

Review of the Ross Sea region stock assessment

Sophie Mormede, Steve Parker

18-22 June 2018, Norwich

Contents

- Stock hypothesis and model structure
- Data inputs and clean up
- Model results
- Issues and challenges
- Effect of the MPA

Stock hypothesis & Model structure

Proportion of toothfish by length class in catch in RSR

Immature fish (<100 cm) on southern shelf and at Balleny Islands

Maturing fish (100-130 cm) in western and central Ross Sea

Mature fish (>130 cm) on northern hills

Median length frequency in 88.1-88.3

Likely spawning locations

Egg and larval dispersal simulations to help understand life cycle

Life cycle of Antarctic toothfish in the Ross Sea region

Hypothetical stock structure in Area 88

Population model

- Single stock (88.1 + SSRUs 88.2A-B)
- Areas as fisheries
 - Shelf, slope and north separate with different fishing selectivities (constant over time)
 - These areas are re-examined every year using tree regression on mean length by set
 - Tagged fish released by area to account for potential differences in sex ratio of tagged fish

Annual model process

- Summer
 - Recruitment of fish aged 1
 - Fishing mortality
 - Half of natural mortality
- Winter
 - Spawning
 - Half of natural mortality
- Instantaneous step
 - Ageing

Biological parameters

- Ages 1-50
- Males and females separately
 - Size-weight and von Bertalanffy length at age
 - Data from the Ross Sea region
 - Ageing validated with tetracycline, radio isotopes, and tagging
 - Age interpretation calibrated annually with reference set
- Maturity ogive for each sex (logistic)
 - Based on histological gonad analyses from the Ross Sea slope
- Natural mortality 0.13 based on catch at age data analysis and literature review

Proportion of females

Mormede et al. (2014) CCAMLR Sci. **21**

Age length keys for North and shelf/slope

Age at maturity - slope

Toothfish tagging programme

- Became a CCAMLR requirement in 2004
- All fish in Ross Sea region must be double tagged at the rate of 1 fish tagged per tonne of toothfish caught (~1 in 30 fish in north)
- Fish are tagged by size proportional to the catch length frequency (since 2009; FSA para 5.13)
- Tag reward programme 1st prize \$1000
- Now, more than 45, 000 tags released & 2,300 recaptured in Ross Sea

Locations of all released (left) and recaptured (right) toothfish in the Ross Sea region

20			WG-FS	SA-15/37				HWA
	Total	90	2 092	202	47	500	2 931	
	882North	0	1	0	0	499	500	
	882Slope	0	3	0	47	0	50	
	North	0	7	168	0	0	175	
	Slope	70	2 006	31	0	0	2 107	
	Shelf	20	75	3	0	1	99	
		Shelf	Slope	North	882 Slope	882 North	Total	

Taihoro Nukurangi

Tag movement / mixing

Median movement (km) of recaptured Antarctic toothfish by time at liberty and size at release for recaptured toothfish (shaded cells indicate a sample size of less than five fish).

Time at						Size class (cm)
liberty	< 80	81–100	101–120	121–140	141–160	160–180
<1 season	22	14	11	3	3	3
1 season	17	31	21	9	6	16
2 seasons	63	35	16	18	9	26
3 seasons	52	33	27	16	49	-
4 seasons	74	41	34	69	45	-
5 seasons	65	36	46	43	15	919
6 seasons	105	33	21	400	-	1
7 seasons	140	38	39	25	630	-
8 seasons	132	55	73	-	-	-
9 seasons	90	61	23	114	-	-
10 seasons	118	73	42	7	-	-
11 seasons	18	80	763	-	-	-
12 seasons	83	89	-	-	-	-

Tagging parameters

- Initial mortality (Agnew et al, 2006) (5% *2)
- Initial and ongoing tag loss based on Ross Sea data using double-tagged fish (Dunn et al 2011)
- Tag detection rate accounts for recaptured tags that could not be linked to a release (but see the select)
- Tag growth retardation based on length data of Ross Sea fish recaptured with time at liberty (Parker et al 2013,2015)

Model fixed parameters

Table 1: Biological parameters assumed for the modelling.

