporcionando datos de la observación científica llevada a
cabo en los barcos de pesca de kril, incluyendo datos sobre la captura secundaria de larvas de peces. Acotó también que la interacción de aves y mamíferos marinos con la pesca de kril es muy moderada, y que está, en su mayor parte, siendo controlada.

2.18 La mayoría de los miembros estuvieron de acuerdo en que, como se propuso el año pasado (SC-CAMLR-XXIV, párrafo 2.16), se debe realizar un experimento en el cual cada barco de la pesquería de kril lleve a bordo un observador mientras pescan en un área determinada al mismo tiempo, para poder comparar de manera fiable los distintos métodos. Este estudio podría servir para determinar el nivel de cobertura de observación necesario para el futuro. La tabla 1 indica que este estudio podría ser efectuado en la Subárea 48.2, de marzo a mayo, cuando los barcos de la mayoría de los miembros participan en la pesca.

2.19 Algunos miembros opinaron que tal experimento posiblemente no permitiría cubrir todos los aspectos que se pretende estudiar, ya que el nivel de la pesca de kril actual es muy bajo. Por lo tanto, no se justificaría el coste del experimento. Asimismo, indicaron que si este estudio se realiza, se deberá considerar la financiación del mismo (por ejemplo, véanse los comentarios en CCAMLR-XXIV, párrafo 9.7).

Asesoramiento a la Comisión

2.22 El Comité Científico recomendó que:

ii) La designación de observadores científicos a bordo de barcos de pesca de kril deberá tener alta prioridad, para investigar el problema de la captura secundaria de larvas de peces (párrafos 4.7 al 4.10);

De SC-CAMLR-XXVI (2007)

3.6 El Comité Científico aprobó el asesoramiento de WG-SAM, que identificó la necesidad de contar con datos de frecuencias de tallas (de alta calidad) de las pesquerías, recopilados durante varios años, para poder realizar una evaluación integrada, y recomendó que la pesquería empezara a proporcionar datos de frecuencias de tallas ahora, dado que posiblemente las prospecciones de investigación no proporcionarán datos suficientes para todas las regiones (anexo 7, párrafo 3.13).

3.7 El Comité Científico basó sus deliberaciones en los siguientes objetivos clave de la observación científica de la pesquería de kril:

i) entender el comportamiento y el efecto de la pesquería en general;

ii) realizar el seguimiento sistemático de la pesquería para obtener la información necesaria para la aplicación de modelos demográficos y del ecosistema.

644
3.8 Los fundamentos de este enfoque de dos etapas es que el esfuerzo de seguimiento de las pesquerías no requiere necesariamente de una cobertura de observación máxima durante un tiempo indefinido si los requisitos de ordenación son satisfechos mediante un esfuerzo de observación moderado. Existe, eso sí, la expectativa de que a largo plazo se debería efectuar una recopilación sistemática de los datos de la pesquería.

3.9 El Comité Científico estuvo de acuerdo en que solamente se podrá determinar el nivel de la cobertura de observación (espacial y temporal) requerido por el segundo objetivo (ii) una vez logrado el primer objetivo (i). El estudio a fondo de (i) requeriría la observación científica sistemática de las UOPE, temporadas, barcos y métodos de pesca, tanto en una escala espacial como temporal.

3.10 El Comité Científico convino en que la recopilación de los datos científicos de la pesquería de kril se puede hacer de muchas maneras. Por ejemplo, tanto para la primera como para la segunda etapa, la cobertura más completa y la manera más rápida de conseguir el objetivo descrito en (i), podría obtenerse mediante una, o las dos, posibilidades siguientes:

- 100% de cobertura por parte de observadores científicos internacionales
- 100% de cobertura por parte de observadores internacionales y/o nacionales.

3.11 El Comité Científico indicó que la disminución del esfuerzo de observación podría demorar la consecución del objetivo (i) mencionado en el párrafo 3.7, y también podría introducir sesgos en los datos si esta disminución del esfuerzo de observación no ocurre apropiadamente. Esta disminución del esfuerzo podría incluir:

i) Una cobertura de observación sistemática pero <100%;

ii) Diferentes niveles de cobertura para distintas flotas, por ejemplo, 100% de cobertura para barcos nuevos cuyas características son desconocidas y una menor cobertura para los barcos ya establecidos en la pesquería para los que ya se cuenta con información;

iii) Designación constante y aleatoria de observadores y controles regulares de la calidad, y cobertura sistemática de los observadores científicos hasta que la pesquería se encuentre establecida, a fin de proporcionar suficientes datos para cumplir con los requisitos de ordenación.

3.12 Se aclaró que:

i) Por “cobertura sistemática” se entiende la cobertura que asegura la recopilación de datos de todas las áreas, temporadas, barcos y métodos de pesca, que lleva a la obtención metódica de datos de alta calidad para las evaluaciones de las pesquerías en las que participan numerosos barcos de distintos países (anexo 7, párrafo 4.16);

ii) La información requerida podría ser recopilada tanto por observadores internacionales como nacionales, siempre que los datos y los informes concuerden con el Sistema de Observación Científica Internacional de la CCRVMA, y sean de calidad suficiente para ser utilizados en los análisis propuestos;
iii) El nivel de la cobertura de observación inicial requerido para entender el comportamiento general y los efectos de la pesquería de kril podría ser más alto que el nivel de cobertura requerido finalmente para las observaciones a largo plazo.

3.13 El Comité Científico alentó a las Partes interesadas a presentar planes para la recopilación sistemática y consecuente de los datos científicos requeridos de la pesquería para su consideración en las próximas reuniones de WG-EMM, WG-SAM y del grupo especial WG-IMAF. Los planes deberán incluir las propuestas que requieren una cobertura de observación de 100% y aquellas que pueden demostrar que recopilarían una cantidad adecuada de datos mediante un nivel de cobertura menor. Esta labor es esencial para que los miembros puedan alcanzar un acuerdo sobre el nivel de cobertura que permite la recopilación de los datos necesarios para conseguir los objetivos especificados.

3.14 El Comité Científico acordó que los grupos de trabajo realicen un estudio de las posibles consecuencias de la implementación de los distintos enfoques, en términos de los datos que se lograría recopilar, y asesoren al Comité Científico en 2008 con respecto al nivel de cobertura de observación requerido.

3.15 El Comité Científico reconoció que cada una de las propuestas para obtener los datos prioritarios requeridos tendría consecuencias en términos de la implementación y la demora en la entrega de los datos. El riesgo asociado con una cobertura menor deberá ser examinado meticulosamente por expertos antes de que se pueda determinar una posible cobertura de observación.

3.16 El Comité Científico exhortó nuevamente a los miembros y a las Partes contratantes que pescan kril a enviar a sus expertos a las reuniones de WG-EMM y de WG-SAM para que participen plenamente en este proceso.
<table>
<thead>
<tr>
<th>Año</th>
<th>Detalles</th>
<th>Año</th>
<th>Detalles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observaciones científicas</td>
<td>Reiteró la necesidad de emplear observadores científicos a bordo de barcos de pesca de kril (SC-CAMLR-XXIII, párrafo 2.5)</td>
<td>2004</td>
<td>Destacó la necesidad (CCAMLR-XXIII, párrafo 4.5)</td>
</tr>
<tr>
<td>2001</td>
<td>Reiteró la necesidad de recopilar datos detallados (SC-CAMLR-XX, párrafos 3.7 al 3.9)</td>
<td>2002</td>
<td>Destacó la falta de coherencia y la urgente necesidad de obtener datos detallados (CCAMLR-XXI, párrafos 4.27 y 4.28)</td>
</tr>
<tr>
<td>2002</td>
<td>Señaló la falta de coherencia en los requisitos con respecto a los datos de las pesquerías de kril (SC-CAMLR-XXI, párrafos 4.19 y 4.23)</td>
<td>2002</td>
<td>Destacó la falta de coherencia y la urgente necesidad de obtener datos detallados (CCAMLR-XXI, párrafos 4.27 y 4.28)</td>
</tr>
<tr>
<td>2002</td>
<td>Reconoció la importancia de los datos recopilados regularmente por los observadores científicos (SC-CAMLR-XXI, párrafos 4.19 y 4.22)</td>
<td>2002</td>
<td>Destacó la falta de coherencia y la urgente necesidad de obtener datos detallados (CCAMLR-XXI, párrafos 4.27 y 4.28)</td>
</tr>
<tr>
<td>2003</td>
<td>Recomendó emplear los formularios electrónicos estándar en los barcos de pesca de kril (SC-CAMLR-XXII, párrafo 2.1)</td>
<td>2004</td>
<td>Destacó la necesidad (CCAMLR-XXIII, párrafo 4.5)</td>
</tr>
<tr>
<td>2004</td>
<td>Reiteró la necesidad de emplear observadores científicos a bordo de barcos de pesca de kril (SC-CAMLR-XXIII, párrafo 2.5)</td>
<td>2005</td>
<td>Tomó nota del asesoramiento (CCAMLR-XXIV, párrafos 9.3 y 9.8)</td>
</tr>
<tr>
<td>2005</td>
<td>Informó a la Comisión que la mayoría de los obstáculos en la designación de observadores científicos a bordo de los barcos de pesca de kril no cabía dentro de su ámbito de responsabilidad (SC-CAMLR-XXIV, párrafos 2.21 al 2.24)</td>
<td>2005</td>
<td>Tomó nota de la necesidad (CCAMLR-XXIV, párrafos 4.24 y 4.32)</td>
</tr>
<tr>
<td>2005</td>
<td>Asesoró sobre los nuevos requisitos con respecto a los datos detallados y a la cobertura de observación científica (SC-CAMLR-XXIV, párrafo 4.11)</td>
<td>2005</td>
<td>Tomó nota de la necesidad (CCAMLR-XXIV, párrafos 4.24 y 4.32)</td>
</tr>
<tr>
<td>2006</td>
<td>Reiteró la necesidad de realizar observaciones científicas enfocadas en la selectividad del arte de pesca, en la captura secundaria de larvas de peces y en IMAF (SC-CAMLR-XXV, párrafos 2.15, 2.22 y 4.20)</td>
<td>2006</td>
<td>Tomó nota de la necesidad (CCAMLR-XXV, párrafos 4.27 al 4.30 y 10.1 al 10.11)</td>
</tr>
<tr>
<td>2007</td>
<td>Reiteró la necesidad de contar con cobertura sistemática de observación en las pesquerías de kril (SC-CAMLR-XXVI, párrafos 3.13 al 3.16)</td>
<td>2007</td>
<td>Apoyó el enfoque (CCAMLR-XXVI, párrafo 4.35). Implementó el requisito de emplear observadores en la pesquería de la División 58.4.2 (nota: la pesquería no está operando) (CCAMLR-XXVI, párrafo 4.49; Medida de Conservación 51-03)</td>
</tr>
</tbody>
</table>
TAREAS ESPECÍFICAS IDENTIFICADAS POR EL COMITÉ CIENTÍFICO
PARA EL PERÍODO ENTRE SESIONES DE 2008/09
<table>
<thead>
<tr>
<th>No.</th>
<th>Tarea</th>
<th>Párrafos de referencia en SC-CAMLR-XXVII</th>
<th>Plazo</th>
<th>Acción requerida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Secretaría</td>
</tr>
<tr>
<td>1.</td>
<td>WG-SAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Perfeccionar e implementar metodologías para evaluar la calidad de los datos.</td>
<td>2.4(i)</td>
<td>Jun 09</td>
<td>Ejecutar</td>
</tr>
<tr>
<td>1.2</td>
<td>Continuar desarrollando y refinando los modelos que puedan ser utilizados para entender la dinámica del ecosistema y las consecuencias de los enfoques de ordenación para los recursos antárticos.</td>
<td>2.4(ii)</td>
<td>En curso</td>
<td>Apoyar</td>
</tr>
<tr>
<td>1.3</td>
<td>Implementar sistemas de control de las revisiones (versiones) para manejar las múltiples revisiones del código de programación, los documentos y los archivos de datos en una base de datos central, en la labor del Comité Científico.</td>
<td>2.4(iii)</td>
<td>En curso</td>
<td>Apoyar</td>
</tr>
<tr>
<td>1.4</td>
<td>Adoptar una terminología común con otros foros internacionales sobre la evaluación de procedimientos de ordenación y utilizarla en la labor del Comité Científico.</td>
<td>2.4(iv)</td>
<td>En curso</td>
<td>Apoyar</td>
</tr>
<tr>
<td>2.</td>
<td>SG-ASAM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Recomendaciones relacionadas con materias que deberán ser tratadas durante la cuarta reunión de WG-ASAM, incluidas las prioridades y el cometido.</td>
<td>2.5–2.9</td>
<td>Abr 09</td>
<td>Ejecutar</td>
</tr>
<tr>
<td>3.</td>
<td>Taller conjunto CCAMLR-IWC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Grupo de Dirección debe considerar la futura labor.</td>
<td>2.20</td>
<td>En curso</td>
<td>Apoyar</td>
</tr>
<tr>
<td>4.</td>
<td>Seguimiento y ordenación del ecosistema</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asignación por UOPE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Realizar una evaluación del riesgo de la estrategia 1, similar a las efectuadas para las estrategias 2 y 3.</td>
<td>3.18</td>
<td>Jun 09</td>
<td>Ejecutar</td>
</tr>
<tr>
<td>4.2</td>
<td>Entregar detalles a WG-SAM y WG-EMM sobre problemas con el modelado.</td>
<td>3.21</td>
<td>Jun 09</td>
<td>Tomar nota</td>
</tr>
<tr>
<td></td>
<td>WG-STAPP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Implementar el programa de trabajo futuro.</td>
<td>3.39</td>
<td>Jun 09</td>
<td>Apoyar</td>
</tr>
</tbody>
</table>

TAREAS DEL COMITÉ CIENTÍFICO PARA EL PERÍODO ENTRE SESIONES DE 2008/09
<table>
<thead>
<tr>
<th>No.</th>
<th>Tarea</th>
<th>Párrafos de referencia en SC-CAMLR-XXVII</th>
<th>Plazo</th>
<th>Acción requerida</th>
<th>Secretaría</th>
<th>Miembros</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Implementar la nueva agenda para la reunión de 2009 del WG-EMM.</td>
<td>3.48</td>
<td>Jun 09</td>
<td>Ejecutar</td>
<td>Coordinador del WG-EMM</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Continuar el desarrollo de sistemas representativos de AMP, incluidas las áreas más importantes identificadas por WG-EMM.</td>
<td>3.55(iv)</td>
<td>Jun 09</td>
<td>Apoyar</td>
<td>Ejecutar</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Tomar nota del cometido, fecha y lugar del taller FEMA2 que se incluye como tema central de discusión en la agenda del WG-EMM.</td>
<td>3.60–3.62</td>
<td>Jun 09</td>
<td>Apoyar</td>
<td>Coordinadores WG-EMM y WG-FSA</td>
<td></td>
</tr>
</tbody>
</table>

5. Especies explotadas

Recurso kril

Tipos de artes de pesca

5.1 Tomar nota de la modificación de los artes de pesca de kril en las notificaciones. 4.11–4.12 | Feb 09 | Ejecutar | Tomar nota |

Estimación de la captura de kril

5.2 Los miembros deben informar a la reunión de TASO (2009) sobre los problemas experimentados en la medición directa del peso en vivo de kril. 4.17 | Jun 09 | Apoyar | Miembros que participan en la pesca de kril |

Captura secundaria de larvas de peces y peces juveniles

5.3 Traducir la guía de peces del ruso al inglés. 4.20 | En curso | Ejecutar | Tomar nota |

Recurso peces

Estudios de marcado

5.4 Continuar verificando marcas y entrando datos en la base de datos. 4.41–4.42 | En curso | Ejecutar | Apoyar |

Biología y ecología en general

5.5 Completar y publicar las reseñas de especies de *D. mawsoni*, *D. eleginoides* y *C. gunnari* en el sitio web en 2010. 4.45 | En curso | Apoyar | Nueva Zelanda, Alemania y Reino Unido |
<table>
<thead>
<tr>
<th>No.</th>
<th>Tarea</th>
<th>Párrafos de referencia en SC-CAMLR-XXVII</th>
<th>Plazo</th>
<th>Acción requerida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Secretaría</td>
</tr>
<tr>
<td>5.6</td>
<td>Dar la posición de las estaciones aleatorias de los barcos que participan en la pesca exploratoria de austromerluza en las Subáreas 48.6 y 58.4.</td>
<td>4.112-4.114</td>
<td>Dic 08</td>
<td>Ejecutar</td>
</tr>
<tr>
<td></td>
<td>Actividades de pesca de fondo y EMV</td>
<td></td>
<td></td>
<td>Secretaría</td>
</tr>
<tr>
<td>5.7</td>
<td>Celebrar un taller sobre EMV de acuerdo con el cometido correspondiente y elaborar una planilla de un ‘informe de pesca’ para los EMV.</td>
<td>4.217, 4.243</td>
<td>Ago 09</td>
<td>Ejecutar</td>
</tr>
<tr>
<td></td>
<td>Realizar simulaciones de encuentros con EMV de acuerdo con distintos enfoques de ordenación e informar los resultados a WG-SAM y WG-FSA.</td>
<td>4.251</td>
<td>En curso</td>
<td>Apoyar</td>
</tr>
</tbody>
</table>

6. Mortalidad incidental

- **Revisión del plan de acción para eliminar la mortalidad incidental de aves marinas**
 - 6.1 Presentar una traducción al inglés de SC-CAMLR-XXVII/BG/8 y, si fuera posible, enviar los expertos pertinentes a WG-SAM. | 5.8 | Jun 09 | Apoyar | Francia |
 - 6.2 En 2009, entregar a WG-IMAF y al Comité Científico un informe detallado del avance alcanzado en la implementación del plan de acción que incluya figuras para ilustrar el solapamiento entre el esfuerzo pesquero semanal por sector y la tasa de mortalidad incidental de aves marinas. | 5.8 | Sep 09 | Apoyar | Francia |

- **Recopilación de datos de observación**
 - 6.3 Implementar recomendaciones para actualizar el *Manual del Observador Científico*. | 5.28 | Feb 09 | Ejecutar | Apoyar |
 - 6.4 Preparar un análisis sobre la implementación del protocolo de las colisiones con el cable de la red de arrastre en la División 58.5.2. | 5.29 | Sep 09 | Ejecutar | Apoyar |

- **Iniciativas internacionales y nacionales relacionadas con la mortalidad incidental de las aves marinas ocasionada por la pesca de palangre**
 - 6.5 La Secretaría debe estudiar la posibilidad de obtener datos de la mortalidad incidental y de esfuerzo, y demás detalles, de la Secretaría de IOTC en relación con la pesca con redes de enmalle regulada por dicha organización. | 5.36(iii) | Sep 09 | Ejecutar |
<table>
<thead>
<tr>
<th>No.</th>
<th>Tarea</th>
<th>Párrafos de referencia en SC-CAMLR-XXVII</th>
<th>Plazo</th>
<th>Acción requerida</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6</td>
<td>El Secretario Ejecutivo de la CCRVMA debe escribir a los Secretarios Ejecutivos de las OROP listadas en el apéndice 1 de la Resolución 22/XXV, para reiterarles nuevamente el objetivo de la Comisión de reducir la mortalidad incidental de aves marinas del Área de la Convención en áreas fuera de la misma.</td>
<td>5.36(v)(a)</td>
<td>Sep 09</td>
<td>Ejecutar</td>
</tr>
<tr>
<td>6.7</td>
<td>El Secretario Ejecutivo de la CCRVMA debe tratar de incluir un punto en la agenda de la reunión de secretarías de los Organismos Pesqueros Regionales (a celebrarse en marzo de 2009), para reflejar el interés de la Comisión en reducir la mortalidad incidental de aves marinas del Área de la Convención en áreas fuera de la misma.</td>
<td>5.36(v)(b)</td>
<td>Mar 09</td>
<td>Ejecutar</td>
</tr>
<tr>
<td>6.8</td>
<td>Preparar y presentar un documento de trabajo a la reunión de los Organismos Pesqueros Regionales, ilustrando la superposición espacial de las zonas de alimentación de las aves que se reproducen en el Área de la Convención con las actividades de pesca de la CCSBT.</td>
<td>5.37</td>
<td>Mar 09</td>
<td>Ejecutar</td>
</tr>
</tbody>
</table>

Desechos marinos y su efecto en las aves y mamíferos marinos del Área de la Convención

