FISHERY REPORT: CHAMPSOCEPHALUS GUNNARI HEARD ISLAND (DIVISION 58.5.2)

CONTENTS

Page

1. Details of the fishery 1
1.1 Reported catch 1
1.2 IUU catch 1
1.3 Size distribution of the catches 2
2. Stocks and areas 3
3. Parameter estimation 3
3.1 Estimation methods 3
Standing stock 3
Population structure 4
Other parameters 5
3.2 Parameter values 5
Fixed parameters 5
Standing stock 5
Removals 6
Initial age structure 6
Selectivity 6
Recruitment 6
Proportion of biomass-at-age 7
4. Stock assessment 7
4.1 Model structure and assumptions 7
Model configuration 7
Decision rules 8
4.2 Model results 8
4.3 Sensitivity analyses 9
4.4 Discussion of model results 9
4.5 Future research requirements 9
5. By-catch of fish and invertebrates 9
5.1 By-catch removals 9
5.2 Assessments of impact on affected populations 10
5.3 Mitigation measures 10
6. By-catch of birds and mammals 10
6.1 Mitigation measures 11
7. Ecosystem implications/effects 11
8. Harvest controls and management advice 11
8.1 Conservation measures 11
8.2 Management advice 12

FISHERY REPORT: CHAMPSOCEPHALUS GUNNARI HEARD ISLAND (DIVISION 58.5.2)

1. Details of the fishery

1.1 Reported catch

The trawl fishery for Champsocephalus gunnari in Division 58.5.2 has caught 365 tonnes from a catch limit of 1658 tonnes in 2009/10 to 10 October 2010 (CM 42-02). Historical reported catches of C. gunnari, along with catch limits and number of vessels active in the fishery, are shown in Table 1.

Table 1: Catch history for Champsocephalus gunnari in Division 58.5.2 (source: STATLANT data for past seasons, and catch and effort reports for current season).

Season	Reported effort (number of vessels)	Catch limit (tonnes)	Reported catch (tonnes)
$1971 / 72$	-	-	5860
$1973 / 74$	-	-	7525
$1974 / 75$	-	-	9710
$1976 / 77$	-	-	15201
$1977 / 78$	-	-	5166
$1989 / 90$	-	-	2
$1991 / 92$	-	-	5
$1992 / 93$	-	-	3
$1994 / 95$	-	311	0
$1995 / 96$	-	311	0
$1996 / 97$	1	900	227
$1997 / 98$	3	160	115
$1998 / 99$	1	916	2
$1999 / 00$	2	1150	137
$2000 / 01$	2	885	136
$2001 / 02$	2	2980	865
$2002 / 03$	2	292	2345
$2003 / 04$	2	1864	78
$2004 / 05$	2	1210	1851
$2005 / 06$	1	42	660
$2006 / 07$	1	220	1
$2007 / 08$	1	102	199
$2008 / 09$	1	1658	83
$2009 / 10$	1		365

1.2 IUU catch

2. There has been no evidence of IUU activity in this fishery.

1.3 Size distribution of the catches

3. Catch-weighted length frequencies for C. gunnari from 1996/97 to 2009/10 are presented in Figure 1. Data from 2006/07 have not been included because the total catch for that season was 1 tonne.

Weighted Frequency (proportion of the catch)
Figure 1: Catch-weighted length frequencies for Champsocephalus gunnari in Division 58.5.2 (source: observer, fine-scale and STATLANT data). The plots include data from both the commercial fishery and research trawl surveys.
4. With respect to the catch-weighted length frequencies in Figure 1, the Working Group recalled the apparent progression in the cohorts in Figure 1 from 1999/2000 to 2002/03, and noted a similar pattern evident from 2003/04 to 2005/06, and 2007/08 to 2009/10 but recalled that:
(i) the length frequencies reflect lengths of fish in the catch and not the whole population;
(ii) there is a minimum size limit for C. gunnari in this fishery of 240 mm to protect juvenile fish (younger than 2.5 years) and that, if the proportion of fish smaller than this size exceeds 10% in a haul, then the vessel must move to a new fishing area;
(iii) the modal lengths will be dependent on the time of year in which the fishery was prosecuted and the potential density-dependent growth that might occur (SC-CAMLR-XX, Annex 5, Appendix D; WAMI-01/4);
(iv) abundance of fish cannot be inferred from these plots;
(v) the cohorts represented in these plots need to be interpreted from the survey data, which surveys the whole population.