Relationship	Parameter			Value
			Male	Female
Natural mortality	$M(y^{-1})$		0.13	0.13
Von Bertalanffy	$t_{0}\left(\mathbf{y}\right)$		-0.256	0.021
	$k(y^{-1})$		0.093	0.090
	L_{∞} (cm)		169.07	180.20
	c.v.		0.1	0.1
Length-weight	a		1.387e-08	7.153e-09
	b		2.965	3.108
	<i>C.V.</i>		0.1	0.1
Maturity	$A_{50} (\pm A_{to95})$		11.99 (±5.25)	16.92 (± 7.68)
Stock recruit steepness (Beverton-Holt)	h	0.75		
Recruitment variability	σ_R	0.6		
Ageing error (CV)	<i>C.V.</i>	0.1		
Initial tagging mortality		10%		
Initial tag loss (per tag)		3.3%		
Instantaneous tag loss rate (per tag)		0.062y ⁻¹		
Tag detection rate		98.8%		
Tag related growth retardation		0.5 y		

Parameters estimated

- Spawning stock biomass B₀ (sum of biomass at age * maturity ogives)
 - Uniform-log prior
- Selectivity for each fishery and the survey
 - All are dome-shaped with uniform prior (logistic is tested for the north)
 - Used to have a selectivity shift each year that was removed from the model in 2015
- Year Class Strengths: 2003 -2011
 - Lognormal prior between 0.001 and 100, μ = 1; cv = 1.1
- Survey biomass q
 - Uniform-log prior

Data weighting procedure

- Used the Francis (2011) method
 - AFs with initial multinomial weight calculated
 - Tagging data have the number of scanned fish and no dispersion
 - Survey biomass has annual cv and no process error
- 1. Run the model with no additional weighting
- 2. Calculate the weight on AFs and rerun the model
- 3. Calculate tagging dispersion (all years together) and rerun the model
- 4. Calculate the survey biomass cv and rerun the model

Data input

Time series data available

- Catch, effort, mark-recapture data from vessels (C2)
- Length/age, weight from observers (observer logbook)
- Standardised Ross Sea shelf survey data (C2 and observer logbook)
- Age-length keys by year: North vs Slope/shelf

Data clean-up

- Detailed in FSA-13/56
- Main steps carried out each year
 - Check total weights and weight vs length vs number of fish caught
 - Check for position errors in all the data
 - Check for errors in vessel type, date etc
 - Match tag recapture events with tag released events

Catches

- Split by area and year
- Includes
 - Catches from quarantined data
 - Catches from the SPRFMO area just north of the

Ross Sea region

Catch rates

 Removed from the stock assessment in 2007 as not expected to represent an index of abundance (standardised showed below)

Age Frequency Shelf

- Use annual age length keys for shelfslope and for north separately
- Exclude quarantined data
- Red line ~ mean age for all years