<p>| 6.9 | Implementar las definiciones revisadas de desechos asociados con las colonias de aves marinas, y de la edad y sexo del lobo fino antártico, para notificar los datos de desechos marinos. | 5.40(i) | Mar 09 | Ejecutar | Ejecutar |
| 6.10 | Crear un archivo fotográfico de los desechos encontrados, que incluya fotos de aparejos de pesca tomadas por los observadores. | 5.40(ii) | Jun 09 | Apoyar | TASO |
| 6.11 | Incluir información sobre los desechos marinos en las comunicaciones de la CCRVMA con otras organizaciones internacionales, incluidas las OROP. | 5.40(iii) | En curso | Ejecutar |
| 6.12 | Publicar un cartel de tamaño A3 de plexiglás, para poner de relieve la importancia del manejo de los desechos de conformidad con las medidas de conservación, y las consecuencias para los animales marinos de no hacer esto en forma eficaz. | 5.4(iv) | Sep 09 | Ejecutar |
| 6.13 | Los miembros deben enviar datos sobre desechos marinos a la Secretaría. | 5.40(vi) | En curso | Apoyar | Ejecutar |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Tarea</th>
<th>Párrafos de referencia en SC-CAMLR-XXVII</th>
<th>Plazo</th>
<th>Acción requerida</th>
<th>Secretaría</th>
<th>Miembros</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>Sistema de Observación Científica Internacional de la CCRVMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grupo especial TASO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Compilar una lista de los asuntos remitidos a TASO por los otros grupos de trabajo y elaborar la agenda para la reunión de dos días en 2009.</td>
<td>6.12</td>
<td>Jun 09</td>
<td>Apoyar</td>
<td></td>
<td>Coordinadores de TASO</td>
</tr>
<tr>
<td>8.</td>
<td>Ordenación de pesquerías y conservación en condiciones de incertidumbre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cambio climático</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Examinar la solidez del asesoramiento científico proporcionado por el Comité Científico y de las evaluaciones de los stocks preparadas por sus grupos de trabajo ante la creciente incertidumbre asociada al cambio climático, particularmente en relación con predicciones de la reacción futura de las poblaciones y niveles de reclutamiento.</td>
<td>7.14 (i)</td>
<td>En curso</td>
<td>Apoyar</td>
<td></td>
<td>Ejecutar</td>
</tr>
<tr>
<td>8.2</td>
<td>Examinar la necesidad de mejorar – e implementar según proceda – los actuales programas de seguimiento de las especies explotadas, especies dependientes y especies afines, para proporcionar indicadores fidedignos y oportunos de los efectos del cambio climático.</td>
<td>7.14 (ii)</td>
<td>En curso</td>
<td>Apoyar</td>
<td></td>
<td>Ejecutar</td>
</tr>
<tr>
<td>8.3</td>
<td>Determinar si los objetivos de ordenación e indicadores del rendimiento de la CCRVMA requieren modificación para seguir siendo adecuados ante la incertidumbre del cambio climático.</td>
<td>7.14 (iii)</td>
<td>En curso</td>
<td>Apoyar</td>
<td></td>
<td>Ejecutar</td>
</tr>
<tr>
<td>9.</td>
<td>Cooperación con otras organizaciones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooperación con el Sistema del Tratado Antártico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Grupo de dirección del taller conjunto SC-CAMLR–CPA debe entregar el plan de trabajo acordado para el taller de abril de 2009.</td>
<td>9.10–9.18</td>
<td>Abr 09</td>
<td>Apoyar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Tarea</td>
<td>Párrafos de referencia en SC-CAMLR-XXVII</td>
<td>Plazo</td>
<td>Acción requerida</td>
<td>Secretaría</td>
<td>Miembros</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>----------------</td>
<td>------------------</td>
<td>------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>10.</td>
<td>Informe del Comité de evaluación del rendimiento de la CCRVMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Revisar las recomendaciones relacionadas con el Comité Científico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Orientar a los distintos grupos de trabajo sobre cómo abordar las tres recomendaciones de mayor prioridad y las demás en el futuro.</td>
<td>10.11</td>
<td>Sep 09</td>
<td>Apoyar</td>
<td>Presidente del Comité Científico</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Actividades apoyadas por la Secretaría</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Datos STATLANT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elaborar un ejemplo del tipo de tabla que se ha propuesto utilizar para resumir los datos STATLANT IMAF.</td>
<td>13.4</td>
<td>Periodo entre sesiones</td>
<td>Ejecutar</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metadatos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.2</td>
<td>Crear un portal para la CCRVMA en el Directorio General de Cambios Globales (GCMD) e identificar las clasificaciones de metadatos.</td>
<td>13.7</td>
<td>Ejecutar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proyecto de ciencias D4Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.3</td>
<td>Informar a WG-SAM y WG-EMM en 2009 sobre la posible aplicación del proyecto D4Science en la labor de la CCRVMA.</td>
<td>13.10</td>
<td>Jun 09</td>
<td>Ejecutar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Actividades del Comité Científico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Tomar nota del calendario de reuniones para 2008/09.</td>
<td>14.4</td>
<td>En curso</td>
<td>Tomar nota</td>
<td>Tomar nota</td>
<td></td>
</tr>
<tr>
<td>12.2</td>
<td>Estudiar cómo se podría atraer la participación de otros científicos.</td>
<td>14.5</td>
<td>En curso</td>
<td>Apoyar</td>
<td>Ejecutar</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Asuntos varios</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Racionalización de contraseñas para acceder al sitio web de la CCRVMA</td>
<td>16.4</td>
<td>En curso</td>
<td>Ejecutar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.2</td>
<td>Considerar cómo se podría aumentar la capacidad así como la participación en la labor del WG-FSA y en la labor de otros grupos de trabajo.</td>
<td>16.8</td>
<td>En curso</td>
<td>Apoyar</td>
<td>Ejecutar</td>
<td></td>
</tr>
</tbody>
</table>
GLOSARIO DE SIGLAS Y ABREVIACIONES UTILIZADAS EN LOS INFORMES DEL COMITÉ CIENTÍFICO DE LA CCRVMA
<table>
<thead>
<tr>
<th>Sigla</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAD</td>
<td>División Antártica del Gobierno de Australia</td>
</tr>
<tr>
<td>ACAP</td>
<td>Acuerdo sobre la Conservación de Albatros y Petreles</td>
</tr>
<tr>
<td>ACAP BSWG</td>
<td>Grupo de trabajo de ACAP sobre colonias de reproducción</td>
</tr>
<tr>
<td>ACC</td>
<td>Corriente circumpolar antártica</td>
</tr>
<tr>
<td>ACW</td>
<td>Onda circumpolar antártica</td>
</tr>
<tr>
<td>ADCP</td>
<td>Trazador acústico Doppler de las corrientes (montado en el casco)</td>
</tr>
<tr>
<td>ADL</td>
<td>Límite aeróbico del buceo</td>
</tr>
<tr>
<td>AFMA</td>
<td>Autoridad Australiana de Administración Pesquera</td>
</tr>
<tr>
<td>AFZ</td>
<td>Zona de pesca australiana</td>
</tr>
<tr>
<td>AGNU</td>
<td>Asamblea general de las Naciones Unidas</td>
</tr>
<tr>
<td>AKES</td>
<td>Estudios del kril y del ecosistema antártico</td>
</tr>
<tr>
<td>ALK</td>
<td>Clave edad-talla</td>
</tr>
<tr>
<td>AMD</td>
<td>Directorio Maestro de datos antárticos</td>
</tr>
<tr>
<td>AMES</td>
<td>Estudios de los ecosistemas marinos de la Antártida</td>
</tr>
<tr>
<td>AMLR</td>
<td>Recursos vivos marinos antárticos</td>
</tr>
<tr>
<td>AMP</td>
<td>Área marina protegida (MPA, en sus siglas en inglés)</td>
</tr>
<tr>
<td>AMSR-E</td>
<td>Radiómetro rastreador de microondas avanzado – Flota de observación de la Tierra</td>
</tr>
<tr>
<td>ANDEEP</td>
<td>Biodiversidad bentónica en los mares profundos de la Antártida</td>
</tr>
<tr>
<td>APBSW</td>
<td>(UOPE) oeste del Estrecho Bransfield</td>
</tr>
<tr>
<td>APDPE</td>
<td>(UOPE) este del Paso Drake</td>
</tr>
<tr>
<td>APDPW</td>
<td>(UOPE) oeste del Paso Drake</td>
</tr>
<tr>
<td>APE</td>
<td>(UOPE) este de la Península Antártica</td>
</tr>
<tr>
<td>APEC</td>
<td>Cooperación Económica Asia-Pacífico</td>
</tr>
<tr>
<td>Acronimo</td>
<td>Definición</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>APEI</td>
<td>UOPE de Isla Elefante</td>
</tr>
<tr>
<td>APEME (Comité Directivo)</td>
<td>Comité Directivo para el Desarrollo de Modelos Plausibles del Ecosistema Antártico</td>
</tr>
<tr>
<td>API</td>
<td>Año polar internacional</td>
</tr>
<tr>
<td>APIS</td>
<td>Programa antártico sobre los pinnípedos del campo de hielo (SCAR-GSS)</td>
</tr>
<tr>
<td>APW</td>
<td>(UOPE) oeste de la Península Antártica</td>
</tr>
<tr>
<td>ASI</td>
<td>Inventario de sitios antárticos</td>
</tr>
<tr>
<td>ASIP</td>
<td>Proyecto de inventario de sitios antárticos</td>
</tr>
<tr>
<td>ASMA</td>
<td>Área antártica con administración especial</td>
</tr>
<tr>
<td>ASOC</td>
<td>Coalición de la Antártida y del Océano Austral</td>
</tr>
<tr>
<td>ASPA</td>
<td>Área antártica con protección especial</td>
</tr>
<tr>
<td>ASPM</td>
<td>Modelo de rendimiento basado en la edad</td>
</tr>
<tr>
<td>ATCM</td>
<td>Reunión consultiva del Tratado Antártico</td>
</tr>
<tr>
<td>ATCP</td>
<td>Parte Consultiva del Tratado Antártico</td>
</tr>
<tr>
<td>ATSCM</td>
<td>Reunión consultiva especial del Tratado Antártico</td>
</tr>
<tr>
<td>AVHRR</td>
<td>Radiometría de vanguardia de alta resolución</td>
</tr>
<tr>
<td>BAS</td>
<td>Centro de Estudios Antárticos del Reino Unido (British Antarctic Survey)</td>
</tr>
<tr>
<td>BED</td>
<td>Aparato para excluir a las aves</td>
</tr>
<tr>
<td>BI</td>
<td>Barco de investigación (RV, en sus siglas en inglés)</td>
</tr>
<tr>
<td>BM</td>
<td>Barco mercante (MV, en sus siglas en inglés)</td>
</tr>
<tr>
<td>BIOMASS</td>
<td>Investigaciones biológicas de las especies y los sistemas marinos antárticos (SCAR/SCOR)</td>
</tr>
<tr>
<td>BP</td>
<td>Barco de pesca (FV, en sus siglas en inglés)</td>
</tr>
<tr>
<td>BROKE</td>
<td>Investigación básica sobre oceanografía, kril y el medio ambiente</td>
</tr>
<tr>
<td>BRT</td>
<td>Árbol de regresión sobreajustado</td>
</tr>
<tr>
<td>CAC</td>
<td>Evaluación exhaustiva del cumplimiento</td>
</tr>
</tbody>
</table>
cADL Límite aeróbico calculado del buCEO
CAF Laboratorio central para la determinación de la edad de peces
CAML Censo de la Fauna Marina Antártica
CASAL Laboratorio de Evaluación de los Stocks con Algoritmos C++
CBD Convención sobre la Diversidad Biológica
CCA Corriente circumpolar antártica
CCAMLR Comisión para la Conservación de los Recursos Vivos Marinos Antárticos
CCAMLR-2000 (campaña) Prospección sinóptica de kril en el Área 48 efectuada por los miembros de la CCRVMA en el año 2000
CCAMLR-API-2008 Prospección sinóptica de kril en la región del Atlántico sur (CCAMLR-IPY-2008, en sus siglas en inglés)
CCAS Convención para la Conservación de las Focas Antárticas
CCD-CAML Comité Científico de Dirección de CAML (CAML SSC en sus siglas en inglés)
CCRVMA Comisión para la Conservación de los Recursos Vivos Marinos Antárticos
CCSBT Comisión para la Conservación del Atún Rojo
CCSBT-ERS WG Grupo de Trabajo del CCSBT sobre las Especies Relacionadas Ecológicamente
CDW Aguas circumpolares profundas
CEMP Programa de Seguimiento del Ecosistema de la CCRVMA
CircAntCML Censo Circumpolar Antártico de la Vida Marina Antártica
CITES Convención sobre el Comercio Internacional de Especies Amenazadas
CMAP Comisión Mundial de Áreas Protegidas
CMIX Programa de análisis de mezclas de la CCRVMA
CMS Conservación de las Especies Migratorias de Animales Silvestres
COFI Comité de Pesquerías (FAO)
COLTO Coalición de pescadores legítimos de austromerluza
CoML Censo de la Vida Marina
COMM CIRC Circular de la Comisión (CCRVMA)
COMNAP Consejo de Administradores de Programas Nacionales Antárticos (SCAR)
CON Red de otolitos de la CCRVMA
CONVEMAR Convención de las Naciones Unidas sobre el Derecho del Mar (UNCLOS, en sus siglas en inglés)
CPA Comité de Protección Ambiental
CPD Período y distancia críticos
CPPS Comisión Permanente de la Comunidad del Pacífico
CPR Registro continuo de datos del plancton
CPUE Captura por unidad de esfuerzo
CQFE Centro de ecología pesquera cuantitativa (EEUU)
CS-EASIZ Ecología de la Zona Costera del Hielo Marino Antártico (SCAR)
CSI Índice normalizado compuesto
CSIRO Organización de Investigación Científica e Industrial de la Commonwealth de Australia
CST Convergencia subtropical (STC, en sus siglas en inglés)
CT Tomografía axial computarizada (o escáner)
CTD Registrador de la conductividad, temperatura y profundidad
CV Coeficiente de variación
CVS Sistema de Versiones Concurrentes
CWP Grupo Coordinador de Trabajo sobre Estadísticas de Pesca (FAO)
DCD Documento de captura de *Dissostichus*
DMSP Programa de satélites meteorológicos del Departamento de Defensa de EEUU
DPM Modelo dinámico de producción
DPOI Índice de oscilación del estrecho Drake
<table>
<thead>
<tr>
<th>Acrónimo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVM</td>
<td>Migración vertical diurna (o circadiana)</td>
</tr>
<tr>
<td>DWBA</td>
<td>Modelo de aproximación de onda distorsionada de Born</td>
</tr>
<tr>
<td>EAF</td>
<td>Enfoque de ecosistema aplicado a la pesca</td>
</tr>
<tr>
<td>EASIZ</td>
<td>Ecología de la Zona del Hielo Antártico</td>
</tr>
<tr>
<td>ECOPATH</td>
<td>Programas para la construcción y análisis de modelos de equilibrio de masas, interacciones del proceso de alimentación, y del flujo de los nutrientes en el ecosistema (ver www.ecopath.org)</td>
</tr>
<tr>
<td>ECOSIM</td>
<td>Programas para la construcción y análisis de modelos de equilibrio de masas, interacciones del proceso de alimentación, y del flujo de los nutrientes en el ecosistema (ver www.ecopath.org)</td>
</tr>
<tr>
<td>EEE</td>
<td>Examen de las estrategias de evaluación (ASE en inglés)</td>
</tr>
<tr>
<td>EEO</td>
<td>Examen de las estrategias de ordenación (MSE en inglés)</td>
</tr>
<tr>
<td>EIV</td>
<td>Valor de importancia ecológica</td>
</tr>
<tr>
<td>EMV</td>
<td>Ecosistema marino vulnerable</td>
</tr>
<tr>
<td>ENSO</td>
<td>Oscilación austral producida por El Niño</td>
</tr>
<tr>
<td>EOF/PC</td>
<td>Función empírica ortogonal/Componente principal</td>
</tr>
<tr>
<td>EoI</td>
<td>Expresión (Carta) de Intenciones (para las actividades del API)</td>
</tr>
<tr>
<td>EPOC</td>
<td>Ecosistema, productividad, océano y clima</td>
</tr>
<tr>
<td>EPOS</td>
<td>Estudios europeos a bordo del Polarstern</td>
</tr>
<tr>
<td>EPROM</td>
<td>Memoria EPROM</td>
</tr>
<tr>
<td>eSB</td>
<td>Versión electrónica del Boletín Estadístico de la CCRVMA</td>
</tr>
<tr>
<td>FAO</td>
<td>Organización de las Naciones Unidas para la Agricultura y Alimentación</td>
</tr>
<tr>
<td>FC</td>
<td>Factor de conversión</td>
</tr>
<tr>
<td>FEM</td>
<td>Formulación de estrategias de mitigación</td>
</tr>
<tr>
<td>FEMA</td>
<td>Taller sobre pesquerías y modelos de ecosistemas en la Antártida</td>
</tr>
<tr>
<td>FEMA2</td>
<td>Segundo Taller sobre pesquerías y modelos de ecosistemas en la Antártida</td>
</tr>
<tr>
<td>FFA</td>
<td>Organismo del Pesca del Foro para el Pacífico Sur</td>
</tr>
<tr>
<td>Acrónimo</td>
<td>Definición</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>FDP</td>
<td>Función de densidad de probabilidad (PDF, en sus siglas en inglés)</td>
</tr>
<tr>
<td>FFO</td>
<td>Superposición entre las zonas de alimentación y las pesquerías</td>
</tr>
<tr>
<td>FIBEX</td>
<td>Primer Estudio Internacional de BIOMASS</td>
</tr>
<tr>
<td>FIGIS</td>
<td>Sistema Mundial de Información sobre la Pesca (FAO)</td>
</tr>
<tr>
<td>FIRMS</td>
<td>Sistema de seguimiento de recursos pesqueros (FAO)</td>
</tr>
<tr>
<td>FMP</td>
<td>Plan de ordenación de pesquería</td>
</tr>
<tr>
<td>FOOSA</td>
<td>Modelo kril–depredadores–pesquería (anteriormente KPFM2)</td>
</tr>
<tr>
<td>FPI</td>
<td>Razón pesca/depredación</td>
</tr>
<tr>
<td>FRAM</td>
<td>Modelo Antártico de Alta Resolución</td>
</tr>
<tr>
<td>GAM</td>
<td>Modelo aditivo generalizado</td>
</tr>
<tr>
<td>GATT</td>
<td>Acuerdo General sobre Aranceles Aduaneros y Comercio</td>
</tr>
<tr>
<td>GBM</td>
<td>Modelo generalizado sobreajustado</td>
</tr>
<tr>
<td>GCMD</td>
<td>Directorio Maestro de datos sobre el Cambio Global</td>
</tr>
<tr>
<td>GDM</td>
<td>Representación generalizada de la disimilitud</td>
</tr>
<tr>
<td>GEBCO</td>
<td>Carta batimétrica general de los océanos</td>
</tr>
<tr>
<td>GIS</td>
<td>Sistema de información geográfica</td>
</tr>
<tr>
<td>GIWA</td>
<td>Evaluación global de las aguas internacionales (SCAR)</td>
</tr>
<tr>
<td>GLM</td>
<td>Modelo lineal generalizado</td>
</tr>
<tr>
<td>GLMM</td>
<td>Modelo lineal mixto generalizado</td>
</tr>
<tr>
<td>GLOBEC</td>
<td>Programa de Estudios de la Dinámica de los Ecosistemas Oceanográficos del Mundo</td>
</tr>
<tr>
<td>GLOCHANT</td>
<td>Cambios globales en la Antártida (SCAR)</td>
</tr>
<tr>
<td>GMT</td>
<td>Hora del meridiano de Greenwich</td>
</tr>
<tr>
<td>GOOS</td>
<td>Sistema de Observación de los Oceanos (SCOR)</td>
</tr>
<tr>
<td>GOSEAC</td>
<td>Grupo de Expertos en Asuntos Ambientales y de Conservación (SCAR)</td>
</tr>
<tr>
<td>GOSSOE</td>
<td>Grupo de Expertos en la Ecología del Océano Austral (SCAR/SCOR)</td>
</tr>
<tr>
<td>GPS</td>
<td>Sistema global de navegación</td>
</tr>
<tr>
<td>Acronimo</td>
<td>Explicación</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>GRT</td>
<td>Tonelaje de registro bruto</td>
</tr>
<tr>
<td>GTS</td>
<td>Razón entre el TS lineal versus la talla de Greene et al., 1990.</td>
</tr>
<tr>
<td>GYM</td>
<td>Modelo de rendimiento generalizado</td>
</tr>
<tr>
<td>HAC</td>
<td>Un estándar mundial (en desarrollo) para el almacenamiento de los datos hidroacústicos</td>
</tr>
<tr>
<td>HIMI</td>
<td>Islas Heard y McDonald</td>
</tr>
<tr>
<td>IAATO</td>
<td>Asociación Internacional de Operadores Turísticos en la Antártida</td>
</tr>
<tr>
<td>IASOS</td>
<td>Instituto de Estudios Antárticos y del Océano Austral (Australia)</td>
</tr>
<tr>
<td>IASOS/CRC</td>
<td>Centro de Investigación Conjunta sobre la Ecología Antártica y el Océano Austral del IASOS</td>
</tr>
<tr>
<td>IATTC</td>
<td>Comisión Interamericana del Atún Tropical</td>
</tr>
<tr>
<td>ICAIR</td>
<td>Centro Internacional de Investigación e Información Antárticas</td>
</tr>
<tr>
<td>ICCAT</td>
<td>Comisión Internacional para la Conservación del Atún Atlántico</td>
</tr>
<tr>
<td>ICED</td>
<td>Integrando el Clima y la Dinámica del Ecosistema en el Océano Austral</td>
</tr>
<tr>
<td>ICES</td>
<td>Consejo Internacional para la Exploración del Mar</td>
</tr>
<tr>
<td>ICES WGFAST</td>
<td>Grupo de trabajo del ICES sobre la Aplicación Tecnológica de la Ciencia Acústica en las Pesquerías</td>
</tr>
<tr>
<td>ICFA</td>
<td>Coalición Internacional de Asociaciones Pesqueras</td>
</tr>
<tr>
<td>ICSEAF</td>
<td>Comisión Internacional de Pesquerías del Atlántico Suroriental</td>
</tr>
<tr>
<td>ICSU</td>
<td>Consejo Internacional de Ciencias</td>
</tr>
<tr>
<td>IDCR</td>
<td>Década Internacional de Investigación de Cetáceos</td>
</tr>
<tr>
<td>IFF</td>
<td>Foro Internacional de Pescadores</td>
</tr>
<tr>
<td>IGBP</td>
<td>Programa Internacional de Estudios de la Geósfera y de la Biósfera</td>
</tr>
<tr>
<td>IGR</td>
<td>Tasa de crecimiento instantáneo</td>
</tr>
<tr>
<td>IHO</td>
<td>Organización Internacional de Hidrografía</td>
</tr>
<tr>
<td>IKMT</td>
<td>Red de arrastre pelágico Isaac-Kidd</td>
</tr>
<tr>
<td>IMAF</td>
<td>Mortalidad incidental relacionada con la pesca</td>
</tr>
<tr>
<td>IMALF</td>
<td>Mortalidad incidental causada por la pesca de palangre</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>IMBER</td>
<td>Programa de Investigación Integrado de la Biogeoquímica y del Ecosistema Marino (IGBP)</td>
</tr>
<tr>
<td>IMO</td>
<td>Organización Marítima Internacional</td>
</tr>
<tr>
<td>IMP</td>
<td>Período entre mudas</td>
</tr>
<tr>
<td>INDNR</td>
<td>Ilegal, no declarada y no reglamentada</td>
</tr>
<tr>
<td>IOC</td>
<td>Comisión Oceanográfica Intergubernamental</td>
</tr>
<tr>
<td>IOCSOC</td>
<td>Comité Regional del Océano Austral del IOC</td>
</tr>
<tr>
<td>IOFC</td>
<td>Comisión de Pesquerías del Océano Índico</td>
</tr>
<tr>
<td>IOTC</td>
<td>Comisión del Atún del Océano Índico</td>
</tr>
<tr>
<td>IPHC</td>
<td>Comisión Internacional del hipogloso en el Pacífico</td>
</tr>
<tr>
<td>IRCS</td>
<td>Distintivo de llamada internacional</td>
</tr>
<tr>
<td>ISO</td>
<td>Organización Internacional de Normalización</td>
</tr>
<tr>
<td>ITLOS</td>
<td>Tribunal Internacional del Derecho del Mar</td>
</tr>
<tr>
<td>IW</td>
<td>Líneas con lastre integrado</td>
</tr>
<tr>
<td>IWC</td>
<td>Comisión Ballenera Internacional</td>
</tr>
<tr>
<td>IWC-IDCR</td>
<td>Década Internacional de la Investigación de los Cetáceos-IWC</td>
</tr>
<tr>
<td>IWL</td>
<td>Palangre con lastre integrado (PLI)</td>
</tr>
<tr>
<td>IYGPT</td>
<td>Redes de arrastre pelágicas para gádidos juveniles</td>
</tr>
<tr>
<td>JAG</td>
<td>Grupo mixto de evaluación</td>
</tr>
<tr>
<td>JARPA</td>
<td>Programa Japonés de Investigación sobre Ballenas</td>
</tr>
<tr>
<td>JGOFS</td>
<td>Estudios Conjuntos del Flujo Oceánico Global (SCOR/IGBP)</td>
</tr>
<tr>
<td>KPFM</td>
<td>Modelo del kril–depredadores–pesquería (utilizado en 2005)</td>
</tr>
<tr>
<td>KPFM2</td>
<td>Modelo del kril–depredadores–pesquería (utilizado en 2006)</td>
</tr>
<tr>
<td>KYM</td>
<td>Modelo de rendimiento de kril</td>
</tr>
<tr>
<td>LADCP</td>
<td>Trazador acústico de corrientes Doppler sumergible</td>
</tr>
<tr>
<td>LIL</td>
<td>Lastres integrados a la línea (IW, en sus siglas en inglés)</td>
</tr>
<tr>
<td>LMM</td>
<td>Modelo lineal mixto</td>
</tr>
<tr>
<td>Abreviatura</td>
<td>Definición</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>LMR</td>
<td>Módulo de los Recursos Vivos Marinos (GOOS)</td>
</tr>
<tr>
<td>LSL</td>
<td>Líneas sin lastre (UW, en sus siglas en inglés)</td>
</tr>
<tr>
<td>LTER</td>
<td>Investigaciones Ecológicas a Largo Plazo (EEUU)</td>
</tr>
<tr>
<td>MARPOL</td>
<td>Convenio Internacional para Prevenir la Contaminación Marina Producida por los Barcos</td>
</tr>
<tr>
<td>MBAL</td>
<td>Límites mínimos biológicamente aceptables</td>
</tr>
<tr>
<td>MCMC</td>
<td>Método estadístico bayesiano Monte Carlo con cadena de Markov</td>
</tr>
<tr>
<td>MCS</td>
<td>Seguimiento, Control y Vigilancia (SCV, en sus siglas en inglés)</td>
</tr>
<tr>
<td>MEA</td>
<td>Acuerdos multilaterales sobre el medio ambiente</td>
</tr>
<tr>
<td>MEOW</td>
<td>Ecorregiones marinas del mundo</td>
</tr>
<tr>
<td>MFTS</td>
<td>Método de las frecuencias múltiples para la medición in situ de TS</td>
</tr>
<tr>
<td>MIA</td>
<td>Análisis de incremento marginal</td>
</tr>
<tr>
<td>MIZ</td>
<td>Zona de hielos marginales</td>
</tr>
<tr>
<td>MLD</td>
<td>Profundidad de la capa mixta</td>
</tr>
<tr>
<td>MODIS</td>
<td>Espectroradiómetro para imágenes de resolución moderada</td>
</tr>
<tr>
<td>MPD</td>
<td>Máxima probabilidad a posteriori</td>
</tr>
<tr>
<td>MRAG</td>
<td>Grupo de evaluación de los recursos marinos (RU)</td>
</tr>
<tr>
<td>MSE</td>
<td>Evaluación de la estrategia de ordenación (EEO)</td>
</tr>
<tr>
<td>MSY</td>
<td>Máximo rendimiento sostenible</td>
</tr>
<tr>
<td>MVBS</td>
<td>Promedio del índice de reverberación de un volumen</td>
</tr>
<tr>
<td>MVD</td>
<td>Migración vertical diurna o circadiana (DVM, en sus siglas en inglés)</td>
</tr>
<tr>
<td>MVP</td>
<td>Poblaciones mínimas viables</td>
</tr>
<tr>
<td>MVUE</td>
<td>Estimación sin sesgo de la variancia mínima</td>
</tr>
<tr>
<td>NAFO</td>
<td>Organización de Pesquerías del Atlántico Noroccidental</td>
</tr>
<tr>
<td>NASA</td>
<td>Administración Nacional de la Aeronáutica y del Espacio (EEUU)</td>
</tr>
<tr>
<td>NASC</td>
<td>Coeficiente de dispersión en una zona marina</td>
</tr>
<tr>
<td>NCAR</td>
<td>Centro Nacional de Investigación Atmosférica (EEUU)</td>
</tr>
<tr>
<td>Acrónimo</td>
<td>Descripción</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>NEAFC</td>
<td>Comisión de Pesquerías del Atlántico Noreste</td>
</tr>
<tr>
<td>NIWA</td>
<td>Instituto Nacional de Investigación Hidrográfica y Atmosférica (Nueva Zelandia)</td>
</tr>
<tr>
<td>nMDS</td>
<td>Escala Multidimensional no métrica</td>
</tr>
<tr>
<td>NMFS</td>
<td>Servicio Nacional de Pesquerías Marinas (EEUU)</td>
</tr>
<tr>
<td>NMML</td>
<td>Laboratorio Nacional para el estudio de mamíferos marinos (EEUU)</td>
</tr>
<tr>
<td>NOAA</td>
<td>Administración Nacional del Océano y la Atmósfera (EEUU)</td>
</tr>
<tr>
<td>NRT</td>
<td>Tonelaje de registro neto</td>
</tr>
<tr>
<td>NSF</td>
<td>Fundación Nacional de Ciencias (EEUU)</td>
</tr>
<tr>
<td>NSIDC</td>
<td>Centro Nacional de Datos sobre la Nieve y el Hielo (EEUU)</td>
</tr>
<tr>
<td>OBIS</td>
<td>Sistema de información biogeográfica regional del Océano Antártico</td>
</tr>
<tr>
<td>OCCAM (Project)</td>
<td>Proyecto de modelación avanzada sobre la circulación oceánica y el clima</td>
</tr>
<tr>
<td>OCTS</td>
<td>Sensor del color y temperatura de los océanos</td>
</tr>
<tr>
<td>OECD</td>
<td>Organización de Cooperación y Desarrollo Económico</td>
</tr>
<tr>
<td>OMC</td>
<td>Organización mundial del comercio (WTO, en sus siglas en inglés)</td>
</tr>
<tr>
<td>ONU</td>
<td>Naciones Unidas</td>
</tr>
<tr>
<td>OROP</td>
<td>Organización regional de ordenación pesquera</td>
</tr>
<tr>
<td>PAI</td>
<td>Plan de acción internacional</td>
</tr>
<tr>
<td>PAI-Aves marinas</td>
<td>Plan de acción internacional de la FAO para la reducción de la captura incidental de aves marinas en las pesquerías de palangre (IPOA-Seabirds, en inglés)</td>
</tr>
<tr>
<td>PAN</td>
<td>Plan de acción nacional (NPOA, en sus siglas en inglés)</td>
</tr>
<tr>
<td>PAN-Aves marinas</td>
<td>Planes de acción nacionales de la FAO para la reducción de la captura incidental de aves marinas en las pesquerías de palangre</td>
</tr>
<tr>
<td>PAR</td>
<td>Radiación fotosintéticamente activa</td>
</tr>
<tr>
<td>PBR</td>
<td>Extracción biológica permitida</td>
</tr>
<tr>
<td>PCA</td>
<td>Análisis del componente principal</td>
</tr>
<tr>
<td>PCR</td>
<td>Reclutamiento per cápita</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>pdf</td>
<td>Formato transportable de documentos</td>
</tr>
<tr>
<td>PDF</td>
<td>Función de densidad de probabilidad (FDP)</td>
</tr>
<tr>
<td>PF</td>
<td>Frente polar</td>
</tr>
<tr>
<td>PGC</td>
<td>Plan de gestión de conservación</td>
</tr>
<tr>
<td>PIT</td>
<td>Transpondedores pasivos</td>
</tr>
<tr>
<td>PLI</td>
<td>Palangres con lastre integrado</td>
</tr>
<tr>
<td>PNUMA</td>
<td>Programa del Medio Ambiente de las Naciones Unidas (UNEP, en sus siglas en inglés)</td>
</tr>
<tr>
<td>PRP</td>
<td>Comité de Evaluación del Funcionamiento de la CCRVMA</td>
</tr>
<tr>
<td>PS</td>
<td>Líneas espantapájaros dobles</td>
</tr>
<tr>
<td>PSLI</td>
<td>Palangre sin lastre integrado</td>
</tr>
<tr>
<td>PTT</td>
<td>Plataforma de transmisión terminal</td>
</tr>
<tr>
<td>RAV</td>
<td>Registro de áreas vulnerables</td>
</tr>
<tr>
<td>RES</td>
<td>Modelo relativo de idoneidad medioambiental</td>
</tr>
<tr>
<td>RFB</td>
<td>Órgano regional de pesca</td>
</tr>
<tr>
<td>RMT</td>
<td>Red de arrastre pelágico para estudios científicos</td>
</tr>
<tr>
<td>ROV</td>
<td>Vehículo teledirigido</td>
</tr>
<tr>
<td>RPO</td>
<td>Superposición potencial conocida</td>
</tr>
<tr>
<td>RTMP</td>
<td>Programa de seguimiento en tiempo real</td>
</tr>
<tr>
<td>SACCB</td>
<td>Límite sur de la corriente circumpolar antártica</td>
</tr>
<tr>
<td>SACCF</td>
<td>Frente sur de la corriente circumpolar antártica</td>
</tr>
<tr>
<td>SAER</td>
<td>Informe sobre el estado del medio ambiente antártico</td>
</tr>
<tr>
<td>SAF</td>
<td>Frente subantártico</td>
</tr>
<tr>
<td>SBDY</td>
<td>Límite sur de la CCA</td>
</tr>
<tr>
<td>SBWG</td>
<td>Grupo de trabajo sobre la captura incidental de aves marinas (ACAP)</td>
</tr>
<tr>
<td>SCAF</td>
<td>Comité Permanente de Administración y Finanzas (CCRVMA)</td>
</tr>
<tr>
<td>SCAR</td>
<td>Comité Científico sobre la Investigación Antártica</td>
</tr>
<tr>
<td>Acrónimo</td>
<td>Explicación</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>SCAR-ASPECT</td>
<td>Procesos del Hielo Marino, Ecosistemas y Clima de la Antártida (Programa del SCAR)</td>
</tr>
<tr>
<td>SCAR-BBS</td>
<td>Subcomité sobre la Biología de las Aves Marinas del SCAR</td>
</tr>
<tr>
<td>SCAR-CPRAG</td>
<td>Grupo de acción de estudios de registro continuo del plancton</td>
</tr>
<tr>
<td>SCAR-EASIZ</td>
<td>Ecología de la Zona de Hielo Antártico (Programa del SCAR)</td>
</tr>
<tr>
<td>SCAR-EBA</td>
<td>Evolución y Biodiversidad Antártica (Programa del SCAR)</td>
</tr>
<tr>
<td>SCAR-GBEB</td>
<td>Grupo de expertos en Aves del SCAR</td>
</tr>
<tr>
<td>SCAR-GOSEAC</td>
<td>Grupo de Expertos en Asuntos del Medio Ambiente y Conservación (SCAR)</td>
</tr>
<tr>
<td>SCAR-GSS</td>
<td>Grupo de Expertos en Focas de SCAR</td>
</tr>
<tr>
<td>SCAR-MarBIN</td>
<td>Red de información del SCAR sobre la Biodiversidad Marina Antártica</td>
</tr>
<tr>
<td>SCAR/SCOR-GOSSOE</td>
<td>Grupo de Expertos en la Ecología del Océano Austral del SCAR/SCOR</td>
</tr>
<tr>
<td>SCAR GT-Biología</td>
<td>Grupo de Biología de SCAR</td>
</tr>
<tr>
<td>SC-CAMLR</td>
<td>Comité Científico de la CCRVMA</td>
</tr>
<tr>
<td>SC CIRC</td>
<td>Circular del Comité Científico (CCRVMA)</td>
</tr>
<tr>
<td>SC-CMS</td>
<td>Comité Científico del CMS</td>
</tr>
<tr>
<td>SCIC</td>
<td>Comité Permanente de Ejecución y Cumplimiento (CCRVMA)</td>
</tr>
<tr>
<td>SC-IWC</td>
<td>Comité Científico de la IWC</td>
</tr>
<tr>
<td>SCOI</td>
<td>Comité Permanente de Observación e Inspección (CCRVMA)</td>
</tr>
<tr>
<td>SCOR</td>
<td>Comité Científico sobre la Investigación Oceanográfica</td>
</tr>
<tr>
<td>SCV</td>
<td>Seguimiento, Control y Vigilancia (MCS, en sus siglas en inglés)</td>
</tr>
<tr>
<td>SD</td>
<td>Desviación estándar</td>
</tr>
<tr>
<td>SDC</td>
<td>Sistema de documentación de capturas de Dissostichus spp.</td>
</tr>
<tr>
<td>SDC-E</td>
<td>Sistema electrónico de documentación de capturas de Dissostichus spp.</td>
</tr>
<tr>
<td>SE</td>
<td>Error típico</td>
</tr>
<tr>
<td>SDWBA</td>
<td>Modelo estocástico de aproximación de la onda distorsionada de Born</td>
</tr>
<tr>
<td>Acrónimo</td>
<td>Explicación</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>SEAFO</td>
<td>Organización de la Pesca del Atlántico Suroriental</td>
</tr>
<tr>
<td>SeaWiFS</td>
<td>Sensor de gran ángulo visual para las observaciones del color del mar</td>
</tr>
<tr>
<td>SEIC</td>
<td>Sitio de especial interés científico (SSSI, en sus siglas en inglés)</td>
</tr>
<tr>
<td>SG-ASAM</td>
<td>Subgrupo sobre prospecciones acústicas y métodos de análisis</td>
</tr>
<tr>
<td>SGE</td>
<td>(UOPE) este de Georgia del Sur</td>
</tr>
<tr>
<td>SGSR</td>
<td>(UOPE) Georgia del Sur–Rocas Cormorán</td>
</tr>
<tr>
<td>SGW</td>
<td>(UOPE) oeste de Georgia del Sur</td>
</tr>
<tr>
<td>SIBEX</td>
<td>Segundo Estudio Internacional de BIOMASS</td>
</tr>
<tr>
<td>SIC</td>
<td>Científico responsable</td>
</tr>
<tr>
<td>SIOFA</td>
<td>Acuerdo Pesquero del Océano Índico del Sur</td>
</tr>
<tr>
<td>SIR (Algoritmo)</td>
<td>Algoritmo de repetición del muestreo según la importancia de la muestra</td>
</tr>
<tr>
<td>SMOM</td>
<td>Modelo operacional espacial para múltiples especies</td>
</tr>
<tr>
<td>SO-CPR</td>
<td>Registro continuo de datos del zooplanctón en el Océano Austral</td>
</tr>
<tr>
<td>SO GLOBEC</td>
<td>GLOBEC del Océano Austral</td>
</tr>
<tr>
<td>SOI</td>
<td>Índice de oscilación austral</td>
</tr>
<tr>
<td>SO JGOFS</td>
<td>JGOFS del Océano Austral</td>
</tr>
<tr>
<td>SOMBASE</td>
<td>Base de datos de moluscos del Océano Austral</td>
</tr>
<tr>
<td>SONE</td>
<td>(UOPE) este de Orcadas del Sur</td>
</tr>
<tr>
<td>SOOS</td>
<td>Sistema de observación del Océano Austral</td>
</tr>
<tr>
<td>SOPA</td>
<td>(UOPE) área pelágica de Orcadas del Sur</td>
</tr>
<tr>
<td>SOW</td>
<td>(UOPE) oeste de Orcadas del Sur</td>
</tr>
<tr>
<td>SOWER</td>
<td>Campañas de Investigación Ecológica de las Ballenas del Océano Austral</td>
</tr>
<tr>
<td>SPC</td>
<td>Secretaría de la Comunidad del Pacífico</td>
</tr>
<tr>
<td>SPGANT</td>
<td>Algoritmo para el color de la clorofila-a del Océano Austral</td>
</tr>
<tr>
<td>SPM</td>
<td>Modelo de población espacialmente explícito</td>
</tr>
</tbody>
</table>
SSB Biomasa del stock desovante
SSG-LS Grupo Científico Permanente de Ciencias Biológicas (SCAR)
SSM/I Sensor especial de imágenes por microondas
SSMU Unidad de ordenación en pequeña escala (UOPE)
SSRU Unidad de investigación en pequeña escala (UIPE)
SSSI Sitio de especial interés científico (SEIC)
SST Temperatura de la superficie del mar
STC Convergencia subtropical (CST)
SWIOFC Comisión de la Pesca del Océano Índico Suroccidental
Taller UOPE Taller sobre unidades de ordenación en pequeña escala, como las unidades de depredadores
TASO Grupo Técnico ad hoc de Operaciones en el Mar (CCRVMA)
TDR Registradores de tiempo y profundidad
TEWG Grupo de Trabajo Interino sobre el Medio Ambiente
TIRIS Sistema de identificación por radio de la Texas Instruments
TISVPA Análisis virtual de poblaciones (VPA) con tres parámetros instantáneos separables
ToR Términos de referencia, cometido
TrawlCI Estimación de la abundancia de las prospecciones de arrastre
TS Índice de reverberación de un objeto
TVG Ganancia en función del tiempo
UBC Universidad de British Columbia (Canadá)
UCDW Aguas circumpolares profundas de la plataforma
UICN Unión Internacional para la Conservación de la Naturaleza y de sus Recursos
UIPE Unidad de investigación en pequeña escala (SSRU, en sus siglas en inglés)
UNCED Conferencia de las Naciones Unidas sobre el Medioambiente y Desarrollo
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNEP</td>
<td>Programa de las Naciones Unidas sobre el Medio Ambiente (PNUMA)</td>
</tr>
<tr>
<td>UNEP-WCMC</td>
<td>Centro de Monitoreo de la Conservación Mundial del PNUMA</td>
</tr>
<tr>
<td>UNCLOS</td>
<td>Convención de las Naciones Unidas sobre el Derecho del Mar (CONVEMAR)</td>
</tr>
<tr>
<td>UNFSA (UNFA)</td>
<td>Acuerdo de 1995 de la ONU para la implementación de las disposiciones de la Convención de las Naciones Unidas sobre el Derecho del Mar del 10 de Diciembre de 1982 relacionadas con la Conservación y Ordenación de las Poblaciones de Peces Transzonales y Altamente Migratorios</td>
</tr>
<tr>
<td>UOPE</td>
<td>Unidad de ordenación en pequeña escala (SSMU, en sus siglas en inglés)</td>
</tr>
<tr>
<td>UPGMA</td>
<td>Método no ponderado de agrupamiento por pares que emplea las medias aritméticas</td>
</tr>
<tr>
<td>US AMLR</td>
<td>Programa de los EEUU sobre los Recursos Vivos Marinos Antárticos</td>
</tr>
<tr>
<td>US LTER</td>
<td>Investigación Ecológica a Largo Plazo de los EEUU</td>
</tr>
<tr>
<td>UV</td>
<td>Ultravioleta</td>
</tr>
<tr>
<td>UWL</td>
<td>Palangre sin lastre integrado (PSLI)</td>
</tr>
<tr>
<td>VMS</td>
<td>Sistema de seguimiento de barcos</td>
</tr>
<tr>
<td>VMS-C</td>
<td>Sistema de seguimiento de barcos centralizado</td>
</tr>
<tr>
<td>VOGON</td>
<td>Valor que cae fuera del rango de los valores observados normalmente</td>
</tr>
<tr>
<td>VPA</td>
<td>Análisis virtual de la población</td>
</tr>
<tr>
<td>WAMI</td>
<td>Taller de la CCRVMA sobre métodos de evaluación del draco rayado</td>
</tr>
<tr>
<td>WCO</td>
<td>Organización mundial de aduanas (OMA)</td>
</tr>
<tr>
<td>WFC</td>
<td>Congreso Mundial de Pesca</td>
</tr>
<tr>
<td>WCPFC</td>
<td>Comisión de Pesca para el Pacífico Centro-Occidental</td>
</tr>
<tr>
<td>WG-CEMP</td>
<td>Grupo de Trabajo del Programa de Seguimiento del Ecosistema de la CCRVMA</td>
</tr>
<tr>
<td>WG-EMM</td>
<td>Grupo de Trabajo de Seguimiento y Ordenación del Ecosistema (CCRVMA)</td>
</tr>
<tr>
<td>WG-EMM-STAPP</td>
<td>Subgrupo de evaluación del estado y las tendencias de las poblaciones de depredadores</td>
</tr>
<tr>
<td>Acrónimo</td>
<td>Definición</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>WG-FSA</td>
<td>Grupo de Trabajo de Evaluación de las Poblaciones de Peces (CCRVMA)</td>
</tr>
<tr>
<td>WG-FSA-SAM</td>
<td>Subgrupo de métodos de evaluación</td>
</tr>
<tr>
<td>WG-FSA-SFA</td>
<td>Subgrupo de técnicas acústicas</td>
</tr>
<tr>
<td>WG-IMALF</td>
<td>Grupo de Trabajo especial sobre la Mortalidad Incidental ocasionada por la Pesca de Palangre (CCRVMA)</td>
</tr>
<tr>
<td>WG-IMAF</td>
<td>Grupo de Trabajo especial sobre la Mortalidad Incidental relacionada con la Pesca (CCRVMA)</td>
</tr>
<tr>
<td>WG-Krill</td>
<td>Grupo de Trabajo sobre el Kril (CCRVMA)</td>
</tr>
<tr>
<td>WG-SAM</td>
<td>Grupo de trabajo de Estadística, Evaluación y Modelado</td>
</tr>
<tr>
<td>WMO</td>
<td>Organización Meteorológica Mundial</td>
</tr>
<tr>
<td>WOCE</td>
<td>Experimento mundial sobre las corrientes oceánicas</td>
</tr>
<tr>
<td>WSC</td>
<td>Confluencia de los mares de Weddell-Escocia</td>
</tr>
<tr>
<td>WS-Flux</td>
<td>Taller para la Evaluación de los Factores del Flujo del Kril (CCRVMA)</td>
</tr>
<tr>
<td>WS-MAD</td>
<td>Taller de la CCRVMA de Métodos de Evaluación de D. eleginoides</td>
</tr>
<tr>
<td>WSSD</td>
<td>Cumbre mundial sobre el desarrollo sostenible</td>
</tr>
<tr>
<td>WWD</td>
<td>Deriva de los vientos del oeste</td>
</tr>
<tr>
<td>WWW</td>
<td>Red mundial de información</td>
</tr>
<tr>
<td>XBT</td>
<td>Batitemógrafo desechable</td>
</tr>
<tr>
<td>XML</td>
<td>Lenguaje extensible de señalamiento</td>
</tr>
<tr>
<td>Y2K</td>
<td>Problemas informáticos relacionados con el año 2000</td>
</tr>
<tr>
<td>ZEE</td>
<td>Zona de soberanía económica exclusiva (EEZ, en sus siglas en inglés)</td>
</tr>
<tr>
<td>ZEI</td>
<td>Zonas de estudio integrado</td>
</tr>
<tr>
<td>ZEP</td>
<td>Zona de protección especial (SPA, en sus siglas en inglés)</td>
</tr>
<tr>
<td>ZFP</td>
<td>Zona del frente polar</td>
</tr>
</tbody>
</table>
INFORME DE LA VIGÉSIMO SÉPTIMA REUNIÓN
DEL COMITÉ CIENTÍFICO

HOBART, AUSTRALIA
27–31 OCTUBRE 2008

2ª Parte
INFORME DEL TALLER CONJUNTO CCAMLR-IWC
(Hobart, Australia, 11 al 15 de agosto de 2008)
INTRODUCCIÓN

<table>
<thead>
<tr>
<th>Apertura de la reunión</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organización de la reunión</td>
<td>1</td>
</tr>
<tr>
<td>Antecedentes de taller</td>
<td>3</td>
</tr>
<tr>
<td>Requerimientos de la CCRVMA y la IWC para la labor de modelación</td>
<td>7</td>
</tr>
<tr>
<td>Preguntas generales relacionadas con la elaboración de modelos de ecosistema por la CCRVMA y la IWC</td>
<td>9</td>
</tr>
</tbody>
</table>

RESÚMENES DE LOS METADATOS

<table>
<thead>
<tr>
<th>Medio ambiente físico y producción primaria</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oceanografía</td>
<td>10</td>
</tr>
<tr>
<td>Resumen presentado por el grupo de expertos</td>
<td>10</td>
</tr>
<tr>
<td>Prioridades futuras de investigación</td>
<td>11</td>
</tr>
<tr>
<td>Hielo marino</td>
<td>13</td>
</tr>
<tr>
<td>Resumen presentado por el grupo de expertos</td>
<td>13</td>
</tr>
<tr>
<td>Prioridades futuras de investigación</td>
<td>16</td>
</tr>
<tr>
<td>Producción primaria</td>
<td>17</td>
</tr>
<tr>
<td>Resumen presentado por el grupo de expertos</td>
<td>17</td>
</tr>
<tr>
<td>Prioridades futuras de investigación</td>
<td>17</td>
</tr>
<tr>
<td>Especies pelágicas</td>
<td>18</td>
</tr>
<tr>
<td>General</td>
<td>18</td>
</tr>
<tr>
<td>Prioridades futuras de investigación</td>
<td>19</td>
</tr>
<tr>
<td>Kril</td>
<td>20</td>
</tr>
<tr>
<td>Resumen presentado por los grupos de expertos</td>
<td>20</td>
</tr>
<tr>
<td>Especies/grupos funcionales</td>
<td>20</td>
</tr>
<tr>
<td>Asuntos relacionados con los resúmenes de metadatos</td>
<td>20</td>
</tr>
<tr>
<td>Observaciones y comentarios para el grupo de expertos</td>
<td>21</td>
</tr>
<tr>
<td>Prioridades futuras de investigación</td>
<td>22</td>
</tr>
<tr>
<td>Lagunas clave</td>
<td>22</td>
</tr>
<tr>
<td>Nuevos análisis</td>
<td>22</td>
</tr>
<tr>
<td>Programas de investigación</td>
<td>22</td>
</tr>
<tr>
<td>Zooplancton</td>
<td>23</td>
</tr>
<tr>
<td>Resumen presentado por los grupos de expertos</td>
<td>23</td>
</tr>
<tr>
<td>Resolución de especies/grupos funcionales</td>
<td>24</td>
</tr>
<tr>
<td>Asuntos relacionados con los resúmenes de metadatos</td>
<td>24</td>
</tr>
<tr>
<td>Observaciones y comentarios para los grupos de expertos</td>
<td>25</td>
</tr>
<tr>
<td>Prioridades en la labor futura</td>
<td>25</td>
</tr>
<tr>
<td>Lagunas clave</td>
<td>25</td>
</tr>
<tr>
<td>Nuevos análisis</td>
<td>26</td>
</tr>
<tr>
<td>Programas de investigación futuros</td>
<td>26</td>
</tr>
<tr>
<td>Calamar</td>
<td>26</td>
</tr>
<tr>
<td>Resumen presentado por los grupos de expertos</td>
<td>26</td>
</tr>
<tr>
<td>Especies/grupos funcionales</td>
<td>27</td>
</tr>
<tr>
<td>Asuntos relacionados con los resúmenes de metadatos</td>
<td>27</td>
</tr>
<tr>
<td>Observaciones y comentarios para los grupos de expertos</td>
<td>28</td>
</tr>
<tr>
<td>Prioridades en la labor futura</td>
<td>28</td>
</tr>
<tr>
<td>Lagunas clave</td>
<td>28</td>
</tr>
<tr>
<td>Programas de investigación futuros</td>
<td>28</td>
</tr>
<tr>
<td>Peces</td>
<td>28</td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
</tr>
<tr>
<td>Resumen presentado por los grupos de expertos</td>
<td>28</td>
</tr>
<tr>
<td>Especies/grupos funcionales</td>
<td>29</td>
</tr>
<tr>
<td>Asuntos relacionados con los resúmenes de metadatos</td>
<td>30</td>
</tr>
<tr>
<td>Observaciones y comentarios para los grupos de expertos</td>
<td>30</td>
</tr>
<tr>
<td>Prioridades en la labor futura</td>
<td>30</td>
</tr>
<tr>
<td>Lagunas clave</td>
<td>30</td>
</tr>
<tr>
<td>Nuevos análisis</td>
<td>30</td>
</tr>
<tr>
<td>Programas de investigación futuros</td>
<td>31</td>
</tr>
<tr>
<td>Pinnípedos y aves marinas</td>
<td>31</td>
</tr>
<tr>
<td>Resumen presentado por los grupos de expertos</td>
<td>31</td>
</tr>
<tr>
<td>Focas del campo de hielo</td>
<td>31</td>
</tr>
<tr>
<td>Lobo fino antártico</td>
<td>32</td>
</tr>
<tr>
<td>Pinguinos</td>
<td>32</td>
</tr>
<tr>
<td>Aves voladoras</td>
<td>32</td>
</tr>
<tr>
<td>Especies/grupos funcionales</td>
<td>33</td>
</tr>
<tr>
<td>Estratificación espacial</td>
<td>33</td>
</tr>
<tr>
<td>Asuntos relacionados con los resúmenes de metadatos y observaciones y comentarios para los grupos de expertos</td>
<td>34</td>
</tr>
<tr>
<td>Abundancia</td>
<td>34</td>
</tr>
<tr>
<td>Pinnípedos</td>
<td>34</td>
</tr>
<tr>
<td>Aves</td>
<td>35</td>
</tr>
<tr>
<td>Hábitat</td>
<td>36</td>
</tr>
<tr>
<td>Consideraciones generales</td>
<td>36</td>
</tr>
<tr>
<td>Pinnípedos</td>
<td>37</td>
</tr>
<tr>
<td>Aves</td>
<td>37</td>
</tr>
<tr>
<td>Dieta, comportamiento alimentario y ciclo de vida</td>
<td>37</td>
</tr>
<tr>
<td>Consideraciones generales</td>
<td>37</td>
</tr>
<tr>
<td>Pinnípedos</td>
<td>39</td>
</tr>
<tr>
<td>Aves</td>
<td>39</td>
</tr>
<tr>
<td>Labor futura</td>
<td>39</td>
</tr>
<tr>
<td>Cetáceos</td>
<td>39</td>
</tr>
<tr>
<td>Resumen presentado por los grupos de expertos</td>
<td>39</td>
</tr>
<tr>
<td>Especies/grupos funcionales</td>
<td>41</td>
</tr>
<tr>
<td>Abundancia</td>
<td>41</td>
</tr>
<tr>
<td>Estado de los resúmenes de metadatos</td>
<td>41</td>
</tr>
<tr>
<td>Asuntos relacionados con los resúmenes de metadatos</td>
<td>41</td>
</tr>
<tr>
<td>Asuntos relativos a las escalas</td>
<td>42</td>
</tr>
<tr>
<td>Recomendaciones sobre la labor futura</td>
<td>43</td>
</tr>
<tr>
<td>Hábitat</td>
<td>43</td>
</tr>
<tr>
<td>Estados de los resúmenes de metadatos</td>
<td>44</td>
</tr>
<tr>
<td>Asuntos relacionados con los resúmenes de metadatos</td>
<td>44</td>
</tr>
<tr>
<td>Asuntos relativos a las escalas</td>
<td>44</td>
</tr>
<tr>
<td>Investigación futura</td>
<td>45</td>
</tr>
<tr>
<td>Ciclo de vida y conexiones de la red trófica</td>
<td>45</td>
</tr>
<tr>
<td>Estado de los resúmenes de metadatos</td>
<td>46</td>
</tr>
<tr>
<td>Asuntos relacionados con los resúmenes de metadatos</td>
<td>46</td>
</tr>
<tr>
<td>Asuntos relativos a las escalas</td>
<td>47</td>
</tr>
<tr>
<td>Investigación futura</td>
<td>47</td>
</tr>
<tr>
<td>Explotación</td>
<td>48</td>
</tr>
</tbody>
</table>
INFORME DEL TALLER CONJUNTO CCAMLR-IWC
(Hobart, Australia, 11 al 15 de agosto de 2008)

INTRODUCCIÓN

Apertura de la reunión

1.1 El taller conjunto CCAMLR-IWC se celebró en la sede de la CCRVMA en Hobart, Australia, del 11 al 15 de agosto de 2008, con el fin de examinar los datos para los modelos de los ecosistemas marinos antárticos. El taller fue coordinado por los Dres. A. Constable (Comité Científico de la CCRVMA) y N. Gales (Comité Científico de la IWC).

1.2 El Secretario Ejecutivo de la CCRVMA, Dr. D. Miller, dio la bienvenida a los participantes del taller, y aludió al artículo XXIII(3) de la Convención de la CRVMA el cual se refiere en forma expresa a la cooperación con la IWC con el fin de facilitar la labor de la CCRVMA. Ya en 1987, conversaciones mantenidas por las dos organizaciones habían destacado la importancia de los balénidos en particular, como depredadores del kril y como importantes componentes de las interacciones en el ecosistema, en el enfoque de ordenación de la CCRVMA. La cooperación entre estas dos organizaciones durante la prospección CCAMLR-2000 en particular, había sembrado la semilla de este taller. Se había también recalculado la importancia de elaborar modelos de ecosistema antárticos, basados en particular en las relaciones depredador-presa, y de formular asesoramiento consistente de ordenación y de conservación de pertinencia tanto para la CCRVMA como para la IWC. El Secretario Ejecutivo les deseó éxito a los participantes señalando que los resultados del taller seguramente serían de gran interés para ambas organizaciones.

1.3 Los coordinadores dieron la bienvenida a todos los participantes1, incluidos los representantes del SC-CAMLR y del IWC SC, expertos invitados e integrantes de los grupos de expertos.

1.4 Se agradeció especialmente a la Secretaria de la CCRVMA por acoger el taller en su sede y asistir con la organización del mismo.

Organización de la reunión

1.5 El cometido del taller fue el siguiente (SC-CAMLR, 2007a, párrafo 13.40; SC-CAMLR, 2007b, párrafo 7.25; IWC, 2008a):

 i) En relación con los modelos de los ecosistemas marinos antárticos (en particular las relaciones entre los depredadores y sus presas) que podrían ser elaborados para proporcionar asesoramiento de ordenación y conservación de pertinencia para la CCRVMA y la IWC, considerar los tipos de datos de entrada, además de su importancia relativa e incertidumbres, para entender mejor cómo reducir la incertidumbre y errores en su utilización

 1 Las organizaciones a los que pertenecen los participantes citados en este informe aparecen en el apéndice B.
ii) Revisar los datos de entrada existentes en fuentes publicadas y sin publicar, que pudieran ser incorporados en tales modelos;

iii) Resumir el tipo de datos de entrada (es decir, estimaciones de la abundancia y de las tendencias, distribución geográfica de la alimentación, dieta por temporada, etc.), basados en metadatos (véase la definición a continuación), describiendo la metodología, los niveles de incertidumbre en términos generales, las series cronológicas, la extensión geográfica cubierta; y determinar la escala adecuada en la cual estos datos de entrada sean pertinentes al trabajo de elaboración de estos modelos;

iv) Identificar y priorizar las lagunas que existen y el tipo de análisis y de programas de estudios de campo necesarios para reducir incertidumbres importantes en los modelos de ecosistema que están siendo elaborados para la CCRVMA y la IWC, y ver la mejor manera en que los científicos de ambas comisiones puedan colaborar y compartir los datos a fin de acelerar al máximo la evolución de los modelos y mejorar la calidad científica del trabajo de modelado y de los datos de entrada.

1.6 Se agradeció a los coordinadores de los grupos de expertos, nombrados por el Grupo de Dirección, por coordinar las contribuciones de dichos grupos al taller:

- Ballenas dentadas – Sr. R. Leaper
- Ballenas de barbas – Dr. A. Zerbini
- Focas del campo de hielo – Dr. C. Southwell
- Lobo fino antártico – Dr. K. Reid
- Pingüinos – Dr. P. Trathan
- Aves volatorias – Dres B. Weinecke, M. Double y B. Sullivan
- Peces – Dr. K.-H. Kock
- Calamar – Prof. P. Rodhouse
- Kril – Dr. S. Nicol
- Protistas – Dr. P. Strutton
- Zooplancton – Dr. A. Atkinson
- Hielo marino – Dr. R. Massom
- Procesos oceánicos – Prof. E. Hofmann
- Explotación – Dr. S. Kawaguchi.

1.7 Se convino en que se procedería con las deliberaciones en tres etapas. En primer lugar, se examinarían las presentaciones de los grupos de expertos y se proporcionarían comentarios sobre cómo dichos grupos podrían satisfacer las expectativas del cometido. Tres grupos pequeños discutirían temas relativos a las especies pelágicas, pinnípedos y aves marinas, y ballenas. Cada grupo estaría compuesto de expertos con experiencia en la investigación de los respectivos grupos taxonómicos, además de expertos en oceanografía, dinámica del hielo marino, producción primaria, estadísticas y/o modelado. Cada grupo examinó los temas siguientes:

i) abundancia
ii) hábitat
iii) ciclo de vida y conexiones en la red trófica
iv) conexiones de la red trófica
iv) prioridades futuras de investigación y análisis.
1.8 Cada uno de estos grupos pequeños debía encargarse de organizar sus deliberaciones de acuerdo con los temas y los grupos taxonómicos que les correspondía considerar. Por lo tanto, el formato del informe variaría según el grupo, y el informe de cada grupo sería considerado en la reunión plenaria en las deliberaciones generales subsiguientes. Si bien dichos informes fueron incluidos en el informe del taller, se reconoció que el examen de cada informe en la plenaria sería breve y no cubriría necesariamente todos los detalles de cada uno de ellos.

1.9 En segundo lugar, el taller consideró los temas generales relativos a los metadatos necesarios para el trabajo de modelado de la CCRVMA y la IWC. Por último, se consideraron los resultados de este proceso y la labor futura requerida.

1.10 La agenda aprobada figura en el apéndice A. La lista de participantes del taller aparece en el apéndice B. En el apéndice C se proporciona una lista de los documentos presentados al taller. Al final de este informe aparece un índice de las siglas y abreviaturas utilizadas.

1.11 El informe de la reunión fue preparado por los participantes del taller. Contribuyeron en especial, los coordinadores y relatores de los pequeños grupos:

- Especies pelágicas – Dres. S. Nicol (coordinador) y A. Punt (relator)
- Pinnípedos y aves marinas – Prof. D. Costa (coordinador) y Dr. C. Southwell (relator)
- Cetáceos – Dr. J. Bannister (coordinador) y Sr. R. Leaper (relator).

Antecedentes del taller

1.12 Los coordinadores proporcionaron una relación de los antecedentes del taller en CCAMLR-IWC-WS-08/2.

1.13 SC-CAMLR y IWC-SC convinieron en celebrar un taller conjunto para examinar los datos de entrada requeridos para los modelos de ecosistema que se están elaborando con el objetivo de proporcionar asesoramiento de ordenación y conservación relativo al kril y a sus depredadores en el ecosistema marino antártico (SC-CAMLR, 2005, párrafos 13.44 al 13.53; IWC, 2006).

1.14 Se estableció un Grupo de Dirección para el taller conjunto CCAMLR-IWC a fin de evaluar los datos de entrada para los modelos de los ecosistemas marinos antárticos, que incorporó miembros de los comités de dirección de ambas organizaciones:

SC-CAMLR

IWC SC
1.15 Los modelos elaborados en apoyo de las discusiones en el SC-CAMLR y el IWC SC incluyen los de Mangel y Switzer (1998), Thomson et al. (2000), Watters et al. (2005, 2006), Plagányi y Butterworth (2005, 2006a, 2006b), Mori y Butterworth (2003, 2006a, 2006b) y Constable (2005, 2006). Una importante diferencia en la modelación actual, en SC-CAMLR y en IWC SC, es la escala espacial y los grupos taxonómicos de interés. Los modelos de la dinámica de las poblaciones de cetáceos operarán necesariamente en escalas mayores en proporción con la capacidad de los cetáceos de recorrer grandes extensiones en aguas antárticas. La modelación de la disponibilidad de kril para todos los depredadores es un importante tema que está siendo tratado por el SC-CAMLR y en este momento se centra en la disponibilidad de kril y la búsqueda del alimento por los depredadores, a escala de colonia de reproducción terrestre y de UOPE de la CCRVMA; no obstante, dada la posibilidad de un apreciable aumento en la pesquería de kril a largo plazo, también interesan al SC-CAMLR los modelos en una escala espacial más amplia. Un asunto importante con respecto a estos modelos es cómo se podría asegurar que haya coherencia en los resultados que proporcionen.

1.16 Las ballenas de barbas son grandes consumidores de kril en el Océano Austral, y el refinamiento de su parametrización en los modelos de la CCRVMA, facilitada en parte por la labor de este taller, contribuirá enormemente a la fiabilidad de los modelos en los cuales se basan las prácticas de la pesca sostenible de kril.