2. Stocks and areas

5. Within Division 58.5 .2 this species is restricted to the shelf area in the vicinity of Heard Island in water generally shallower than 500 m . Previous analyses indicate that stocks on the Heard Plateau and Shell Bank have different size structures and recruitment patterns. In 1997 the Working Group agreed that in light of this, the two areas should be treated as separate stocks for assessment purposes (see SC-CAMLR-XVI, Annex 5). Champsocephalus gunnari have been absent, or present in very low abundances, on Shell Bank over recent years. Due to their low abundance observed in the current year, no assessment has been conducted for the Shell Bank stock since the 2007/08 season.

3. Parameter estimation

3.1 Estimation methods

Standing stock

6. The results of a bottom trawl survey in 2010 were summarised in WG-FSA-10/12. The survey had been undertaken according to the same design as in previous surveys for this region. Estimates of SSB for the Heard Island Plateau were made using the bootstrap procedure using the routine outlined in Appendix 1 of WG-FSA-10/12. The location of sample stations in relation to Heard Island and McDonald Islands is shown in Figure 2.

Figure 2: Strata and sampling hauls from the 2010 random stratified trawl survey in Division 58.5.2 used in the 2010 Champsocephalus gunnari assessment. Points are locations of hauls, with 10 stations in Plateau West, 22 stations in Gunnari Ridge and 29 stations in Plateau Southeast.

Population structure

7. The distribution of densities-at-age was derived using the CMIX program and selecting the mean length for ages 2,3 and 4 by eye (Table 2). The Working Group noted that the 2008 to 2010 Australian bottom trawl surveys had sampled a large cohort, which now dominates the population structure in 2010 as the $4+$ year class (Figure 3). A new $2+$ cohort was also detected. Details of the fit are presented in Table 3.

Table 2: Input parameters for the CMIX analysis of Champsocephalus gunnari length density in Division 58.5.2.

Parameter	Value
Size range included	$180-455 \mathrm{~mm}$
Bounds	Age 2:250 mm
	Age 3: 300 mm
	Age 4: 350 mm
SDs related linearly to the mean	Yes
Bounds on intercept (start, step)	$1,50(15,1.0)$
Bounds on slope (start, step)	$0.0,0.4(1.0,0.1)$
No. function calls	1000
Reporting frequency	100
Stopping criteria	$1 \mathrm{E}-6$
Frequency for convergence testing	5
Simplex expansion coefficient	1

Figure 3: \quad Size distribution of Champsocephalus gunnari from the 2010 random stratified trawl survey in Division 58.5.2 with standard errors. Cohorts were present in ages 2, 3 and 4 . The plot is dominated by age-4+ fish.

Table 3: Results generated from CMIX analyses for Champsocephalus gunnari in Division 58.5.2.

	Component (age 2+)	Component 2 (age 3+)	Component 3 (age 4+)
Mean length (mm)	273	323	370
SD (mm)	14.9	16.3	17.6
Total density (numbers km ${ }^{-2}$)	309.6	44.1	1286.6
SD of component density	68.5	48.9	244.4
Sum of observed densities $=1652.71$			
Sum of expected densities $=1640.19$			
Intercept $=7.296$			
Slope $=0.2784$			

Other parameters

8. There were no changes to other parameter values.

3.2 Parameter values

Fixed parameters

9. Growth parameters were re-evaluated from size-at-age for cohorts that were sufficiently large for their modal length and well characterised in assessments between 2000 and 2010 (WG-FSA-10/12). The other fixed parameters remain unchanged from previous assessments (Table 4).

Table 4: Fixed parameters used in the 2010 assessment of Champsocephalus gunnari in Division 58.5.2.

Component	Parameter	Value	Units
Natural mortality	M	0.4	y^{-1}
VBGF	K	0.379	y^{-1}
VBGF	t_{0}	0.057	y
VBGF	L_{∞}	438	mm
Length-to-mass	$' a$	$2.629 \mathrm{E}-10$	$\mathrm{~kg} / \mathrm{mm}$
Length-to-mass	$' b$	3.515	

Standing stock

10. Similar to last year, an estimate of SSB was calculated using the bootstrap procedure. The area of seabed sampled and an estimate of the one-sided lower 95% CI of biomass were calculated (Table 5).