31

AF Slope

0.0412 **0**

0.0 0.8 0.6 0.4 0.2

8:8

0.6 0.4 0.2

0.0

പ

-7 Í

ഹ

ഹി

ഹഹ

Մութո

J

~~~

111111



## **AF** North

0.8

0.6

9:8 0.8 0.6 0.4 0.2 0.0 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2 0.6 0.4 0.2

 0.8
 0.8

 0.6
 0.4

 0.2
 0.8

 0.6
 0.4

 0.2
 0.8

 0.6
 0.4

 0.2
 0.8

 0.6
 0.4

 0.2
 0.8

 0.6
 0.4

 0.2
 0.8

 0.6
 0.4

 0.2
 0.8

8:8

0.6

 9.8

 0.8

 0.6

 0.4

 0.2

 0.8

 0.6

 0.4

 0.2

 0.8

 0.6

 0.4

 0.2

 0.8

 0.6

 0.4

 0.2

 0.8

 0.6

 0.4

 0.2

 0.8

 0.6

 0.4

 0.2

8:8

0.6

8:8 0.6 0.4 0.2

ഹ്

ኒሌ

ኅብ

ղ]]Ր

10 20

Лл

ഹ

ال جيمہ

Л

٦І

### Survey information

Ross Sea shelf survey: an index of the juvenile portion of the stock (~ ages 5-12)

- Biomass estimates
  - Standardised for soak time
- Age frequencies
  - Annual age-length keys









Age (years)



Age (years)

### Mark-recapture data

• Use up to 6 years at liberty in the model

- After 6 years at liberty the estimated biomass biased high

|       | Number   |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |       |
|-------|----------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
|       | released | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Total |
| 2001  | 259      | 1    | 1    | 0    | 0    | 0    | 1    | 1    | 1    | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 6     |
| 2002  | 683      | 2    | 9    | 4    | 9    | 9    | 13   | 6    | 5    | 2    | 5    | 0    | 3    | 5    | 0    | 0    | 0    | 72    |
| 2003  | 862      | -    | 6    | 13   | 9    | 2    | 9    | 2    | 2    | 2    | 2    | 1    | 1    | 3    | 1    | 0    | 0    | 53    |
| 2004  | 2 0 3 2  | -    | -    | 9    | 22   | 18   | 33   | 27   | 12   | 15   | 10   | 13   | 13   | 6    | 1    | 1    | 4    | 184   |
| 2005  | 3 277    | -    | -    | -    | 8    | 25   | 28   | 29   | 11   | 47   | 15   | 13   | 18   | 11   | 11   | 9    | 3    | 228   |
| 2006  | 3 035    | -    | -    | -    | -    | 11   | 89   | 68   | 15   | 28   | 20   | 4    | 13   | 12   | 3    | 8    | 4    | 275   |
| 2007  | 3 535    | -    | -    | -    | -    | -    | 18   | 62   | 22   | 50   | 26   | 12   | 20   | 38   | 6    | 18   | 7    | 279   |
| 2008  | 2 507    | -    | -    | -    | -    | -    | -    | 14   | 19   | 36   | 18   | 9    | 23   | 19   | 12   | 11   | 10   | 171   |
| 2009  | 2 829    | -    | -    | -    | -    | -    | -    | -    | 9    | 41   | 37   | 11   | 20   | 28   | 9    | 10   | 5    | 170   |
| 2010  | 3 064    | -    | -    | -    | -    | -    | -    | -    | -    | 27   | 57   | 21   | 31   | 41   | 19   | 12   | 16   | 224   |
| 2011  | 3 035    | -    | -    | -    | -    | -    | -    | -    | -    | -    | 13   | 36   | 42   | 55   | 23   | 22   | 15   | 206   |
| 2012  | 3 827    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | 9    | 15   | 22   | 17   | 22   | 26   | 111   |
| 2013  | 3 582    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | 12   | 54   | 31   | 31   | 25   | 153   |
| 2014  | 3 124    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | 18   | 36   | 43   | 16   | 113   |
| 2015  | 3 076    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | 16   | 57   | 21   | 94    |
| 2016  | 3 138    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | 9    | 28   | 37    |
| 2017  | 3 161    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | 8    | 8     |
|       |          |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |       |
| Total | 45 026   | 3    | 16   | 26   | 48   | 65   | 191  | 209  | 96   | 248  | 203  | 130  | 211  | 312  | 185  | 253  | 188  | 2 384 |



### Mark-recapture ratio

| N<br>fi | lumber<br>ish |      |      |      |      |      |      |      |      |      |      |        |        |      |        |         |         |
|---------|---------------|------|------|------|------|------|------|------|------|------|------|--------|--------|------|--------|---------|---------|
| r       | eleased       | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012   | 2013   | 2014 | 2015   | 2016    | 2017    |
| 2002    | 683           |      |      | 0.44 | 2.25 | 1.00 | 1.44 | 0.46 | 0.83 | 0.40 | 2.50 | 0.00 # | DIV/0! | 1.67 | 0.00 ‡ | #DIV/0! | #DIV/0! |
| 2003    | 862           |      |      |      | 0.69 | 0.22 | 4.50 | 0.22 | 1.00 | 1.00 | 1.00 | 0.50   | 1.00   | 3.00 | 0.33   | 0.00    | #DIV/0! |
| 2004    | 2032          |      |      |      |      | 0.82 | 1.83 | 0.82 | 0.44 | 1.25 | 0.67 | 1.30   | 1.00   | 0.46 | 0.17   | 1.00    | 4.00    |
| 2005    | 3277          |      |      |      |      |      | 1.12 | 1.04 | 0.38 | 4.27 | 0.32 | 0.87   | 1.38   | 0.61 | 1.00   | 0.82    | 0.33    |