1.17 De manera similar, a medida que la IWC estudia los aspectos ecológicos de la recuperación de las poblaciones de los grandes cetáceos del Océano Austral, su colaboración con la CCRVMA establecerá un importante vínculo entre el conocimiento de la IWC sobre los cetáceos y lo que se conoce de otros consumidores de kril.

1.18 Desde la perspectiva de ambas Comisiones, la adopción de un enfoque consecuente de modelado por la CCRVMA y la IWC debería mejorar la capacidad para proporcionar un asesoramiento consistente de ordenación y conservación en relación con el Océano Austral.

1.19 Los modelos analizados por la CCRVMA y la IWC son elaborados a partir de una gran variedad de tipos de datos y reflejan distintas escalas espaciales y temporales con distinto grado de detalle ecológico. Estos tipos de datos pueden referirse a:

i) Población –
 a) biomasa/cantidades en distintas regiones del Océano Austral en términos absolutos;
 b) tendencias en la abundancia relativa;
 c) estructura de las poblaciones, incluyendo edad/tamaño/estructura espacial.

ii) Utilización de hábitats –
 a) desplazamiento;
 b) hábitats clave y variables medioambientales (impulsores de los procesos poblacionales clave);
 c) zonas de alimentación.
iii) Tasas de crecimiento de las poblaciones –
 a) crecimiento de individuos
 b) rendimiento reproductivo
 c) reclutamiento
 d) tasas de mortalidad
 e) capacidad portante.

iv) Actividades de alimentación –
 a) dieta
 b) éxito alimentario
 c) tasa de consumo
 d) competencia
 e) utilización espacial.

v) Captura –
 a) biomasa/cantidades extraídas
 b) estructura por tamaño en diferentes regiones a través del tiempo.

1.20 Es difícil de determinar a priori el grado de detalle de la información taxonómica requerida para cada uno de los tipos de datos mencionados dado que la disponibilidad del kril y la dinámica de la red trófica puede estar afectada por varios parámetros físicos y ecológicos (Murphy et al., 2007).

1.21 Los grupos de expertos compilaron datos ecológicos medioambientales para las siguientes categorías principales:

 i) explotación de pinnípedos, cetáceos, peces y kril
 ii) cetáceos – ballenas dentadas y ballenas de barbas
 iii) pinnípedos – focas del campo de hielo, lobos finos
 iv) aves marinas – pingüinos y aves voladoras
 v) depredadores mesopelágicos y epipelágicos – peces y calamar
 vi) kril
 vii) otros componentes biológicos – producción primaria y protistas, zooplancton
 viii) componentes medioambientales – hielo marino, temperatura de la superficie del mar, y procesos atmosféricos y oceánicos.

1.22 Se consideró que los datos más importantes eran los de la abundancia, y en particular, la información sobre posibles sesgos, varianza y comparabilidad de las series cronológicas. Estos datos se pueden obtener del material publicado, de varias fuentes generales, incluidas la IWC, la CCRVMA y SCAR-MarBIN, y de trabajos en curso. Dependiendo del modelo, estos datos necesitarán ser subdivididos o agrupados espacialmente. En el primer caso, se necesitan compilar los datos de la abundancia por unidad estadística/ordenación de la CCRVMA o de la IWC (figura 1), convirtiéndolos en densidades, y proporcionando una descripción de la extensión espacial a la que se pueden aplicar las densidades. Esto último se puede entonces utilizar para determinar si los datos recopilados en una escala, por ejemplo, unidades de ordenación de la IWC, pueden utilizarse para proporcionar información en otra escala, por ejemplo, divisiones estadísticas de la CCRVMA. Las divisiones estadísticas que se extienden
Desde el continente antártico hasta los límites de la CCRVMA (Subárea 48.6, División 58.4.1) deberán ser divididas entre norte y sur a los 60°S. Resultará útil también si luego se subdividen los datos en las UOPE de la CCRVMA (figura 2). También es importante determinar hasta qué grado se pueden volver a analizar los datos de entrada para incluir otras subdivisiones al análisis original.

1.23 El objetivo de los análisis de los datos sobre la utilización del hábitat es determinar la posible superposición espacial de los grupos taxonómicos y la variación espacial de la productividad que pudiera ocurrir. Dos tipos de datos podrían ser de utilidad: las características espaciales, y la división temporal de los hábitats y el movimiento entre un área y otra.

1.24 Típicamente, el crecimiento de una población depende de la reproducción, mortalidad y crecimiento individual. La competencia entre especies puede ocasionar cambios de uno o todos estos procesos. Pueden ser modelados parcialmente o combinados en funciones.

1.25 Los modelos de la dinámica de la alimentación de un grupo taxonómico utilizan datos de la dieta y funciones para representar la alimentación, por ejemplo, funciones Holling Tipo II y III, o bien otros enfoques dinámicos. Si bien es difícil de medir, por lo general se hacen suposiciones acerca de la naturaleza y el grado de competencia entre una especie y otra, y dentro de una misma especie en estos modelos.

1.26 Los datos de captura habrán sido notificados en las escalas espaciales y temporales para cada grupo taxonómico específico, y muchos datos de captura son de calidad variable, en particular los relativos a la captura de peces. Asimismo, sería importante considerar las especies que abundan en la captura incidental, por ejemplo, aves marinas. Todos estos datos deberán ser subdivididos en unidades estadísticas comunes para todos los grupos taxonómicos según corresponda.

1.27 La preparación del taller incluyó la compilación de metadatos y de comentarios sobre los mismos por parte de los grupos de expertos. Se elaboró una base de datos que actualmente se encuentra alojada en el AADC con la expectativa de que será depositada en las Secretarías de la CCRVMA y de la IWC.

1.28 Se dispuso de análisis de los grupos de expertos, con excepción del grupo sobre aves voladoras. A principios de 2008, se agregó un nuevo grupo de expertos coordinado por el Dr. Kawaguchi que se encargó de revisar el estado de los conjuntos de datos sobre la explotación de las especies del Océano Austral, incluidas las especies de pinnípedos, cetáceos, peces y kril. La compilación de este documento se realizará después de celebrado el taller, cuando se reciban los resultados de la labor de cada grupo de expertos.

1.29 El establecimiento de una base de metadatos para el trabajo de modelado de la CCRVMA y la IWC fue un resultado importante del taller. Esta base de datos, junto con la interfaz gráfica de usuario (GUI por sus siglas en inglés) con base en Internet, fue establecida por la AADC y puesta a disposición de los grupos de expertos. Actualmente la base de metadatos se encuentra alojada en un sitio de la AADC de acceso protegido. Esto es una medida interina durante los preparativos del taller. La base de datos será entregada a las Secretarías de la CCRVMA y de la IWC, para su archivo y posterior refinamiento según sea necesario. La información sobre el acceso a la base de datos y cómo utilizar la GUI se proporciona en CCAMLR-IWC-WS-08/16.
1.30 Todos los miembros del Comité Científico de la CCRVMA y de la IWC y de sus respectivos grupos de trabajo fueron invitados al taller. Se invitó además a los integrantes de los grupos de expertos, como también a varios expertos en otros campos, por ejemplo, estadística y modelado.

Requerimientos de la CCRVMA y la IWC para la labor de modelación

1.31 CCAMLR-IWC-WS-08/3 proporcionó una descripción general y los antecedentes de los modelos de ecosistemas marinos antárticos que se están examinado en la CCRVMA y en la IWC, resumiendo, en particular, lo siguiente:

i) se podrían elaborar modelos de ecosistema en la CCRVMA y la IWC a efectos de –
 a) evaluar procedimientos de ordenación; o
 b) en la CCRVMA, estimar el estado del ecosistema o de sus componentes;

ii) modelado de ecosistemas en la CCRVMA –
 a) labor realizada en la CCRVMA desde 1995 en la construcción de modelos de redes tróficas y de ecosistema, y esfuerzos coordinados para elaborar modelos de ecosistema con el objeto de asistir en la evaluación de procedimientos de ordenación del kril desde la celebración de un taller en 2004;
 b) detalles de los resultados del taller de WG-EMM realizado en 2004 (SC-CAMLR, 2004) sobre modelos de ecosistema, incluida la representación conceptual del ecosistema;
 c) caracterización espacial del Océano Austral, en términos de unidades estadísticas de la CCRVMA y de la IWC, las UOPE de la CCRVMA, y la biorregionalización de la CCRVMA;

iii) modelado del ecosistema en la IWC;

iv) deliberaciones sobre la estructura de los modelos, datos de entrada e incertidumbres que puedan surgir en el proceso de modelado, por ejemplo en:
 a) estructura de los modelos de la red trófica;
 b) utilización de los modelos y manejo de las incertidumbres;
 c) variación natural e incertidumbre en los parámetros;
 d) incertidumbre de los modelos que surge de la manera en que se especifica lo siguiente –
 • especificación taxonómica – categorías y grupos funcionales
 • mortalidad de las especies presas y consumo de los depredadores
• fecha relativa del consumo y acumulación de la biomasa
• mantenimiento de una covariación adecuada entre los parámetros y los comportamientos de los modelos.

1.32 El Prof. Butterworth presentó un resumen de la evolución de modelos de las redes tróficas en la IWC:

i) Algunos de los asuntos que se han planteado son:
 a) ¿En qué medida podría el consumo de especies que sirven de alimento a depredadores tope afectar a las pesquerías?
 b) ¿En qué medida podrían competir los depredadores tope entre ellos por las especies que sirven de alimento?
 c) ¿En qué grado podrían las pesquerías afectar a los depredadores tope y/o al ecosistema en general?

ii) El asesoramiento de ordenación que toma en cuenta la interacción de especies ha incluido:
 a) una estrategia para establecer el nivel de capturas del rorcual aliblanco, a principios de la década de los 80 basada en la hipótesis del “excedente de kril”;
 b) evaluación del POR utilizando la variación de la tasa de RMS y K como sustitutos de los efectos de la interacción de especies.

iii) Se ha considerado la manera en que se puede tratar la incertidumbre, tomando nota del problema de que los distintos modelos pueden arrojar resultados muy diferentes; la conclusión del Taller de expertos de la FAO sobre Modelación (FAO, en prensa) fue que los modelos de ecosistemas podían utilizarse como modelos operacionales, pero que no habían evolucionado lo suficiente para utilizarlos como modelos tácticos que sirvieran de base para proporcionar asesoramiento cuantitativo.

iv) Algunos de los ejemplos de modelación de redes tróficas han sido:
 a) modelos para el Atlántico Noreste, Pacífico Noroeste, África Noroccidental, utilizando Ecopath con Ecosim y Multspec, que es un ejemplo de un Modelo Realista Mínimo (MRM);
 b) un modelo para la Antártica que considera la competencia (Mori y Butterworth, 2005).

1.33 Para concluir, el Prof. Butterworth señaló que era esencial contar con datos mejores para seguir perfeccionando los modelos y proporcionando la suficiente consistencia para probar su capacidad de predicción, lo cual es uno de los principales objetivos de este taller.

1.34 El Dr. Constable presentó una explicación más detallada de su opinión acerca del uso de los datos en los modelos de la CCRVMA y de la IWC a fin de facilitar las deliberaciones
acerca de los datos que se necesitan para estos fines. En particular, recalculó la necesidad de usar modelos para proporcionar una representación mínima que capte las dinámicas importantes (modelos realistas mínimos), es decir, los aspectos que se necesitan representar en términos de escalas espaciales, escalas temporales, fechas de eventos, detalles bióticos (especies, grupos funcionales, covariables medioambientales) y procesos poblacionales/individuales. Proporcionó varias figuras para ilustrar en qué situaciones considera que se pueden utilizar datos y conocimientos para formular posibles hipótesis (modelos) de ecosistemas (figuras 3 a 6).

Preguntas generales relacionadas con la elaboración de modelos de ecosistemas por la CCRVMA y la IWC

1.35 El taller consideró que las siguientes preguntas generales ayudarían a guiar el estudio de los efectos de la conservación y ordenación antártica en el ecosistema:

i) ¿Qué efecto tiene la pesca de una especie, en particular del kril, en los depredadores de esa especie?

ii) ¿Qué efecto tiene la variabilidad de la abundancia de los depredadores, por ejemplo, aquellos cuyas poblaciones se están recuperando de una explotación previa, en los otros componentes del ecosistema?

iii) ¿Cuál sería el efecto del medio ambiente y de la variabilidad ambiental en la abundancia de las especies explotadas y de sus depredadores, y en los objetivos de conservación?

El taller tomó nota de los distintos tipos de datos y escalas pertinentes a cada una de las preguntas anteriores. Asimismo, se subrayó el tema de la escala temporal para lograr los resultados requeridos, en lo que se refiere al riesgo de que los modelos sean poco fiables en sus predicciones si las escalas temporales son demasiado breves. En particular, se señaló que la modelación del cambio climático es un proyecto a largo plazo.

1.36 El taller determinó que estas preguntas debían ser consideradas principalmente con relación al kril y a sus depredadores, y que naturalmente cada pregunta sería enfocada en distintas escalas, desde escalas a nivel de la Antártida, a las unidades de ordenación de la CCRVMA o la IWC, e incluso a nivel de UIPE de la CCRVMA.

RESÚMENES DE LOS METADATOS

2.1 El taller reconoció que las tareas originalmente asignadas a todos los grupos de expertos habían sido substanciales, y que fue muy difícil abordar todos los asuntos antes del taller.
Medio ambiente físico y producción primaria

Oceanografía

Resumen presentado por el grupo de expertos

2.2 En CCAMLR-IWC-WS-08/15 se examina cómo los análisis de la dinámica de los ecosistemas del Océano Austral han puesto de relieve la importancia de entender las interacciones físicas y biológicas, ya que éstas son fundamentales para predecir los efectos en el clima y la explotación en el Océano Austral y mejorar las estrategias de ordenación sostenible. La modelación proporciona una manera de combinar datos medioambientales y biológicos en un marco cuantitativo que permite crear situaciones hipotéticas para estudiar la reacción de los sistemas ante una gama de perturbaciones. No obstante, típicamente los modelos consideran una variedad limitada de escalas espaciales y temporales dictadas por el tema en estudio. El documento incluye información sobre los procesos en escalas menores a través de parametrizaciones; la información a escalas mayores se incluye a través de condiciones de frontera. Estos requerimientos ponen de relieve la importancia de disponer de conjuntos de datos adecuados para satisfacer estas necesidades de modelación. Los datos son también parte integral de la evaluación y calibración de modelos y deben abarcar la resolución espacial y temporal que se necesite para realizar esta tarea. La fusión modelo-datos a través de la assimilación de los datos proporciona otro importante uso de los datos en los estudios de modelación.

2.3 Los modelos numéricos de circulación oceánica ya son relativamente maduros. Existen modelos basados en comunidades, como el Sistema de Modelación Oceánica Regional (ROMS) (Haidvogel et al., 2008) y el Modelo Oceánico de Princeton (POM) (Mellor, 1996), que tienen una amplia comunidad de usuarios. Estos modelos se actualizan constantemente a medida que surgen nuevos conocimientos, procedimientos numéricos y objetivos de investigación. Los modelos biológicos aún no son tan maduros como los modelos numéricos de circulación oceánica, por lo tanto, las simulaciones fiables del estado de un ecosistema no se consideran viables más allá del nivel de cantidades en bruto, como macronutrientes o clorofila. La limitación de estos modelos proviene de la insuficiencia de datos para parametrizar los procesos, proporcionar condiciones iniciales y de frontera, y realizar evaluaciones rigurosas de los modelos. Una limitación igualmente importante es la comprensión del acoplamiento entre los niveles tróficos, la estructura de las redes tróficas y el acoplamiento de las redes tróficas a condiciones medioambientales y a modelos de procesos biogeoquímicos. Aún queda por realizar el acoplamiento de estos modelos con los elaborados para la ordenación de recursos marinos.

2.4 Existen conjuntos de datos medioambientales en una variedad de formas que incluyen climatologías en gran escala, numerosos programas regionales, mediciones lagrangianas (v.g. flotadores), mediciones eulerianas (v.g. mediciones correntométricas con dispositivos fijos), y observaciones vía satélite (v.g. hielo marino, vientos de superficie). La dificultad estriba en combinar estas fuentes de datos para formular caracterizaciones de la estructura y variabilidad del medio ambiente.

2.5 Los métodos de evaluación cuantitativa de los resultados arrojados por los modelos constituyen la clave para mejorar la estructura de los modelos y en definitiva la capacidad de predecir y evaluar hipótesis de las condiciones de sistemas perturbados. Las distribuciones simuladas, deben, como mínimo, reproducir medianas y varianzas observadas con poco sesgo,
captar el intervalo dinámico de las observaciones, efectuar una sincronización con los eventos, y captar las diferencias regionales. El grado en que los modelos satisfacen estos criterios se determina a menudo mediante comparaciones de modelos y datos, que en muchos casos son evaluaciones cuantitativas. Las evaluaciones cuantitativas más rigurosas realizadas a través de comparaciones estadísticas, como diagramas de Taylor (Taylor, 2001) y diagramas de objetivo (Joliff et al., 2007), proporcionan estimaciones de la incertidumbre en las predicciones de los modelos e indican aquellos aspectos del modelo que necesitan mejorar. Se requiere una diversidad de enfoques para evaluar la capacidad del modelo a fin de identificar los aspectos del modelo que se deben mejorar.

2.6 La asimilación de datos es un enfoque que permite la combinación de modelos y datos en una forma cuantitativa que produce estimaciones de errores e incertidumbre. Varios de los modelos de circulación oceánica que existen actualmente son modelos de asimilación de datos. Se ha demostrado que la asimilación de datos en modelos ecológicos es viable. Para estos modelos, se han utilizado enfoques como métodos variacionales complementarios para estimar los conjuntos de parámetros, mejorar la estructura de los modelos e investigar su complejidad.

2.7 Cabe advertir que la reducción de la incertidumbre no es necesariamente un objetivo deseable. Es importante caracterizar y entender la incertidumbre en los datos, modelos y predicciones de los modelos. Esto puede conllevar a un aumento en la incertidumbre de las estimaciones. Si se desea una reducción de la incertidumbre, es importante establecer los índices mediante los cuales se evaluará el progreso hacia dicho objetivo.

Prioridades futuras de investigación

2.8 El taller tomó nota de los avances en modelación oceánica y de la ayuda que esto puede proporcionar en la comprensión de la dinámica física de los hábitats clave. Se tomó nota además de varias preguntas que se podrían considerar para determinar la variabilidad y los cambios en los hábitats (véase los párrafos 3.3 y 3.4).

2.9 El taller tomó nota además de los avances generales logrados en la modelación. Se han integrado modelos de redes tróficas y sistemas físicos, proporcionando así oportunidades para comprender mejor los efectos de la variabilidad y de los cambios en los hábitats en la dinámica de las redes tróficas. Por ejemplo:

i) Se están formulando modelos multispecies para grandes especies pelágicas oceánicas que están acoplados a modelos de circulación, biogeocuímicos y de explotación. Estos modelos representan la integración de procesos oceánicos y ecosistémicos en un marco que se puede utilizar para comprender los controles físicos y biológicos en las especies comerciales importantes. Un ejemplo es el modelo ecosistémico de depredadores tope (APECOSM), que representa la dinámica especial de los ecosistemas pelágicos del más abierto en los océanos del mundo (Maury et al., 2007a, 2007b). Las fuerzas físicas (vientos, temperatura y corrientes en un modelo de circulación), las fuerzas biogeocuímicas (producción primaria y oxígeno en un modelo biogeocuímico) además de los efectos de la pesca, se toman en cuenta explícitamente en el modelo. Este tipo de estructura de modelación permite el estudio de los efectos
relativos del medio ambiente (de abajo a arriba), interacción de especies (de arriba a abajo) y efectos de la pesca en especies comerciales importantes. Este enfoque puede ser de utilidad para la CCRVMA y la IWC en algunas aplicaciones.

ii) La modelación basada en individuos es un enfoque que aprovecha muchos tipos de datos, como tasas de alimentación o comportamiento alimentario, que se recopilan por lo general a nivel de individuo. Estos modelos permiten un estudio detallado de las reacciones de los animales a los procesos medioambientales, biológicos y fisiológicos. Los resultados de los modelos basados en individuos se pueden ajustar a escalas poblacionales utilizando enfoques basados en distribuciones estadísticas que describen el intervalo de variabilidad en procesos biológicos o fisiológicos clave. Esto permite incluir el intervalo de variabilidad observado para una población (v.g. en lugar de variabilidad genética), proporcionando así una gama de posibles resultados para una población en respuesta a determinados forzamientos. Este enfoque basado en individuos podría ser incluido en el trabajo de modelación de la CCRVMA y la IWC.

2.10 El taller tomó nota además de dos programas de investigación emergentes que podrían ser pertinentes a las actividades de modelación de la CCRVMA y la IWC:

i) ICED – Integrando el Clima y la Dinámica de los Ecosistemas del Océano Austral

ICED es un programa multidisciplinario que lleva diez años, establecido principalmente para facilitar la coordinación científica y la comunicación requerida para producir modelos de ecosistemas del Océano Austral que permitan la predicción de escenarios futuros. ICED es un programa regional con el apoyo de GLOBEC y del Programa Integrado de Investigación de la Biogeocquímica y del Ecosistema Marino, del Programa Internacional de Estudios de la Geósfera y la Biotópsfera.

El objetivo a largo plazo de ICED es formular un enfoque circumpolar coordinado para entender las interacciones del clima en el Océano Austral, sus repercusiones en la dinámica de los ecosistemas, y los efectos en los ciclos biogeocquímicos, y elaborar procedimientos de ordenación para la explotación sostenible de los recursos vivos.

ICED tiene tres objetivos científicos principales:

a) entender cómo los procesos climáticos afectan la estructura y dinámica de los ecosistemas en el Océano Austral;

b) entender cómo la estructura y dinámica de los ecosistemas afectan los ciclos biogeocquímicos del Océano Austral;

c) determinar cómo se podría incorporar este conocimiento de la estructura y dinámica de los ecosistemas en los métodos de ordenación para la explotación sostenible de los recursos vivos del Océano Austral.
Muchas de las actividades del ICED, como el análisis de series de datos históricos, podrían ser pertinentes para la CCRVMA y la IWC. En especial, la intención es que los modelos circumpolares que combinan circulación, redes tróficas y aspectos biogeoquímicos estén directamente vinculados a muchos de los esfuerzos de modelación pertinentes a la CCRVMA y la IWC. Los programas regionales de observación proyectados como parte del ICED proporcionarán conjuntos de datos integrados que podrían ser de interés para la CCRVMA y la IWC.

ii) SOOS – Sistema de Observación del Océano Austral

El Océano Austral es inmenso, remoto y logísticamente difícil de evaluar, por lo tanto, es una de las regiones de la Tierra menos muestreadas. Mediante el SOOS se trata de diseñar e implementar un sistema de observación que abarque procesos físicos, biogeoquímicos y ecológicos. El sistema se encuentra ahora en la etapa de desarrollo y se piensa tener un plan de implementación listo para este año. Convendría que la CCRVMA y la IWC contribuyeran con información sobre las mediciones necesarias y las regiones que se quieren medir.

2.11 El taller observó que estos modelos no se utilizarán directamente en la toma de decisiones a corto plazo. Se indicó además que pueden resultar útiles en la elaboración de modelos para evaluar procedimientos de ordenación en la IWC y la CCRVMA, pero que no había suficiente tiempo para discutirlos en detalle.

Hielo marino

Resumen presentado por el grupo de expertos

2.12 CCAMLR-IWC-WS-08/14 proporciona una síntesis de los datos sobre el hielo marino, su dinámica y su función en los ecosistemas marinos del Océano Austral. El hielo marino juega un papel dominante aunque altamente variable en la estructuración de los ecosistemas marinos en latitudes altas del Océano Austral. Forma un substrato rico en nutrientes con concentraciones de comunidades microbianas (una fuente de alimento fundamental para los herbívoros pelágicos) que a su vez constituyen una fuente de alimento clave para depredadores más grandes, y una plataforma de protección y reproducción para pinnípedos y pingüinos. Asimismo, afecta considerablemente la producción pelágica durante el deshielo. Los distintos tipos de hielo tienen funciones ecosistémicas diferentes (p. ej. el hielo a la deriva comparado con el hielo fijo). Si bien el hábitat del hielo marino es altamente heterogéneo en escalas espaciales pequeñas, la cubierta de hielo marino circumpolar se caracteriza por regímenes estacionales en gran escala en su distribución y dinámica – impulsados por vientos y temperaturas climatológicas, y campos de corrientes oceánicas. El hielo marino responde a cambios y tendencias en estos campos de forzamiento y los modula, y por lo tanto, es altamente sensible a cambios/variabilidad climáticos – con ramificaciones para los organismos relacionados con él o que dependen de él.

2.13 Los componentes en gran escala más importantes del hábitat del hielo marino incluyen la SSIZ (incluida la zona de hielo marginal), la banquisa interior, las regiones de hielo marino perpetuo las cuales persisten durante el verano, el hielo fijo de la costa, los canales grietados y
las polinias. Una característica esencial de estas últimas es su reaparición anual y persistencia en ciertos lugares, mientras que los canales de la banquisa, si bien son biológicamente importantes, son esencialmente configuraciones de corta duración. El extraordinario ciclo anual de crecimiento-desintegración del hielo (que varía de un mínimo de ~3–4 millones de km² en febrero a ~19 millones de km² en septiembre-octubre) extiende la zona de hielo marino a través de importantes fronteras/zonas físicas y biológicas del océano, como la ACC, el borde continental de la plataforma, la Divergencia Antártica y el SBACC.

2.14 Los icebergs juegan un papel importante en la zona costera, tanto los varados como los flotantes. Forman puntos de sujeción para la formación de hielo fijo y límites para las polinias y formaciones localizadas de agua libres, y son una fuente de agua de deshielo y hierro al derretirse. Por otra parte, pueden suponer un factor imponderable que puede reducir el tamaño de las polinias (y la producción primaria regional) y afectar negativamente el éxito reproductor de los pingüinos.

2.15 La modelación de la producción primaria de hielo marino es muy importante, sin embargo, actualmente sólo existe un modelo (si bien se están elaborando dos más). Esto es específico a las condiciones del Mar de Weddell, y no se aplica a los estudios circumpolares. Una importante deficiencia actual, en términos de convalidación de modelos, es la falta de observaciones in situ que cuantifiquen la evolución temporal de hábitats físicos y comunidades del hielo marino, y la inexistencia de mediciones del ciclo anual. De hecho, el conocimiento actual de las funciones ecológicas del hielo marino se basa en observaciones instantáneas in situ breves y ampliamente espaciadas. Una dificultad en particular es muestrear adecuadamente e investigar nichos de hielo marino ecológicos heterogéneos y múltiples dentro del campo espacio-temporal. Nuevas tecnologías, como los vehículos autónomos submarinos (VAS) podrían ayudar a obtener conjuntos de datos de gran escala de parámetros combinados físicos y biológicos, por lo que se tiene proyectado realizar algunos experimentos.

2.16 Se han identificado las siguientes necesidades actuales:

i) más campañas multidisciplinarias para medir los procesos y propiedades físicos y bioquímicos del hielo y propiedades además de sus comunidades biológicas conexas, y su evolución;

ii) información sobre ciclos anuales completos en los bandejonos frente a las costas;

iii) conjuntos de datos continuados y a largo plazo, v.g. Palmer LTER, para permitir la detección de tendencias en función de la variabilidad interanual, ciclos a corto y largo plazo y cambios en los regímenes a escala decenal;

iv) un mejor entendimiento de la sensibilidad de los hábitats del hielo marino a la variabilidad en los modos de variabilidad climática, y del efecto en los mismos, v.g. Oscilación Austral, ENSO y SAM, y posible teleconexiones;

v) un entendimiento más a fondo de los aspectos estacionales del ecosistema del hielo marino y la columna de agua (está planificada una campaña frente a la costa de la Tierra Adélia);
vi) establecimiento de un entendimiento mecánístico de las relaciones entre el hielo marino, los procesos biogeoquímicos, los niveles tróficos desde inferiores a superiores y el clima.

2.17 Si bien el material publicado hace hincapié en el alcance del hielo marino, esto es sólo un descriptor parcial de hábitat del mismo. Otros factores son la concentración del hielo, el modo de formación del hielo, la dinámica del hielo impulsado por el viento ya que determina el transporte de hielo y el grado de divergencia (formación de canales) o de convergencia (compactación y deformación del hielo), nieve/acumulación, procesos de interacción del oleaje y el hielo, época de crecimiento anual del hielo y desintegración (y duración de la temporada de crecimiento anual) e inundación de la capa superficial del hielo. Un factor primordial es el fuerte acoplamiento entre el nielo y la cobertura de nieve, el océano y la atmósfera. El seguimiento por satélite permite medir/controlar la vasta y remota zona de hielo marino en una variedad de escalas espaciales y temporales, de manera sistemática. No obstante, las observaciones in situ siguen siendo esenciales para obtener información que el seguimiento por satélite no puede aportar, y para convalidar el producto derivado de esta última. La cobertura de nieve juega una función clave en las consideraciones del ‘hábitat’ del hielo marino en lo que se refiere a su efecto en (i) las propiedades térmicas y ópticas del substrato de hielo marino, y (ii) la distribución espacio-temporal de la inundación de la capa superficial de hielo y las comunidades biológicas superficiales.

2.18 Existen otras fuentes de información sobre distribución del hielo marino antártico en gran escala y su evolución dentro del sistema océano-hielo-atmósfera. Los modelos acoplados son la clave para comprender mejor los factores que determinan esta distribución, y predicen su respuesta a condiciones climáticas cambiantes y variables. Ciertas comparaciones recientes de los resultados de 16 modelos acoplados en el cuarto informe de evaluación del IPCC para los años 1981 a 2000 en comparación con los datos obtenidos por satélite del alcance del hielo revelan una amplia variabilidad en el funcionamiento, que ha sido atribuida al funcionamiento de sus componentes atmosféricos y oceánicos. Se han hecho recomendaciones generales respecto a una mejor expresión de la cubierta de nieve, la reología de hielo y las interacciones hielo-océano. Con respecto a las predicciones para el siglo XXI, 15 de los modelos presentan una disminución promedio de la cobertura de ~25%. Los datos paleoclimáticos (registros “proxy”) permiten la reconstrucción de la cobertura de hielo marino en la era pre-satélite (en efecto, anterior a 1978). En particular sorprende la reconstrucción de alta resolución que cubre los últimos 170 años, basada en registros del AMS (ácido metanosulfónico)2 en Law Dome en la Antártida Oriental. Por otra parte, los registros diatomológicos de los testigos de sedimento del lecho marino indican que la cubierta en el último máximo glaciar era el doble de su cobertura máxima actual, y esto se continúa investigando a fin de complementar y ampliar esos datos. El estado actual de la observación y modelación atmosférica es también una consideración clave, dado que el hábitat del hielo marino está determinado por numerosas fuerzas externas y condiciones, incluida la velocidad y dirección de los vientos, la temperatura del aire y las precipitaciones.

2.19 En cuanto a la reacción de los ecosistemas, para que las predicciones sean robustas se deben apoyar en el entendimiento de los diversos mecanismos y relaciones en que se basan las correlaciones con las mediciones del medio ambiente y de los cambios del medioambiente teniendo en mente la no linealidad de las respuestas de los ecosistemas a los cambios

2 El ácido metanosulfónico (AMS) es liberado por el fitoplancton que vive en el hielo marino y a su alrededor y se correlaciona con la extensión de la cobertura del hielo marino (Curran et al., 2003).
medioambientales. Esto último se ha manifestado apreciablemente en el trabajo del programa Palmer LTER sobre los cambios en las poblaciones del pingüino Adelia en la región de la Península Antártica Occidental, por ejemplo. Las condiciones regionales del hielo marino en los últimos 30 años en este caso han cambiado a tal punto que ciertos lugares ya no experimentan la misma frecuencia de condición “óptima” del hielo (desde la perspectiva de los pingüinos) y están ocurriendo importantes cambios ecológicos. Esto nuevamente subraya la gran importancia de que las series cronológicas a largo plazo no solamente incluyan parámetros biológicos sino también parámetros medioambientales clave (hielo marino, océano, atmósfera) (es decir, un enfoque multidisciplinario, serio y a largo plazo).

2.20 Con respecto a las aves y mamíferos marinos, existe con muy poca información acerca de las condiciones “óptimas” del hielo para cada especie. Esta información de referencia es esencial si se desean predecir los efectos del cambio medioambiental de manera realista. De especial importancia en este sentido es la instrumentación y seguimiento de pinnípedos, aves y cetáceos. La comparación inicial de las huellas de los elefantes marinos australes de la Isla Macquarie, por ejemplo, indican que ciertas polinias podrían ser el hábitat preferido. Del mismo modo, el pingüino rey (*Aptenodytes patagonicus*) parece mostrar preferencia por alimentarse en la zona de hielo marginal. En todos los casos, se puede obtener un considerable volumen de información comparando y combinando los datos relativos al lugar y al medio ambiente con los datos de la distribución y las características del hielo marino obtenidos por satélite. Está saliendo nueva información a la luz sobre la importancia clave de las condiciones cambiantes del hielo fijo en el éxito reproductor del pingüino emperador (*A. forsteri*) en Dumont d’Urville. Una interrogante importante es: dónde se encuentran los lugares principales para los pinnípedos, los cetáceos y las aves dentro de la zona de hielo marino, cuándo y por qué.

Prioridades futuras de investigación

2.21 El taller acordó que, en lugar de considerar al hielo marino como un sólo “hábitat” amorfo, lo cual en realidad no es así, se necesita un enfoque uniforme compartido por la CCRVMA y la IWC para clasificar los hábitats del hielo marino. Esto facilitaría las comparaciones entre las distintas disciplinas y proporcionaría un marco que reúna las esferas biológicas y físicas (en relación con el medio ambiente). Un posible sistema podría basarse en los siguientes elementos zonales en gran escala:

- i) SSIZ;
- ii) la zona de hielo marginal (la zona externa de la SSIZ afectada por los procesos de interacción del oleaje y el hielo);
- iii) la zona de la banquisa interior;
- iv) regiones de hielo marino perpetuo que persiste durante el verano;
- v) hielo fijo en la costa o cerca de la costa;
- vi) canales grietados y polinias (zonas de aguas libres persistentes y recurrentes).
Producción primaria

Resumen presentado por el grupo de expertos

2.22 CCAMLR-IWC-WS-08/13 resume los datos de satélite del color del océano (clorofila \(a\): Cl-\(a\)) existentes. Estos datos se han obtenido a través de misiones que comenzaron con el Barredor de Color de la Zona Costera a fines de los años 70 y luego con los sensores SeaWiFS y MODIS. En conjunto han estado aportando información por los últimos 10 años. El documento discute las características de estos datos y sus limitaciones. Se examinan por ejemplo, datos de la cubierta nubosa y un gran ángulo del cénit solar, en relación con su utilización en el Océano Austral. Presenta además una breve historia de los algoritmos que vinculan el color del océano a la productividad primaria, concentrándose en el modelo de producción vertical generalizado (VGPM) y enfoques regionales más recientes basados en el carbono. Utilizando climatologías mensuales de SeaWiFS Cl-\(a\), se presenta una fenología de floración del fitoplancton para las principales provincias biológicas alrededor de la Antártida. Se resume parte de la información sobre la composición y sucesión de especies del fitoplancto. Por último, se hace una reseña de los modelos ecosistémicos y biogeoquímicos para el Océano Austral, prestando especial atención a aquellos modelos que han sido convalidados utilizando datos de satélite del color del océano.

Prioridades futuras de investigación

2.23 El taller destacó lo siguiente con respecto a la utilización de datos de satélite del color del océano en la representación de productividad primaria y biomasa de algas:

i) tales datos proporcionan una buena cobertura espacial en escalas temporales de un mes o más y pueden utilizarse para discernir las tendencias interanuales de las climatologías de clorofila;

ii) los datos sólo proporcionan información de la clorofila superficial (10–20 m) con una precisión de alrededor del 40%;

iii) es probable que los valores máximos de clorofila se observen en profundidades mayores a las profundidades en que se hicieron las mediciones y por lo tanto las mediciones de la superficie tal vez no reflejen adecuadamente la densidad de la clorofila en la columna de agua. Se necesita seguir trabajando para identificar si las densidades relativas a la clorofila superficial reflejan las climatologías verdaderas de clorofila en el Océano Austral;

iv) las estimaciones de Cl-\(a\) a partir de los datos del color del océano posiblemente no reflejen las densidades relativas de la biomasa de algas. Un tema importante que se debe explorar es el grado en que los cambios en la composición de especies en el Océano Austral a través del tiempo afectarían los cálculos de la biomasa y la productividad de algas tanto espacialmente como temporalmente;

v) los modelos biogeoquímicos son buenos para caracterizar los procesos regionales pero sus resultados no corresponden actualmente a los obtenidos por satélite;
vi) los sensores del color del océano no pueden medir las concentraciones de Cl- en el hielo marino; por lo tanto, no se sabe aún si se podrían dar puntos candentes de producción primaria dentro de la zona de hielo marino.

Especies pelágicas

General

2.24 El taller consideró la resolución espacial en la cual se necesitarían datos de las especies pelágicas, dado el tipo de preguntas que posiblemente se estudiarían con los modelos ecosistémicos para el ecosistema antártico. Si bien las especies pelágicas antárticas interaccionan en una variedad de escalas espaciales, el taller acordó que la mayoría de los modelos de ecosistema se basarían en áreas estadísticas de la CCRVMA o áreas más extensas. Por lo tanto, los resúmenes de los datos para las especies pelágicas se basan en subáreas/divisiones estadísticas de la CCRVMA (véase la figura 1).

2.25 Tras considerar otras especies aparte del kril, el taller reconoció que un aspecto deseable de los modelos de ecosistema de la CCRVMA y de la IWC sería proporcionar vías alternativas a la vía ya bien reconocida (y modelada) de fitoplancton-kril-depredadores tope. Varios estudios antárticos han demostrado ahora que la producción secundaria aportada por copépodos excede la aportada por el kril, formando así un eslabón potencialmente importante entre el sistema microbiano y los depredadores vertebrados (CCAMLR-IWC-WS-08/12). Aparte del kril antártico (Euphausia superba), que es una especie primordial del ecosistema antártico, no es sencillo seleccionar peces, cefalópodos y especies del zooplancton para incluirlos en el modelo de ecosistema, en parte porque estas especies pueden ocupar diversos nichos ecológicos durante su vida. Además, existen considerables incertidumbres relacionadas con la abundancia y dinámica de casi todas las especies.

2.26 El taller acordó que una manera de identificar las especies (o grupos funcionales) para incluirlas en el modelo de ecosistema creado para evaluar los efectos de vías alternativas en el ecosistema, era comenzar con los depredadores tope principales de kril e identificar las especies presa que constituyen una buena porción de su dieta cuando el kril no es abundante, y luego identificar las especies presa de esas especies presa, continuando así este proceso hasta llegar al fitoplancton como presa primaria.

2.27 El taller convino en que el zooplancton y el calamar debían estar representados como grupos funcionales dadas las limitaciones de datos (véase párrafos 2.45 al 2.58 (zooplancton) y 2.59 al 2.69 (calamar)), mientras que tal vez se podrían modelar especies de peces individualmente (v.g. draco rayado (Champsocephalus gunnari)) si se consideraba necesario o adecuado. Se observó además que en los primeros estadios de vida las especies dentro de los grupos funcionales podrían ser vulnerables a la depredación por parte de individuos de mayor tamaño dentro del mismo grupo funcional.

2.28 Los ecosistemas del Océano Austral proporcionan una valiosa oportunidad para estudiar la importancia de las interacciones alimentarias en el funcionamiento de las redes tróficas. Los ecosistemas del Océano Austral son vulnerables a procesos impulsados por el clima (de abajo a arriba) y por la explotación (de arriba a abajo). El taller acordó que se necesitaba que algunos modelos de ecosistema tuvieran un grado suficiente de complejidad
para permitir ajustes en las vías de redes tróficas debido a estos efectos son una propiedad emergente de los modelos. Esto requerirá una nueva generación de modelos que incluya representaciones realistas de los procesos biológicos que operan en los ecosistemas, donde estas representaciones abarcan los complejos procesos de interacción física y biológica.

2.29 El taller señaló que la distribución probablemente esté relacionada con un gran número de factores (véase por ejemplo, el párrafo 2.30(ii)). En principio, si las relaciones entre presencia (y tal vez densidad) y esos factores pudieran ser representadas, estas relaciones podrían utilizarse para inferir la presencia (o densidad) en zonas no muestreadas. Si bien se deberían realizar análisis para determinar los factores medioambientales que determinan la distribución (y la abundancia), un primer paso esencial para entender los requerimientos del hábitat de las especies pelágicas sería producir mapas de presencia-ausencia (tales como los del Atlas de la distribución del calamar – www.nerc-bas.ac.uk/public/mlsd/squid-atlas/) y superponerlos a mapas de factores medioambientales clave.

2.30 El taller confeccionó tablas para cada especie/grupo funcional los cuales resumen información sobre:

i) abundancia (en términos absolutos y relativos), período generacional, capturas (cuando corresponda), y factores medioambientales que determinan la abundancia;

ii) distribución por temporada (verano e invierno) en función de los límites norte y sur, y si lo siguiente se relaciona a la presencia: distancia desde la plataforma continental y la ZFP, presencia de hielo marino, temperatura de la superficie del mar, profundidad, concentración de clorofila, masa de agua y ubicación alrededor de la Antártida. Idealmente, las tablas de distribución deberán estar construidas por etapas del ciclo vital;

iii) composición de la dieta en términos cuantitativos y tasas de alimentación (v.g. raciones de consumo diario).

2.31 El apéndice D proporciona resúmenes de la información sobre el ciclo de vida de cuatro grupos pelágicos.

2.32 La sección del informe sobre especies pelágicas no sigue el formato de las otras secciones de este informe porque muchas de las discusiones cubrieron aspectos relacionados con abundancia, hábitat, dieta y ciclo de vida, al mismo tiempo.

Prioridades futuras de investigación

2.33 Evaluar otras estructuras de modelos para determinar el número mínimo de grupos funcionales que permitiría la aparición de otras vías, en forma de comportamientos incipientes.
Kril

Resumen presentado por los grupos de expertos

2.34 El grupo de expertos del kril se concentró en métodos para obtener información sobre la distribución y abundancia de kril. Los datos del ciclo vital y de los procesos para las especies de kril se incluyen en CCAMLR-IWC-WS-08/11. Se identificaron cuatro fuentes básicas de información: prospecciones con redes, prospecciones acústicas, datos de las pesquerías e información de los depredadores del kril. Cada fuente de datos conduce a sesgos y tiene sus problemas de metodología. En general, existe una falta de datos recopilados sistemáticamente sobre la distribución y abundancia del kril, y los datos que existen de las series cronológicas provienen de áreas limitadas del Atlántico Suroccidental. Se han realizado prospecciones sinópticas en gran escala que han cubierto zonas del Atlántico Suroriental y el Océano Índico, y las prospecciones acústicas más recientes (BROKE, CCAMLR-2000 y BROKE-West; véase la tabla 1) han proporcionado conjuntos de datos en su mayoría comparables que han sido utilizados por la CCRVMA para establecer límites de captura precautorios. Estos conjuntos de datos contienen también un cúmulo de información complementaria que sirve para examinar la estructura y función de los ecosistemas de las zonas clave de la Antártida. La investigación futura debe concentrarse en entender los errores y los sesgos de los métodos de recopilación de datos.