Table 5: Seabed areas within three geographic strata used to bootstrap estimates of biomass. Nominal date of survey = 4 April 2010.

Stratum	Estimate	SE	Lower CI	Upper CI	One-sided lower 95\% CI
Gunnari Ridge	1835	535	897	2947	1026
Plateau SE	1560	364	917	2320	1005
Plateau W	4051	873	2469	5674	2715
Pooled	7445	1502	4755	10565	5123

Removals

11. An estimated 400 tonnes of C. gunnari were caught following the survey (31 March to 8 April 2010).

Initial age structure

12. The proportion of density-at-age was derived from the CMIX program for ages $2+$ to $4+$. Modal lengths of the cohorts were estimated by eye (Table 6). Standard deviation of length-at-age was also estimated.

Table 6: Calculation of the proportion of biomass-at-age derived from the survey length-density distribution.

Age class	Mean length (mm)	Density $\left(n \mathrm{~km}^{-2}\right)$	Mean weight (kg)	Proportion of biomass (\%)
$2+$	273	309.5	0.097	0.075
$3+$	323	44.1	0.173	0.019
$4+$	370	1286.6	0.281	0.906

Selectivity

13. A linear selectivity vector was used for C. gunnari, starting at 2.5 years and fully selected at age 3 .

Recruitment

14. The short-term projection of C. gunnari does not include recruitment data.

Proportion of biomass-at-age

15. An estimate of the proportion of biomass-at-age was calculated and presented in Table 6. This demonstrates that the age-4+ cohort contributes the highest biomass of animals and is also the most abundant numerically.

4. Stock assessment

4.1 Model structure and assumptions

16. The GYM, used routinely for the assessment of long-term yield of other species in the CAMLR Convention Area, configured to perform the short-term projection, was used.

Model configuration

Table 7: GYM model configuration for the assessment of Champsocephalus gunnari in Division 58.5.2.

Category	Parameter	Values
Age structure	Plus class accumulation	10 years
	Oldest age in initial structure	11 years
Initial population structure	Age class density	See Table 2
Weight-at-age	Weight-length parameter $-A(\mathrm{~kg})$ Weight-length parameter $-B$	$\begin{gathered} 2.6 \times 10^{-10} \mathrm{~kg} \\ 3.515 \end{gathered}$
Maturity	$L_{m 50}$ (set so that the status of the whole stock is being monitored)	0 mm *
	Range: 0 to full maturity	0 mm
Spawning season	Set so that status of the stock is determined at the end of each year	30 Nov-30 Nov
Fishery information	Upper bound to annual F	5
	Tolerance to finding F	$1 \mathrm{E}-08$
	Tolerance for resolving catches	0.01
Future projection	Age first selected	2.5
	Age fully selected	3.0
	Relative fishing effort	Date: 1 Dec, Effort: 1
2007	Selectivity varied from last	Yes
	Age first selected	2.5
	Age fully selected	3.0
	Relative fishing effort	Date: 1 Dec, Effort: 0
		Date: 15 Apr, Effort: 0
	Catch	15000 kg
Simulation specifications	Number of runs in simulation	1

(continued)

Table 7 (continued)

Category	Parameter	Values
Individual trial	Years to remove initial age structure	$1 * *$
Specifications	Year prior to projection	$2009^{* * *}$
	Reference start date in year	1 Dec
	Increments in year	365
	Years to project stock in simulation	2
	Reasonable upper bound for annual F	5.0
	Tolerance for finding F in each year	0.000001

* Maturity is not used in the short-term projection. It is set to 0 to allow the GYM to monitor the whole population.
** Set to 1 since 15 tonnes were captured after the survey, else set to 0 .
*** GYM requires first year of 2009/10 split-year.

Decision rules

17. To assess a catch level such that fishing should not, without any substantial risk, specified in this instance as no more than 5% probability:
reduce the spawning stock biomass to below 75% of the level that would occur in the absence of fishing within the two years following an abundance biomass estimate provided by a survey.
18. To achieve this, the one-sided lower 95% confidence bound of the biomass estimate for $2+$ and $3+$ age classes (91% of total estimated biomass or 482 tonnes) is used as the starting point for the projection. The $4+$ age class is assumed to be lost later in 2010. An estimated 400 tonnes of icefish have been captured after the survey was conducted, and are assumed to have been taken in proportion to the cohorts seen in the survey. Therefore, the removals after the survey are scaled to reflect the likely impact only on the $2+$ and $3+$ age classes in the catch, and estimated at 38 tonnes.

4.2 Model results

19. A single deterministic short-term projection of yield in 2010/11 (year 1) was calculated for the Heard Plateau and Gunnari Ridge. Yield estimates derived from the shortterm projections for the 2009/10 season are:

Target fishing mortality rate $\left(\mathrm{yr}^{-1}\right)$	Yield (tonnes)	
	$2010 / 11$	$2011 / 12$
0.144	78	66

20. The Working Group recalled its advice to the Scientific Committee last year that the catch limit for C. gunnari in Division 58.5.2 for the 2010/11 be zero (SC-CAMLR-XXVIII, Annex 5, paragraph 5.178). It also noted that the trawl survey conducted in March-April 2010 (WG-FSA-10/12) detected an incoming $2+$ year class, and that the short-term projection model was properly applied to generate precautionary yields for the following two seasons
based on CCAMLR decision rules. However, the biomass from the survey was very low relative to historic levels, and the short-term projection model as applied will always yield a precautionary yield, no matter what the fishable biomass. The Working Group agreed that the Scientific Committee should consider these types of scenarios in light of the CCAMLR Performance Review Panel recommendation that a rebuilding strategy should potentially be employed for stocks with low levels of biomass.

4.3 Sensitivity analyses

21. No specific sensitivity analyses were undertaken at the meeting.

4.4 Discussion of model results

22. The projection of fish of 2+ and 3+ age classes from 2009/10 gives a projected yield of 78 tonnes in the 2010/11 season and 66 tonnes in the 2011/12 season. Yield estimates may alter after 2010/11 following the survey planned in 2010, as small juveniles may begin to be recruited to the survey gear.

4.5 Future research requirements

23. The Working Group recommended considerations whether the parameter estimates from the revised growth model were tracking population change in response to the environment or were due to changes in the way the CMIX method identified cohorts.

5. By-catch of fish and invertebrates

5.1 By-catch removals

24. The total reported by-catch (tonnes) of fish taken in the trawl fishery for C. gunnari in recent years is indicated in Table 8 from fine-scale C2 data.

Table 8: Total reported by-catch (tonnes) for four species between 1995/96 and 2009/10 in the Champsocephalus gunnari trawl fishery. Limits apply to all fisheries in Division 58.5.2. LIC - Channichthys rhinoceratus; NOS - Lepidonotothen squamifrons; GRV - Macrourus spp.; SRX - rajids. (Source: fine-scale data)

Fishing season	LIC	Limit	NOS	Limit	GRV	Limit	SRX	Limit	Other	Limit
$1995 / 96$	0		0		0		0		0	$5 \%^{*}$
$1996 / 97$	2		0		0		1		2	$50^{* *}$
$1997 / 98$	2	80	3	325	0		0	120	2	50
$1998 / 99$	1	150	0	80	0		0		0	50
$1999 / 00$	2	150	0	80	0		0		1	50
$2000 / 01$	1	150	0	80	0	50	0	50	0	50
$2001 / 02$	3	150	0	80	0	50	1	50	0	50
$2002 / 03$	21	150	0	80	0	465	20	120	5	50
$2003 / 04$	6	150	0	80	1	360	3	120	1	50
$2004 / 05$	34	150	0	80	0	360	5	120	3	50
$2005 / 06$	29	150	0	80	0	360	7	120	2	50
$2006 / 07$	3	150	0	80	0	360	0	120	0	50
$2007 / 08$	8	150	0	80	0	360	2	120	7	50
$2008 / 09$	7	150	1	80	0	360	7	120	8	50
$2009 / 10$	51	150	0	80	1	360	12	120	3	50

* 5% move-on rule if individual haul exceeds 5%, limit not specified.
** Move-on rule if catch of any by-catch species exceeds 5% of target species.