Especies/grupos funcionales

2.35 El resumen de datos del kril incluye kril antártico, kril glacial (*Euphausia crystallorophias*) y kril oji grande (*Thysanoessa macrura*) puesto a que estas especies se capturan en pesquerías de kril y/o constituyen un importante componente de la dieta de los depredadores antárticos.

Asuntos relacionados con los resúmenes de metadatos

2.36 Aún existe una considerable incertidumbre en las estimaciones de la abundancia derivadas de prospecciones acústicas, en lo que se refiere a la abundancia absoluta (v.g. en términos del lugar donde ocurre y de las diversas estimaciones de abundancia aportadas por la prospección CCAMLR-2000). Estas incertidumbres se relacionan principalmente con el índice de retrodispersión acústica pero también con los métodos de análisis.

2.37 Las variaciones espaciales y temporales en la población de kril han sido vinculadas a varios aspectos del medio ambiente físico: (i) la posición de los principales sistemas frontales (Tynan, 1998; Nicol et al., 2000), (ii) el alcance de la cobertura de hielo marino tanto temporalmente (Loeb et al., 1997; Atkinson et al., 2004, 2008) como espacialmente (Nicol et al., 2000), (iii) la duración del hielo marino en el invierno (Quetin y Ross, 2003; Quetin et al., 2007), (iv) los movimientos de la masa de agua (Priddle et al., 1988), (v) los flujos de corrientes (Hofmann y Murphy, 2004), y (vi) los aspectos batimétricos (v.g. plataforma continental) (Nicol et al., 2006; Atkinson et al., 2008). Varias de estas relaciones fueron establecidas para regiones bastante limitadas, y posiblemente no se apliquen a toda la región antártica. Por ejemplo, el efecto directo del hielo marino en la producción probablemente no sea un factor impulsor de importancia en la región de Georgia del Sur donde rara vez el hielo
marino se forma en invierno. Dada la diversidad de ambientes en la Antártida, es poco probable que se puedan formular reglas universales que describan la distribución de hábitats en todo el Océano Austral (no obstante, véase la biorregionalización de la CCRVMA, SC-CAMLR-XXVI, anexo 9, y procedimientos de modelación espacial que se están formulando como parte de ella, v.g. Pinkerton et al., 2008). Los conjuntos de datos de prospecciones en gran escala recopilados para la CCRVMA podrían utilizarse para seguir examinando estas relaciones. Por otra parte, se podrían utilizar análisis sectoriales de los principales elementos físicos, por ejemplo, utilizando la biorregionalización de la CCRVMA, para investigar cuáles de estos elementos podrían predominar geográficamente (Nicol et al., 2007; Atkinson et al., 2008).

2.38 En la tabla 2 se resume la información sobre la abundancia y distribución de las tres especies de kril, y en la tabla 3(c) la información sobre la dieta de estas especies. Los datos del kril antártico provienen de prospecciones con redes y acústicas. Se han llevado a cabo prospecciones acústicas en gran escala específicamente para determinar la biomasa en varias áreas estadísticas de la CCRVMA. Además, se han realizado prospecciones con redes y acústicas en forma regular en varias áreas para examinar la variabilidad interanual de la demografía y biomasa del kril. Para las otras dos especies se han recopilado datos en forma menos sistemática y no se ha tratado de hacer prospecciones de todo su hábitat con el fin de determinar la biomasa en un lugar determinado.

2.39 El kril glacial forma grandes cardúmenes en aguas de la costa. Su tamaño y su comportamiento gregario lo hacen el candidato adecuado para prospecciones acústicas. No obstante, no existen estimaciones acordadas de la fuerza de blanco para esta especie y sus hábitats cubiertos de hielo presentan dificultades extremas para la realización de prospecciones acústicas.

2.40 El kril oji grande es una especie más pequeña y se cuenta con información sobre su distribución y abundancia obtenida mediante prospecciones con redes. Posiblemente se puedan obtener estimaciones de la biomasa relativa de esta especie a partir de prospecciones en gran escala de la CCRVMA pertinentes.

Observaciones y comentarios para el grupo de expertos

2.41 Se debería ampliar el informe del grupo de expertos sobre el kril a fin de incluir el kril glacial y el oji grande. Se cuenta con datos de la abundancia de kril en el Mar de Ross aportados por prospecciones italianas y JARPA, y el informe debería examinar esas fuentes de datos. Se debe incluir el CV (o IC), cuando éstos existen, en las estimaciones de la abundancia. Se necesita actualizar el informe del grupo de expertos con información sobre el hábitat, el ciclo de vida y la dieta (parte de esta información aparece en CCAMLR-IWC-WS-08/12). El informe debe incluir además las tendencias en la abundancia relativa en las series cronológicas de AMLR, LTER y Georgia del Sur.
Prioridades futuras de investigación

Lagunas clave

2.42 La principal laguna en el conocimiento sobre el kril continúa siendo la falta de estimaciones precisas de la abundancia absoluta, y la falta de información sobre la distribución y abundancia del kril en regiones extensas del Océano Austral. La falta de series cronológicas de estimaciones de la abundancia del kril es una limitación importante para el acondicionamiento de los modelos de ecosistemas; y la incertidumbre de la estructura del stock es también una limitación considerable. Además, aún no se ha aclarado cómo varía la abundancia del kril y su ciclo de vida en las distintas regiones dentro de las cuencas (v.g. Atlántico Occidental y Georgia del Sur en el Atlántico Sur) (pero, véase el párrafo 2.41).

Nuevos análisis

2.43 i) Recopilar y resumir estudios que se hayan realizado o se estén llevando a cabo para elaborar modelos conceptuales de la relación entre kril y las covariables medioambientales.

ii) Realizar un análisis cuantitativo que compare la abundancia del kril con la distribución de fitoplancton, la temperatura de la superficie del mar, la concentración de clorofila y otras covariables, sobre la base de estudios en gran escala.

iii) Estimar series cronológicas de la abundancia relativas utilizando datos de los estudios AMLR, LTER y Georgia del Sur a la luz de correlaciones identificadas, luego de corregir los datos para asegurar que se estén haciendo comparaciones equiparables.

Programas de investigación

2.44 i) Continuar refinando los métodos para el análisis de datos de prospecciones acústicas de manera que estas prospecciones puedan proporcionar estimaciones fiables de la abundancia absoluta, con propiedades estadísticas conocidas.

ii) Elaborar métodos para ajustar los datos (v.g. sobre relaciones funcionales de la alimentación) del nivel individual al nivel poblacional.

iii) Elaborar modelos conceptuales y luego investigar los efectos de la calidad/cantidad de alimento en la calidad de los huevos y en la reproducción.

iv) Realizar nuevos estudios para examinar la relación entre el comportamiento del kril en el verano y las condiciones medioambientales locales.
v) Llevar a cabo estudios para determinar el tiempo de residencia de las poblaciones de kril, en relación con las particularidades geográficas y físicas; estos resultados, conjuntamente con los de otros estudios (v.g. genéticos) podrían ayudar a determinar la estructura de los stocks de kril.

Zooplancton

Resumen presentado por los grupos de expertos

2.45 CCAMLR-IWC-WS-08/12 proporciona una evaluación crítica de los puntos fuertes y débiles de los datos del zooplancton que se podrían utilizar en los modelos de redes tróficas del Océano Austral. Existe un cúmulo de datos sobre el zooplancton del Océano Austral, pero la mayor parte se refiere a la abundancia y a la biomasa; existen muy pocos datos sobre la respuesta a la alimentación. La mayoría de los datos no se encuentran en una base de datos central y CCAMLR-IWC-WS-08/12 proporciona sugerencias sobre dónde encontrar esta información.

2.46 CCAMLR-IWC-WS-08/12 hace hincapié en el papel preponderante de los copépodos, señalando la importancia relativa de otros grupos de zooplancton que varían regionalmente. Un tema recurrente en CCAMLR-IWC-WS-08/12 es que por más sencillo que parezca un asunto, puede en el mejor de los casos, causar confusiones en la compilación de datos, y en el peor, resultar totalmente engañosa, si no se tienen en cuenta todos los aspectos adecuadamente. Algunos de estos problemas son generales para cualquier asimilación de conjuntos de datos de zooplancton, como la sensitividad de las estimaciones de abundancia a la identificación variable en los estados larvales. Asimismo, la época del año, la profundidad del muestreo y la luz de malla de la red utilizada influyen considerablemente en la abundancia registrada, ya que las poblaciones pueden realizar migraciones verticales estacionales, y su reproducción en pulsos origina grandes cambios estacionales en la estructura del tamaño y la abundancia. Otros problemas son específicos a los entornos polares. Por ejemplo, el almacenamiento de lípidos conlleva a relaciones apreciablemente diferentes entre los índices vitales y la masa corporal con respecto a las que se dan en otras partes. Del mismo modo, la estenotermia (tolerancia a intervalos de temperatura reducidos) significa que las compilaciones del material bibliográfico general sobre las tasas metabólicas, temperaturas y relaciones del tipo \(Q_{10}\) deben aplicar con gran cautela en la Antártica. CCAMLR-IWC-WS-08/12 identifica conjuntos de datos y enfoques para combatir estos problemas, y sugiere cuatro grupos funcionales sencillos basados en la biomasa y la ecología (mesozooplancton, salpas, kril antártico y el macrozooplancton restante).

2.47 CCAMLR-IWC-WS-08/12 también pone de relieve algunos de los puntos fuertes y débiles de la metodología y cobertura de los datos en los estudios de la alimentación. El zooplancton muestra una gran variedad de comportamientos alimentarios, de omnívoro a carnívoro – no existen verdaderos herbívoros. Se examina la gama de tipos de cadenas tróficas llegando a la conclusión de que los protozoarios/micrometazoarios (<200 \(\mu m\)) deben ser en realidad los que ejercen la mayor presión de pastoreo en Océano Austral; el zooplancton de mayor tamaño típicamente extrae <30% de la producción primaria. Esto recalca la función dominante de las cadenas alimentarias microbianas relativas a las clásicas cadenas tróficas del tipo diatomea-kril-depredador tope. En general, la gran diversidad del
tamaño del zooplancton y de la ecología, combinada con sus adaptaciones específicas a la Antártida, requiere cautela tanto en la confección de conjuntos de datos comparables como en la modelación de sus procesos vitales.

Resolución de especies/grupos funcionales

2.48 El taller observó que se necesitaría tratar al zooplancton como un conjunto de grupos funcionales y no como especies individuales en los modelo de ecosistema. Se acordó que la selección óptima de grupos funcionales de zooplancton dependería del aspecto que se desea estudiar con el modelo de ecosistema, pero que los siguientes grupos funcionales podrían servir puesto que se cuenta con datos: salpas, copépodos grandes (>2 mm), copépodos pequeños (<2 mm), y antípodos (específicamente *Themisto gaudichaudii*), por lo que las deliberaciones del taller se centraron en estos grupos. Se cuenta con modelos del ciclo vital para distintas especies clave (v.g. *Calanoides acutus* y *Rhincalanus gigas*), los cuales posiblemente se podrían utilizar como modelos genéricos para representar sus respectivos grupos (en este caso los copépodos grandes).

2.49 El microzooplancton es un importante consumidor de producción primaria (consume 60–70%) además de ser presa del zooplancton de mayor talla (apéndice D), pero no participaron especialistas en microzooplancton en el taller. Se señaló que se contaba con cierta información sobre el bucle microbiano aportada por estudios concentrados en la biogeoquímica, y que se debía tratar de obtener dicha información. Un método utilizado en la construcción de modelos de ecosistema era la agrupación de especies en grupos funcionales, pero el taller advirtió que la productividad variará entre las especies dentro de cada grupo funcional, si bien existe una relación general entre la talla y el tiempo de generación (y por ende la productividad).

Asuntos relacionados con los resúmenes de metadatos

2.50 Se señaló que para la biomasa de mesozooplancton se contaba con volúmenes substanciales de datos que se habían recopilado en forma sistemática en escalas circumpolares. La compilación de datos generales de entrada para los modelos es una propuesta mucho más manejable en lo que se refiere a la biomasa de mesozooplancton que para la abundancia de los distintos taxones. La información sobre la vida/dieta es obviamente más limitada, pero el impacto del mesozooplancton en la producción primaria se encuentra bien cuantificado. El mesozooplancton podría ser un grupo funcional representado como función de forzamiento en los modelos de ecosistema.

2.51 Se han obtenido estimaciones de zooplancton y abundancia, cantidades y biomasa de kril de todas las áreas estadística de CCAMLR/IWC y en varias escalas en los últimos 80 años. No obstante, éstas se han obtenido mediante diversos métodos con una gran variación en la intensidad de muestreo y esto se debe tomar en cuenta. Se requiere una estandarización antes de realizar comparaciones espaciales y temporales (CCAMLR-IWC-WS-08/12). El CPR es el único sistema que ha proporcionado un método de muestreo constante en la región, y se ha utilizado más intensamente en la Antártica oriental. La prospección CPR del Océano Austral se ha venido realizando desde 1991 y puede proporcionar mapas de distribución
superficial por especies en el sector austral Océano Índico como complemento de los datos obtenidos mediante prospecciones con redes utilizando estimaciones estandarizadas de la abundancia (CCAMLR-IWC-WS-08/12).

2.52 Si bien existe información substancial sobre los ciclos de vida de los copépodos y sobre los factores que afectan la distribución, aún son escasos los datos de series cronológicas oceánicas (CCAMLR-IWC-WS-08/12). Se está realizando el seguimiento a largo plazo (>10 años) en la Subárea 48.1 a través de los programas LTER y AMLR, y en la Subárea 58.4 con los datos aportados por el CPR y el muestreo de red anual del NORPAC de la JARE. Éstos pueden proporcionar datos de las tendencias, si bien aún se están procesando muchas de las muestras de la JARE. Se cuenta con datos de las tendencias para los copépodos de la Subárea 48.3 aportados por estudios del BAS. Se han realizado correlaciones entre la abundancia y la distribución y datos medioambientales con respecto a las Subáreas 48.1, 48.2 y 48.3 para copépodos y salpas. Se podrían realizar correlaciones en otras áreas utilizando datos del CPR. Existe mucho menos información sobre tendencias, vida y datos sobre correlaciones para T. gaudichaudii por área.

2.53 El taller observó también que se utilizan distintas técnicas de muestreo en los estudios y que esto podría dificultar las comparaciones entre un estudio y otro, y por ende, la evaluación de las tendencias (CCAMLR-IWC-WS-08/12). Esto se complica aún más por la imposibilidad general de distinguir entre los cambios en la disponibilidad al arte utilizado para el muestreo, y los cambios en la abundancia, además de la alta variación estacional de muchas especies de zooplancton.

2.54 La tabla 3 resume la información sobre abundancia, distribución y dieta de las salpas, copépodos y anfípodos pequeños y grandes.

Observaciones y comentarios para los grupos de expertos

2.55 El informe del grupo de expertos debería recalcar más claramente los diversos conjuntos de datos a largo plazo y especificar qué se necesitaría para elaborar series cronológicas de índices de abundancia para los grupos funcionales clave. Se necesitaría agregar una lista de las principales fuentes de datos que, si se analizaran, se podrían utilizar en la parametrización de modelos.

Prioridades en la labor futura

Lagunas clave

2.56 Existe un gran volumen de información a nivel de especie. No obstante, esta información aún no se ha recopilado en un formato que se pueda utilizar en modelos de ecosistema. Se necesita realizar un esfuerzo más amplio para evaluar la información publicada existente.
Nuevos análisis

2.57 i) Realizar una labor más amplia en la compilación detallada de los datos existentes, que incluya conjuntos de datos anteriores y actuales, y depositar los datos resultantes en las bases de datos pertinentes (v.g. SCAR-MarBIN y/o bases de datos que emanan de este taller).

ii) Sintetizar las relaciones entre especies clave y elementos medioambientales basados en los datos de distintos estudios (v.g. CCAMLR-2000, BROKE y BROKE-West).

iii) Realizar un mayor esfuerzo para evaluar la información publicada existente a fin de determinar si sirven para identificar las relaciones funcionales tróficas y parametrizarlas.

Programas de investigación futuros

2.58 i) Examinar, analizar y sintetizar los datos del microzooplancton existentes para realizar parametrizaciones a fin de incorporar estos parámetros en modelos de redes tróficas y evaluar la importancia relativa de la conexión del microzooplancton y las redes tróficas con los ciclos biogeoquímicos.

ii) Recopilar y analizar información adicional de la dieta y las tasas alimentarias para especies clave y grupos funcionales, y utilizarlos para estimar las respuestas funcionales.

iii) Evaluar si los datos que son relativamente fáciles de obtener (v.g. de satélite) se podrían utilizar como datos indirectos de la abundancia de algunos de los grupos de zooplancton.

iv) Utilizar modelos inversos para obtener estimaciones de primer orden de tasas e interacciones biológicas.

Calamar

Resumen presentado por los grupos de expertos

2.59 CCAMLR-IWC-WS-08/10 proporciona información sobre poblaciones, utilización del hábitat, tasas de crecimiento poblacional, actividades alimentarias y captura del calamar. El calamar es conocido por lo difícil que resulta muestrearlo puesto que posee una vista excelente y sensores de sonido y vibración, que conjuntamente con un mecanismo de escape a propulsión a chorro, le permite, con excepción de los individuales pequeños, evitar fácilmente el arte de muestreo científico. Las pesquerías comerciales capturan adultos pero proporcionan datos no representativos y sólo se ha realizado un limitado número de pesquerías exploratorias en aguas antárticas. La mayoría de los datos demográficos que existen se han obtenido de restos, especialmente picos, en el contenido estomacal de depredadores superiores. A partir de estos datos, se ha estimado el consumo total de calamar por aves marinas, pinnípedos y
cetáceos en la Antártida en unos 34.2 millones de toneladas por año, y en el Mar de Escocia en unos 3.7 millones de toneladas. Aparecen entre 15 y 20 especies de calamar en la dieta de sus depredadores. La talla de estas especies varía de unos pocos milímetros de largo del manto a >2 m. El consumo de una de las especie de interés comercial, el calamar estrellado (*Martialia hyadesi*), en el Mar de Escocia se calcula por lo bajo en 0.25 millón de toneladas por año y posiblemente alcance 0.55 millón de toneladas.

2.60 Existen suficientes datos de especímenes capturados con redes para permitir la caracterización de la distribución de la mayoría de las especies en relación con los sistemas frontales oceánicos, la batimetría y la cobertura de hielo marino, además de su distribución vertical general, la cual está relacionada con la hora del día. Las concentraciones del calamar estrellado, y probablemente de otras especies, se relacionan con la presencia de elementos oceanográficos en mesoescala en las proximidades del ZPF antártico.

2.61 No existen datos sobre las tasas de crecimiento poblacional del calamar de la Antártida, pero es probable que sea de crecimiento más lento que las especies de regiones templadas, de vida relativamente corta y semélparas, de fecundidad relativamente baja, huevos pelágicos grandes y paralarvas, y desarrollo lento. Las especies de calamar pelágico son todas depredadoras y de comportamiento oportunista, alimentándose normalmente de crustáceos durante las primeras etapas de su vida y más tarde de peces (en su mayoría mesopelágicos tales como mictófidos), a medida que crece. Los calamares pelágicos tal vez no se alimenten específicamente de kril, pero se cree que algunos, o todos, se alimenten de kril cuando lo tiene a disposición. Los datos de captura se limitan a los obtenidos en las pesquerías experimentales del calamar estrellado que tuvieron lugar en cinco ocasiones entre 1989 y 2001. Las tasas de captura se mantuvieron en el extremo inferior de viabilidad comercial. El llamado calamar colosal (*Mesonychoteuthis hamiltoni*) se extrae ocasionalmente como captura secundaria en la pesquería de palangre dirigida a la austromerluza negra (*Dissostichus eleginoides*) y a la austromerluza antártica (*D. mawsoni*).

Especies/grupos funcionales

2.62 El taller examinó la información sobre las especies de calamar para las cuales se contaba con datos, pero reconoció que muy probablemente el calamar tuviera que formar un solo grupo funcional en cualquier modelo de ecosistema antártico.

Asuntos relacionados con los resúmenes de metadatos

2.63 La fuente de datos más fiables de la abundancia de especies de calamar en la Antártida son los aportados por los análisis del contenido estomacal. No obstante, las estimaciones del consumo de calamar pueden estar sesgadas debido a los picos de calamar que posiblemente sean retenidos en el estómago de los depredadores por más tiempo que otras partes de la presa, además de estar sujetas a la incertidumbre debido a la imprecisión y el sesgo relacionados con el número de depredadores y su dieta.

2.64 Se podría considerar en la modelación del calamar una tasa de mortalidad constante de sus especies presa en los modelos de ecosistemas dado (i) la falta de datos de la abundancia
del calamar y la imposibilidad de formular métodos en un corto a mediano plazo para obtener un índice de la abundancia del calamar, y (ii) el hecho de que las poblaciones de calamar probablemente reaccionen rápidamente a cambios en la abundancia de presas.

2.65 El taller observó que el Atlas de la distribución del calamar (www.nerc-bas.ac.uk/public/mlsd/squid-atlas/) resultaba útil para evaluar el posible solapamiento en las distribuciones de especies e indicar además las relaciones entre la abundancia del calamar y algunas covariables medioambientales (cobertura de hielo, batimetría y frentes; véase por ejemplo, la figura 7), pero señaló que la falta de observaciones en el atlas con respecto a especies del calamar no implicaba la ausencia de estas especies sino tal vez la insuficiencia de muestreo. Esto se podría solucionar agregando notas en el atlas que indique los lugares donde se han realizado muestreos pero no se ha encontrado calamar.

2.66 La tabla 4 resume la información sobre la distribución y la dieta del calamar. No se presenta información sobre la abundancia en esta tabla debido a la falta de datos pertinentes.

Observaciones y comentarios para los grupos de expertos

2.67 El informe del grupo de expertos debería contener información sobre las estrategias del ciclo de vida.

Prioridades en la labor futura

Lagunas clave

2.68 La falta de información sobre abundancia absoluta y relativa del calamar limita seriamente la posibilidad de incluir este componente en los modelos de ecosistema.

Programas de investigación futuros

2.69 i) En el futuro indicar en los mapas de distribución del calamar los lugares donde se han realizado muestreos pero donde no se ha encontrado el calamar.

ii) Continuar examinando posibles métodos para evaluar la abundancia absoluta y relativa de las especies de calamar.

Peces

Resumen presentados por los grupos de expertos

2.70 CCAMLR-IWC-WS-08/9 observa que los primeros intentos de estimar el kril y el consumo de presas pelágicas por parte de peces demersales antárticos se realizaron a principios de la década de los 80 basándose en unas pocas estimaciones de biomasa, y en estudios de la alimentación en su mayoría cualitativos y en algunos casos cuantitativos. Estas
Las estimaciones de la zona mesopelágica y a la zona antártica de altas latitudes a fines de la década de los 80 y principios de la de los 90, cuando estos lugares fueron explotados comercialmente, se extendieron a la zona mesopelágica y a la zona antártica de altas latitudes a fines de la década de los 80 y principios de la de los 90, cuando estos lugares fueron explotados comercialmente, y se realizó un gran número de estudios sobre la alimentación simultáneamente durante la pesquería. En la actualidad, las mejores estimaciones de las cantidades de kril consumidas por los peces se ubican entre las $23\rightarrow 29 \cdot 10^6$ toneladas de kril y de otras presas pelágicas extraídas anualmente por peces demersales, y entre $7\rightarrow 44 \cdot 10^6$ toneladas extraídas por peces mesopelágicos sólo en el sector del Océano Austral. Aún no se pueden proporcionar estimaciones del consumo por peces mesopelágicos para los sectores del Océano Índico y del Océano Pacífico. Debido a que la pesquería comercial ha causado una reducción substancial en las especies abundantes de depredadores del kril, como la trama jaspeada (*Notothenia rossii*) y el draco rayado, la importancia de los peces demersales como depredadores del kril ha disminuido substancialmente en las últimas tres décadas.

2.71 Las estimaciones del consumo de presas pelágicas tienen aún límites de confianza amplios. Las principales deficiencias en las estimaciones del consumo respecto a peces mesopelágicos son la incertidumbre en las estimaciones de biomasa hidroacústicas realizadas a fines de la década de los 80 y la falta de datos cuantitativos del consumo alimentario para algunas especies abundantes de mictófidos. Las deficiencias principales de las estimaciones del consumo respecto a los peces demersales son la imprecisión de las estimaciones de biomasa para la mayoría de especies de peces abundantes, la brevedad de la mayoría de los estudios sobre alimentación que no reflejan adecuadamente el comportamiento oportunista de alimentación de muchos peces demersales, y la falta de estudios cuantitativos sobre la alimentación realizados durante el invierno. CCAMLR-IWC-WS-08/9 presenta pruebas de que la importancia de kril en la dieta de los peces varía substancialmente con la época y el lugar en diversas escalas, y con el conjunto de tipos de presa disponible en las distintas regiones del Océano Austral.

2.72 La naturaleza imprecisa de las estimaciones de abundancia, conjuntamente con una extensa gama de estimaciones del consumo diario durante el verano y la insuficiencia de tales datos para el invierno, significa que es poco probable que los peces vayan a ser un importante componente en los modelos de ecosistema y redes tróficas del Océano Austral en un futuro cercano. Como primer paso en la formulación de un método de modelación que incluya peces, se podría incluir al draco rayado en los métodos de modelación utilizados actualmente en la CCRVMA. El draco rayado juega un importante papel como depredador del kril y como presa de pinnípedos y aves para las cuales, por lo menos para Georgia del Sur, se podrían calcular parámetros suficientemente precisos que sirvan de datos de entrada para los modelos. Se necesita considerar además los efectos de los grandes cambios en la abundancia y la estructura de la comunidad de peces ocasionados por la pesca industrial.

2.73 La tabla 5 resume la información sobre abundancia, distribución y dieta de los peces.

Especies/grupos funcionales

2.74 El taller examinó la disponibilidad de datos sobre mictófidos y los consideró un grupo individual (debido principalmente a la falta de información cuantitativa y de tasas de evacuación gástrica para algunos de los depredadores importantes del kril). El taller observó que los modelos de ecosistema tal vez necesiten representar especies de peces utilizando modelos estructurados por talla, edad o estadio.
Asuntos relacionados con los resúmenes de metadatos

2.75 CCAMLR-IWC-WS-08/9 contiene información sobre la abundancia de peces: en la sección 4.1.1 sobre peces mesopelágicos, y en las secciones 4.4.1.1, 4.4.2.1, 4.5, 4.6, 4.7.2 y 4.8.2 sobre peces demersales. Se cuenta con estimaciones de abundancia de especies mesopelágicas (mictófidos) en el Atlántico Sur aportadas por prospecciones acústicas rusas realizadas entre 1987 y 1989. No obstante, no se deben utilizar estas estimaciones como base de modelos de ecosistema debido a la incertidumbre relacionada con su cálculo y a los cambios y mejoras tanto en la metodología como en la estimación de la fuerza de blanco desde que se realizaron las prospecciones. El taller observó que se conocía más acerca de la distribución de peces mesopelágicos que de su abundancia, por lo menos para algunas de las especies de mictófidos.

2.76 A diferencia del caso de los peces mesopelágicos, existen estimaciones de abundancia proporcionadas por prospecciones para peces demersales realizadas en algunas áreas estadísticas de la CCRVMA (véase la tabla 54). Es poco probable que estas prospecciones proporcionen estimaciones absolutas de la abundancia debido a que la capturabilidad de la mayoría de las especies no puede expresarse en unidades. No obstante, estos datos deben ser incluidos en modelos de ecosistema como fuente de información sobre tendencias en la abundancia relativa.

Observaciones y comentarios para los grupos de expertos

2.77 El informe del grupo de expertos necesita incluir información sobre los hábitats y una breve reseña de las principales características biológicas de los peces mesopelágicos y demersales.

Prioridades en la labor futura

Lagunas clave

2.78 La falta de datos para un grupo clave de peces depredadores (peces mesopelágicos) es una incertidumbre importante en la parametrización de modelos de ecosistemas para la región antártica. Existen datos más completos sobre dieta, abundancia y hábitat para peces demersales, pero la imposibilidad de expresar la abundancia en términos absolutos restringe el uso de datos de la abundancia en modelos de ecosistemas.

Nuevos análisis

2.79 i) Examinar si se podría volver a analizar los resultados de prospecciones anteriores de mictófidos para hacer estimaciones de la abundancia;

ii) Comparar los índices basados en prospecciones con redes y en estudios acústicos de la abundancia relativa de peces mesopelágicos;
iii) Confeccionar mapas para cada especie de pez (v.g. utilizando los mapas de distribución de peces de Gon y Heemstra, 1990) que muestren dónde se encuentran y dónde se han realizado muestreos pero no se ha encontrado la especie, y superponer éstos con mapas de covariables medioambientales clave.

Programas de investigación futuros

2.80 i) Los estudios sobre peces mesopelágicos deben concentrarse en:

 a) estimación fiable de la potencia del blanco de mictófidos y otros peces mesopelágicos;

 b) estimación fiable de la biomasa y de sus cambios a través del tiempo (mes, año);

 c) estimación del consumo alimentario diario de las especies de mictófidos más abundantes;

 d) estimación del consumo diario por peces mesopelágicos abundantes y otros peces aparte de los mictófidos (v.g. barracudina antártica (Notolepis coatsi) y escolar magro (Paradiiplospinus gracilis)).

ii) En el futuro, los estudios sobre peces demersales y mesopelágicos deben centrarse en:

 a) uso de un ROV (en combinación con arrastres para averiguar el efecto integral de los arrastres en múltiples hábitats de mediana escala);

 b) utilización de prospecciones diseñadas adecuadamente para estimar la biomasa y sus tendencias;

 c) estimación de la disponibilidad de presas;

 d) estudios sobre la alimentación durante el invierno;

 e) estimación del consumo diario y necesidades alimentarias de los peces.

Pinnípedos y aves marinas

Resumen presentado por los grupos de expertos

Focas del campo de hielo

2.81 CCAMLR-IWC-WS-08/6 hizo una reseña de los estudios poblacionales y las estimaciones de la abundancia para cuatro especies de pinnípedos que se reproducen en el hielo marino – la foca cangrejera (Lobodon carcinophagus), la foca leopardo (Hydrurga leptonyx), la foca de Ross (Ommatophoca rossii) y la foca de Weddell (Leptonychotes weddellii).Espacialmente, el trabajo abarca la extensión circumpolar de la banquisa de hielo,
y temporalmente un período de más de 50 años - desde cuando se realizaron las primeras prospecciones de las focas del campo de hielo en la década de los 50 hasta el presente. La reseña se presenta cronológicamente para dar una idea de la evolución y el desarrollo de las metodologías a través de un período de 50 años de aplicación. Se describen las metodologías empleadas en los distintos estudios, y se analizan los posibles sesgos e incertidumbres en las estimaciones de la abundancia resultantes. Se concluye que es difícil estimar las tendencias en la abundancia debido a que en pocas ocasiones se ha repetido un estudio en la misma región, a que las metodologías han evolucionado con el tiempo, y a que la incertidumbre en torno a las estimaciones de abundancia es substancial.

Lobo fino antártico
2.82 CCAMLR-IWC-WS-08/7 examina los datos sobre la abundancia, utilización del hábitat, crecimiento poblacional y alimentación del lobo fino antártico (*Arctocephalus gazella*). Existen datos de la abundancia para los principales sitios de reproducción conocidos, si bien los estudios más recientes de la mayor parte de la población que se reproduce en Georgia del Sur son relativamente antiguos (1991), y aún se está llevando un estudio reciente. Existen datos sobre la utilización del hábitat en varios sitios, aportados por estudios de seguimiento por satélite. Se cuenta con buenas descripciones de la dieta y del comportamiento alimentario durante el período de lactación. No se considera su captura.

Pingüinos
2.83 CCAMLR-IWC-WS-08/8 analiza la disponibilidad de datos para derivar estimaciones de la abundancia de aves reproductoras para las cuatro especies de pingüinos que consumen kril – macaroni (*Eudyptes chrysolophus*), adelia (*Pygoscelis adeliae*), de barbijo (*P. antarctica*), papúa (*P. papua*) – en el Área de la Convención de la CCRVMA, y la incertidumbre emanada de las estimaciones de la abundancia regional de estos recuentos. Los datos de recuentos provienen de una variedad de fuentes y estudios que en combinación se consideraron adecuadamente detallados para algunas regiones pero incompletos para otras. Los principales problemas que se identificaron fueron la variedad y variabilidad en las unidades demográficas donde se realizaron los recuentos, y la edad variable de los datos de recuento en los distintos sitios. Se consideró que la modelación podría ayudar a resolver estos sesgos e incertidumbres cuando se derivan estimaciones de la abundancia a partir de datos de recuento.

Aves voladoras
2.84 CCAMLR-IWC-WS-08/18 hace una reseña de la información del consumo de alimento para 34 especies de aves voladoras en el Océano Austral. El informe recopila información sobre el tamaño de las poblaciones, la dieta y las necesidades energéticas de cada una de las especies, y de las estimaciones del consumo global derivadas.
2.85 El taller hizo un análisis de las especies que fueron incluidas en los informes de los grupos de trabajo.

2.86 Se reconoció que en la labor futura se debía considerar al elefante marino austral (Mirounga leonina). Éste se reproduce dentro y fuera del Área de la Convención de la CRVMA, pero pasa un tiempo considerable, especialmente fuera de la época de reproducción, alimentándose en el Área de la Convención de la CRVMA donde obtiene un componente importante para satisfacer sus necesidades energéticas.

2.87 Se acordó que las cuatro especies de pingüinos examinadas en CCAMLR-IWC-WS-08/8 eran de pertinencia para el taller, pero que considerar solamente a los consumidores de kril podría restringir los objetivos del taller. Se recomendó por lo tanto incluir además otras dos especies: el pingüino emperador y el pingüino rey, en la labor futura.

2.88 Se observó que las especies de aves voladoras consideradas en CCAMLR-IWC-WS-08/18 incluían todas las especies cuya zona de distribución coincidía con el Área de la Convención de la CRVMA y recomendó preparar una lista reducida de especies que incluyera sólo las que se reproducen en el Área de la Convención de la CRVMA, y las que la visitan en cantidades considerables. En la tabla 6 se proporciona una lista basada en estos criterios. Se sugirió que las aves voladoras podrían agruparse en categorías funcionales, por ejemplo: grandes albatros, pequeños albatros y petreles gigantes, grandes procelariformes, pequeños procelariformes (Pterodromas, etc.), petreles zambullidor y de las tormentas, y especies de la costa. El taller también reconoció que esto representaba un número substancial de especies, y recomendó que el grupo de expertos considerara si convendría priorizar aún más esta lista en la labor futura.

2.89 El taller recomendó que como los temas relacionados con la utilización del hábitat, el ciclo de vida y la alimentación, tenían muchos aspectos en común, en el futuro se podría trabajar eficientemente sobre la base de dos grupos globales: pinnípedos y aves marinas.

Estratificación espacial

2.90 El taller acordó que la siguiente estratificación espacial general para resumir los datos de los parámetros para todos los pinnípedos y aves marinas sería de utilidad.

<table>
<thead>
<tr>
<th>Área Geográfica</th>
<th>Subáreas/Subdivisiones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar de Ross</td>
<td>Subáreas 88.1 y 88.2</td>
</tr>
<tr>
<td>Mar de Amundsen</td>
<td>Subárea 88.3</td>
</tr>
<tr>
<td>Península Antártica/Mar de Escocia</td>
<td>Subáreas 48.1, 48.2, 48.3 y 48.4</td>
</tr>
<tr>
<td>Mar de Weddell</td>
<td>Subáreas 48.5 y 48.6</td>
</tr>
<tr>
<td>Antártida Oriental</td>
<td>Divisiones 58.4.1 y 58.4.2</td>
</tr>
<tr>
<td>Océano Índico e islas subantárticas</td>
<td>Subáreas 58.5, 58.6, 58.7.</td>
</tr>
</tbody>
</table>

2.91 Tras considerar estos temas generales, el taller reflexionó sobre la labor actual de los grupos de expertos, recomendó prioridades y proporcionó orientación para la labor futura. Estas recomendaciones se detallan a continuación por parámetro y por grupo global de especie (pinnípedos y aves marinas) dentro de los parámetros.
Asuntos relacionados con los resúmenes de metadatos y observaciones y comentarios para los grupos de expertos

Abundancia

Pinnípedos

2.92 Se ha avanzado considerablemente en el resumen de la información sobre abundancia y tendencias en la abundancia para las focas del campo de hielo y el lobo fino antártico. Como a ninguno de los grupos expertos en pinnípedos se le había encargado inicialmente la tarea de resumir la información sobre la abundancia del elefante marino austral, y como el taller recomendaba ahora que se incluyera esta especie, se recomendó considerarla en la labor futura. El taller reconoció que se requerían métodos substancialmente diferentes para estimar la abundancia de las focas del campo de hielo las cuales que se encuentran ampliamente distribuidas en extensas áreas, en comparación con el lobo fino antártico y el elefante marino austral que se estudian cuando se encuentran agrupados en colonias densas en sus lugares de reproducción. Esta diferencia fundamental en el ciclo de vida entre las especies que se reproduce en el hielo y las que reproducen en tierra también significa que habrá distintos componentes accesibles a las prospecciones y que los métodos para estimar la abundancia deben tomar en cuenta estas diferencias. Por ejemplo, se cree que los estudios de las focas del campo de hielo incluyen la mayoría o todos los componentes poblacionales (adultos, juveniles, individuos reproductores y no reproductores) si se realizan en la época apropiada, no obstante, las prospecciones del lobo fino antártico y del elefante marino austral en los sitios de reproducción sólo incluyen adultos reproductores y/o cachorros. Por lo tanto, los recuentos basados en colonias deben incorporar algún método para incluir individuos no reproductores en la evaluación de la población.

2.93 Con respecto a las focas del campo de hielo, el subgrupo agradeció los análisis de las prospecciones del APIS concluidos recientemente, e indicó que el análisis de los datos del APIS del sector oriental del Mar de Weddell sería muy útil en la formulación de modelos de ecosistema. Se observó que las tendencias tienen una importancia similar al estado, en la modelación de ecosistemas, e indicó que la conclusión del grupo de expertos de que era difícil estimar las tendencias a partir de las prospecciones del APIS y anteriores, tenía importantes repercusiones en los esfuerzos de modelación de ecosistemas. Se recomendó que, siempre que fuera posible, en las nuevas prospecciones que empleen metodologías nuevas se establezca alguna conexión con las prospecciones anteriores mediante la inclusión de elementos comparables esenciales de la metodología.

2.94 Las estimaciones de la abundancia de las focas del campo de hielo se resumen en CCAMLR-IWC-WS-08/6 en la escala en la que se realizaron las prospecciones, las cuales variaron substancialmente de un estudio a otro. Es posible que se necesite volver a analizar el método de cálculos de la abundancia con respecto a zonas de especial interés para la CCRVMA y la IWC mediante la división o fusión de datos aportados por distintos estudios. O, como las estimaciones de abundancia para las prospecciones más recientes del APIS fueron derivadas de modelos espaciales de predicción, se podrían utilizar los modelos para predecir la abundancia en otras áreas que no fueron utilizadas para formularlos.

2.95 Además de un resumen de las estimaciones de la abundancia, y de un examen de los posibles sesgos en las estimaciones de la abundancia del lobo fino antártico, CCAMLR-IWC-WS-08/7 incluye una lista de publicaciones sobre la estimación de la abundancia para el lobo...
fino antártico que puede servir de base para un resumen de metadatos. El subgrupo observó que un estudio que se estaba realizando en una importante colonia de lobos finos en Georgia del Sur, si se terminaba en 2008/09, mejoraría substancialmente el conocimiento de la abundancia del lobo fino. El taller observó además que el estudio no exploraba la estimación de la población no reproductora y que se necesitaría considerar este aspecto a través de la modelación demográfica. Se ha finalizado recientemente un estudio de la abundancia del lobo fino antártico en las Islas Shetland del Sur cuyos resultados estarían disponibles en el futuro próximo. Como en el caso de las focas del campo de hielo, el conocimiento de las tendencias en el lobo fino antártico facilitaría los esfuerzos de modelación de ecosistema, y en este sentido se opinó que era importante considerar más a fondo las tendencias a largo plazo en la abundancia de este pinnípedo.

2.96 Las colonias reproductoras conocidas del lobo fino antártico se limitan a unos pocos sitios (principalmente Georgia del Sur e Islas Shetland del Sur), de manera que la extrapolación de estimaciones sea simplemente cuestión de fusionar las estimaciones de los distintos sitios.

2.97 El taller recomendó crear una tabla para presentar un resumen de la disponibilidad de información sobre la abundancia y las tendencias para todas las especies de pinnípedos y de aves marinas. Durante el taller, se completó esta tabla para las cuatro especies de focas del campo de hielo (tablas 7 al 10).

Aves

2.98 El taller reconoció que el conocimiento sobre la abundancia de los pingüinos y las aves voladoras podría, en principio, derivarse de prospecciones de poblaciones reproductoras en los sitios de reproducción, y de prospecciones en el mar. Como en el caso de los pinnípedos que se reproducen en tierra, las estimaciones de la abundancia derivadas de los recuentos en las colonias deben incluir correcciones y/o evaluaciones de individuos no reproductores que no se observan en la colonia. A diferencia de esto, las prospecciones en el mar, incluyen aves reproductoras y no reproductoras.

2.99 CCAMLR-IWC-WS-08/8 examina temas relacionados con la estimación de la abundancia de las poblaciones reproductoras de pingüinos a partir de métodos de prospecciones terrestres. El informe presenta un útil debate sobre aspectos generales de la estimación de la abundancia y su incertidumbre. Se recomendó que en el futuro, siempre que sea posible, se incluyera información específica de datos y estimaciones de la abundancia, aunque sean preliminares y aún no tomen en cuenta los sesgos conocidos e incertidumbres, y se describieran las incertidumbres y los sesgos posibles. Se observó que tal vez sea necesario extender las estimaciones de la abundancia de las aves reproductoras a la abundancia total para poder considerar el consumo total de presas en la modelación de ecosistemas. El taller señaló que la labor futura del grupo de expertos en lo relativo a la abundancia podría concentrarse en estos dos aspectos.

2.100 Los datos de los recuentos de pingüinos se han recopilado a escala de colonia reproductora. Dada esta escala de recopilación de datos, el taller reconoció que se podrían combinar los datos de las distintas colonias al nivel deseado para estimar la abundancia
regional, y recomendó que en la labor futura de estimación de la abundancia se incorporara flexibilidad en las escalas y en los procedimientos de estimación a fin de satisfacer cualquier requisito de escala en los modelos de ecosistema futuros.

2.101 CCAMLR-IWC-WS-08/18 indicó que el conocimiento sobre la abundancia de las aves voladoras era muy limitado y era imposible estimar los errores a partir de las fuentes citadas las cuales no eran los informes originales. El taller señaló que, en la labor futura relativa a la abundancia de aves marinas voladoras, convendría, si fuera viable, examinar las fuentes originales de los datos de la abundancia a fin de entender mejor los sesgos y las incertidumbres inherentes en las estimaciones de abundancia. Esta tarea requeriría un esfuerzo substancial y un grupo de expertos más numeroso.

Hábitat

Consideraciones generales

2.102 Los depredadores tope se encuentran en lugares donde los accidentes oceanográficos como corrientes, hielo marino, sistemas frontales, capas térmicas, montes marinos y el borde de la plataforma continental aumentan la disponibilidad de presas o su previsibilidad. Se cree que todos estos accidentes y procesos oceanográficos afectan la distribución de los depredadores marinos al forzar físicamente la concentración de presas, creando así zonas donde la eficiencia en la búsqueda del alimento puede mejorar. De hecho, para muchos depredadores marinos, las regiones de productividad altamente localizadas pueden ser críticas para su reproducción y supervivencia. En la Antártida se suma además la función del hielo marino que afecta directamente el comportamiento alimentario de los pinnípedos y las aves.

2.103 En muchos de estos estudios se realizan prospecciones con barcos o aéreas para evaluar la abundancia y luego correlacionar la distribución observada con la oceanografía. Si bien estos estudios han sido y continúan siendo muy informativos, no permiten una apreciación de las estrategias utilizadas por los animales para localizar los hábitats principales (o tal vez el alimento), ni tampoco ofrece una perspectiva de la trayectoria espacial o temporal de estas interacciones. Algunos avances en telemetría satélite, marcado electrónico y métodos de teledetección remota nos permiten seguir los movimientos y el comportamiento de animales en forma individual. Estos métodos nos permiten ir más allá del establecimiento de simples conexiones entre la distribución presa-depredador y los aspectos medioambientales. Nos están permitiendo identificar comportamientos específicos en relación con condiciones medioambientales específicas. La tabla 11 presenta una comparación de las ventajas y desventajas de los dos enfoques en el estudio de depredadores marinos tope.

2.104 El taller recomendó incluir en la labor futura sobre la utilización de los hábitats la consideración de los datos de marcado y de las prospecciones en el mar a fin de realizar en este sentido la evaluación más completa posible.

2.105 El taller consideró que un formato uniforme para elaborar resúmenes de metadatos de los hábitats para todos los grupos de pinnípedos y aves permitiría un enfoque coherente en el estudio de este tema, y diseñó una plantilla para resumir los datos de utilización del hábitat (tabla 12). El enfoque recomendado identifica una estratificación temporal y espacial (horizontal y vertical).
Pinnípedos

2.106 El grupo de expertos sobre focas del campo de hielo no ha podido aún examinar el estado de conocimiento sobre la utilización del hábitat por los pinnípedos. Se recomienda utilizar la plantilla preparada por el taller (tabla 12) para estructurar y uniformar la labor futura de los grupos de expertos.

Aves

2.107 Al igual que con los pinnípedos, los grupos de expertos sobre pingüinos y aves voladoras no han podido aún examinar la información sobre la utilización del hábitat. Se recomendó al grupo de expertos sobre pingüinos que su labor futura en relación con el hábitat incluyera la elaboración de metadatos utilizando la plantilla proporcionada en la tabla 12.

Dieta, comportamiento alimentario y ciclo vital

Consideraciones generales

2.108 Muchos de los problemas relativos a las relaciones tróficas/dieta son comunes a las aves voladoras y a los pinnípedos puesto que los datos generalmente se restringen a los períodos cuando los adultos se encuentran aprovisionando a sus crías y esto limita tanto la cobertura espacial como la temporal. Se reconoció que esta restricción de la disponibilidad de datos de la dieta fuera del período de aprovisionamiento era un obstáculo substancial en la caracterización de las relaciones tróficas.

2.109 Existe una serie de técnicas comunes para determinar la dieta de los pinnípedos y aves marinas, que incluyen regurgitados directos (de aves), lavados estomacales (pinnípedos), heces (pinnípedos, en especial lobos finos) y métodos serológicos y perfil de ácidos graso, análisis de isótopos estables e identificación genética de presas. Todos estos métodos proporcionan distintos datos sobre la dieta de cada especie y tienen limitaciones y ventajas con respecto a otros métodos. La mejor manera de conocer más sobre la dieta se logrará mediante una combinación de varias técnicas. Esto será particularmente importante cuando se sabe que existen sesgos en uno de los métodos (v.g. una representación excesiva de picos de calamar en los estómagos debido a la retención de picos). El taller señaló que un método uniformado para resumir la información de la dieta facilitaría un enfoque coherente para todos los grupos de especies en la labor futura. En la tabla 13 se proporciona una plantilla para resumir la información sobre la dieta.

2.110 Se reconoce que existen datos sobre la dieta de aves marinas y pinnípedos en bases de datos resumidas, incluido el CEMP y otras compilaciones. El taller reconoció que cuando se presentan datos de la dieta es importante incluir la gama de datos a fin de representar la incertidumbre/variabilidad, en lugar de decidir que un estudio es mejor o más representativo. La compilación de una tabla tal para el resumen de metadatos es una prioridad.
2.111 El taller reconoció que había una falta de datos relativos a la alimentación de las aves marinas y los pinnípedos fuera del período en que se ha muestreado la dieta; en lo que se refiera a dónde van y de qué se alimentan cuando están en las regiones que habitan fuera de la temporada de reproducción.

2.112 En general existen muy pocos datos que proporcionen información sobre las mediciones simultáneas de consumo de presas y mediciones independientes de la disponibilidad de presas en escalas comparables del evento de alimentación del depredador. Si esta información se obtiene de toda la zona de alimentación de la población global, estas mediciones son esenciales para establecer las relaciones funcionales que se requieren para la modelación. Esto fue considerado en mayor detalle bajo los temas generales.

2.113 Para estimar las tasas de alimentación se requiere conocer las necesidades energéticas del depredador, el contenido energético de su dieta y la eficacia con la cual la presa es convertida en energía. Con respecto a los pinnípedos y a las aves marinas, existe bastante información sobre la tasa metabólica de campo (FMR) para muchas especies durante la temporada de reproducción. Existe información substancial sobre el costo energético global relacionado con la crianza. Por ejemplo, existen datos sobre las tasas de entrega de presa a los polluelos de algunas especies de pingüinos y albatros, y sobre la reproducción de la foca de Weddell, elefantes marinos y lobos finos. No obstante, existe un mínimo de datos sobre el costo energético relacionado con la reproducción en la foca de Ross, la foca cangrejera y la foca leopardo. En cuanto a las especies para las cuales no se cuenta con datos directos, las tasas de consumo de presas pueden derivarse de la información actualmente disponible para otras especies de aves y pinnípedos.

2.114 El medioambiente marino es sumamente dinámico donde la disponibilidad de recursos varía drásticamente tanto en términos de espacio como de tiempo. Encontrar recursos en forma constante en un ambiente tan variable restringe la alimentación a comportamientos tróficos en los que coinciden las variaciones temporales y espaciales. Por consiguiente, se cree que algunos vertebrados marinos han desarrollado una serie de características que les permite ajustar la variabilidad espacio-temporal en la obtención de recursos (es decir, la alimentación) con las exigencias de la reproducción y mantenimiento propio. En el caso de las especies de aves y pinnípedos que se reproducen en tierra, su reproducción está aún más restringida por la necesidad de reproducirse en tierra pero alimentarse en el mar. La separación entre el hábitat de reproducción y el de alimentación puede caracterizarse mediante dos modelos generales de ciclos vitales: (i) reproductores que utilizan energía externa (la mayoría de las aves marinas y lobos finos), cuya cría está aprovisionada de recursos obtenidos a medida que los necesita; y (ii) reproductores que utilizan reservas acumuladas (fócidos y cetáceos de barbas) que obtienen y almacenan los recursos durante largos periodos antes de la reproducción. Como estos últimos obtienen todos los recursos necesarios para aprovisionar a sus crías luego de un extenso viaje al mar antes del parto, pueden buscar el alimento en escalas espaciales que exceden miles de kilómetros desde su sitio de reproducción. Por el contrario, la mayoría de los reproductores que utilizan energía externa aprovisionan su cría frecuentemente, y por lo tanto están obligados a realizar viajes que duran desde unas pocas horas a un máximo de pocos días. Estos animales están limitados a buscar el alimento en radios de decenas a cientos de kilómetros desde la colonia. El albatros representa una forma extrema de este tipo de reproductor pues puede buscar alimento en grandes extensiones espaciales, y a menudo cubren miles de kilómetros en cuestión de días.
2.115 El taller consideró las características del ciclo vital que pudieran influir en la construcción de modelos de ecosistemas. Entre las más importantes se incluyen la edad en la primera reproducción, la frecuencia de la reproducción, la supervivencia adulta y juvenil, el tamaño máximo de la nidada, la duración y época de la temporada de reproducción, y si la muda es continua o bien diferenciada. En la tabla 14 se proporciona una plantilla para resumir esta información.

Pinnípedos

2.116 El taller observó que el grupo de expertos en focas del campo de hielo no había podido aún examinar la información sobre dieta, búsqueda de alimento y ciclo de vida. CCAMLR-IWC-WS-08/7 indica que se dispone de datos (algunos de todo el año, y otros de la temporada de reproducción solamente) de la dieta del lobo fino antártico en los sitios de reproducción, y proporciona una lista de trabajos sobre la dieta y la búsqueda de alimento. No se ha examinado aún la información sobre su ciclo de vida. Se recomendó que la labor futura incluyera la formulación de metadatos utilizando los modelos descritos anteriormente.

Aves

2.117 El taller señaló que el grupo de expertos sobre pingüinos no había podido examinar la dieta, el comportamiento alimentario y el ciclo de vida de estas aves. El informe sobre aves marinas voladoras incluye información sobre la dieta, pero el grupo no ha podido aún examinar los parámetros del ciclo de vida.

Labor futura

2.118 Se deliberó sobre la labor futura relativa a los pinnípedos y a las aves marinas en este punto y esto aparece en los párrafos 4.12 al 4.18.

Cetáceos

Resumen presentado por los grupos de expertos

2.119 CCAMLR-IWC-WS-08/4 examina la abundancia, las tendencias, la historia de la explotación y los parámetros de alimentación de seis ballenas de barbas: jorobada (*Megaptera novaeangliae*), azul (*Balaenoptera musculus*), rorcual común (*B. physalus*), rorcual del norte (*B. borealis*), rorcual aliblanco (*B. bonaerensis*), y franca austral (*Eubalaena australis*) del hemisferio sur. La mayoría de los datos aportados por las prospecciones son de la zona de mar abierto al sur de los 60°S hasta el borde de hielo. El informe se centró en (i) abundancia poblacional, tendencia y estructura de los stocks; (ii) utilización del hábitat, incluida la migración, estructura espacial en las concentraciones máximas y zonas de alimentación; (iii) actividades alimentarias incluida la dieta y el consumo; y (iv) captura, presentada en resúmenes anuales por especie y zonas en gran escala o poblaciones reproductoras. Se
consideran además posibles sesgos e incertidumbres en los datos. El examen hace hincapié en la información obtenida en latitudes altas (zonas de alimentación), pero en algunos casos se han incluido datos de zonas de latitudes bajas (invierno/reproducción) para complementar o contrastar con lo que se conoce de las zonas de alimentación, y para incluir información sobre cetáceos en toda su zona de distribución. En algunos casos, se estiman los parámetros para todas las unidades de ordenación de la IWC o como partes de las unidades de ordenación y se ajustan según la escala. Los datos han sido aportados por programas de investigación internacionales como los realizados por la IWC y la CCRVMA (v.g. IDCR SOWER, la prospección CCAMLR-2000) y programas nacionales (SOCEP, BROKE, JARPA).

2.120 Para las seis especies consideradas aquí, los datos varían desde completos a extremadamente escasos, y difieren considerablemente en calidad en términos de resolución espacial y temporal, cuando estas diferencias dependen de la especie y de la zona de interés. La información sobre la dieta y distribución espacial en gran escala es relativamente fiable, pero el conocimiento sobre la compleja estructura espacial de las ballenas de barbas en relación con sus presas y el medioambiente en escalas relativas al individuo o región se encuentra aún en sus inicios; existe una incertidumbre considerable en la estimación del consumo. Finalmente, existe un entendimiento bastante amplio de los sesgos para ciertos tipos de datos (principalmente, abundancia y tendencia), si bien en éstos intervienen aspectos complejos relacionados con el diseño de prospecciones, y metodologías estadísticas analíticas cambiantes. Esto significa que los sesgos pueden ser muy específicos a los conjuntos de datos sobre ballenas y que cada caso debe considerado aisladamente.

2.121 Por lo general, existe menos información de los odontocetos del Océano Austral que de las ballenas de barbas. La estimación de la abundancia suele complicarse por los extensos períodos de buceo y por el hecho de que su presencia en la superficie para desapercibida o debido a que reacciona acercándose o alejándose del buque de investigación. En un análisis sistemático de odontocetos en el Océano Austral, Van Waerebeek et al. (2004) identificó la presencia de 28 especies - 22 de las cuales se dan regularmente, al parecer, todo el año. Sobre la base de este análisis y la frecuencia de los avistamientos, se elaboró una lista de especies que aparentan ser ecológicamente importantes al sur de la frontera de la CCRVMA (entre los 45°S y los 60°S dependiendo de la longitud). Estas son: cachalote (Physeter macrocephalus), orca (Orcinus orca), delfín piloto de aleta larga (Globicephala melas edwardii), delfín cruzado (Lagenorhynchus cruciger), ballena nariz de botella del sur (Hyperoodon planifrons), ballenato de Arnoux (Berardius arnuxii), zifio de Layard (Mesoplodon layardii) y zifio de Gray (Mesoplodon grayi). De estas especies, la biomasa está dominada por cachalotes y ballenas nariz de botella del sur; otras especies pueden tener importancia local pero se han registrado pocos avistamientos debido a que son difíciles de ver y se distribuyen más al norte. CCAMLR-IWC-WS-08/5 examina los datos sobre los parámetros de la abundancia, la distribución, la ecología de la alimentación, la explotación y el ciclo de vida para estas especies, señalando que en muchos casos los datos son extremadamente limitados o no existen. En la dieta de los cachalotes y zifios parece predominar el calamar mientras que se han descrito tres ecotipos de orcas con distintas dietas en las que predominan mamíferos marinos o peces.
2.122 Al considerar el cometido del taller, se dio la más alta prioridad a las ballenas de barbas debido a la predominancia de kril en su dieta. Entre las especies de ballena de barbas, se atribuyó menor prioridad al rorcual del norte debido a que por lo general se distribuye más al norte. El IWC SC se encuentra preparando una evaluación detallada del rorcual del norte del Pacífico Norte (IWC, 2008b) que incluye el examen de los datos disponibles sobre la especie, entre ellos los del Océano Austral.

2.123 Se dio menor prioridad a las ballenas dentadas que tienen una dieta más variada, en la que predomina el calamar en el caso de algunas especies. No obstante, también se consideraron importantes las ballenas dentadas más abundantes debido a la interacción de sus especies presa con el kril. En cuanto a la biomasa, el cachalote y la ballena nariz de botella del sur son los principales odontocetos consumidores, aunque la orca también tiene una interacción importante como depredador de mamíferos marinos.

Abundancia

2.124 La tabla 15 muestra el resumen del taller de las estimaciones de abundancia pertinentes por poblaciones conocidas. Cuando se desconoce la subestructura poblacional, las estimaciones de la abundancia se presentan por especie. Se trata de distinguir entre estimaciones hechas en las zonas de reproducción, estimaciones en las zonas de alimentación que se cree incluyen a toda la población, y estimaciones regionales que no incluyen a todo el rango de la población. Si se considera que las observaciones instantáneas regionales combinadas abarcan toda (o casi toda) el área de distribución o de una población, éstas pueden utilizarse como estimaciones de la población. Si se considera que incluyen más de una población, las estimaciones se deben dividir de acuerdo con lo que se conoce sobre la estructura poblacional espacial y la incertidumbre. Para algunas especies como la del rorcual común, las estimaciones de la abundancia cubren sólo la porción sur de la zona de distribución conocida y por lo tanto no se pueden tomar como estimaciones fiables de la población total.

Asuntos relacionados con los resúmenes de metadatos

2.125 La mayoría de las estimaciones de la abundancia de cetáceos se han hecho a partir de observaciones instantáneas del número de individuos dentro de una región determinada en un momento dado. El IWC SC ha dedicado mucho tiempo a la obtención de las mejores "instantáneas" posibles, y de varianzas pertinentes aportadas por prospecciones diseñadas. Ha convenido además en el uso de una metodología para combinar distintas observaciones instantáneas de distintos momentos para generar una estimación combinada de la abundancia y la varianza. Si bien en algunos casos quedan asuntos sin resolver (v.g. en relación con la proporción de animales detectados directamente en los transectos, y con el tamaño del grupo), éstos se han discutido en detalle en el IWC SC por lo que no fueron considerados por el taller.
2.126 Las estimaciones de la abundancia y las series cronológicas pueden incluir (i) estimaciones que se consideran sin sesgo, (ii) estimaciones sesgadas en las que se ha identificado la posible dirección del sesgo, o (iii) estimaciones que representan un índice relativo de la abundancia. En general, los cálculos de la abundancia deben ser interpretados conjuntamente con otros datos, por ejemplo, necesitan ser conciliados con las series de la captura histórica y con cualquier tendencia observada. La combinación de tales datos requerirá un modelo poblacional que pueda incorporar parámetros del ciclo de vida y/o del hábitat. Por lo general, las poblaciones de cetáceos presentan cierto grado de segregación de sus componentes, tanto en las zonas de reproducción en el invierno como en las zonas de alimentación en el verano. Los principales componentes poblacionales son las madres con cría (o que han destetado a la cría recientemente), hembras preñadas, hembras en descanso, machos y juveniles. Tipicamente el grado de representación de estos componentes difiere en las distintas zonas en distintas épocas del año. Al interpretar los datos de la abundancia, es importante determinar qué componentes se incluyen, y tomar en cuenta los componentes “faltantes”. Por ejemplo, con respecto a la ballena franca austral estudiada en la zona de reproducción del Atlántico suroeste, un 30% de la población observada está compuesto de madres con cría (Rowntree et al., 2001), no obstante, los análisis demográficos revelan que este grupo comprende sólo el 8% del total de la población (Cooke et al., 2001). La segregación de animales adultos y juveniles en distintas zonas de alimentación parece ser la norma y no la excepción, al menos en el caso de *Balaenoptera* spp. (Leaper et al., 2000).

2.127 Si bien la tabla 15 muestra donde se proporcionan datos, también se requiere alguna indicación de la calidad de los datos (v.g. si las estimaciones han sido aceptadas por el IWC SC como estimaciones adecuadas para un fin en particular). Se recomendó a los grupos de expertos que crearan categorías para indicar el estado de las estimaciones de la abundancia incluidas en la tabla. Un ejemplo del tipo de categorías que se ha creado para la clasificación general de la calidad de datos se presenta en Kucera et al., 2005.

Asuntos relativos a las escalas

2.128 La necesidad de contar con información sobre la estructura poblacional en los modelos de ecosistema dependerá del tipo de modelo y la escala espacial en particular. Las estimaciones del consumo de presas no dependen de la información sobre la estructura poblacional, excepto en el caso de las orcas cuya dieta difiere entre un ecotipo y otro. No obstante, tal vez sea importante entender la estructura poblacional en escalas espaciales en las cuales pueden ocurrir cambios locales en la abundancia de presas (por ejemplo, como podría suceder a causa de una pesquería de kril). Entre todas las ballenas de barbas, de lo que se tiene mayor entendimiento es de la estructura del stock y de las zonas de alimentación de las poblaciones de la ballena jorobada, y esto ha sido objeto de considerables debates en el IWC SC (IWC, 2008c). La estructura del stock del rorcual aliblanco se ha estudiado en forma intensiva en algunas regiones del Océano Austral (por JARPA en las áreas III–VI), pero prácticamente no hay otros datos. Existen muy pocos datos de la estructura del stock de la ballena azul, el rorcual común y el rorcual del norte o de los odontocetos.
Recomendaciones sobre la labor futura

2.129 Se manifestó que era importante resolver las dudas respecto a la abundancia y tendencias del rorcual aliblanco, y que de esto se estaba encargando el IWC SC. Por otra parte, se debía abordar el problema de la falta de datos de la abundancia del rorcual común, lo cual era de alta prioridad debido a la gran abundancia histórica de esta especie y a la actual falta de datos. Es poco probable que se puedan realizar estudios de estas especies en las zonas de reproducción (que son en gran parte desconocidas).

2.130 Los datos del Océano Austral, al norte de los 60°S, son limitados pero se podrían obtener llevando a cabo prospecciones entre los 60°S y los límites de la CCRVMA, las cuales también podrían ayudar a generar cálculos de otras especies (particularmente, del rorcual del norte y la ballena franca austral). No obstante, las condiciones climáticas a menudo dificultan mucho las prospecciones en esta región. Es poco probable que se realicen nuevas prospecciones circumpolares completas en el futuro, por lo tanto, se deberá concentrarse a nivel de región, para detectar tendencias en escalas espaciales más pequeñas. Las prospecciones para identificar tendencias regionales también podrían ayudar a identificar las variables que impulsan estas tendencias.

2.131 El examen de la recuperación de poblaciones pequeñas que hay sido bien estudiadas puede proporcionar información en el contexto de la modelación de ecosistemas. Por ejemplo, existe un volumen considerable de datos sobre la dinámica poblacional de la ballena franca austral en el Océano suroccidental (Cooke et al., 2001) que se cree se alimenta en las proximidades de Georgia del Sur (Rowntree et al., 2008). Esta es una zona muy estudiada en relación con otras especies, y los datos, como estimaciones de la densidad de cetáceos de estas zonas de alimentación, serían de utilidad. El sector longitudinal al sur de Sudáfrica se identificó también como un área donde las estimaciones de la abundancia del rorcual común podrían ser de especial importancia (en combinación con estudios detallados de la alimentación; párrafo 2.154). En las campañas de IDCR SOWER en esta zona también se han observado altas densidades del rorcual aliblanco, ballena azul y jorobada (Ensor et al. 2007).

Hábitat

2.132 A los efectos del taller, se consideró el hábitat en términos de covariables físicas y biológicas que determinan las características de la distribución de los cetáceos. Se manifestó que era necesario contar con modelos que relacionaran la densidad de los cetáceos con las covariables espaciales y temporales a fin de reforzar los modelos de ecosistemas.

2.133 La mayor parte de los datos sobre la utilización del hábitat y las características de la distribución de los cetáceos en el Océano Austral han sido recogidos mediante prospecciones visuales; algunos datos se han recabado con sensores pasivos acústicos y un número muy pequeño mediante estudios de telemetría. La mayoría de las observaciones son de cetáceos en la superficie y existe muy poca información sobre el uso de la columna de agua en términos de profundidad. Entre los estudios multidisciplinarios en gran escala cuyo objetivo específico ha sido recopilar datos sobre cetáceos simultáneamente con datos del hábitat se incluyen las prospecciones CCAMLR-2000, SO-GLOBEC y BROKE. Se señaló que estos estudios habían proporcionado datos que se podrían analizar más a fondo (por ejemplo, se podrían
utilizar en la estimación de la abundancia), y se recomendó realizar este análisis lo antes posible. También se han recopilado datos relacionados con el hábitat durante las prospecciones JARPA y JARPAII.

Estado de los resúmenes de metadatos

2.134 Los informes de los grupos de expertos describen regímenes de utilización del hábitat en términos cualitativos generales. La tabla 16 expande las descripciones cualitativas mediante la identificación de parámetros que se han relacionado con la distribución de los cetáceos.

Asuntos relacionados con los resúmenes de los metadatos

2.135 Además de los parámetros que se han utilizado en estudios anteriores (tabla 16), el taller identificó covariables espaciales y temporales adicionales que se podrían considerar al tratar de estimar la abundancia de cetáceos a partir de los datos de la densidad (tabla 17).

2.136 Se ha observado que los cambios en la dinámica y concentración del hielo marino son particularmente importantes para comprender las diferencias en las estimaciones de la abundancia del rorcual aliblanco. La dinámica del hielo marino también se identificó un factor de predicción importante del hábitat, por ejemplo, de la formación de polinias y de la productividad primaria relacionada con el hielo. Es posible que los cambios en los icebergs varados, la distribución del hielo fijo y la configuración de la costa afecten el hábitat de los cetáceos debido a la modificación de las polinias de la costa. En muchos casos transcurrirá cierto tiempo entre los cambios del hielo marino y los cambios resultantes que pudieran afectar a los cetáceos. Se han identificado varias interacciones entre el hielo marino y otros elementos permanentes como el borde continental o los icebergs varados.

2.137 En las discusiones sobre la productividad primaria, se observó que existen dos tipos de datos recogidos por satélite que miden la luz absorbida por la clorofila que es una función de la concentración de la clorofila. Se han creado algoritmos para derivar la tasa de producción primaria a partir de la concentración de clorofila y de otras variables medioambientales recogidos mediante sensores remotos. Se pueden obtener datos de la concentración de clorofila y de la tasa de producción primaria de proveedores de datos satélite. No obstante, las medidas obtenidas por satélite deben utilizarse con cautela porque a menudo existe una capa subsuperficial del máximo de clorofila que es demasiado profunda en la columna de agua para ser detectada remotamente y esto puede afectar el valor de estos datos como covariables.

Asuntos relativos a las escalas

2.138 Se señaló que la elección de la escala espacial es particularmente importante cuando se relaciona la densidad de los cetáceos con las covariables del hábitat. Por ejemplo, si bien la distribución del kril será inevitablemente un factor importante al determinar la distribución de las ballenas de barbas, no siempre existe una correlación clara entre las concentraciones del
kril y la densidad de los cetáceos. No obstante, se indicó que esta falta de correlación podría ser exclusivamente una función de resolución analítica, y que tal vez no se pueda esperar necesariamente que haya una correlación simple.

2.139 Los datos del desplazamiento de las ballenas en sus zonas de alimentación se limitan a algunos datos de marcado recogidos por el *Discovery* y más recientemente, de algunos estudios breves de seguimiento por satélite. La telemetría por satélite ha avanzado al punto en que ahora se puede extender la aplicación de marcas en los cetáceos en el Océano Austral. Este tipo de estudio probablemente amplíe nuestro conocimiento de la escala y heterogeneidad de sus modalidades de alimentación. El taller alentó la realización de estos estudios, particularmente en los casos en que pudieran coincidir con estudios que proporcionen datos sobre otras especies del medio ambiente marino.

Investigación futura

2.140 Además de los datos de covariables del hábitat, recopilados en estudios multidisciplinarios, la percepción remota puede proporcionar datos, por ejemplo, de la TSM, el hielo marino y la productividad primaria. En muchos casos existen secuencias cronológicas que abarcan varios años y que podrían utilizarse en nuevos análisis de las prospecciones de cetáceos.

2.141 Se ha recabado un volumen considerable de datos de otros depredadores a través de estudios de telemetría, respecto a la utilización del hábitat, por lo que el taller se refirió a la importancia de esta información en el estudio de cetáceos. En particular, los dispositivos de telemetría que incluyen registradores de datos pueden proporcionar información tridimensional del uso y características de la columna de agua.

2.142 Los estudios de la utilización del hábitat por los distintos animales también pueden basarse en la identificación por fotos o recaptura de marcas genéticas. Por ejemplo, el análisis continuo de reavistamientos de ballenas azules identificadas individualmente utilizando datos del IDCR SOWER (Olson, 2008) ha proporcionado una valiosa apreciación de la residencia y fidelidad intra e inter temporadas con respecto a esta ballena cerca de la banquisa al sur de Sudáfrica; la recopilación continua de tales datos y la comparación con otras regiones antárticas generarán más información sobre estas características.

2.143 El seguimiento a largo plazo con sensores pasivos acústicos, como los dispositivos ARP (paquete de registro acústico) fijados en el fondo, que graban sonidos en forma continua durante periodos de más de un año, pueden en potencia registrar la variación estacional de las vocalizaciones en un lugar determinado. Éstas se pueden utilizar para generar un índice relativo de la densidad basada en suposiciones acerca de las variaciones en el índice de llamadas.

Ciclo de vida y conexiones de la red trófica

2.144 El examen de las ballenas de barbas realizado por los expertos no estudió los parámetros del ciclo de vida porque el grupo consideró que el análisis de los datos de abundancia, tendencias, distribución y alimentación eran de primordial importancia en el
contexto de los modelos actuales de la CCRVMA y de la IWC. No obstante, basándose en las discusiones del taller, se recomendó que el grupo los revisara. Los parámetros de interés son tasas de preñez, producción de crías, edad en la primera reproducción, y supervivencia. En algunos casos estos datos existen para poblaciones específicas, en otros casos sólo los hay para especies que se encuentran en aguas antárticas, y en otros para especies del hemisferio norte. Estos parámetros no pueden considerarse valores estáticos y se necesita especificar el período que abarcan las estimaciones.

2.145 Los parámetros del ciclo de vida han demostrado ser difíciles de medir pero se han hecho estimaciones de muestras letales en las zonas de alimentación y estudios de identificación por fotos (principalmente en las zonas de alimentación). Las estimaciones derivadas del muestreo letal para el rorcual aliblanco se discutieron en detalle en el examen del JARPA realizado por IWC en 2006 (IWC, 2007b).

2.146 El taller examinó las conexiones de la red trófica en el contexto de:

i) dieta por especie (señalando que en el caso de la ballena de barbas la dieta se limita a especies de kril dentro del área de interés), población o ecotipo, incluida la capacidad de cambiar de dieta en respuesta a cambios en la disponibilidad de la presa;

ii) dónde se consume la presa;

iii) cuándo se consume;

iv) qué cantidades se consume.

Estado de los resúmenes de metadatos

2.147 Los grupos de expertos examinaron los datos básicos sobre la composición de la dieta. Las principales incertidumbres tienen que ver con el período de alimentación en aguas antárticas y la distribución espacial del consumo de presas. Existe además una considerable incertidumbre en la estimación de las necesidades energéticas de los grandes cetáceos y la relación entre las necesidades energéticas y la masa corporal (Leaper y Lavigne, 2007).

Asuntos relacionados con los resúmenes de metadatos

2.148 Muchos de los datos de la dieta contenidos en los resúmenes de metadatos habían sido derivados del análisis del contenido estomacal. Ciertas técnicas creadas recientemente incluyen análisis genéticos de heces y de ácidos grasos/isótopos para identificar las especies presa. Mediante estas técnicas habría posibilidades de obtener estimaciones del consumo de presas integradas en períodos más largos. Las ventajas y desventajas de los distintos métodos han sido discutidas en detalle por el IWC SC (IWC, 2003).

2.149 Los modelos de ecosistema requieren relaciones funcionales entre depredadores y presas. Estas relaciones dependerán de la interacción entre la disponibilidad de la presa al depredador y de la selectividad de la presa por el depredador. El taller mencionó que se había
deliberado anteriormente sobre la respuesta funcional en relación con los cetáceos, por ejemplo en el taller sobre cetáceos y pesquerías del IWC SC en 2002 en La Jolla, EEUU (IWC, 2004a), y en el análisis del JARPA (IWC, 2007b). En el taller de La Jolla se había identificado la respuesta funcional como una de las principales incertidumbres de los modelos de ecosistema. Las mediciones empíricas de ambos conjuntos de parámetros son difíciles, tal vez imposibles, de obtener, especialmente de forma que se puedan aplicar en una variedad de escalas temporales y a nivel de población. No obstante, los investigadores han utilizado una variedad de datos en las estimaciones de respuestas funcionales (v.g. en un estudio del rorcual aliblanco en el Atlántico noreste basado en datos del contenido estomacal, Smout y Lindstrom (2007)). Debido a que probablemente estas estimaciones influyan en la función y los resultados de los modelos, el taller recomendó que cuando se utilizaran tales estimaciones, se proporcionara las bases de la estimación y las incertidumbres, incluido cualquier sesgo.

2.150 Por otra parte, estudios recientes de la ballena franca austral basados en análisis de isótopos han mostrado distintos comportamientos alimentarios entre individuos, aparentemente transmitidos de las madres a sus crías.

Asuntos relativos a las escalas

2.151 En las deliberaciones del IWC SC sobre los problemas relacionados con las escalas, se sugirieron tres categorías de escala que describen la ecología de la alimentación y la distribución espacial-temporal de los cetáceos: (i) los cetáceos emigran estacionalmente entre zonas de alimentación y zonas de reproducción; (ii) los cetáceos se desplazan durante días y semanas en busca de lugares con abundante alimento y (iii) los cetáceos bucean y buscan alimento en zonas localizadas.

2.152 Los problemas relacionados con la escala espacial tienen que ver con los métodos utilizados para estimar las tasas de consumo, a causa de la incertidumbre considerable acerca del período en el cual los cetáceos se alimentan dentro de la zona de interés. Las nuevas técnicas analíticas basadas en análisis de isótopos posiblemente permitan identificar si la alimentación ocurre o no fuera del Océano Austral.

Investigación futura

2.153 La relación entre las características de distribución del rorcual aliblanco y del kril fue investigada en el Mar de Ross utilizando un juego de datos multidisciplinario recopilado durante la prospección conjunta Kaiyo Maru-JARPA (Murase et al., 2007). Se encontraron dos especies de kril (antártico y glacial), distribuidas en el Mar de Ross. La escala de interacción entre el rorcual aliblanco y los factores medioambientales fueron investigados en segmentos de 5 millas náuticas utilizando el GAM. Los resultados indicaron que la abundancia del rorcual aliblanco podría estar relacionada con la biomasa del kril antártico.

2.154 El taller también recibió detalles de un estudio reciente (G. Santora, com. pers) realizado en la Península Antártica occidental en el que se combinaron muestras biológicas y físicas de la columna de agua, que incluyó la convalidación de la distribución talla-frecuencia del kril, y se realizaron observaciones de cetáceos alimentándose. El taller señaló que este tipo de estudio ayudaba a aclarar la separación de nichos y la utilización localizada de la
presa. Se debe alentar estudios similares en otras zonas. Se identificaron otras zonas que podrían ser particularmente aptas para realizar estudios ecológicos sobre la alimentación, entre las que se incluyen la meseta de Kerguelén y el sector longitudinal al sur de Sudáfrica. El área de la meseta de Kerguelén (desde las Islas Kerguelén a la Bahía de Prydz) fue incluida en estudios multidisciplinarios de múltiples depredadores llevados a cabo por Francia y Australia, y se han demostrado estrechas conexiones a lo largo de la meseta. Recientemente se han realizado campañas a través del programa IDCR SOWER en la región al sur de Sudáfrica donde se registraron grandes concentraciones del rorcu común alimentándose alrededor de la Isla Bouvet, y se observó la presencia de ballenas azules (constatada además a través de identificación fotográfica). Se observó que en este sector longitudinal, había un número abundante de rorcua aliblanco y de ballenas jorobadas; se observaron además ballenas azules frecuentemente. En esta zona también se dan tres ecotipos de orcas.

2.155 Estos tipos de estudios en pequeña escala necesitan considerarse conjuntamente con prospecciones sinópticas y seguimiento en gran escala a fin de proporcionar los datos de distribución que se pudieran necesitar para los modelos de ecosistema.

2.156 También es importante comprender mejor los cambios en los parámetros del ciclo de vida relacionados con los efectos del medio ambiente y las reacciones dependientes de la densidad. Tales estudios requerirán conjuntos de datos a largo plazo. Por ejemplo, un estudio del éxito reproductor de la ballena franca austral en la población del Atlántico suroeste (Leaper et al., 2006) utilizó una serie cronológica de 30 años de datos obtenidos mediante identificación fotográfica para investigar las relaciones entre la producción de crías y las variables medioambientales. En este estudio, la producción de cachorros aparentó estar afectada por variables medioambientales pese a que esta población se encontraba aún a un bajo nivel.

2.157 Se observó que un nuevo examen de los datos históricos de la caza de ballenas y del material publicado sobre el tema podría aportar información útil respecto a varios asuntos pertinentes. Se recomendó que el grupo de expertos considerara estas fuentes de información con respecto a los parámetros del ciclo de vida, incluyendo, por ejemplo, la edad en la primera reproducción. Los datos de la caza de ballenas también podrían resultar ilustrativos con respecto a las características espaciales y temporales de la utilización del hábitat, particularmente en áreas que no han sido incluidas en estudios recientes.

Explotación

Cetáceos

2.158 Los datos de la captura han jugado y juegan un importante papel en la labor de evaluación que lleva a cabo el IWC SC. La Secretaría de la IWC mantiene la serie definitiva de datos de captura para el período de la “caza moderna” de ballenas: unos dos millones de registros. Se han realizado considerables esfuerzos para codificar y verificar los datos de captura, además de documentar toda incertidumbre. Con respecto a algunas operaciones realizadas en los primeros años del siglo XX, sólo existen datos de la captura total (esto representa un 20% del registro de la captura total de la caza moderna). En cuanto al 80% restante, existen registros de captura individuales; en “el mejor de los casos”, para cada ballena existe la siguiente información: especie, fecha de la captura, posición de la captura
(latitud y longitud con una precisión cercana al minuto), talla (con una precisión cercana a 0.1 m o pie), sexo, estado reproductivo, contenido estomacal y operación pesquera (nación, barco). La resolución de los datos notificados varía según la operación y la época (v.g. la posición puede estar dada, por ejemplo, como lugar exacto de la captura, posición del buque factoría al mediodía, o posición de la estación en tierra); la fiabilidad de los distintos tipos de información notificada por nación, operación y época (incluidas las principales falsificaciones de datos presentados por la URSS) ha sido discutida a fondo en el IWC SC y en varios informes publicados.

2.159 Con respecto a la caza de ballenas desde botes abiertos (período anterior a la caza moderna de ballenas), la historia de la captura ha sido reconstruida utilizando diversos métodos, entre ellos el examen de cuadernos de bitácora y de registros de productos de ballena; esto se aplica particularmente a la ballena franca austral (IWC, 2001).

2.160 El IWC SC ha explorado en forma exhaustiva maneras adecuadas de incorporar satisfactoriamente los distintos niveles de incertidumbre en los registros de captura (que varían de incertidumbre en los registros mismos a incertidumbre en los métodos de asignación de capturas de los stocks reproductores a las áreas de alimentación antárticas) para fines de modelación. Y éstas a menudo se basan en posibles hipótesis alternativas. Tal enfoque también debería ser aplicable a cualquier trabajo de modelación de ecosistemas.

2.161 Además de los datos de captura, también se cuenta con datos del esfuerzo. La resolución y fiabilidad de estos datos varía con el tipo de operación y la época. El IWC SC ha examinado la posible utilización de los datos de la CPUE para evaluaciones y modelación, y ha reconocido las limitaciones del uso de tal información excepto en forma rudimentaria (IWC, 1989).

2.162 Los registros de captura (y en cierta medida los datos del esfuerzo) son pertinentes a la modelación de ecosistemas en distintos niveles que varían desde simples series de captura a la modelación de la dinámica poblacional, con distribuciones espaciales y temporales, o a estimaciones e interpretaciones de parámetros del ciclo de vida, o incluso para hacer inferencias basadas en los datos sobre el borde de hielo (v.g. de la Mare, 2002).

2.163 Si bien existen algunos resúmenes de datos de captura publicados, lo más apropiado es obtener la serie de captura convalidada más reciente de la base de datos de la captura disponible en la Secretaría de la IWC.

Pinnípedos

2.164 El taller observó que el RU es el depositario de la Convención para la Conservación de las Focas Antárticas (CCAS) y, en dicha función, recibe datos sobre la captura de pinnípedos. El taller estuvo de acuerdo en investigar la posibilidad de poder acceder a los registros históricos de la Convención y de otras fuentes publicadas y no publicadas sobre la caza de focas.
Pingüinos

2.165 En el siglo XXIX y principios del XX, el pingüino rey (y probablemente otras especies) fue explotado por cazadores de focas en las islas subantárticas. Estas aves se utilizaban para varios fines: para combustible de las calderas utilizadas en el procesamiento de focas, y combustible para lámparas y cocinas. La piel se utilizaba para hacer ropa, y la carne y huevos eran consumidos por los cazadores de focas. No se mantuvieron registros del número exacto de aves que se mataron, y la información existente es por lo general anecdótica. En la mayoría de las islas las poblaciones del pingüino rey se redujeron drásticamente, y en algunas desaparecieron por completo durante varias décadas. En las últimas décadas, las poblaciones de esta especie se han recuperado notablemente en toda su área de distribución. Esta recuperación ha sido documentada en la mayoría de los casos (v.g. Isla Macquarie: Rounsevell y Copson, 1982; Isla Heard: Gales y Pemberton, 1988; Archipiélago de Kerguelén: Weimerskirch et al., 1989).

Albatros

2.166 Los registros históricos indican que se recogían huevos de albatros en grandes cantidades que se utilizaban como alimento durante la época de la caza de ballenas (Cott, 1953).

Peces

2.167 La Secretaría de la CCRVMA mantiene varias bases de datos relativas a la explotación de peces. Las estadísticas de la captura abarcan la historia completa de la explotación de peces. En términos de datos más detallados, por ejemplo, captura y esfuerzo por especie, área y temporada de la CCRVMA, la información está incompleta para los primeros años de la pesquería. Los datos estadísticos existentes son de dominio público. Otros datos están sujetos a las “Normas de Acceso y Utilización de los Datos de la CCRVMA”, e incluyen datos de lances individuales de las pesquerías de palangre y de arrastre, datos biológicos detallados recopilados como parte del Sistema de Observación Científica Internacional, y datos acústicos y de investigación pesquera recopilados durante prospecciones de investigación.

2.168 El taller reconoció que existían algunas incertidumbres relacionadas con los registros de captura presentados a la CCRVMA en los primeros tiempos, y que el grado de estas incertidumbres no se había definido. En particular, existían dudas acerca de la precisión de los datos de captura de los primeros años de la historia de la pesca (v.g. los primeros 7 a 10 años de la década de los 70), y por lo tanto, se debía proceder con cautela al utilizar los datos de este periodo. El taller acordó que el análisis de tales incertidumbres debía ser un asunto de prioridad.
Calamar

2.169 El taller mencionó que se habían realizado pesquerías experimentales dirigidas al calamar en la Subárea 48.3 entre 1989 y 2001, periodo en el cual cinco barcos de pesca con nasas capturaron calamar estrellado en la ZFP al norte de Georgia del Sur. La tasa de captura fue de unas 8 a 10 toneladas por noche por barco.

2.170 Esta especie es capturada por la flota de pesca con nasas dirigida al calamar argentino (*Illex argentinus*) en la plataforma patagónica y también se captura al sur de Nueva Zelanda. Se informó de un caso de varapalo en masa en la Isla Macquarie. Esta especie también se extrae como captura secundaria en la pesquería del atún lanzón (*Allothunnus fallai*) en el Pacífico Sur. No se ha mostrado ningún interés en la pesca de esta especie en la Subárea 48.3 en los últimos 7 u 8 años.