5.2 Assessments of impact on affected populations

25. Insufficient information was available to update assessments.
26. No stock assessments of individual by-catch species were undertaken in 2010. By-catch limits of Channichthys rhinoceratus and Lepidonotothen squamifrons are based on assessments carried out in 1998 (SC-CAMLR-XVII, Annex 5, paragraphs 4.204 to 4.206) and by-catch limits of the grenadier Macrourus carinatus are based on assessments carried out in 2002 and 2003 (SC-CAMLR-XXII, Annex 5, paragraphs 5.244 to 5.249).

5.3 Mitigation measures

27. CM 33-02 currently applies to this fishery. Move-on rules are included in the annual conservation measures established for this fishery (e.g. CM 42-02).

6. By-catch of birds and mammals

28. Seabird by-catch in the fishery targeting C. gunnari in Division 58.5.2 remains low with one observed seabird mortality for the 2009/10 season (Table 9).

Table 9: Number of seabirds killed in the trawl fishery in Subarea 48.3. DAC - Daption capense; DIM - Thalassarche melanophrys; PRO - Procellaria aequinoctialis.

Fishing season	Trawls observed	DAC	DIM	PRO	Other
$2002 / 03$	1309		2	2	2
$2003 / 04$	1215		5	3	
$2004 / 05$	1301				
$2005 / 06$	1086				2
$2006 / 07$	936				
$2007 / 08$	700	39	1		
$2008 / 09$	138				
$2009 / 10$					

29. No incidents of marine mammal by-catch have been observed while fishing for C. gunnari since 2005/06.
30. WG-IMAF did not meet in 2010, however, in 2009 it assessed the level of risk of incidental mortality of seabirds in Division 58.5 .2 as category 4 (average-to-high) (SC-CAMLR-XXVIII, Annex 7, Table 13 and Figure 2).

6.1 Mitigation measures

31. The provisions of CM 25-03 apply to this fishery.

7. Ecosystem implications/effects

32. Bottom trawl and midwater trawl gear is used to target both C. gunnari and Dissostichus eleginoides in Division 58.5.2. The potential impacts of fishing gear on benthic communities are limited by the small size and number of commercial trawl grounds, a strategy of fishing trawling gear lightly, and the protection of large areas sensitive to the effects of bottom trawling (SC-CAMLR-XXIII, Annex 5, paragraph 5.211).
33. Research is currently being undertaken by Australia to develop ecosystem models for the Heard Island Plateau, including C. gunnari and their main predators, which will subsequently be used to inform management strategy evaluations on the C. gunnari fishery (SC-CAMLR-XXVI/BG/6, paragraph 21).

8. Harvest controls and management advice

8.1 Conservation measures

34. The limits on the fishery for C. gunnari in Division 58.5.2 are defined in CM 42-02. The limits in force and the Working Group's advice to the Scientific Committee for the forthcoming season are summarised in Table 10.

Table 10: Limits on the fishery for Champsocephalus gunnari in Division 58.5.2 in 2009/10 (CM 42-02) and advice to the Scientific Committee for 2010/11.

Element	Limits in force	Advice for 2010/11
Access (gear)	Trawling only.	Carry forward
Access (area)	Definition of area open for fishing. Chart illustrating area open (Annex 42-02/A).	Carry forward Carry forward
Catch limit	1658 tonnes	Revise to 78 tonnes
Move-on rule	Move on if $>100 \mathrm{~kg}$ caught of which $>10 \%$ by number are less than minimum size (24 cm).	Carry forward
Season	1 December to 30 November	Same period
By-catch	By-catch rates as in CM 33-02 to apply.	Carry forward
Mitigation	In accordance with CM 25-03.	Carry forward
Observers	Each vessel to carry at least one scientific observer and may include one additional CCAMLR scientific observer.	Carry forward
Data	Ten-day reporting system as in Annex 42-02/B Monthly fine-scale reporting system as in Annex 42-02/B on haul-by-haul basis. Fine-scale reporting system as in Annex 42-02/B. Reported in accordance with the Scheme of International Scientific Observation.	Carry forward
Target species	Champsocephalus gunnari By-catch is any species other than C. gunnari.	Carry forward
Environmental protection	Regulated by CM 26-01. No offal discharge.	Carry forward

8.2 Management advice

35. The Working Group recommended that the Scientific Committee consider a catch limit for C. gunnari in 2010/11 of no more than 78 tonnes.
36. The Working Group recommended that other measures in the conservation measure be retained.