2.171 El taller también indicó que el calamar argentino se extrae de la plataforma patagónica, y que las capturas anuales varían muchísimo (entre 10 000 y 300 000 toneladas). El interés en la pesca dirigida al calamar estrellado ha alcanzado su punto máximo cuando las capturas de calamar argentino han estado al nivel más bajo.

Kril

2.172 Se exigen cuatro tipos de notificación de datos a los países de pescan kril en el Área de la Convención de la CRVMA:

i) resúmenes mensuales de captura y esfuerzo (STATLANT) por área estadística de la FAO;

ii) informes de captura y esfuerzo intra temporada;

iii) datos a escala fina de lances individuales;

iv) datos e informes de observación científica, incluidos datos biológicos e información técnica sobre la pesquería.

2.173 Los datos STATLANT son del dominio público (*CCAMLR Statistical Bulletin*). Los datos de lances individuales y los datos de observación incluyen detalles de la hora, fecha, posición del barco, e información general del buque además de los factores de conversión de los productos. Con la excepción de los datos STATLANT, los datos están sujetos a las Normas de Acceso y Utilización de los Datos de la CCRVMA, y los autores/titulares retienen el control sobre el uso, fuera de la CCRVMA, de sus datos no publicados.

2.174 La base de datos STATLANT contiene todas las capturas de kril notificadas en resoluciones de área/subárea estadística de la FAO. Los datos de captura y esfuerzo a escala fina consisten en datos a una resolución más fina que la de las estadísticas STATLANT. La mayoría de los datos en escala fina se notifican por lance individual, y proporcionan información precisa de la posición; este es un requisito actual en las pesquerías de kril. Algunos datos históricos se presentan como captura y esfuerzo, agrupados por cuadrículas de aproximadamente 10 millas n x 10 millas n y por periodos de 10 días, y algunos por
cuadrículas de aproximadamente 30 millas n x 30 millas n (0,5° de latitud por 1° de longitud) y por períodos mensuales. También faltan datos en escala fina para las pesquerías de kril, en especial, con respecto al período antes de mediados de la década de los 80.

2.175 Se tomó nota de varias fuentes de incertidumbre en los registros de la captura de kril comercial, en primer lugar, acerca de la precisión misma de los datos de captura y esfuerzo y de los datos de posición, especialmente antes de mediados de la década de los 80. En segundo lugar, existen grandes incertidumbres en torno a los factores de conversión utilizados para estimar la captura descargada a partir del producto final. Y en tercer lugar, acerca del volumen total de kril extraído del sistema por las actividades pesqueras, en las que el kril muere a causa del arte de pesca pero no se retiene en el copo de la red cuando ésta se trae a bordo.

Captura secundaria en las pesquerías

Captura secundaria de peces

2.176 Si bien la base de datos de la CCRVMA contiene información sobre la captura secundaria de peces en la pesquería de kril, no se cuenta con datos cuantitativos debido a que no se realiza una observación científica en la pesquería de kril en forma sistemática. Se recalculó que la única manera de obtener datos cuantitativos de la captura secundaria de peces era realizar una cobertura sistemática del 100%.

2.177 Se desconocen los datos sobre la distribución de las larvas de peces en relación con las concentraciones de kril. No se cuenta actualmente con esta importante información para interpretar los datos de la captura secundaria de la pesquería de kril.

Mortalidad incidental de aves y mamíferos marinos relacionada con la pesca en el Área de la Convención de la CRVMA

2.179 La información sobre la mortalidad incidental de lobos finos antárticos en la pesquería de kril en el Área 48 fue presentada por primera vez a la CCRVMA en 2002/03 cuando se registró la muerte 27 lobos finos. Esta cifra aumentó a 142 en 2003/04 y, tras la adopción de medidas de mitigación de la captura incidental, que incluyó dispositivos de exclusión de pinnípedos, la mortalidad se redujo a 16 en 2004/05, a uno en la temporada siguiente y a uno en 2006/07.

2.180 La mortalidad incidental de aves y mamíferos marinos ocasionada por la pesca en el Área de la Convención de la CRVMA es analizada anualmente por el Grupo Especial de Trabajo sobre la Mortalidad Incidental Relacionada con la Pesca (WG-IMAF) y presentada al SC-CAMLR (v.g. SC-CAMLR, 2007c).
Labor futura

2.181 El taller convino en que sería útil para la CCRVMA trabajar en la cuantificación de la incertidumbre en los registros de captura para el kril y los peces.

ASUNTOS GENERALES Y PRIORIDADES

3.1 En el taller se discutieron en términos generales, preguntas, prioridades y asuntos relacionados con la recopilación y obtención de datos que se utilizarían en la elaboración de modelos de ecosistema multiespecie de importancia para la CCRVMA y la IWC. Se señaló que las preguntas de importancia se podían agrupar de la siguiente manera: las referentes a los depredadores, las referentes a las presas y las referentes a la variabilidad y cambio del hábitat. También se plantearon algunas preguntas generales sobre modelación que convendría abordar.

3.2 Los participantes del taller indicaron que las preguntas generales sobre depredadores y especies presa habían sido bien formuladas sobre la base de la labor de cada subgrupo.

3.3 Se señaló que no había habido oportunidad para discutir con igual profundidad el medio ambiente físico y la producción primaria y su relación con la variabilidad y los cambios del medio ambiente y los hábitats. El taller convino en que la variabilidad y los cambios del hábitat eran factores importantes en la dinámica de la red trófica en el Océano Austral. Se indicó que los análisis que se mencionan a continuación, que utilizan conjuntos de datos del medio ambiente y modelos de circulación, podrían ayudar a comprender mejor las relaciones entre la biota y los hábitats, cómo pueden variar los hábitats en el tiempo y en el espacio, y el grado en que el cambio climático afecta los hábitats:

 i) Establecer puntos de referencia que pudieran utilizarse para evaluar cambios en el hábitat: combinar y analizar conjuntos de datos hidrográficos históricos, del hielo marino, atmosféricos y de satélite para caracterizar la estructura del medio ambiente y su variabilidad en escalas circumpolares y regionales concentrándose en:

 a) determinar la variabilidad relacionada con la posición de los frentes de la CCA, como el ámbito latitudinal, la distribución y las características del hielo marino, y las respuestas a forzamientos climáticos en gran escala (v.g. ENSO, SAM), y a cambios en el transporte de la CCA;

 b) determinar las tendencias básicas de la circulación, y la dinámica del hielo marino para las regiones (v.g. Mar de Ross, Península Antártica Occidental, Mar de Weddell) incluidos los cambios estacionales (v.g. del forzamiento de flotación) y el grado de acoplamiento a la circulación circumpolar en gran escala;

 c) correlacionar las distribuciones biológicas con la estructura del hábitat.

 ii) Estimar las posibles conexiones bióticas entre las distintas regiones utilizando distribuciones de circulación simuladas para:
a) evaluar el transporte regional y en gran escala del kril y del zooplancton, incluyendo tiempos de residencia;

b) estimar las tasas de intercambio;

c) ofrecer una perspectiva acerca de posibles áreas con stocks bien diferenciados;

d) identificar posibles estructuras metapoblacionales, incluidas poblaciones fuente y sumidero.

iii) Mejorar la previsibilidad de las zonas frontales, las características de la zona de hielo marino, la capacidad de identificar procesos que conllevan a cambios en el hábitat, además de evaluar el efecto de la variabilidad frontal en el transporte de la biota mediante el perfeccionamiento de los modelos de circulación (a escala circumpolar y regional) de manera que puedan captar las tendencias y la variabilidad que se aprecia en los análisis de datos regionales y en gran escala.

3.4 El taller formuló un conjunto de preguntas integradas que surgieron de las diversas deliberaciones de los tres subgrupos y de la discusión de los párrafos anteriores sobre los hábitats y el medio ambiente físico. Estas preguntas tuvieron como fin especificar el conjunto de problemas característicos de los datos y las metodologías que se necesitarían para servir de base a una variedad de modelos de ecosistemas de pertinencia para la CCRVMA y la IWC. Las preguntas consideraron depredadores, presas, variabilidad y cambios del hábitat, que estarían correlacionados con el medio ambiente físico y biológico de los principales grupos taxonómicos, además de problemas generales relacionados con el modelado de la red trófica. Una vez más, se indicó que la pertinencia de las distintas preguntas sobre los datos variará según el modelo en el que se esté trabajando, o el objetivo perseguido por el modelo. Las discusiones enfocaron los tres temas identificados anteriormente en relación con el ecosistema (párrafo 1.35). Las preguntas fueron las siguientes:

Depredadores:

i) Superposición espacial: ¿cuál sería la mejor manera de definir la escala espacial de la zona de alimentación por grupo taxonómico/población?

a) ¿cuáles son los grupos taxonómicos de prioridad?

b) ¿cuáles son las características que definen los hábitats de alimentación?

c) ¿cuáles son las metodologías de prioridad?

ii) Superposición temporal: ¿con qué precisión se podría definir la temporada de alimentación por grupo taxonómico/población?

a) ¿Cuáles son los grupos taxonómicos con una dinámica estacional influyente?

b) ¿Cuáles son las metodologías de prioridad?

iii) Consumo resultante: ¿Con qué grado de precisión se podría definir la dieta (éxito alimentario) por taxón/población?
a) ¿Cuáles son los consumidores de mayor influencia y cuáles son sus necesidades alimentarias?
b) ¿Cuál es la composición por especie de la dieta de los consumidores influyentes?
c) ¿Cuáles son los aspectos más importantes de la dinámica de las poblaciones (v.g. tasa de reproducción, depredación específica por etapa) que influyen en el grado de fortaleza de la relación entre el depredador y su presa?
d) ¿Cuándo se cree que los depredadores se alimentan en el Océano Austral?
e) ¿Cuáles son las metodologías de mayor prioridad?

Presas:

iv) Asuntos relativos a la escala espacial: ¿con qué precisión se puede definir la extensión y variabilidad espacial por taxón/población?
 a) ¿Cuáles son los grupos taxonómicos de prioridad?
 b) ¿Cuáles son las metodologías de prioridad?

v) Solapamiento temporal: ¿con qué precisión se puede definir la disponibilidad de presas para los depredadores por temporada?
 a) ¿Cuáles son los grupos taxonómicos de prioridad?
 b) ¿Cuáles son las metodologías de prioridad?

vi) Productividad: ¿con qué precisión se pueden caracterizar las funciones de forzamiento que reflejan influencias ascendentes?
 a) ¿Cuáles son los grupos taxonómicos de prioridad?
 b) ¿Cuáles son las metodologías de prioridad?

vii) Efectos en la dinámica producidos por factores distintos a la depredación: ¿con qué precisión se pueden caracterizar las funciones de forzamiento que reflejan la mortalidad general?
 a) ¿Cuáles son los grupos taxonómicos de prioridad?
 b) ¿Cuáles son las metodologías de prioridad?

Variabilidad y cambios en el hábitat:

viii) ¿Cómo se podrían cuantificar los hábitats tridimensionales de las poblaciones de depredadores y presas sobre la base de los datos oceanográficos, del hielo marino, atmosféricos y de productividad?

ix) ¿Cómo se podría cuantificar la variabilidad de los hábitats de los taxones y los procesos ecológicos más importantes en escalas espaciales y temporales?
x) ¿Cómo podemos determinar el efecto de la variabilidad y el cambio ambiental en la productividad y en la dinámica de las redes alimentarias?

3.5 Se recordó a los participantes las conclusiones de un taller de la IWC sobre modelación de las interacciones entre cetáceos y pesquerías (IWC, 2004a). En esa reunión, se concluyó lo siguiente: “La realidad es que no estamos en situación de proporcionar en términos de disponibilidad de datos y elaboración de modelos, asesoramiento de ordenación cuantitativamente predictivo sobre los efectos de los cetáceos en las pesquerías o de las pesquerías en los cetáceos para ningún sistema”. En un taller más reciente sobre modelación de ecosistemas realizado por la FAO en julio de 2007, se llegó a una conclusión similar.

3.6 A fin de extraer una opinión compartida acerca de la prioridad relativa que se debe asignar a cada una, o al conjunto, de las preguntas integradas en relación con determinados modelos de ecosistema, se pidió a 11 participantes del taller, muchos de los cuales son expertos en modelación, o trabajan en estrecha relación con ellos, que proporcionaran un breve resumen sobre las prioridades o necesidades de investigación que estimaban necesarias en base a las preguntas pertinentes al ecosistema (párrafo 1.35) y a las categorías mencionadas (depredadores, presas, variabilidad y cambios del hábitat, cuestiones generales referentes a los modelos). Los resúmenes de los autores se presentan en el apéndice E.

3.7 La variedad de opiniones presentadas durante el taller reflejó el considerable desafío que la creación de modelos de ecosistema informativos representa para la CCRVMA y para la IWC. Esta ardua tarea se caracterizó por la dificultad de determinar parámetros de entrada lo suficientemente refinados, de establecer una estructura adecuada para el modelo, y de determinar el rango de la incertidumbre. Con relación a la definición de los datos y estrategias necesarios, surgieron algunos puntos en común que se explican a continuación (párrafo 3.9) y que forman la base de las recomendaciones de este taller.

3.8 Como era de esperar, las distintas opiniones sobre cómo enfocar el modelado del medio ambiente y acerca de la escala espacial requerida para que los modelos sean pertinentes a la ordenación reflejan que esta disciplina está relativamente en cierres, como también la diversidad de asuntos que los modelos deben abarcar, y las escalas espaciales y temporales en las que están diseñados para funcionar. En términos generales, se presentaron dos enfoques de modelado de ecosistemas:

i) la construcción de modelos parsimóniosos basados en un núcleo relativamente bien conocido (quizás una especie central), ampliándolos para integrar el ecosistema (en términos de componentes y escalas) sólo hasta el punto en que los datos permitan deducciones razonables; o

ii) el énfasis de los modelos que se están elaborando estaría centrado en la complejidad inherente y la dinámica de los ecosistemas, partiendo de una estructura más amplia y compleja, aplicando parsimonia durante el transcurso de su elaboración mediante el recorte del modelo para obtener una estructura central más práctica a fin de mantener los componentes influyentes y la dinámica del sistema.

Ambos enfoques tienen sus ventajas y dificultades. El taller indicó que hay problemas generales en relación con el modelado, como la convalidación del modelo y de los datos, los cuales son importantes pero que quedan fuera del ámbito del taller.
3.9 El objetivo principal del taller fue examinar la disponibilidad de datos y tratar de establecer un orden de prioridades en cuanto a los datos necesarios para los modelos de ecosistema basados en el kril y sus depredadores. A pesar de la necesidad de obtener distintos tipos de datos para distintos modelos y preguntas, la opinión general en lo que respecta a la recopilación de datos, la integración y los análisis fue que éstos proporcionaban una guía convincente para la labor futura que interesa a la CCRVMA y la IWC. Fundamentalmente, los enfoques pueden clasificarse en tres amplias categorías:

i) Caracterización, relaciones e influencias de las características ambientales y temporales de la distribución y densidad de los depredadores y sus presas.

Se subrayó la necesidad de mejorar la caracterización del ambiente físico y biológico de los animales. Se destacó en particular la identificación de las escalas de muestreo y de los análisis pertinentes, la cuantificación de la variabilidad ambiental y la distinción de la naturaleza efímera o persistente de las características más importantes. También se consideró que se debía otorgar prioridad a la aclaración de las conexiones de las redes alimentarias, incluidas vías alternativas. Se notó que la generación de estos datos depende cada vez más de las series cronológicas de datos recogidos por teledetección y los obtenidos con sensores y transmisores implantados en los animales. Cualquier mejora en la priorización de la recopilación y de los análisis integrados de estos datos seguramente facilitará la labor de modelado.

ii) El valor de nuevos análisis integrados de los conjuntos de datos y series existentes para investigar cómo se relacionan los depredadores, las presas y las correlaciones ambientales.

Se recalcó la especial utilidad de estudios integrados en gran escala que recogen evaluaciones sinópticas de la distribución de depredadores, sus presas y los aspectos claves del medio ambiente. También se puso de relieve la pertinencia y utilidad de las series de datos históricos como los datos de la caza de ballenas del siglo XX y los informes del Discovery, ya que proporcionan posibles mediciones de referencia para la distribución estacional y espacial de depredadores y sus presas.

iii) La importancia de contar con series de datos coordinadas, adecuadas y a largo plazo, de elementos claves del medio ambiente (v.g. datos obtenidos por percepción remota), y de los depredadores y sus presas (v.g. series cronológicas de la abundancia relativa).

Los tres problemas principales de la modelación de ecosistemas (párrafo 3.4) considerados por el taller requieren datos de series cronológicas. Las preguntas sobre el cambio climático tal vez necesiten el rango más extenso de nivel trófico. El mantenimiento de tales series cronológicas es costoso y la obtención de fondos constantes es un problema permanente. La elaboración de series de datos nuevos para la modelación, y el mantenimiento de las series existentes deben concentrarse en componentes clave e influyentes del medio ambiente físico y biológico en el que existen los depredadores y sus presas.
3.10 El taller ratificó los datos generales y la priorización de las investigaciones descritas en el párrafo 3.9.

3.11 Durante las deliberaciones de la reunión plenaria y de los subgrupos surgieron dos preguntas generales en cuanto al modelado:

 i) ¿En qué grado y de qué manera se pueden definir las relaciones funcionales de la alimentación?

 ii) ¿Qué volumen de datos de la abundancia (con una resolución en función de taxón, posición y tiempo) se necesita?

No hubo tiempo para la consideración detallada de estas preguntas durante el taller, pero se pueden destacar algunas conclusiones y recomendaciones generales. En primer lugar, con respecto a las relaciones funcionales de la alimentación en los modelos de ecosistemas, se subrayó que éstas sólo pueden ser inferidas. Se destacó la dificultad del ajuste de las mediciones y las inferencias resultantes hechas en escalas espaciales y temporales de alta resolución (IWC, 2004a).

3.13 Con relación a los datos de la abundancia, el taller estuvo de acuerdo en que esta información es fundamental para los modelos de ecosistemas, pero su importancia relativa difiere en lo que respecta a los distintos tipos de modelos.

3.14 El taller estuvo de acuerdo en que convendría discutir más a fondo estos problemas de modelado y su importancia e influencia relativa para los distintos modelos.

PRODUCTOS Y LABOR FUTURA

Base de metadatos y otras herramientas

4.1 CCAMLR-IWC-08/16 proporcionó una reseña de la base de metadatos de CCAMLR-IWC, de la interfaz gráfica de usuario (GUI) basada en la web, que está elaborando el AADC, y de las instrucciones para su uso. El taller apoyó el propósito de la base de metadatos y de la GUI y estuvo de acuerdo que era un importante componente del programa de trabajo identificado en los preparativos del taller. Hasta la fecha, los grupos de expertos han sido responsables principalmente de administrar el contenido para esta herramienta.

4.2 El taller indicó que la base de metadatos y la (GUI) se encuentra aún en sus etapas preliminares, y a la fecha, no contiene suficientes datos. Se reconoció que esta labor era muy positiva y alentó a los usuarios a aportar información e identificar problemas en la compilación de metadatos a fin de ir perfeccionándola. Se invitó a los miembros de los grupos de expertos a presentar sus comentarios sobre la base de metadatos y la GUI y sobre su experiencia en el uso la misma.

4.3 El Dr. Southwell (coordinador del grupo sobre focas del campo de hielo) y el Dr. Leaper (miembro del grupo sobre ballenas de barbas) puntualizaron que la estandarización de los metadatos en forma tabular como primer paso antes de comenzar a trabajar directamente con la base de metadatos, hacía el ingreso de metadatos con respecto a estos
grupos más eficaz. Se debía explorar, con los autores, otras metodologías para la estructuración del contenido, en particular para los grupos taxonómicos más complejos (v.g. zooplancton) a fin de mejorar la base de metadatos y la GUI.

4.4 El taller señaló que se podían tomar varias medidas para asegurar que la base de metadatos y la GUI llegara a ser un valioso y práctico depósito de metadatos. Se observó que actualmente todos los registros de metadatos antárticos ya están en línea en el GCMD, o lo estarán pronto. El Dr. Ramm indicó que la CCRVMA se encuentra actualmente preparando registros de metadatos del GCMD y que considera que la base de metadatos y la GUI contribuyen a este proceso. La utilización de palabras clave de la GCMD dentro de la base de metadatos proporcionaría un enfoque sistemático en el descubrimiento de registros de datos y metadatos.

4.5 Se propuso proporcionar enlaces directos desde la base de metadatos a conjuntos de datos pertinentes en SCAR-MarBIN. El taller alentó el acceso a los datos a través de SCAR-MarBIN, ya sea mediante el alojamiento directo en SCAR-MarBIN o la publicación mediante otros proveedores de datos como la AADC, la CCRVMA y la IWC. El próximo paso sería la entrega directa de datos, utilizando SCAR-MarBIN como primer ejemplo.

4.6 El taller observó además que SCAR-MarBIN cuenta con un ciclo de fondos sólo hasta 2009. La CCRVMA y la IWC podrían ser los principales impulsores, tanto en términos de usuarios finales de los datos, como en la recomendación de nuevos avances del portal de datos de SCAR-MarBIN, con el fin de mejorar la sostenibilidad a largo plazo de SCAR-MarBIN. Lo mismo se podría hacer con otros depósitos de datos comunes que se requieren para esta herramienta de metadatos.

4.7 El taller puntualizó que el desarrollo futuro del contenido de la base de metadatos CCRVMA-IWC y la GUI requeriría recursos substanciales y que el proceso se beneficiaría si adquiriera mayor importancia dentro de la CCRVMA y la IWC.

4.8 El taller acordó que la base de metadatos y la GUI debían continuar estando disponibles una vez concluido el taller para apoyar la labor futura de los grupos de expertos. La forma en la cual la base de metadatos y la herramienta de metadatos serán estructuradas y administradas necesitará ser considerada por un grupo mixto de dirección, en particular, en lo que se refiere a cuándo y cómo esta labor pasará del AADC a las Secretarías de la CCRVMA y la IWC.

Publicaciones

4.9 CCAMLR-IWC-WS-08/2 trata sobre la publicación de los resultados del trabajo de los grupos de expertos. No hubo tiempo para considerar este asunto en detalle, y fue incluido en la labor futura del grupo mixto de dirección (párrafo 4.30).
La labor futura sobre oceanografía, hielo marino y producción primaria fue considerada en los siguientes párrafos:

i) oceanografía (párrafos 2.8 al 2.11)
ii) hielo marino (párrafos 2.21)
iii) producción primaria (párrafo 2.23).

Especies pelágicas

El taller tomó nota de la labor futura identificada por el grupo experto sobre especies pelágicas en los siguientes párrafos:

i) definición de grupos funcionales de especies pelágicas (párrafo 2.33);
ii) kril –
 a) observaciones y comentarios para el grupo de expertos (párrafo 2.41)
 b) lagunas clave (párrafo 2.42)
 c) nuevos análisis (párrafo 2.43)
 d) programas de investigación (párrafo 2.44);
iii) zooplancton –
 a) observaciones y comentarios para el grupo de expertos (párrafo 2.55)
 b) lagunas clave (párrafo 2.56)
 c) nuevos análisis (párrafo 2.57)
 d) programas de investigación futuros (párrafo 2.58);
iv) calamar –
 a) observaciones y comentarios para el grupo de expertos (párrafo 2.67)
 b) lagunas clave (párrafo 2.68)
 c) programas de investigación futuros (párrafo 2.69);
v) peces –
 a) observaciones y comentarios para el grupo de expertos (párrafo 2.77)
 b) lagunas clave (párrafo 2.78)
 c) nuevos análisis (párrafo 2.79)
 d) programas de investigación futuros (párrafo 2.80).
4.12 El taller consideró el tema de la labor futura bajo dos categorías: la primera comprendría la finalización del trabajo de “inventario” de los grupos de expertos; la segunda incluiría el trabajo analítico y de campo requerido para subsanar las lagunas clave de información. Desde luego, existe una interacción entre estas dos categorías (se requiere terminar el trabajo de inventario para identificar las lagunas clave).

Finalización de los informes de los grupos de trabajo

4.13 El taller señaló que los grupos de trabajo dentro de esta categoría podían reorganizarse ya sea en función de grupos taxonómicos (tal vez, pinnípedos y aves) o tema (v.g. abundancia, dieta, hábitat, etc.) que pudieran abarcar los distintos taxones. Se indicó además que, independientemente del enfoque que se adopte, se necesita elegir un coordinador y un comité de dirección lo antes posible para garantizar que se disponga de los conocimientos técnicos necesarios y que el volumen de trabajo de los integrantes sea manejable; el modus operandi de los grupos de expertos será discutido por el grupo mixto de dirección. Las plantillas para la información que cubrirán los grupos de expertos se proporcionan en el texto del documento y las tablas (párrafo 2.97, tablas 7 al 10; párrafo 2.105, tabla 12; párrafo 2.109, tabla 13; párrafo 2.115, tabla 14).

4.14 El taller puntualizó que era importante evaluar críticamente los análisis y conjuntos de datos existentes para que los informes fueran de utilidad en la conservación y ordenación. El examen inicial de la información disponible sobre pinnípedos y aves reveló que existen lagunas considerables en relación con algunas especies/escalas espaciales/escalas temporales/parámetros. En algunos casos, obtener y analizar tales datos puede ser viable en un corto o mediano plazo, pero esto podría llevar algún tiempo y exigir nuevos recursos. En otros casos, la dificultad de la tarea puede hacer que esto no sea factible, por lo menos a través de los métodos actuales. Es importante que los grupos de expertos identifiquen claramente cuál es la situación con respecto a las lagunas claves identificadas. Esta información es de suma importancia para los modeladores ya que se evitaría la elaboración de modelos para los cuales la información necesaria tal vez nunca esté disponible (por lo menos al nivel de resolución requerido para que resulten útiles).

4.15 Teniendo esto en cuenta, el taller recomendó que los grupos de expertos proporcionaran, al final de sus informes, una indicación del plazo, los métodos, la viabilidad y el nivel de recursos necesarios para compilar los datos disponibles en términos de lo que ellos consideran “lagunas clave”, tomando en cuenta el análisis en el punto 3.

4.16 La preparación de los informes de los grupos de expertos requerirá un considerable esfuerzo. El taller manifestó que la finalización oportuna de esta labor era importante porque implicaba la elaboración de publicaciones valiosas, y la formulación de una serie integrada y coordinada de recomendaciones de investigación que asistirán extensamente en la conservación y ordenación. La manera en que se realice esta labor necesitará ser considerada por el grupo mixto de dirección y los grupos de expertos que se formen. Se sugirió poner recursos a disposición para asistir con la recopilación de la información publicada y no publicada existente, y que tal vez se necesiten realizar talleres breves (de 3 a 4 días) para finalizar los informes.
Consideración inicial de temas relacionados con trabajo de campo/analítico para subsanar lagunas clave de información

4.17 El taller manifestó que la determinación de las lagunas clave no podía considerarse aisladamente de los ejercicios de modelación mismos ni de sus objetivos. En varios casos por ejemplo, la necesidad de refinar las estimaciones de los parámetros (o incluso tal vez, llegar a algo más que a una buena estimación de los valores mínimo y máximo de los mismos) dependerá de ejercicios de modelación iniciales para determinar la sensitividad a esos parámetros. Tal vez sea necesario elaborar mecanismos para facilitar esta colaboración luego de la finalización de los informes de los grupos de expertos.

4.18 Las siguientes prioridades fueron identificadas por el taller:

i) realizar análisis de la información (proveniente de muchas fuentes) que relaciona la distribución de los animales y la densidad con las variables medioambientales;

ii) extender la recopilación de datos sobre distribución, abundancia y dieta a todo el año, puesto que actualmente se limitan casi exclusivamente a la temporada de reproducción;

iii) investigar cuidadosamente los datos existentes para determinar si se puede obtener información cualitativa o cuantitativa fiable sobre las tendencias demográficas (v.g. abundancia de pingüinos, aves marinas voladoras, focas cangrejeras y lobos finos);

iv) elaborar un conjunto de herramientas en común para tratar estos asuntos, por ejemplo, la identificación/construcción de un archivo de datos central.

Cetáceos

Labor adicional requerida de los grupos de trabajo

4.19 Se recomendó que el grupo de expertos en ballenas de barbas revisara los parámetros del ciclo de vida incluida la información sobre los datos históricos de la caza de ballenas y el material publicado sobre el tema. Los datos de la caza de ballena podrían resultar útiles en lo que respecta a las características espaciales y temporales de la utilización del hábitat, particularmente en áreas que no han sido cubiertas por prospecciones recientes (párrafo 2.157).

4.20 Se recomendó a los grupos de expertos que definieran categorías para indicar el estado de las estimaciones de la abundancia incluidas en la tabla 15 (párrafo 2.127).

Nuevos análisis de los datos existentes

4.21 Se señaló que era importante resolver los problemas relacionados con la abundancia y tendencias del rorcual aliblanco y que este tema estaba siendo tratado por el IWC SC (párrafo 2.129)
4.22 El taller indicó que se podían analizar más a fondo las prospecciones multidisciplinarias en gran escala con el objetivo específico de recopilar datos sobre cetáceos simultáneamente con datos del hábitat (incluyendo datos que se pudieran utilizar en la estimación de la abundancia), y se recomendó realizar estos análisis lo antes posible (párrafo 2.133).

Nuevos proyectos de investigación a largo plazo

4.23 Resolver el problema de la falta de datos relativos a la abundancia del rorcual común es de alta prioridad debido a la gran abundancia histórica de esta especie y la actual falta de datos. Los datos del Océano Austral, al norte de los 60ºS son limitados y esto podría resolverse realizando prospecciones entre los 60ºS y los límites de la CCRVMA. Es poco probable que se realicen prospecciones circumpolares en el futuro por lo que el taller recomendó concentrarse más en esta región a fin de detectar tendencias a escalas espaciales más pequeñas (párrafo 2.130). El taller señaló además que el examen de la recuperación de poblaciones pequeñas estudiadas en detalle podría proporcionar información en un contexto de modelación de ecosistemas (párrafo 2.131).

4.24 Además de los datos de las covariables del hábitat recabados en prospecciones multidisciplinarias, la percepción remota puede aportar datos, por ejemplo, de la TSM, el hielo marino, y el color del océano. El taller recomendó investigar fuentes históricas de tales datos que se pudieran utilizar en análisis más detallados de los datos existentes de prospecciones de cetáceos (párrafo 2.140).

4.25 Se ha obtenido un considerable volumen de datos sobre la utilización del hábitat por otros depredadores a través de estudios de telemetría, y el taller reconoció la importancia de tales datos con respecto a los cetáceos (párrafo 2.141). En estudios de la utilización del hábitat por distintos animales se pueden también hacer uso de la identificación fotográfica y la recaptura de marcas genéticas (párrafo 2.142). El taller reconoció el valor de estudios que combinan muestras biológicas y físicas de la columna de agua, y que incluyen la convalidación de la distribución de la frecuencia de talla del kril con observaciones de cetáceos que se están alimentándose, y alentó a continuar con este tipo de estudios (párrafo 2.154).

4.26 Para estudiar la abundancia estacional de cetáceos en el Océano Austral, se pueden utilizar series cronológicas largas de datos acústicos pasivos para realizar el seguimiento de la variabilidad estacional de las vocalizaciones en un lugar determinado. Estos se pueden utilizar para generar un índice relativo de la densidad basado en suposiciones sobre la variabilidad de las llamadas de los cetáceos (párrafo 2.143).

Explotación

4.27 La labor futura recomendada para el grupo de expertos sobre explotación aparece en el párrafo 2.181.
General

4.28 Se decidió que el grupo mixto de dirección continuara su trabajo después de la culminación del taller a fin de coordinar la futura labor. Se decidió además que se debía alentar a otras personas que pudieran ayudar al grupo de dirección a lograr su trabajo, a que participaran en él como miembros ad hoc, y que el grupo solicitara a su respectivo Comité Científico que ratificara su composición.

4.29 El taller señaló la ventaja de mantener los grupos de expertos que ya existen para compilar los metadatos sobre los distintos grupos taxonómicos. También indicó que sería ventajoso considerar algunos asuntos en función de todos los grupos taxonómicos debido a la similitud de los problemas de estimación, sesgos e incertidumbres. En este sentido, el taller alentó al grupo mixto de dirección a estudiar la posibilidad de establecer otros tres grupos para colaborar con los grupos de expertos en la consideración de algunos de los asuntos generales sobre la estimación de parámetros y la compilación de datos, y proporcionar un resumen del asesoramiento sobre los temas generales, según corresponda. Los grupos adicionales serían:

i) hábitats
ii) características del ciclo de vida
iii) conexiones de la cadena alimentaria.

4.30 El taller estuvo de acuerdo en que se debía pedir al grupo mixto de dirección que adelantara el trabajo dispuesto en su mandato de acuerdo con las siguientes tareas y programa de trabajo:

i) Presentar el informe del taller al Comité Científico respectivo, señalando que:
 a) los coordinadores del taller prepararán un resumen ejecutivo que será traducido y presentado a SC-CAMLR a fin de que los puntos más importantes del informe sean comunicados a los miembros del Comité Científico de la CCRVMA, ya que no hay tiempo para traducir el informe completo antes de su reunión en octubre de 2008;
 b) las Secretarías de la CCRVMA y de la IWC se mantendrían en contacto para determinar la fecha de publicación del informe.

ii) Consultar con los participantes del taller y los grupos de expertos para determinar cómo se podría concluir la labor y cómo podrían los grupos avanzar posteriormente, de acuerdo con las discusiones anteriores. Cuando fuese necesario, el grupo mixto de dirección deberá seleccionar a los coordinadores y establecer la composición de los grupos de expertos para facilitar este trabajo. El grupo mixto de dirección deberá considerar lo siguiente durante el desarrollo del plan de trabajo:
 a) los recursos necesarios para completar las tareas;
 b) la posibilidad de celebrar talleres para acelerar la compilación y síntesis de los datos y para terminar los documentos.
iii) Formular una propuesta para publicar informes consolidados de los grupos de expertos y síntesis pertinentes, y considerar la publicación de un libro, edición especial o secuencia de documentos, a medida que se vaya llevando a cabo el trabajo.

iv) Continuar supervisando la construcción de la base de metadatos.

v) Elevar una propuesta presentando todas estas actividades antes de septiembre de 2008, a tiempo para que sea considerada por el Comité Científico de la CCRVMA en 2008 y por el Comité Científico de la IWC en 2009.

4.31 El taller acordó que convenía completar este programa de trabajo en un período de 12 meses a fin de mantener el impetu y lograr una unidad coherente.

APROBACIÓN DEL INFORME Y CLAUSURA DE LA REUNIÓN

5.1 Se adoptó el informe del taller conjunto CCRVMA-IWC para evaluar los datos de entrada de los modelos del ecosistema marino antártico. Se señaló que el informe sería formateado individualmente por las dos organizaciones conforme a sus propios estilos de publicación.

5.2 Al cerrar la reunión los Dres. Constable y Gales destacaron el gran progreso logrado por los grupos de expertos y por el taller en la formulación de un enfoque estándar para el uso de datos de los ecosistemas del Océano Austral en la labor de modelación de la CCRVMA y la IWC. Ambos agradecieron a los integrantes del taller por su activa participación y esfuerzos para avanzar en esta labor. Asimismo agradecieron a todos los que contribuyeron al éxito del taller, incluidos los Comités Científicos y las Secretarías de la CCRVMA y de la IWC, el grupo mixto de dirección, los grupos de expertos y sus coordinadores, los coordinadores y relatores de los pequeños grupos, además de otros relatores. Reconocieron además el apoyo de la Secretaría de la CCRVMA que sirvió de sede de la reunión y asistió en la preparación del informe, y al Dr. S. Doust (Australia) que brindó su ayuda en los aspectos administrativos del taller.

5.3 Los participantes se unieron al Sr. Donovan para agradecer a los Dres. Constable y Gales por su labor en el grupo mixto de dirección en la preparación y coordinación del taller.

REFERENCIAS

Tabla 1: Estudios acústicos sobre biomasa y series cronológicas seleccionados respecto al kril. Las referencias aparecen al final del texto del informe.

<table>
<thead>
<tr>
<th>Tipo de prospección</th>
<th>Zona de la prospección</th>
<th>Período del estudio</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomasa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BROKE 1996</td>
<td>División 58.4.1</td>
<td></td>
<td>Nicol et al., 2000</td>
</tr>
<tr>
<td>BROKE-West 2006</td>
<td>División 58.4.2</td>
<td></td>
<td>Nicol et al., 2008</td>
</tr>
<tr>
<td>AKES</td>
<td>Subárea 48.6</td>
<td>Ene–feb 2008</td>
<td>Iversen et al., 2008</td>
</tr>
<tr>
<td>Estudios de series cronológicas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAKRIS</td>
<td>Subárea 48.6</td>
<td>2005–2008</td>
<td>Siegel et al., 2008</td>
</tr>
<tr>
<td>AMLR EEUU</td>
<td>Subárea 48.1</td>
<td>1988–a la fecha</td>
<td>Lipsky et al., 2007</td>
</tr>
<tr>
<td>SO-GLOBEC EEUU</td>
<td>Subárea 48.1</td>
<td>2001–2006</td>
<td>Hofmann et al., 2004</td>
</tr>
<tr>
<td>LTER EEUU</td>
<td>Subárea 48.1</td>
<td>1991–2007</td>
<td></td>
</tr>
<tr>
<td>BAS</td>
<td>Subárea 48.3</td>
<td>1981–a la fecha</td>
<td></td>
</tr>
</tbody>
</table>

* Prospección propuesta para 2009
Tabla 2: Resumen de la información disponible sobre el kril.

a) Distribución: S – existe información; N – no existe información.

<table>
<thead>
<tr>
<th>Subárea/ división de la CCRVMA</th>
<th>Abundancia total</th>
<th>Tendencias en la abundancia</th>
<th>Abundancia relativa</th>
<th>Historia de la captura</th>
<th>Correlatos medio-ambientales</th>
<th>Ciclo vital</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. superba</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.1</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>48.2</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>48.3</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>48.4</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>48.6**</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>58.4.1</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>+</td>
<td>S</td>
</tr>
<tr>
<td>58.4.2</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>88.1</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>S*</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

E. crystallorophias

48.1	N	S	N	N	S	S
48.2	N	N	N	N	S	S
48.3	N	N	N	N	S	S
48.4	N	N	N	N	S	S
48.6	N	N	N	N	S	S
58.4.1	N	N	N	N	S	S
58.4.2	N	N	N	N	S	S
88.1	N	N	S	S+	S	S

T. macrura

48.1	N	N	N	N	S	S
48.2	N	N	N	N	S	S
48.3	N	N	N	N	S	S
48.4	N	N	N	N	S	S
48.6	N	N	S	N	S	S
58.4.1	N	N	N	N	S	S
58.4.2	N	N	N	N	S	S
88.1	N	N	S	N	N	N

* Existen resultados no estándar de prospecciones acústicas y con redes.
** Sólo se dispone de datos de prospecciones con redes.
+ Se dispone de datos previos a la década de los 90.

b) Consideraciones sobre el hábitat para las tres especies principales de kril. S – se ha informado sobre algunas relaciones; N – no se ha establecido ninguna relación; ? – se han indicado relaciones variables.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Borde continental</th>
<th>ZFP</th>
<th>Otras zonas frontales (SBACC, SACCF, corriente de gradiente)</th>
<th>Temperatura del agua</th>
<th>Zona de profundidad</th>
<th>Cl-a</th>
<th>Geografía (bahías, grupos de islas)</th>
<th>Estructura de la masa de agua</th>
<th>Hielo marino</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. superba</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>?</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>E. crystallorophias</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>T. macrura</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>
Tabla 3: Resumen de los datos del zooplancton disponibles.

<table>
<thead>
<tr>
<th>Subárea/división de la CCRVMA</th>
<th>Abundancia</th>
<th>Tendencias</th>
<th>Ciclo vital</th>
<th>Correlaciones</th>
<th>Seguimiento por >10 años</th>
<th>Abundancia</th>
<th>Tendencias</th>
<th>Ciclo vital</th>
<th>Correlaciones</th>
<th>Seguimiento por >10 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copépodos grandes (>2 mm)</td>
<td></td>
</tr>
<tr>
<td>48.1</td>
<td>S</td>
</tr>
<tr>
<td>48.2</td>
<td>S</td>
</tr>
<tr>
<td>48.3</td>
<td>S</td>
</tr>
<tr>
<td>48.4</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.5</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.6</td>
<td>S</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>58.4</td>
<td>S</td>
<td>?</td>
<td>C</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>C</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>58.5</td>
<td>S</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>58.6</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.7</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.1</td>
<td>S</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>88.2</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.3</td>
<td>S</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Salpas</td>
<td>T. gaudichaudii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>48.2</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.3</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.4</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.5</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.6</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.4</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.5</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.6</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.7</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.1</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.2</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.3</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomasa de mesozooplancton</td>
<td></td>
</tr>
<tr>
<td>48.1</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.2</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.3</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.4</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.5</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.6</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.4</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.5</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.6</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.7</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.1</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.2</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.3</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continúa)
Tabla 3 (continuación)

b) Factores medioambientales que afectan la distribución de salpas y del anfípodo *Themisto gaudichaudii*. Los copépodos grandes comprenden cinco especies, la mayoría con hábitats bastante bien conocidos (es decir, factores que afectan la distribución). - – Ningún efecto importante; ? – Insuficientes datos para determinar si hay algún efecto.

<table>
<thead>
<tr>
<th>Taxón</th>
<th>Distancia desde el borde continental</th>
<th>Profundidad</th>
<th>Hielo marino</th>
<th>Frentes</th>
<th>Temperatura</th>
<th>Cl-α</th>
<th>Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salpas</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td></td>
<td>Sí</td>
<td>Sí</td>
<td>(prefiere Cl-α moderada)</td>
</tr>
<tr>
<td>T. gaudichaudii</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>-</td>
<td>Sí</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copépodos grandes</td>
<td>-</td>
<td>-</td>
<td>?</td>
<td>-</td>
<td>Sí</td>
<td>Sí</td>
<td>?</td>
</tr>
<tr>
<td>Copépodos pequeños</td>
<td>-</td>
<td>-</td>
<td>?</td>
<td>-</td>
<td>Sí</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

c) Dieta y tasas de alimentación (fuente: Sección 5 y Tablas 6 y 7 de CCAMLR-IWC-SC-08/12).

<table>
<thead>
<tr>
<th>Taxón</th>
<th>Dieta (y variabilidad)</th>
<th>Tasa de alimentación (y variabilidad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. superba</td>
<td>Sí, no hay información sobre variación</td>
<td></td>
</tr>
<tr>
<td>T. macrura</td>
<td>Sí, pero insuficiente información sobre variación</td>
<td>-</td>
</tr>
<tr>
<td>E. crystallorophias</td>
<td>Sí, pero insuficiente información sobre variación</td>
<td>-</td>
</tr>
<tr>
<td>Salpas</td>
<td>Sí</td>
<td>Limitada, datos sobre variación sólo en relación a la talla</td>
</tr>
<tr>
<td>T. gaudichaudii</td>
<td>Sí, pero insuficiente información sobre variación</td>
<td>Limitada, no hay información sobre variación</td>
</tr>
<tr>
<td>Copépodos grandes</td>
<td>Sí</td>
<td>Limitada, no hay información sobre variación</td>
</tr>
<tr>
<td>Copépodos pequeños</td>
<td>Sí</td>
<td>Limitada, no hay información sobre variación</td>
</tr>
</tbody>
</table>
Tabla 4: Resumen de los datos existentes sobre el calamar. Las referencias aparecen al final del texto del informe.

(a) Relaciones entre las especies de calamar y diversas covariables.

<table>
<thead>
<tr>
<th>Familia</th>
<th>Especie</th>
<th>Distribución geográfica</th>
<th>Fuentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onychoteuthidae</td>
<td>Kondakovia longimana (Filippova, 1972)</td>
<td>Circumpolar antártica</td>
<td>Filippova, 1972; Lu y Williams, 1994; Vacchi et al., 1994; Lynnes y Rodhouse, 2002</td>
</tr>
<tr>
<td></td>
<td>Moroteuthis ingens (Smith, 1881)</td>
<td>Circumpolar subantártica</td>
<td>Massy, 1916; Filippova, 1972; Filippova y Yukhov, 1979; Alexeyev, 1994</td>
</tr>
<tr>
<td></td>
<td>Moroteuthis knipovitchi (Filippova, 1972)</td>
<td>Circumpolar antártica</td>
<td>Filippova, 1972; Filippova y Yukhov, 1979; Rodhouse, 1989; Piatkowski et al., 1994</td>
</tr>
<tr>
<td></td>
<td>Notonykia atricanae (Nesis et al., 1998)</td>
<td>Subantártica</td>
<td>Nesis et al., 1998b</td>
</tr>
<tr>
<td>Gonatidae</td>
<td>Gonatus antarcticus (Lönnberg, 1898)</td>
<td>Circumpolar subantártica</td>
<td>Kubodera y Okutani, 1986; Rodhouse et al., 1996; Nesis, 1999; Anderson y Rodhouse, 2002</td>
</tr>
<tr>
<td>Histioteuthidae</td>
<td>Histiotethus atlantica (Hoyle, 1885)</td>
<td>Subantártica</td>
<td>Kubodera, 1989; Alexeyev, 1994</td>
</tr>
<tr>
<td></td>
<td>Histiotethus eltaninae (Voss, 1969)</td>
<td>Circumpolar subantártica</td>
<td>Lu y Mangold, 1978; Alexeyev, 1994; Piatkowski et al., 1994; Rodhouse et al., 1996</td>
</tr>
<tr>
<td>Batoteuthidae</td>
<td>Batoteuthis skolops (Young y Roper, 1968)</td>
<td>Circumpolar antártica</td>
<td>Young, 1968; Filippova y Yukhov, 1979; Rodhouse et al., 1992b; Rodhouse et al., 1996; Anderson y Rodhouse, 2002; Collins et al., 2004</td>
</tr>
<tr>
<td>Psychroteuthidae</td>
<td>Psychroteuthis glacialis (Thiele, 1920)</td>
<td>Circumpolar antártica</td>
<td>Filippova, 1972; Filippova y Yukhov, 1979; Kubodera, 1989; Rodhouse, 1989; Piatkowski et al., 1990, 1994, 1998; Lu y Williams, 1994; Anderson y Rodhouse, 2002; Collins et al., 2004</td>
</tr>
<tr>
<td>Neoteuthidae</td>
<td>Alluroteuthis antarcticus (Odhner, 1923)</td>
<td>Circumpolar antártica</td>
<td>Odhner, 1923; Dell, 1959; Filippova y Yukhov, 1979; Filippova y Yukhov, 1982; Kubodera, 1989; Rodhouse, 1988; Anderson y Rodhouse, 2002</td>
</tr>
<tr>
<td>Bathyteuthidae</td>
<td>Bathyteuthis abyssicola (Hoyle, 1885)</td>
<td>Circumpolar antártica</td>
<td>Hoyle, 1886, 1912; Odhner, 1923; Roper, 1969; Lu y Mangold, 1978; Lu y Williams, 1994; Rodhouse et al., 1996</td>
</tr>
<tr>
<td>Brachioteuthidae</td>
<td>Slosarczykovia circumantarctica (Lipinski, 2001)</td>
<td>Circumpolar antártica</td>
<td>Kubodera, 1989; Lipinski, 2001; Rodhouse, 1989; Rodhouse et al., 1996; Piatkowski et al., 1994; Anderson y Rodhouse, 2002; Collins et al., 2004</td>
</tr>
<tr>
<td></td>
<td>Brachioteuthis linkovski (Lipinski, 2001)</td>
<td>Subantártica ocasional</td>
<td>Lipinski, 2001; Cherel et al., 2004</td>
</tr>
</tbody>
</table>

(continúa)
Tabla 4(a) (continuación)

<table>
<thead>
<tr>
<th>Familia</th>
<th>Especie</th>
<th>Distribución geográfica</th>
<th>Fuentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ommastrephidae</td>
<td>Martialia hyadesi (Rochebrune y Mabille, 1887)</td>
<td>Circumpolar subantártica</td>
<td>O’Sullivan et al., 1983; Rodhouse y Yeatman, 1990; Rodhouse, 1991; Piatkowski et al., 1991; Uozomi et al., 1991; Alexeyev, 1994; Rodhouse et al., 1996; González y Rodhouse, 1998; Anderson y Rodhouse, 2001</td>
</tr>
<tr>
<td></td>
<td>Todarodes filippovae (Adam, 1975)</td>
<td>Circumpolar subantártica</td>
<td>Piatkowski et al., 1991; Dunning, 1993; Alexeyev, 1994</td>
</tr>
<tr>
<td>Chiroteuthidae</td>
<td>Chiroteuthis veranyi (Ferussac, 1825)</td>
<td>Subantártica ocasional</td>
<td>Alexeyev, 1994; Rodhouse y Lu, 1998</td>
</tr>
<tr>
<td>Mastigoteuthidae</td>
<td>Mastigoteuthis psychrophila (Nesis, 1977)</td>
<td>Circumpolar antártica</td>
<td>Jackson y Lu, 1994; Lu y Williams, 1994; Piatkowski et al., 1994; Rodhouse et al., 1996; Cherel et al., 2004</td>
</tr>
<tr>
<td>Cranchiidae</td>
<td>Galiteuthis glacialis (Chun, 1906)</td>
<td>Circumpolar antártica</td>
<td>Chun, 1910; Dell, 1959; Filippova, 1972; Lu y Mangold, 1978; McSweeney, 1978; Kubodera y Okutani, 1986; Rodhouse y Clarke, 1986; Rodhouse, 1989; Lu y Williams, 1994; Piatkowski y Hagen, 1994; Rodhouse et al., 1996; Nesis et al., 1998a; Piatkowski et al., 1998; Anderson y Rodhouse, 2002</td>
</tr>
<tr>
<td></td>
<td>Taonius sp. (cf. pavo)</td>
<td>Subantártica ocasional</td>
<td>Rodhouse, 1990b</td>
</tr>
<tr>
<td></td>
<td>Mesonychoteuthis hamiltoni (Robson, 1925)</td>
<td>Circumpolar antártica</td>
<td>McSweeney, 1970; Filippova y Yukhov, 1979; Rodhouse y Clarke, 1985</td>
</tr>
<tr>
<td>Lepidoteuthidae</td>
<td>Pholidoteuthis boschmai (Adam, 1950)</td>
<td>Mar de Escocia</td>
<td>Nemoto et al., 1985; Offredo et al., 1985</td>
</tr>
</tbody>
</table>

b) Información sobre la dieta

<table>
<thead>
<tr>
<th>Especie/lugar</th>
<th>Talla (mm)</th>
<th>Tipos de presa</th>
<th>Especies presa principales</th>
<th>Fuente</th>
<th>Métodos de recopilación de datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plataforma Patagónica</td>
<td>190–350</td>
<td>Mictófidos, eufásidos, antipodóidos, cefalópodos</td>
<td>K. anderssoni, G. nicholsi, Themisto gaudichaudii, Martialia hyadesi</td>
<td>Gonzalez et al., 1997</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>Plataforma Patagónica</td>
<td>220–370</td>
<td>Mictófidos, eufásidos, antipodóidos, cefalópodos</td>
<td>Protomyctophum tensioni, G. nicholsi, M. hyadesi</td>
<td>Ivanovic et al., 1998</td>
<td>Visual/contenido estomacal</td>
</tr>
</tbody>
</table>

(continúa)
<table>
<thead>
<tr>
<th>Especie/lugar</th>
<th>Talla (mm)</th>
<th>Tipos de presa</th>
<th>Especies presa principales</th>
<th>Fuente</th>
<th>Métodos de recopilación de datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Georgia del Sur</td>
<td>225–312 ((n = 40))</td>
<td>Anfípodos, peces mictófidos, y cefalópodos</td>
<td>T. gaudichaudii, K. anderssoni, P. choriodon</td>
<td>Dickson et al., 2004</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>Moroteuthis ingens</td>
<td>264–445 ((n = 37))</td>
<td>Principalmente peces >90%, 9% calamar</td>
<td>Stomias boa/Chauliodus sloani, Lampanyctodes hectoris</td>
<td>Jackson et al., 1998</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>Nueva Zelandia</td>
<td>150–432 ((n = 54))</td>
<td>96% peces mictófidos, Bathylagus</td>
<td>Electrona spp., Gymnoscopelus spp., P. bolini, K. anderssoni</td>
<td>Phillips et al., 2001</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>Macquarie y Heard</td>
<td>200–500 ((n = 316))</td>
<td>Principalmente peces mictófidos</td>
<td>L. hectoris, E. carlsbergi</td>
<td>Phillips et al., 2003a</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>Plataforma Patagónica</td>
<td>75–375 ((n = 100))</td>
<td>Crustáceos, mictófidos, cafalópodos</td>
<td>G. nicholsi, Loligo gahi, Moroteutis ingens</td>
<td>Phillips et al., 2003b</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>Shetland del Sur</td>
<td>60–360 ((n = 121))</td>
<td>Krii</td>
<td>E. superba</td>
<td>Nemoto et al., 1988</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>Kergüelén</td>
<td>112–286 ((n = 72))</td>
<td>Principalmente peces; calamar y crustáceos</td>
<td>Arctozenus risso, Paradiplospinosus gracilis, M. ingens</td>
<td>Cherel y Duhamel, 2003</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>Kondakovia longimana</td>
<td>60–360 ((n = 121))</td>
<td>Macroplancton</td>
<td>E. superba, T. gaudichaudii, T. macrura, anfipodos, quetognatos, peces, calamar</td>
<td>Nemoto et al., 1985, 1988</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>Moroteuthis knipovitchi</td>
<td>140–360 ((n = 23))</td>
<td>Kriil, peces</td>
<td>Mictófidos, E. superba</td>
<td>Nemoto et al., 1985, 1988</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>Georgia del Sur</td>
<td>212–321 ((n = 8))</td>
<td>Kriil, peces</td>
<td>E. superba, G. nicholsi</td>
<td>Collins et al., 2004</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>Moroteuthis robsoni</td>
<td>60–100 ((n = 5))</td>
<td>Eufásidos</td>
<td>E. superba</td>
<td>Nemoto et al., 1988</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>Alluroteuthis antarcticus</td>
<td>40–140 ((n = 7))</td>
<td>Macroplancton</td>
<td>E. superba, T. gaudichaudii, peces, calamar</td>
<td>Nemoto et al., 1985, 1988</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>Mar de Escocia</td>
<td>221 ((n = 1))</td>
<td>Eufásidos, peces</td>
<td>E. superba</td>
<td>Kear, 1992</td>
<td>Visual/contenido estomacal</td>
</tr>
</tbody>
</table>
Tabla 4(b) (continuación)

<table>
<thead>
<tr>
<th>Especies/lugar</th>
<th>Talla (mm)</th>
<th>Tipos de presa</th>
<th>Especies presa principales</th>
<th>Fuente</th>
<th>Métodos de recopilación de datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahía de Prydz</td>
<td>(n = 2)</td>
<td>Calamar, peces</td>
<td>Psychroteuthis glacialis, Pleuragramma</td>
<td>Lu y Williams, 1994</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>Shetland del Sur</td>
<td>(n = 19)</td>
<td>Macroplancton</td>
<td>Eufásidos, anfípodos, copépodos y quelognatos</td>
<td>McSweeney, 1978</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>Bahía de Prydz</td>
<td>74–493</td>
<td>Crustáceos, peces</td>
<td>E. superba</td>
<td>Lu y Williams, 1994</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>(n = 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slosarczykovia circumantarctica</td>
<td>40–160</td>
<td>Kril</td>
<td>E. superba</td>
<td>Nemoto et al., 1985, 1988</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>Shetland del Sur</td>
<td>(n = 75)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar de Escocia</td>
<td>67–113</td>
<td>Crustáceos</td>
<td></td>
<td>Kear, 1992</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>(n = 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonatus antarcticus</td>
<td>40–160</td>
<td>Kril</td>
<td>E. superba</td>
<td>Nemoto et al., 1988</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>Shetland del Sur</td>
<td>(n = 48)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar de Escocia</td>
<td>57–375</td>
<td>Peces no identificados</td>
<td></td>
<td>Kear, 1992</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>(n = 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychroteuthis glacialis</td>
<td>114–360</td>
<td>Eufásidos, peces</td>
<td>E. superba, Chionodraco, Chaenodraco</td>
<td>Kear, 1992</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>Mar de Escocia</td>
<td>(n = 13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgia del Sur</td>
<td>121–201</td>
<td>Kril y peces</td>
<td>Pleuragramma, E. superba</td>
<td>Lu y Williams, 1994</td>
<td>Visual/contenido estomacal</td>
</tr>
<tr>
<td>(n = 53)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahía de Prydz</td>
<td>(n = 4)</td>
<td>Kril</td>
<td>E. superba</td>
<td>Collins et al., 2004</td>
<td>Visual/contenido estomacal</td>
</tr>
</tbody>
</table>
Tabla 5: Resumen de los datos disponibles sobre peces. Sólo se incluyen filas si la especie de interés se encuentra en la subárea/división. S – existen datos; P – hay pocos datos; N – no se dispone de datos.

<table>
<thead>
<tr>
<th>Subárea/división de la CCRVMA</th>
<th>Abundancia relativa</th>
<th>Tendencias en la abundancia relativa</th>
<th>Historia de la captura</th>
<th>Hábitat</th>
<th>Ciclo de vida</th>
<th>Cantidad composición del alimento</th>
<th>Consumo diario de alimento</th>
<th>Medio ambiente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notothenia rossii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.3</td>
<td>S</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>P</td>
</tr>
<tr>
<td>48.2</td>
<td>N</td>
<td>P</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>48.1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>48.4 y 48.6</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.5.1</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.5.2</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.4.4</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Champsocephalus gunnari</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>48.2</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>48.1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>P</td>
</tr>
<tr>
<td>48.4 y 48.6</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.5.1</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>58.5.2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>Gobionotothen gibberifrons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
</tr>
<tr>
<td>48.2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>48.1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>P</td>
</tr>
<tr>
<td>48.4 y 48.6</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Chaenocephalus aceratus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>P</td>
</tr>
<tr>
<td>48.2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>48.1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>P</td>
</tr>
<tr>
<td>48.4 y 48.6</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Pseudochaenichthys georgianus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>P</td>
</tr>
<tr>
<td>48.2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>48.1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>P</td>
</tr>
<tr>
<td>48.4 y 48.6</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

(continúa)
<table>
<thead>
<tr>
<th>Subárea/división de la CCRVMA</th>
<th>Abundancia relativa</th>
<th>Tendencias en la abundancia relativa</th>
<th>Historia de la captura</th>
<th>Hábitat</th>
<th>Ciclo de vida</th>
<th>Cantidad composición del alimento</th>
<th>Consumo diario de alimento</th>
<th>Medio ambiente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepidonotothen larseni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.3</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>P</td>
</tr>
<tr>
<td>48.2</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>48.1</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>P</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>P</td>
</tr>
<tr>
<td>48.4 y 48.6</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.6 y 58.7</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.5.1</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.5.2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.4.4</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
</tr>
<tr>
<td>Lepidonotothen squammifrons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>48.2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>48.1</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>48.4 y 48.6</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.6 y 58.7</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.5.1</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.5.2</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.4.4</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>88.1 y 88.2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Dissostichus eleginoides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.3</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>48.2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>48.1</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>48.4 y 48.6</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.6 y 58.7</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.5.1</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.5.2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.4.4</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.4.3</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.4.2</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.4.1</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

(continúa)
<table>
<thead>
<tr>
<th>Subárea/división de la CCRVMA</th>
<th>Abundancia relativa</th>
<th>Tendencia de la abundancia relativa</th>
<th>Historia de la captura</th>
<th>Hábitat</th>
<th>Ciclo de vida</th>
<th>Cantidad composición del alimento</th>
<th>Consumo diario de alimento</th>
<th>Medio ambiente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissostichus mawsoni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.2</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>48.1</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>N</td>
</tr>
<tr>
<td>48.4 y 48.6</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>parte sur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.4.3</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.4.2</td>
<td>N</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>58.4.1</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>88.1 y 88.2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>S</td>
</tr>
</tbody>
</table>
Tabla 6: Lista revisada de especies de pingüinos y aves voladoras que se deberá tener en consideración en la labor futura. El examen futuro de los individuos visitantes debe tomar en cuenta la dificultad de determinar la época y la distribución de la visita. No se incluyen vagabundas.

<table>
<thead>
<tr>
<th>Reproductoras</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aptenodytes forsteri</td>
<td>Pingüino emperador</td>
</tr>
<tr>
<td>Aptenodytes patagonicus</td>
<td>Pingüino rey</td>
</tr>
<tr>
<td>Pygoscelis papua</td>
<td>Pingüino papúa</td>
</tr>
<tr>
<td>Pygoscelis adeliae</td>
<td>Pingüino adelia</td>
</tr>
<tr>
<td>Pygoscelis antarctica</td>
<td>Pingüino de barbijo</td>
</tr>
<tr>
<td>Eudyptes chrysolophus</td>
<td>Pingüino macaroni</td>
</tr>
<tr>
<td>Diomedea exulans</td>
<td>Albatros errante</td>
</tr>
<tr>
<td>Thalassarche melanophrys</td>
<td>Albatros de ceja negra</td>
</tr>
<tr>
<td>Thalassarche chrysostoma</td>
<td>Albatros cabeza gris</td>
</tr>
<tr>
<td>Phoebetria palpebrata</td>
<td>Albatros oscuro de manto claro</td>
</tr>
<tr>
<td>Macronectes giganteus</td>
<td>Petrel gigante antártico</td>
</tr>
<tr>
<td>Macronectes halli</td>
<td>Petrel de Hall</td>
</tr>
<tr>
<td>Catharacta lommborgi</td>
<td>Skúa pardo</td>
</tr>
<tr>
<td>Catharacta macormicki</td>
<td>Skúa polar</td>
</tr>
<tr>
<td>Larus dominicanus</td>
<td>Gaviota dominicana</td>
</tr>
<tr>
<td>Fulmarus glacialoides</td>
<td>Fulmar austral</td>
</tr>
<tr>
<td>Thalassoica antarctica</td>
<td>Petrel antártico</td>
</tr>
<tr>
<td>Daption capense</td>
<td>Petrel damero</td>
</tr>
<tr>
<td>Pagodroma nivea</td>
<td>Petrel de las nieves</td>
</tr>
<tr>
<td>Procellaria aequinoctialis</td>
<td>Petrel de mentón blanco</td>
</tr>
<tr>
<td>Sterna vittata</td>
<td>Gaviotín antártico</td>
</tr>
<tr>
<td>Halobaena caerulea</td>
<td>Petrel azulado</td>
</tr>
<tr>
<td>Pachyptila desolata</td>
<td>Pato petrel antártico</td>
</tr>
<tr>
<td>Pachyptila crasirostris</td>
<td>Pato petrel picogrueso</td>
</tr>
<tr>
<td>Oceanites oceanicus</td>
<td>Petrel de Wilson</td>
</tr>
<tr>
<td>Fregetta tropica</td>
<td>Petrel de las tormentas de vientre</td>
</tr>
<tr>
<td></td>
<td>negroy</td>
</tr>
<tr>
<td>Pelecanoides georgicus</td>
<td>Potoyunco de Georgia</td>
</tr>
<tr>
<td>Pelecanoides urinatrix</td>
<td>Petrel buceador</td>
</tr>
<tr>
<td>Phalacrocorax atriceps</td>
<td>Cormorán de ojos azules</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visitantes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diomedea sanfordi</td>
<td>Albatros real del norte</td>
</tr>
<tr>
<td>Diomedea epomophora</td>
<td>Albatros real del sur</td>
</tr>
<tr>
<td>Thalassarche impavida</td>
<td>Albatros de Campbell</td>
</tr>
<tr>
<td>Pterodroma brevirostris</td>
<td>Petrel de Kerguelén</td>
</tr>
<tr>
<td>Pterodroma inexpectata</td>
<td>Petrel moteado</td>
</tr>
<tr>
<td>Pterodroma lessonii</td>
<td>Petrel cabeciblanco</td>
</tr>
<tr>
<td>Pterodroma mollis</td>
<td>Petrel suave</td>
</tr>
<tr>
<td>Pachyptila belcheri</td>
<td>Pato petrel picofino</td>
</tr>
<tr>
<td>Puffinus griseus</td>
<td>Pardela sombría</td>
</tr>
<tr>
<td>Puffinus temairostris</td>
<td>Pardela de Tasmania</td>
</tr>
</tbody>
</table>
Tabla 7: Resumen de la disponibilidad de datos de la abundancia y tendencias de la foca cangrejera. PA –Península Antártica; S – Sí; N – no; - – no se aplica; 1999/2000 – verano austral; R – reproductor; NR – no reproductor.

<table>
<thead>
<tr>
<th>Foca cangrejera</th>
<th>Mar de Ross</th>
<th>Mar de Amundsen</th>
<th>PA Mar de Escocia</th>
<th>Mar de Weddell</th>
<th>Antártica Oriental</th>
<th>Islas subantárticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Existe una estimación de la población?</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>-</td>
</tr>
<tr>
<td>Confianza/incertidumbre en la estimación</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>-</td>
</tr>
<tr>
<td>¿Existen datos de las tendencias (población u otros parámetros)?</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>Confianza/incertidumbre en la tendencia</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>Número de sitios (cobertura espacial del esfuerzo de recuento)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Componente de la población estimado (R, NR, Todos)</td>
<td>Todos</td>
<td>Todos</td>
<td>Todos</td>
<td>-</td>
<td>Todos</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla 8: Resumen de la disponibilidad de datos de la abundancia y tendencias de la foca de Ross. PA –Península Antártica; S – Sí; N – no; - – no se aplica; 1999/2000 – verano austral; R – reproductor; NR – no reproductor.

<table>
<thead>
<tr>
<th>Foca de Ross</th>
<th>Mar de Ross</th>
<th>Mar de Amundsen</th>
<th>PA Mar de Escocia</th>
<th>Mar de Weddell</th>
<th>Antártica Oriental</th>
<th>Islas subantárticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Existe una estimación de la población?</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>-</td>
</tr>
<tr>
<td>Confianza/incertidumbre en la estimación</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>-</td>
</tr>
<tr>
<td>¿Existen datos de las tendencias (población u otros parámetros)?</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>Confianza/incertidumbre en la tendencia</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>Número de sitios (cobertura espacial del esfuerzo de recuento)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Componente de la población estimado (R, NR, Todos)</td>
<td>Todos</td>
<td>Todos</td>
<td>Todos</td>
<td>-</td>
<td>Todos</td>
<td>-</td>
</tr>
</tbody>
</table>
Tabla 9: Resumen de la disponibilidad de datos de la abundancia y tendencias de la foca leopardo.

<table>
<thead>
<tr>
<th>Foca leopardo</th>
<th>Mar de Ross</th>
<th>Mar de Amundsen</th>
<th>PA Mar de Escocia</th>
<th>Mar de Weddell</th>
<th>Antártica Oriental</th>
<th>Islas subantárticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Existe una estimación de la población?</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>-</td>
</tr>
<tr>
<td>Confianza/incertidumbre en la estimación</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>-</td>
</tr>
<tr>
<td>¿Existen datos de las tendencias (población u otros parámetros)?</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>Confianza/incertidumbre en la tendencia</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>Número de sitios (cobertura espacial del esfuerzo de recuento)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Componente de la población estimado (R, NR, Todos)</td>
<td>Todos</td>
<td>Todos</td>
<td>Todos</td>
<td>-</td>
<td>Todos</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla 10: Resumen de la disponibilidad de datos de la abundancia y tendencias de la foca de Weddell.

<table>
<thead>
<tr>
<th>Foca de Weddell</th>
<th>Mar de Ross</th>
<th>Mar de Amundsen</th>
<th>AP Mar de Escocia</th>
<th>Mar de Weddell</th>
<th>Antártica Oriental</th>
<th>Islas subantárticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Existe una estimación de la población?</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>Confianza/incertidumbre en la estimación</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>¿Existen datos de las tendencias (población u otros parámetros)?</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>Confianza/incertidumbre en la tendencia</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>Número de sitios (cobertura espacial del esfuerzo de recuento)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Componente de la población estimado (R, NR, Todos)</td>
<td>Todos</td>
<td>Todos</td>
<td>Todos</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Tabla 11: Comparación entre prospección y marcado como métodos para determinar la distribución de animales marinos.

<table>
<thead>
<tr>
<th>Medición de la distribución y abundancia de los animales</th>
<th>Prospección</th>
<th>Marcas electrónicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventajas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se pueden muestrear especies difíciles de estudiar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datos del medio ambiente</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medio ambiente físico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTD, clorofila</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventajas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Series cronológicas extensas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comportamiento del animal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comportamiento de buceo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desplazamiento del animal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zona de distribución normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilización de su hábitat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datos del medio ambiente</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medio ambiente físico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTD, clorofila</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desventajas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observación instantánea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sólo se sabe sobre el área estudiada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medida sesgada del ámbito de distribución</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sesgo de la muestra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comportamiento del animal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desventajas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hay que poder marcar el animal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No se puede obtener una medida directa de la abundancia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los datos del medio ambiente y el hábitat se relacionan principalmente al lugar donde ha estado el animal. Se necesitan otros datos para identificar los atributos medioambientales de los lugares donde el animal no estuvo el tiempo suficiente para poder estimar dichos atributos</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 12: Plantilla para el resumen de la utilización del hábitat.

<table>
<thead>
<tr>
<th></th>
<th>Verano</th>
<th>Otoño</th>
<th>Invierno</th>
<th>Primavera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Especie 1</td>
<td>Distribución horizontal</td>
<td>Distribución vertical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Especie 2</td>
<td>Distribución horizontal</td>
<td>Distribución vertical</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Categorías temporales:
- Verano (21 dic–20 mar)
- Otoño (21 mar–20 jun)
- Invierno (21 jun–20 sep)
- Primavera (21 sep–20 dic)

Categorías de la distribución horizontal:
- Zonal Frontal Polar (ZFP)
- Zona de Hielo Marginal (ZHM)
- Banquisa interior anual (BIA)
- Banquisa interior permanente (BIP)
- Hielo fijo (HF)
- Polinía costera (PC)
- Borde de la plataforma continental (BPC)
- Plataforma continental (PC)
- Plataforma continental (PC)
Tabla 13: Plantilla para el resumen de la dieta.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Focas cangrejeras</td>
<td>S</td>
<td>R, H</td>
<td>-/S/-/-/S/-</td>
<td>-/1,3/-/-/2,3,4/-</td>
</tr>
<tr>
<td>Petrel-paloma antártico</td>
<td>S</td>
<td>R</td>
<td>-/-/S/-/-/S</td>
<td>-/-2/-/-/2</td>
</tr>
</tbody>
</table>

Tabla 14: Plantilla para el resumen del ciclo vital. Donde corresponda, sería sumamente útil contar con información sobre intervalos de confianza en base a estimaciones puntuales, posibles sesgos y variabilidad interanual.

<table>
<thead>
<tr>
<th>Por especie</th>
<th>Estimación o descripción del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad en la primera reproducción</td>
<td></td>
</tr>
<tr>
<td>Frecuencia de la reproducción</td>
<td></td>
</tr>
<tr>
<td>Supervivencia de juveniles</td>
<td></td>
</tr>
<tr>
<td>Supervivencia de adultos</td>
<td></td>
</tr>
<tr>
<td>Tamaño máximo de la nidada</td>
<td></td>
</tr>
<tr>
<td>Temporada de reproducción: fecha</td>
<td></td>
</tr>
<tr>
<td>Temporada de reproducción: duración</td>
<td></td>
</tr>
<tr>
<td>Muda (continua o diferenciada)</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 15: Matriz para el acondicionamiento de la dinámica poblacional de cetáceos. Hay datos de campo con anotaciones (presentados en el informe de los expertos) con los cuales debe corresponder todo modelo – estos datos podrían utilizarse para construir o convalidar el modelo. N – no se dispone de datos actualmente. Las referencias figuran al final del texto del informe.

<table>
<thead>
<tr>
<th>Especies/población</th>
<th>Estimaciones de la población reproductora</th>
<th>Observaciones instantáneas regionales de la abundancia en aguas antárticas</th>
<th>Tendencias en las estimaciones regionales de la abundancia</th>
<th>Algunos datos sobre límites poblacionales en regiones estudiadas de la Antártida</th>
<th>Historial a largo plazo de capturas substanciales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abundancia total</td>
<td>Tendencia en la abundancia total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ballena jorobada (A)</td>
<td>Tabla 2<sup>2</sup></td>
<td>Tabla 3<sup>1</sup></td>
<td>Tabla 2<sup>3</sup></td>
<td>Tabla 1<sup>2</sup></td>
<td>Tablas 4, 5<sup>2</sup></td>
</tr>
<tr>
<td>Ballena jorobada (B)</td>
<td>Tabla 2<sup>2</sup></td>
<td>Tabla 3<sup>3</sup></td>
<td>Tabla 2<sup>2</sup></td>
<td>Tabla 1<sup>1</sup></td>
<td>Tablas 4, 5<sup>3</sup></td>
</tr>
<tr>
<td>Ballena jorobada (C)</td>
<td>Tabla 2<sup>2</sup></td>
<td>Tabla 3<sup>1</sup></td>
<td>Tabla 2<sup>2</sup></td>
<td>Tabla 1<sup>2</sup></td>
<td>Tablas 4, 5<sup>2</sup></td>
</tr>
<tr>
<td>Ballena jorobada (D)</td>
<td>Tabla 2<sup>2</sup></td>
<td>Tabla 3<sup>3</sup></td>
<td>Tabla 2<sup>2</sup></td>
<td>Tabla 1<sup>1</sup></td>
<td>Tablas 4, 5<sup>3</sup></td>
</tr>
<tr>
<td>Ballena jorobada (E)</td>
<td>Tabla 2<sup>2</sup></td>
<td>Tabla 3<sup>2</sup></td>
<td>Tabla 2<sup>2</sup></td>
<td>Tabla 1<sup>2</sup></td>
<td>Tablas 4, 5<sup>2</sup></td>
</tr>
<tr>
<td>Ballena jorobada (F)</td>
<td>Tabla 2<sup>2</sup></td>
<td>Tabla 3<sup>3</sup></td>
<td>Tabla 2<sup>2</sup></td>
<td>Tabla 1<sup>1</sup></td>
<td>Tablas 4, 5<sup>2</sup></td>
</tr>
<tr>
<td>Ballena jorobada (G)</td>
<td>Tabla 2<sup>2</sup></td>
<td>Tabla 3<sup>1</sup></td>
<td>Tabla 2<sup>2</sup></td>
<td>Tabla 1<sup>2</sup></td>
<td>Tablas 4, 5<sup>2</sup></td>
</tr>
<tr>
<td>Ballena azul</td>
<td>Tabla 6<sup>1</sup></td>
<td>Branch et al., 2004</td>
<td>Tabla 6<sup>2</sup></td>
<td>Matsuoka et al., 2006</td>
<td>N</td>
</tr>
<tr>
<td>Rorcual común</td>
<td>N</td>
<td>N</td>
<td>Tabla 8<sup>1</sup></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Rorcual del norte</td>
<td>N</td>
<td>N</td>
<td>Tabla 8<sup>2</sup></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Rorcual aliblanco</td>
<td>Tablas 13, 14<sup>2,3</sup></td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Ballena franca austral (Sudamérica Oriental)</td>
<td>Cooke et al., 2001</td>
<td>Cooke et al., 2001</td>
<td>Hedley et al., 2001</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Ballena franca austral (Australia/NZ)</td>
<td>Bannister, 2008</td>
<td>Bannister, 2008</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Ballena franca austral (Sudáfrica)</td>
<td>Best et al., 2006</td>
<td>Best et al., 2006</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Ballena franca austral (Sudamérica Occidental)</td>
<td>IUCN, 2008</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Cachalote</td>
<td>N</td>
<td>N</td>
<td>Tabla 1<sup>4</sup></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Delfín nariz de botella austral</td>
<td>N</td>
<td>N</td>
<td>Tabla 1<sup>4</sup></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Orca</td>
<td>Tabla 1<sup>4</sup></td>
<td>N</td>
<td>Tabla 1<sup>4</sup></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Delfín cruzado</td>
<td>N</td>
<td>N</td>
<td>Tabla 1<sup>4</sup></td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

1 Véase CCAMLR-IWC-WS-08/4, Tabla 1
2 Véase CCAMLR-IWC-WS-08/4
3 La IWC se encuentra actualmente finalizando un estudio detallado del estado del rorcual aliblanco. Actualmente, no existen estimaciones acordadas.
4 Véase CCAMLR-IWC-WS-08/5
Tabla 16: Formato recomendado para el grupo de expertos para resumir estudios en los que se han utilizado covariables espaciales/temporales en modelos de la densidad de cetáceos.

<table>
<thead>
<tr>
<th>Estimación de la abundancia por especie</th>
<th>Covariables incluidas en el modelo</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballena jorobada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ballena azul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rorcual común</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rorcual del norte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rorcual aliblanco</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ballena franca austral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cachalote</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ballena de nariz de botella del sur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delfín cruzado</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 17: Posibles covariables examinadas en relación con la elaboración de modelos de densidad de cetáceos.

Covariables temporales		
	Época dentro de la temporada	
	Variabilidad y desfase en relación con los procesos físicos o biológicos	
Covariables físicas fijas		
	Lat/Long	
	Profundidad	
	Distancia del borde continental	
	Talud continental	
Covariables físicas dinámicas	TSM	
	Intensidad de la surgencia y profundidad de la capa mixta	
	Sistemas frontales	
	Dinámica estacional del hielo marino	
	Cambios a corto plazo en la concentración de hielo (días/semanas)	
Covariables biológicas	Productividad primaria (tasa y cantidad)	
	Concentración de kril (escala espacial)	
	Tipo de cardumen de kril y distribución vertical	
	Interacciones interespecíficas en los cetáceos	
	Factores intraespecíficos incluyendo segregación por edad, sexo, estado reproductivo	
Figura 1: Mapa de la región regulada por la CCRVMA y de las áreas/subáreas/divisiones estadísticas de la CCRVMA conjuntamente con las Áreas de Ordenación I a IV de la IWC.

Figura 2: Unidades de ordenación en pequeña escala adoptadas por la CCRVMA para el Área 48.
Figura 3: Representación esquemática de los distintos taxones y sus relaciones, dentro del océano físico y el hielo marino, ordenadas de acuerdo con las escalas espaciales y temporales dentro de las cuales se encuentran típicamente individuos de los distintos taxones. El trapezoid muestra un subconjunto típico de un modelo realista mínimo que podría ser considerado por la CCRVMA y la IWC, en el que el kril aparece en el extremo inferior de la red trófica operando en escalas menores que los depredadores de mayor tamaño. En este caso, algunas especies de cetáceos abarcan escalas espaciales amplias y se muestran en el extremo superior de esta red trófica.

Figura 4: En aras de simplificación, la red trófica y el medio ambiente físico fuera del trapezoide se condensan en una serie de funciones de forzamiento indicadas por las flechas.
Figura 5: Primeramente se integran escenarios posibles a los modelos mediante la representación de la población y de los procesos depredador-presa a un nivel de detalle adecuado para los fines del modelo. En el caso de las poblaciones, estos procesos influirán en la reproducción, el crecimiento y la mortalidad. En el caso de las interacciones depredador-presa, las funciones representarán la vulnerabilidad de la presa a los depredadores dado el grado de superposición espacial y temporal (disponibilidad de la presa al depredador) en combinación con la capacidad del depredador de capturar la presa cuando las encuentra (selectividad).

Figura 6: La viabilidad puede mejorarse mediante la inclusión de datos poblacionales, ya sea para inicializar los modelos o para acondicionarlos a una serie cronológica. En este caso, se pueden estimar algunos parámetros en la estructura del modelo, y representar individualmente muchos procesos ecológicos. Los datos tendrán relaciones distintas con respecto al estado verdadero de la población, que se indica con círculos rojos. La precisión de las estimaciones se indica por la magnitud de las barras de error, mientras que los sesgos pueden ser de una magnitud relativa constante (útil como serie cronológica relativa) o podría ser compensada por valores fijos, que podrían causar problemas si estos se desconocen y los modelos necesitan eliminar cantidades fijas.
Figura 7: Ejemplo de la relación entre la abundancia de *Martiella hyadesi* (puntos rojos) y los datos batimétricos (del *Atlas de la distribución del calamar*; www.nerc-bas.ac.uk/public/mlsd/squid-atlas/).
AGENDA

Taller conjunto CCAMLR-IWC
(Hobart, Australia, 11 al 15 de agosto de 2008)

1. Introducción
 1.1 Cometido
 1.2 Agenda y organización de la reunión
 1.3 Antecedentes

2. Resúmenes de metadatos
 2.1 Medio ambiente físico y producción primaria
 2.1.1 Oceanografía
 2.1.2 Hielo marino
 2.1.3 Producción primaria
 2.2 Especies pelágicas
 2.3 Pinnípedos y aves marinas
 2.4 Cetáceos
 2.5 Explotación

3. Asuntos generales relacionados con los metadatos y las prioridades de investigación futura

4. Productos y labor futura
 4.1 Base de metadatos y otras herramientas
 4.2 Publicaciones
 4.3 Labor futura

5. Aprobación del informe

6. Clausura de la reunión.
LISTA DE PARTICIPANTES
Taller conjunto CCAMLR-IWC
(Hobart, Australia, 11 al 15 de agosto de 2008)

ADAMS, Neil (Dr.) Antarctic Meteorological Section
Bureau of Meteorology
Hobart Tasmania 7001
Australia
n.adams@bom.gov.au

ARMAND, Leanne (Dra.) ACE-CRC
University of Tasmania
Private Bag 80
Hobart Tasmania 7001
Australia
leanne.armand@acecrc.org.au

ATKINSON, Angus (Dr.) British Antarctic Survey
(Experto invitado)
High Cross, Madingley Road
Cambridge
United Kingdom
aat@bas.ac.uk

BANNISTER, John (Sr.) Western Australian Museum
(Experto invitado)
Locked Bag 49
Welshpool WA 6081
Australia
bannisj@bigpond.com

BRAVINGTON, Mark (Dr.) Marine Laboratory
CSIRO
Castray Esplanade
Hobart Tasmania 7000
Australia
mark.bravington@csiro.au

BURT, Louise (Dra.) University of St Andrews
(Experta invitada)
Buchanan Gardens
St Andrews
United Kingdom
louise@mcs.st-and.ac.uk
BUTTERWORTH, Doug (Prof.)
(Experto invitado)
Department of Applied Mathematics
University of Cape Town
Rondebosch 7701
South Africa
doug.butterworth@uct.ac.za

CHILVERS, Louise (Dra.)
Department of Conservation
PO Box 10420
Wellington
New Zealand
lchilvers@doc.govt.nz

CONSTABLE, Andrew (Dr.)
(Coordinador)
Antarctic Climate and Ecosystems Cooperative Research Centre
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
andrew.constable@aad.gov.au

COOKE, Justin (Dr.)
(Experto invitado)
CEMS
Alexanderstrasse 10
79261 Gutach
Germany
jgc@emc.de

COSTA, Daniel (Prof.)
(Experto invitado)
Long Marine Laboratory
University of California
100 Shaffer Road
Santa Cruz, CA 95060
USA
costa@biology-usc.edu

CURRAN, Mark (Dr.)
ACE-CRC
University of Tasmania
Private Bag 80
Hobart Tasmania 7001
Australia
mark.curran@utas.edu.au
DONOVAN, Greg (Sr.)
(Experto invitado)
International Whaling Commission
The Red House
135 Station Road
Impington
Cambridge CB24 9NP
United Kingdom
greg.donovan@iwcoffice.org

DOUST, Susan (Dra.)
Australian Antarctic Division
Department of the Environment, Water,
Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
susan.doust@aad.gov.au

ENSOR, Paul (Sr.)
(Experto invitado)
IWC Scientific Committee
Governors Bay
Lyttelton R.D.I.
New Zealand
paulensor@xtra.co.nz

FERGUSON, Megan (Dra.)
(Experta invitada)
NOAA
Southwest Fisheries Science Center
8604 La Jolla Shores Drive
La Jolla, CA 92037
USA
megan.ferguson@noaa.gov

GALES, Nick (Dr.)
(Coordinador)
Australian Centre for Applied Marine
Mammal Science
Australian Antarctic Division
Department of the Environment, Water,
Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
nick.gales@aad.gov.au

HEIL, Petra (Dra.)
Australian Antarctic Division
Department of the Environment, Water,
Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
petra.heil@utas.edu.au
HINDELL, Mark (Dr.)
School of Zoology
University of Tasmania
Hobart Tasmania 7000
Australia
mark.hindell@utas.edu.au

HOFMANN, Eileen (Prof.)
(Experta invitada)
Center for Coastal Physical Oceanography
Old Dominion University
4111 Monarch Way
Norfolk, VA 23508
USA
hofmann@ccpo.odu.edu

HOSIE, Graham (Dr.)
Australian Antarctic Division
Department of the Environment, Water,
Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
graham.hosie@aad.gov.au

KAWAGUCHI, So (Dr.)
Australian Antarctic Division
Department of the Environment, Water,
Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
so.kawaguchi@aad.gov.au

KELLY, Natalie (Dra.)
Australian Antarctic Division
Department of the Environment, Water,
Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
natalie.kelly@aad.gov.au

KITAKADO, Toshihide (Dr.)
(Experto invitado)
Department of Marine Bioscience
Tokyo University of Marine Science
and Technology
5-7, Konan 4, Minato-ku
Tokyo 108-8477
Japan
kitakado@kaiyodai.ac.jp
<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Organization</th>
<th>Address</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOCK, Karl-Hermann (Dr.)</td>
<td>(Experto invitado)</td>
<td>Johann Heinrich von Thünen Institute</td>
<td>Palmaille 9, Hamburg, Germany</td>
<td>karl-hermann.kock@vti.bund.de</td>
</tr>
<tr>
<td>LEAPER, Rebecca (Dra.)</td>
<td></td>
<td>Australian Marine Mammal Centre</td>
<td>Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia</td>
<td>rebecca.leaper@gmail.com</td>
</tr>
<tr>
<td>LEAPER, Russell (Sr.)</td>
<td>(Experto invitado)</td>
<td>Canal House</td>
<td>Banavie PH33 7LY, United Kingdom</td>
<td>rleaper@ivyt.demon.co.uk</td>
</tr>
<tr>
<td>MASSOM, Rob (Dr.)</td>
<td></td>
<td>ACE-CRC</td>
<td>University of Tasmania, Private Bag 80, Hobart, Tasmania 7001, Australia</td>
<td>r.massom@utas.edu.au</td>
</tr>
<tr>
<td>MEINERS, Klaus (Dr.)</td>
<td></td>
<td>ACE-CRC</td>
<td>University of Tasmania, Private Bag 80, Hobart, Tasmania 7001, Australia</td>
<td>klaus.meiners@acecrc.org.au</td>
</tr>
<tr>
<td>MILLER, Denzil (Dr.)</td>
<td></td>
<td>CCAMLR</td>
<td>PO Box 213, North Hobart, Tasmania 7002, Australia</td>
<td>denzil@ccamlr.org</td>
</tr>
<tr>
<td>MONGIN, Mathieu (Dr.)</td>
<td></td>
<td>ACE-CRC</td>
<td>University of Tasmania, Private Bag 80, Hobart, Tasmania 7001, Australia</td>
<td>mathieu.mongin@acecrc.org.au</td>
</tr>
</tbody>
</table>
MURASE, Hiroto (Sr.) (Experto invitado)
Institute of Cetacean Research
4-5, Toyomi-cho, Chuo-ku
Tokyo
Japan
murase@cetacean.jp

NICOL, Steve (Dr.)
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
steve.nicol@aad.gov.au

NOWARA, Gabrielle (Sra.)
Australian Antarctic Division
Department of the Environment, Water, Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
gabrielle.nowara@aad.gov.au

OKAMURA, Hiroshi (Dr.) (Experto invitado)
National Research Institute of Far Seas Fisheries
Fisheries Research Agency
4-29 Hino-Minami
Yokohame 234-0055
Japan
okamura@fra.affrc.go.jp

PASQUER, Bénédicte (Dra.)
ACE-CRC
University of Tasmania
Private Bag 80
Hobart Tasmania 7001
Australia
benedicte.pasquer@acecrc.org.au

PUNT, André (Dr.) (Experto invitado)
School of Aquatic and Fishery Sciences
University of Washington
Seattle, WA 9819x
USA
aepunt@u.washington.edu

RAMM, David (Dr.)
CCAMLR
PO Box 213
North Hobart Tasmania 7002
Australia
david@ccamlr.org
REID, Keith (Dr.)
CCAMLR
PO Box 213
North Hobart Tasmania 7002
Australia
keith@ccamlr.org

REISS, Christian (Dr.)
US AMLR Program
Southwest Fisheries Science Center
8604 La Jolla Shores Drive
La Jolla, CA 92037-1508
USA
christian.reiss@noaa.gov

ROBINSON, Sarah (Sra.)
Australian Antarctic Division
Department of the Environment, Water,
Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
sarah.robinson@aad.gov.au

RODHOUSE, Paul (Prof.)
(Experto invitado)
British Antarctic Survey
High Cross
Madingley Road
Cambridge CB3 0ET
United Kingdom
p.rodhouse@bas.ac.uk

SOUTHWELL, Colin (Dr.)
Australian Antarctic Division
Department of the Environment, Water,
Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
colin.southwell@aad.gov.au

WIENECKE, Barbara (Dra.)
Australian Antarctic Division
Department of the Environment, Water,
Heritage and the Arts
Channel Highway
Kingston Tasmania 7050
Australia
barbara.wienecke@aad.gov.au

WOEHLER, Eric (Dr.)
37 Parliament Street
Sandy Bay Tasmania 7050
Australia
eric_woe@iprimus.com.au
LISTA DE DOCUMENTOS

Taller conjunto CCAMLR-IWC
(Hobart, Australia, 11 al 15 de agosto de 2008)

<table>
<thead>
<tr>
<th>Documento</th>
<th>Descripción</th>
<th>Co-Convener/Coordinator</th>
</tr>
</thead>
</table>
| CCAMLR-IWC-WS-08/1 | Draft Agenda
Co-Conveners – A. Constable and N. Gales | |
| CCAMLR-IWC-WS-08/2 | CCAMLR-IWC Workshop to review input data for Antarctic marine ecosystem models
Co-Conveners – A. Constable and N. Gales | |
| CCAMLR-IWC-WS-08/3 | Models of Antarctic marine ecosystems in support of CCAMLR and IWC: background
Co-Convener – A. Constable | |
| CCAMLR-IWC-WS-08/4 | A review of abundance, trends and foraging parameters of baleen whales in the southern hemisphere
Coordinator – A. Zerbini | |
| CCAMLR-IWC-WS-08/5 | Report of review group of data sources on odontocetes in the Southern Ocean in preparation for IWC/CCAMLR workshop in August 2008
Coordinator – R. Leaper | |
| CCAMLR-IWC-WS-08/6 | A review of bias and uncertainty in Antarctic pack-ice seal abundance estimates
Coordinator – C. Southwell | |
| CCAMLR-IWC-WS-08/7 | Report of the review group on sources of data on Antarctic fur seals *Arctocephalus gazella* in the Southern Ocean in preparation for the CCAMLR-IWC workshop, August 2008
Coordinator – K. Reid | |
| CCAMLR-IWC-WS-08/8 | A review of the uncertainties associated with penguin population and abundance estimates for the CCAMLR region
Coordinator – P. Trathan | |
| CCAMLR-IWC-WS-08/9 | The role of fish as predators of krill (*Euphausia superba*) and other pelagic resources in the Southern Ocean
Coordinator – K.-H. Kock | |
CCAMLR-IWC-WS-08/10 Review of input data for Antarctic ecosystem models: pelagic cephalopods
Coordinator – P. Rodhouse

CCAMLR-IWC-WS-08/11 Krill population trends
Coordinator – S. Nicol

CCAMLR-IWC-WS-08/12 Zooplankton in Southern Ocean food web models: a critique of available data
Coordinator – A. Atkinson

CCAMLR-IWC-WS-08/13 CCAMLR-IWC Export Group Report: Primary Productivity and Phytoplankton
Coordinator – P. Strutton

Coordinator – R. Masson

CCAMLR-IWC-WS-08/15 An overview of data and models for Southern Ocean studies
Coordinator – E. Hofmann

CCAMLR-IWC-WS-08/16 CCAMLR-IWC Workshop metadatabase
Coordinator – S. Doust

CCAMLR-IWC-WS-08/17 Conveners’ guide to generating a synopsis of papers from expert groups to assist with general discussions
Co-Conveners – A. Constable and N. Gales

CCAMLR-IWC-WS-08/18 Food consumption by flying seabirds in the Southern Ocean
Coordinator – B. Wienecke
APÉNDICE D

RESÚMENES DEL CICLO DE VIDA DEL KRIL,
ZOOPLANCTON Y CALAMAR

Kril

1. CCAMLR-IWC-WS-08/11 se concentró en estudios que examinaron la distribución y la abundancia del kril. Existe un cúmulo de estudios sobre su ciclo vital aportados tanto por estudios de campo como de laboratorio (el más reciente es el de Siegel, 2005). Estos estudios dieron lugar a la elaboración de modelos conceptuales a nivel de individuo (Nicol et al., 2006) y a nivel de población (Atkinson, 2008) cuyo objetivo es describir las características observadas de la distribución. La mayor parte de la información básica relacionada con la dinámica poblacional del kril se resume en Siegel y Nicol (2000) y Siegel (2005). Estos trabajos proporcionan un estudio de las estimaciones de crecimiento, mortalidad, fecundidad, reclutamiento y longevidad. Probablemente el cuello de botella clave en el ciclo de vida del kril es la supervivencia de las larvas desde el momento en que nacen hasta el primer invierno. En esta etapa de su ciclo de vida, el animal tiene poca capacidad de resistir una escasez de alimento, y la supervivencia de las larvas hasta la primera primavera es probablemente clave para el reclutamiento subsiguiente (Quetin et al., 2007).

2. Existe poca información sobre el efecto de la calidad del alimento en el crecimiento del kril y su reproducción. El crecimiento ha sido vinculado a la disponibilidad del alimento (ver siguientes párrafos) y existe información de campo sobre los efectos de la calidad del alimento en el crecimiento de kril juvenil. Las tasa de crecimiento del kril, incluidas las larvas, durante la primavera austral y principios del invierno austral (noviembre a mediados de enero) es una función de la abundancia y composición de la comunidad de fitoplancton en la columna de agua (Ross et al., 2000). Se considera que las comunidades microbianas del hielo marino también son una fuente de nutrición mejor en el hábitat debajo del hielo para las larvas que la fuente de alimentación en aguas libres. El kril depende de la producción primaria durante la primavera (producción primaria relacionada con el hielo y las zonas abiertas de agua) para estimular el desarrollo ovárico, y el momento de la floración en primavera se considera crítico (Kawaguchi et al., 2007, Ross y Quetin, 2000; Hagen et al., 1996; Quetin y Ross, 2001).

3. El kril emplea varias estrategias para superar el invierno: (i) reducción del metabolismo, (ii) se hace más carnívoro o detritívoro, (iii) inanición y encogimiento, (iv) migración hacia la costa o a aguas más profundas, y (v) alimentación debajo del hielo. Las circunstancias bajo las cuales el kril recurrence a cada una de estas estrategias no están bien definidas, pudiendo utilizar todas las estrategias (Siegel, 2005).

4. Los diversos estadios del ciclo de vida (y etapas estacionales y reproductivas) del kril pueden revelar una separación espacial bien definida, tanto vertical como horizontal. El kril es desova en aguas libres depositando los huevos en aguas profundas donde puedan hundirse hasta 1 000 m. Las larvas en desarrollo suben hasta la superficie para alimentarse durante el otoño. Los huevos desovados en una zona pueden por lo tanto reclutarse como juveniles en
otra zona y así la estructura de una población de kril puede reflejar efectos tanto endógenos como exógenos. El grado en el cual el kril existe en un área y su capacidad de auto reclutarse es objeto de activa modelación e investigación.

Zooplancton

Copépodos

6. CCAMLR-IWC-WS-08/12 contiene información sobre el ciclo vital, en particular en las secciones 2 y 4. En resumen, se sabe de tres especies que tienen un ciclo vital de dos años, *Rhincalanus gigas*, *Calanus propinquus* y *C. acutus*. Presentan migraciones estacionales a las capas profundas de la columna de agua (~1 000 m) durante la diapausa invernal antes de retornar a la superficie en la primavera para madurar o reproducirse. Se supone que la mayoría de las demás especies de copépodos viven un año desovando generalmente en pulsos. El pequeño copépodo ciclopoideo *Oithona similis* vive unos pocos meses y se reproduce en forma continua.

7. Todas las especies principales se consideran ahora omnívoras. Se alimentan de fitoplancton, microzooplancton y materia particulada como nieve marina y posiblemente materia fecal. Son pocos los copépodos genuinamente carnívoros. Se conoce muy poco sobre la calidad del alimento, reclutamiento y mortalidad.

Salpas

8. Existe información básica sobre su curioso ciclo vital de alternancia generacional entre sexual y asexual, y de su distribución vertical estacional. Se cuenta con las tasas de crecimiento pero continúan habiendo fuertes dudas acerca de las tasas de mortalidad, factores que afectan el “reclutamiento” (es decir, causas de floraciones de salpas) y estructura de la metapoblación.

Themisto gaudchaudii

9. Sólo existe información básica sobre su ciclo vital. No existen datos detallados de la reproducción, reclutamiento, separación de las clases por edad, tasas de mortalidad, etc.
10. Todas las especies tienen distribuciones circumpolares y zonación latitudinal pronunciada. Las islas subantárticas, los giros y las polinias pueden mostrar una alta abundancia localizada más persistente.

Calamar

11. El calamar pelágico, al igual que la mayoría de los cefalópodos, son de crecimiento rápido, corta vida corta y semélparos. Si bien no hay razón para suponer que el calamar antártico no es semélparo, las bajas temperaturas son un importante factor en el control del crecimiento de organismos polares, y en los pocos cefalópodos antárticos cuyo crecimiento se ha examinado, tienen tasas de crecimiento más lentas que las especies de aguas más cálidas. Las tasas de crecimiento de los cefalópodos antárticos además de su fecundidad y tamaño de los huevos se analizan en Collins y Rodhouse (2006). Los pulpos antárticos producen huevos muy grandes comparados con los de las especies de latitudes más bajas. Los calamares pelágicos también producen huevos más grandes que las especies de latitudes más bajas, pero la diferencia es menos marcada que en los pulpos. Como es de esperar, el mayor tamaño de los huevos pareciera estar relacionado con una menor fecundidad, aunque existen pocos datos al respecto. No se ha medido el período de desarrollo del huevo, pero sobre la base de su tamaño y de las temperaturas prevalecientes, se ha sugerido que es de unos 30 meses para la cranquiluria glacial pelágica antártica Galiteuthis glacialis. No hay estimaciones del reclutamiento, tasas de mortalidad o capacidad portante del calamar pelágico antártico. Sobre la base de comparaciones con especies de bajas latitudes, se podría decir que: (i) el reclutamiento de la mayoría de las especies es anual luego de una larga fase de desarrollo embrionario y paralarval; (ii) el reclutamiento es probablemente variable e impulsado por la variabilidad medioambiental; (iii) la mortalidad es relativamente baja; y (iv) la capacidad portante varía con la disponibilidad de alimento. Las poblaciones del calamar ecológicamente oportunista aumentarán siempre que la presa sea abundante, pero con el tiempo variarán. Esto es apoyado por pruebas de la variabilidad interanual de las especies de calamar en la dieta de aves marinas depredadoras.

Referencias

La gama de posibles estructuras de modelos de ecosistemas es demasiada amplia para permitir un enfoque puramente empírico en su construcción (v.g. basado puramente en correlaciones cruzadas de las series cronológicas). Es necesario adquirir una base de conocimientos sobre los aspectos físicos y biológicos del sistema a fin de restringir el espacio de modelos a priori posibles, de otra forma, la tarea se hace estadísticamente imposible. Pero deducir las respuestas de la dinámica poblacional de los depredadores principales a partir de primeros principios también parece imposible, por lo tanto, sería esencial tener cierta noción sobre los datos de series cronológicas y el ajuste de modelos. Los comentarios que siguen se relacionan con lo que podrían ser las prioridades de nuevos datos para modelos centrados en el kril en grandes escalas espaciales de la Antártica.

Información a nivel de especie

Al decidir si el modelo debe incorporar específicamente un taxón en particular, y, si corresponde, cuáles deberían ser las prioridades en el estudio de las especies (en un contexto de construcción de modelos de ecosistema), quisiera formular tres preguntas:

• ¿La especie estudiada consume alimento a un nivel que importe, es decir, constituye un factor importante? Esto puede ser una idea aproximada de la abundancia, y de las tasas de consumo, v.g. de datos alométricos.

• Si la respuesta es sí: ¿es nuestra información actual o futura a mediano plazo sobre la especie lo suficientemente fiable, de manera que si se incluye la especie explícitamente en el modelo, nuestra certeza acerca de las predicciones generales mejoraría substancialmente?

• Si la respuesta es sí para las preguntas 1 y 2: ¿cuál es la estructura poblacional / fidelidad hacia el sitio? (Es decir, ¿están distribuidos los individuos en toda la Antártica, a través de las cuencas oceánicas, o en escalas menores como giros marinos? ¿Están allí todo el año o…?) El conocimiento de estos aspectos es esencial en la construcción de modelos sensatos, dado que las decisiones de ordenación y conservación están típicamente vinculadas a escalas espaciales determinadas.

En la Antártida, ejemplos de especies que probablemente “no pasarían” la pregunta 1 lo representan varias especies de aves marinas. Ejemplos de los taxones que probablemente “no pasarían” la pregunta 2 son peces, calamar y zooplancton no compuesto de kril. Con respecto a la pregunta 3, tal vez se necesita la mejor estimación posible para comenzar; pero existen grandes incertidumbres con respecto al kril y muchas de las ballenas de barbas, y esto sin duda tiene prioridad en la labor futura. Por lo menos en el caso del kril, esto requiere un nivel
razonable de conocimientos de física básica y producción primaria. La definición de “nivel razonable” es otro problema aparte.

Incluso si un taxón “no pasa” la pregunta 2, y por lo tanto no se justifica su inclusión explícita, no podemos ignorar su existencia si sabemos que tiene un gran impacto en el kril. El corolario es que el modelo necesitaría tener componentes de “caja negra”, para indicar la depredación desconocida del kril, y con cuya elucidación no podemos contar a través de estudios a mediano plazo. Y el corolario de esto es que para poder estimar cómo funciona la “caja negra”, sin duda necesitaremos series cronológicas de datos sobre las especies explícitamente incluidas.

Datos históricos

El ajuste de modelos estadísticos a los datos, a modelos de ecosistema y otros requiere más que una cantidad de datos; también requiere contraste en los datos. Por ejemplo, si la abundancia de la especie X varía muy poco a través de la serie cronológica, esto implica que no tenemos datos directos sobre el significado de los efectos de los cambios en la especie X. Para especies que han sido explotadas intensivamente, los registros históricos son el lugar obvio que se debe examinar (v.g. para ver cómo los parámetros del ciclo vital de los cetáceos han cambiado con la explotación).

¿Debemos construir modelos?

Los modelos de ecosistema son mucho más complicados que los modelos para especies individuales, en parte porque se agregan más dimensiones a nuestra falta de conocimiento sobre cómo funciona el sistema, no sólo en términos de valores de parámetros, sino también de estructuras de modelos alternativas. Sería preferible construir un conjunto de modelos que traten de captar la incertidumbre paramétrica y estructural (siempre que todos los modelos sean coherentes con los datos, no sólo en función de series cronológicas sino también de la viabilidad del mecanismo). Si el conjunto de modelos es demasiado restringido y conlleva falsamente a predicciones precisas, será peor que inútil para la ordenación. De manera que debemos dejar de conformarnos con “la mejor interpretación” de los fenómenos y pasar a estimar rangos viables. Si bien la Antártida es más fácil que otras partes del mundo en lo que se refiere a la simplicidad de las redes tróficas y claridad acerca de factores determinantes físicos, la tarea de construir y ajustar un conjunto de modelos es inmensa.

La ordenación del ecosistema requiere necesariamente cierto nivel de entendimiento cualitativo y cuantitativo del ecosistema, pero no necesariamente requiere un modelo de ecosistema cuantitativo de base. Construir un conjunto aceptable de modelos de ecosistema, es decir, uno que realmente capte nuestra ignorancia de la estructura y los parámetros, representa una tarea enorme. La pregunta que se debe plantear antes de comenzar es la siguiente: ¿se puede claramente establecer de antemano que las predicciones del modelo proporcionarán una mayor precisión de la que nos permite nuestro entendimiento básico? No sé lo suficiente para contestar esta pregunta en lo que se refiere a la Antártida, pero tal vez haya otros que sí. Si la respuesta es “no, las predicciones no serán más precisas”, será mejor que el tiempo y el esfuerzo requeridos para construir modelos se invierta en otra cosa.
Prof. Doug Butterworth

Nota: El uso de la palabra “avances” en el título es especialmente deliberado; lo que sigue a continuación no pretende describir un enfoque exhaustivo a largo plazo, sino los pasos iniciales necesarios en un proceso a largo plazo.

Preguntas 1 y 2

- La escala espacial pertinente a los puntos que siguen es la escala en la cual se basa la pregunta: Unidad de ordenación o UOPE; la escala temporal es anual, o bianual donde corresponda para abarcar diferencias estacionales importantes (v.g. en la producción o presencia dentro de la unidad espacial).

- Dar cuenta aproximadamente de las estimaciones del consumo de kril por depredadores/grupos de depredadores tope en la unidad espacial a fin de proporcionar un orden de importancia relativa (“índice de importancia”).

- Implementar métodos (en el caso de que no existan) para proporcionar índices a través del tiempo de la abundancia relativa del kril y de los depredadores/grupos de depredadores tope en la unidad espacial. Las prioridades para estos últimos se determinarán mediante la consideración conjunta del “índice de importancia” y consideraciones prácticas. La determinación de la frecuencia del índice (anual o de intervalos más largos) se basará en la esperanza de vida de las especies típicas (v.g. tasas de mortalidad natural inversas), (es decir, menos frecuente para especies con dinámica más lenta) y consideraciones prácticas.

- En el grado de lo posible, convertir índices de abundancia relativa a estimaciones de abundancia absoluta.

- Muestrear la dieta de los depredadores/grupos de depredadores tope anualmente, si fuera posible, otorgando prioridad de acuerdo con el “índice de importancia”, y con miras a estimar los parámetros de una gama de relaciones funcionales de alimentación plausibles.

- Estimar el período del año que cada depredador/grupo de depredadores dedica a la alimentación dentro de la unidad espacial.

- Para las UOPE (en particular), formular métodos para estimar el transporte de kril hacia la unidad espacial y fuera de ella.

- Formular una gama de MRM (modelos realistas mínimos) que incorpore términos de interacción depredador-presa, que sirvan de modelos operativos para probar algoritmos de límites de captura, y acondicionar estos modelos en base a los datos disponibles de la abundancia, ciclo vital y dieta.

- Seleccionar un algoritmo de captura(s) (o esfuerzo) para hacer recomendaciones científicas de ordenación. Los cálculos del algoritmo muy probablemente otorgarían especial importancia a las tendencias recientes de los índices de la abundancia para incorporar la consistencia proporcionada por el control interactivo al enfoque global de ordenación.
Pregunta 3

Los siguientes puntos se agregan a los anteriores:

- Solicitar a biólogos y oceanógrafos con conocimientos sobre los principales impulsores medioambientales posibles del ecosistema al nivel espacial considerado, que seleccionen un máximo de tres índices medioambientales anuales (v.g. cobertura del hielo marino) que se consideren tengan más probabilidades de afectar la dinámica. Se necesita contar con series cronológicas de estos índices para algunos años anteriores y poder vigilarlos ahora y en el futuro.

- Incorporar estos índices como datos ajenos a la dinámica de los modelos operativos utilizados para realizar pruebas de simulación de otros algoritmos del límite de captura; esto sería al grado en que se puedan determinar relaciones plausibles mediante el acondicionamiento en función de datos anteriores (aunque sea solamente en una base más cualitativa que cuantitativa).

Dr. Justin Cooke

De las tres principales preguntas sobre ordenación (párrafo 1.35), las pregunta del tipo 1 – cómo afecta la pesca de especies presa a los depredadores de esas especies - bien pueden contestarse (y en varios casos se han contestado) utilizando modelos del sistema local, mediante la incorporación de sólo unos pocos componentes, y muy poco en lo que se refiere a factores del medio ambiente, que no necesiten incluir explícitamente un modelo de la dinámica en gran escala y multi año de la presa.

La respuesta a las preguntas 2 y 3 requiere entender el sistema en escalas espaciales y temporales más extensas, y posiblemente la consideración del sistema entero, abarcando el medio ambiente físico, la producción primaria, las especies presa y finalmente los depredadores.

Si bien algunas de las interacciones entre depredadores (preguntas del tipo 2) pueden ser bastante localizadas e inmediatas, y explorables aplicando modelos relativamente simples como los utilizados para las preguntas del tipo 1, tal vez esté mal ignorar las interacciones en escalas más amplias (v.g. la reducción de poblaciones de presas comunes, incluso cuando no existe una superposición de los depredadores en tiempo o espacio). El estudio de estas interacciones en escalas más amplias podría llevar a la consideración de modelos de tipo más global requeridos para contestar las preguntas del tipo 3.

Por ejemplo, en el caso del kril, la aparente ausencia de diferenciación genética entre áreas podría indicar que en lugar de haber poblaciones autosostenibles permanentes en cada área, es posible que las poblaciones tiendan a regenerarse a partir de una fuente común, en intervalos más o menos frecuentes.

Para entender la dinámica multiaño del ecosistema, es importante poder identificar aquellas poblaciones fuentes persistentes de kril y de otras especies presa, que sean principalmente...
responsables de la regeneración (periódica o aperiódica) de poblaciones de presas en todo el Océano Austral, luego de perturbaciones medioambientales.

La conservación de estas poblaciones esencialmente probablemente será importante en la ordenación a largo plazo del sistema, en particular, si uno de los objetivos de ordenación es impedir que el sistema se “incline” en forma semipermanente hacia estados cualitativamente diferentes y menos deseables.

Las poblaciones de presa más efímeras, que tienen tendencia a desaparecer o reaparecer tras grandes fluctuaciones medioambientales, podría ser muy importantes en muchas áreas como alimento de los depredadores que las explotan, pero la reducción de estas poblaciones tal vez no tengan el mismo efecto en la producción de presas en los años siguientes como lo tendría una reducción de las poblaciones principales.

La mayoría de los componentes de un modelo de ecosistema están sujetos a una gran incertidumbre. Debido a que la suma de todas las incertidumbres tiende a ser dominada por unas pocas incertidumbres individuales mayores (expresado simplemente: los CV se suman como cuadrados, no linealmente), mejorar el entendimiento de los actuales componentes menos conocidos del sistema probablemente sea de mayor prioridad. Los modelos que captan el sistema cualitativamente bien, incluso si sus predicciones están sujetas a grandes incertidumbres cuantitativas, pueden ser los más útiles para formular enfoques de ordenación a largo plazo de la forma cualitativa más adecuada.

Este tipo de enfoque de ordenación podría entrañar, por ejemplo, la protección total de las poblaciones principales, limitando la explotación al resto, en lugar de que la explotación de todas las poblaciones esté sujeta a una regulación cuantitativa.

Prof. Daniel Costa

Se necesita formular métodos para poder entender mejor la respuesta funcional de los depredadores tope a partir del volumen considerable de datos de su comportamiento que se pueden recopilar y que se están recopilando. Por ejemplo, ¿podemos inferir alguna información acerca de la calidad de la mancha o agrupación a partir de los datos del comportamiento de buceo y/o modalidad? Un enfoque que se ha elaborado es el CPI (calidad de la mancha?) y duración del tránsito entre manchas en función de la duración de la estadía en la mancha. La capacidad de finalmente probar estos modelos comparándolos con estudios en los que se mide la abundancia de presas mientras un depredador o depredadores se alimentan en esa área sería una interacción excepcional entre modelos y recopilación de datos empíricos.

Construir modelos basados en individuos (MBI) y otros métodos para permitir la predicción y/o descripción del desplazamiento y comportamiento alimentario de los depredadores tope. Tales modelos son fundamentales para vincular los aspectos demográficos (a nivel de población, ya que las poblaciones están compuestas de individuos) con los procesos biológicos a una escala adecuada al depredador. Esto permitiría la integración de depredadores tope en modelos de abajo a arriba del tipo nutriente-fitoplancton-zooplancton (NFZ). También podría incorporar modelos de riesgo de depredación (comportamiento de evasión) y/o competencia entre otros depredadores u organismos.
Construir un modelo para evaluar vías tróficas alternativas. Por ejemplo, qué pasa a los depredadores tope si obtienen la mayor parte de la energía de los peces y no del kril. Existen indicios de que estas redes tróficas distintas tienen características diferentes y pueden sustentar distintas poblaciones de depredadores. ¿Cómo cambia el flujo de energía? ¿Es una más estable que las otras? ¿Es de baja energía o puede secuestrar energía o carbono mejor que las demás?

¿Qué mediciones fundamentales serían las más deseables si tuviéramos un SOOS, suponiendo que un sistema tal estuviera frente a la costa o cerca del sitio de depredadores en estudio?

Dra. Megan Ferguson

Las preguntas integradas que plantea el taller cubren bien el ámbito de la pregunta sobre modelación de ecosistema. La pregunta global es, ¿cómo podemos recopilar y analizar datos para abordar estas preguntas? Considero que existen tres temas que podrían guiar los esfuerzos de investigación futuros, con el objeto de obtener información para la construcción de modelos de ecosistema. Primero, el Océano Austral es tan vasto que necesitamos pensar en diseños anidados de muestreo de campo que se pudieran incorporar en modelos jerárquicos para integrar información en las distintas escalas espaciales y temporales y desde el individuo a la población. Segundo, a fin de determinar las escalas de muestreo de campo, escalas de análisis y escalas para los modelos, necesitamos entender la estructura de las manchas y la variabilidad temporal del medio ambiente biológico y físico. Tercero, los modeladores necesitan hablar con biólogos y oceanógrafos físicos para tratar de entender cómo afecta el medioambiente físico a las especies pertinentes. Este nivel de entendimiento es fundamental para identificar la escala de muestreo adecuada y para construir eficaces modelos predictivos en un medioambiente dinámico.

Dr. Toshihide Kitakado

Existen varios elementos clave a nivel de población que se pueden utilizar para fines de modelación:

i) Información sobre la disponibilidad de la presa y su dinámica en una escala de tiempo y espacio determinada que esté, por supuesto, vinculada a la distribución y abundancia de las especies presa (tal vez por estadio del ciclo vital).

ii) Información sobre las características de la utilización del hábitat por los depredadores (además de su abundancia y dinámica poblacional) que puede depender de los estadios de su ciclo vital, segregación sexual, medio ambiente, etc.

iii) Información sobre las tasas alimentarias o respuestas funcionales de los depredadores.

iv) información sobre la selección de presa.
Lo esencial para resolver estos asuntos clave es la disponibilidad de información sobre la abundancia de presas y depredadores, y el contenido estomacal o composición de la dieta en función de la disponibilidad de la presa a nivel poblacional. También el seguimiento de la composición de la dieta proporciona información útil para captar el efecto de los cambios del medioambiente en el ecosistema. En este sentido, es importante correlacionar el conocimiento sobre el comportamiento basado en el individuo con el basado la población. Además, la escala espacial y temporal que se necesita considerar seguramente depende de los objetivos de investigación y ordenación de la CCRVMA, o de la IWC o de ambas. Esto debe describirse claramente. El manejo de la incertidumbre es otro asunto clave. La incertidumbre estadística será manejada adecuadamente mediante métodos estadísticos, pero es necesario formular un procedimiento de ordenación que sea lo suficientemente consistente para resolver el problema de la incertidumbre en los modelos de ecosistema.

Sr. Russell Leaper

Muchos modelos de ecosistema han hecho hincapié en las estimaciones de parámetros y no en la estructura del modelo. Una opción en la construcción del modelo es comenzar con un modelo de la vía más simple (v.g. diatomeas → kril → depredadores superiores) y continuar agregando vías adicionales según se necesiten para general un MRM. El problema con esto es que la estructura básica del modelo podría en efecto determinar los resultados del modelo, y si bien la sensitividad de los resultados a las estimaciones de los parámetros puede ser probada, es imposible probare la sensitividad de los resultados a la estructura del modelo. Otra manera sería comenzar con un modelo multi-vía más complejo y tratar de simplificarlo eliminando vías basándose en la pruebas de sensitividad. Para este tipo de enfoque es más importante colocar límites más generales en todas las vías en lugar de refinar las estimaciones de parámetros en unas pocas.

Dr. Andre Punt

Las necesidades fundamentales de información para los modelos de ecosistema (o multi-especie) dependen fundamentalmente de los objetivos para los cuales fueron diseñados, y si son para fines tácticos (v.g. la actualización de los límites de captura) o estratégicos (v.g. prueba de criterios de ordenación. La naturaleza de la información necesaria para los modelos de ecosistema depende también de la urgencia con que se necesitan los resultados (en algunos casos, y desde el punto de vista de la ordenación, obtener una respuesta aproximada rápidamente puede ser mucho más importante que obtener la respuesta exacta mucho más tarde. Idealmente, un modelo de ecosistema debe ser construido sobre la base de especies “principales” o conjunto de especies “principales”. Éstas son especies que pueden ser evaluadas utilizando enfoques convencionales de especies individuales y por ende, para las cuales existen datos sobre índices de la abundancia relativa. En principio, los modelos de ecosistema restringen el comportamiento de las especies a través de las limitaciones que implican las relaciones funcionales alimentarias. No obstante, este beneficio no existirá, y el modelo será de utilidad limitada (al menos para fines tácticos) sin una especie “principal”, modelos que puedan ser fehacientemente parametrizados. Existe la necesidad (como mínimo) de contar con datos de la ración diaria y la composición de la dieta para las especies.
“principales” y preferiblemente una serie cronológica para ambas. El muestreo aleatorio en lo que respecta a la distribución de depredadores y de presas, y basado en metodología coherente, es preferible al muestreo detallado de alta intensidad en escalas temporales y espaciales limitadas. La información requerida para construir un modelo de ecosistema diseñado con el objeto de evaluar los efectos del forzamiento medioambiental, incluso el cambio medioambiental, será distinta a la requerida para modelos de ecosistemas diseñados con otros fines. Concretamente, los modelos de ecosistema construidos para evaluar los efectos del forzamiento medioambiental son idealmente diseñados fundamentándose en hipótesis basadas en procesos en los que participan submodelos anidados que operan a distintas escalas temporales y espaciales

Dr. Keith Reid

A modo de preámbulo, quisiera indicar que no soy modelador.

Considero que la función del modelador es un componente del enfoque de ecosistema ya que proporciona una forma de elaborar un medio de simulación para probar modelos de evaluación a fin de evaluar la probabilidad de lograr objetivos de ordenación. Una importante consideración de este enfoque en la evaluación de la estrategia de ordenación es que no se deben descartar posibles escenarios sólo porque no se ajusten a nuestras observaciones. El riesgo de que una observación adquiera mayor peso a través de repetidas notificaciones, en lugar de repetidas observaciones, crea el riesgo de asignar una importancia desproporcionada a algunos escenarios. En la construcción de modelos de ecosistema, la obtención de datos en grandes escalas espaciales y temporales es evidentemente la meta perseguida, no obstante, se reconoce que obtener estos datos es muy difícil, por no decir poco práctico o imposible. Al considerar las interacciones depredador-presa, pienso que es importante proporcionar una perspectiva de esas interacciones en escalas que influyen en el ciclo vital de las especies estudiadas. La naturaleza altamente estacional de la Antártida significa que los depredadores y sus presas responden en escalas subanuales. Por lo tanto, entender los cambios en escalas de períodos breves de la abundancia de kril en las regiones donde los depredadores se alimentan (especialmente en épocas cuando están restringidos por la necesidad de alimentar a su cría) es especialmente importante ya que cualquier cambio pequeño en la distribución y/o períodos de abundancia de kril puede surtir un fuerte efecto en el comportamiento reproductor. Vistos en una escala temporal anual, estos pequeños cambios serán subsumidos en ella, no obstante, es posible que tengan un marcado efecto en las poblaciones de depredadores. Los datos del kril en escalas temporales breves, recopilados a través de mediciones correntométricas con dispositivos fijos, además del seguimiento del comportamiento de los depredadores (alimentario y reproductor) son prioridades fundamentales en la recopilación de datos para evaluar el posible efecto de la pesca en los depredadores del kril de la Antártida.

Dr. Andrew Constable

La estructura y los requerimientos de datos de los modelos de ecosistema dependen de si se van a utilizar como herramientas de evaluación o para proporcionar escenarios para probar
procedimientos de ordenación (es decir, probar las herramientas de evaluación y los criterios de decisión en un procedimiento de ordenación). Existe un requisito menos importante de series cronológicas de datos poblacionales y de la red trófica en modelos del tipo “escenario”. Y lo que es más importante, los modelos deben basarse en especies o grupos de especies centrales (v.g. kril y depredadores del kril). Las especies e interacciones que quedan más afuera en la red trófica pueden considerarse secundarias y probablemente no pertinentes, por lo menos en primera instancia. Los modelos del tipo “escenario” son muy útiles para identificar la mejor manera de aprender acerca de los importantes procesos del ecosistema y el grado en el cual podemos tomar decisiones sensatas de ordenación con miras a lograr los objetivos de ordenación y conservación.

La construcción de un modelo de ecosistema necesitará tomar en cuenta todos los aspectos identificados en el párrafo 3.4. Si bien el modelo tal vez resuma muchos procesos en un proceso o parámetro único, el autor del modelo necesita asegurarse de que tal simplificación no influya inadvertidamente o inadecuadamente en los resultados relativos a las preguntas planteadas sobre la ordenación. Un tema clave es si la división espacial, temporal y biológica está en realidad correctamente reflejada en el modelo, es decir, si la superposición depredador-presa en el modelo toma debida cuenta de los factores que pudiera causar o no la superposición; la presencia en el Océano Austral en la misma época del año no significa que el depredador tendrá necesariamente acceso a la presa. Del mismo modo, se necesitan preservar, en la estructura del modelo, las oportunidades de contar con vías alternativas de energía para dar lugar a un conjunto alternativo de dinámicas ecológicas en el sistema depredador-presa en estudio (v.g. la red trófica centrada en el kril), incluso si esas vías no están representadas en tu totalidad.

Como existen muchas estructuras de modelos que podrían dar lugar a un conjunto de series cronológicas de la abundancia, la mayoría de las cuales son de baja calidad en lo que se refiere al Océano Austral, el énfasis a corto plazo en la elaboración de modelos de ecosistema para el Océano Austral debe ponerse en la caracterización de los procesos e interacciones que influyen en la dinámica de las poblaciones clave de interés.
GLOSARIO DE SIGLAS Y ABREVIATURAS

AAD División Antártica del Gobierno de Australia
AADC Centro Australiano de Datos Antárticos
AKES Prospección del kril y del ecosistema antárticos (Noruega)
AMLR Recursos Vivos Marinos Antárticos (EEUU)
APECOSM Modelo de Ecosistema de Depredadores Tope
APIS Programa antártico sobre las focas del campo de hielo (SCAR-GSS)
ARP Paquete de registro acústico
ASMA Área antártica con administración especial
BAS Centro de Estudios Antárticos del Reino Unido
BROKE Investigación básica sobre oceanografía, kril y el medio ambiente (Australia); División 58.4.1 de la CCRVMA
BROKE-Occidental (Ver anterior) División 58.4.2 de la CCRVMA
CCA Corriente circumpolar antártica
CCAMLR-2000(campaña) Prospección sinóptica de kril en el Área 48 efectuada por la CCRVMA en el año 2000
CCAS Convención para la Conservación de las Focas Antárticas
CCRVMA Comisión para la Conservación de los Recursos Vivos Marinos Antárticos
CPR Registro Continuo del Plancton (internacional) 1991 en adelante
CPUE Captura por unidad de esfuerzo
CV Coeficiente de variación
Ecopath Programa informático para la construcción y el análisis de modelos de equilibrio de masas e interacciones tróficas o flujos de nutrientes en los ecosistemas (véase www.ecopath.org)
Ecosim Programa informático para la construcción y el análisis de modelos de equilibrio de masas e interacciones tróficas o flujos de nutrientes en los ecosistemas (véase www.ecopath.org)
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENSO</td>
<td>Oscilación austral producida por El Niño</td>
</tr>
<tr>
<td>FIBEX</td>
<td>Primer Estudio Internacional de BIOMASS (Prospección del kril bajo los auspicios de SCAR)</td>
</tr>
<tr>
<td>FMR</td>
<td>Tasa metabólica de campo</td>
</tr>
<tr>
<td>GAM</td>
<td>Modelo aditivo generalizado</td>
</tr>
<tr>
<td>GCMD</td>
<td>Directorio maestro de datos sobre el cambio mundial</td>
</tr>
<tr>
<td>GLOBEC</td>
<td>Programa de Estudios de la Dinámica de los Ecosistemas Oceanográficos del Mundo</td>
</tr>
<tr>
<td>GUI</td>
<td>Internase gráfica del usuario</td>
</tr>
<tr>
<td>IC</td>
<td>Intervalo de confianza</td>
</tr>
<tr>
<td>ICED</td>
<td>Integrando el Clima y la Dinámica del Ecosistema en el Océano Austral</td>
</tr>
<tr>
<td>IDCR SOWER</td>
<td>Década Internacional de Investigación sobre Cetáceos – Investigación del Ecosistema y las Ballenas del Océano Austral</td>
</tr>
<tr>
<td>IPCC</td>
<td>Grupo Intergubernamental de Expertos sobre Cambio Climático</td>
</tr>
<tr>
<td>IWC</td>
<td>Comisión Ballenera Internacional</td>
</tr>
<tr>
<td>IWC SC</td>
<td>Comité Científico de la IWC</td>
</tr>
<tr>
<td>JARE</td>
<td>Expedición Japonesa de Investigación Antártica</td>
</tr>
<tr>
<td>JARPA</td>
<td>Programa Japonés de Investigación sobre Ballenas</td>
</tr>
<tr>
<td>K</td>
<td>Capacidad portante</td>
</tr>
<tr>
<td>LAKRIS</td>
<td>Estudio sobre el kril del Mar de Lazarev (contribución alemana al API-CCRVMA)</td>
</tr>
<tr>
<td>LTER</td>
<td>Investigaciones Ecológicas a Largo Plazo (Fundación Nacional de Ciencias - EEUU)</td>
</tr>
<tr>
<td>MODIS</td>
<td>Espectrorradiómetro para imágenes de resolución moderada</td>
</tr>
<tr>
<td>MRM</td>
<td>Modelo realista mínimo</td>
</tr>
<tr>
<td>MSA</td>
<td>Ácido metanosulfónico</td>
</tr>
<tr>
<td>Multspec</td>
<td>Modelo multi-especie para peces y mamíferos marinos</td>
</tr>
<tr>
<td>NORPAC</td>
<td>Pacífico Norte</td>
</tr>
</tbody>
</table>
PAO Península Antártica Occidental
POM Modelo oceánico de Princeton
POR Procedimiento de ordenación revisado
RMS Rendimiento máximo sostenible
ROMS Sistema de modelación oceánica regional
ROV Vehículo teledirigido
SACCF Frente sur de la corriente circumpolar antártica
SAM Modo anular austral
SBACC Límite Sur de la Corriente Circumpolar Antártica
SC-CAMLR Comité Científico de la CCRVMA
SCAR Comité Científico sobre la Investigación Antártica
SCAR- MarBIN Red de información del SCAR sobre la Biodiversidad Marina Antártica
SeaWiFS Sensor de campo de visión amplio para la observación del mar
SO-GLOBEC GLOBEC del Océano Austral
SOCEP Programa Ecológico de Cetáceos del Océano Austral (Australia)
SOOS Sistema de Observación del Océano Austral
SSIZ Zona de hielo marino estacional
UOPE Unidad de ordenación en pequeña escala (CCRVMA)
VGPM Modelo de producción vertical generalizado
WG-EMM Grupo de Trabajo de Seguimiento y Ordenación del Ecosistema (CCRVMA)
WG-IMAF Grupo de Trabajo especial sobre la Mortalidad Incidental Causada por la Pesca (CCRVMA)
ZFP Zona del Frente Polar