| 2006    | 3035          |      |      |      |      |      |      | 0.76 | 0.22 | 1.87 | 0.71 | 0.20   | 3.25   | 0.92 | 0.25   | 2.67    | 0.50    |
| 2007    | 3535          |      |      |      |      |      |      |      | 0.35 | 2.27 | 0.52 | 0.46   | 1.67   | 1.90 | 0.16   | 3.00    | 0.39    |
| 2008    | 2507          |      |      |      |      |      |      |      |      | 1.89 | 0.50 | 0.50   | 2.56   | 0.83 | 0.63   | 0.92    | 0.91    |
| 2009    | 2829          |      |      |      |      |      |      |      |      |      | 0.90 | 0.30   | 1.82   | 1.40 | 0.32   | 1.11    | 0.50    |
| 2010    | 3064          |      |      |      |      |      |      |      |      |      |      | 0.37   | 1.48   | 1.32 | 0.46   | 0.63    | 1.33    |
| 2011    | 3035          |      |      |      |      |      |      |      |      |      |      |        | 1.17   | 1.31 | 0.42   | 0.96    | 0.68    |
| 2012    | 3827          |      |      |      |      |      |      |      |      |      |      |        |        | 1.47 | 0.77   | 1.29    | 1.18    |
| 2013    | 3582          |      |      |      |      |      |      |      |      |      |      |        |        |      | 0.57   | 1.00    | 0.81    |
| 2014    | 3124          |      |      |      |      |      |      |      |      |      |      |        |        |      |        | 1.19    | 0.37    |
| 2015    | 3076          |      |      |      |      |      |      |      |      |      |      |        |        |      |        |         | 0.37    |
| 2016    | 3138          |      |      |      |      |      |      |      |      |      |      |        |        |      |        |         |         |
| 2017    | 3161          |      |      |      |      |      |      |      |      |      |      |        |        |      |        |         |         |
| Total   | 45026         |      |      |      |      |      |      |      |      |      |      |        |        |      |        |         |         |



### Use of the mark recapture data

- Large differences in the recapture rates of tagged fish between vessels
  - Includes some procedure differences between vessels
- Initial assessments used only NZL tag data
- From 2009 started developing "quality" algorithms to select mark recapture data for the assessment
- Current method is a case-control method which calculates the relative tagging survival and effective tag detection rate of vessels in the Ross Sea region (Mormede et al. 2013, CCAMLR Science)
  - Data intensive so uses all data for each vessel to calculate those rates





|                        | n/1000  | (%)          |
|------------------------|---------|--------------|
|                        | 34      | (94)         |
| Mys Marii -            | 73      | (74)         |
| Insung No. 22 -        |         |              |
| Bonanza No. 707 -      | 24      | (87)         |
| Yanque -               |         | (24)         |
| Gold Gate -            | 73      | (55)         |
| Sparta -               | 61      | (31)         |
| Koreiz –               | 35.6    | (53)         |
| Jung Woo No. 2 –       | 23.0    | (76)         |
| Froyanes -             | 12.9    | (98)         |
| Ross Mar -             | 5.7     | (62)         |
| Viking Sur -           | 0.9 (1  | 00)          |
| Ostrovka -             | 76.0    | (64)         |
| Argos Froyanes -       | 67.5    | (74)         |
| Argos Georgia -        | 96.1    | (73)         |
| San Aotea II -         | 31.1    | (48)         |
| Avro Chieftain -       | 40.9    | (69)         |
| Kostar -               | 0.5     | (78)         |
| Marigolds -            | 9.1     | <u>(8</u> 3) |
| Antartic III -         | 0.4     | (6)          |
| Kingstar -             | 141.2   | (80)         |
| San Aspiring -         | 106.6   | (73)         |
| Janas -                | 5.3     | (84)         |
| Ugulan -               | 39.7    | (80)         |
|                        | 40.0    | (80)         |
| Argos Helena -         | 16.3    | (72)         |
| Chie Maru No. 2 -      | 8.7     | (64)         |
| Vantar -               | 66.3    | (92)         |
| Tropio -               | 120.0   | (89)         |
| Antarctic Chieftain -  | 28.8    | (48)         |
| Posevdon L -           | 0.8     | (80)         |
| Insung No. 3 -         |         |              |
| Simeiz -               |         | (61)         |
| Jung Woo No. 3 -       |         |              |
| Insuna No. 5 -         |         |              |
| Argenova XXI -         |         | (78)         |
| Hong Jin No. 707 –     | 316     | (81)         |
| Sunstar -              | 31.0    | (82)         |
| Palmer -               | 85      | (91)         |
| South Princess -       | 43.1    | (99)         |
| Volna -                | 71      | (52)         |
| Antartic II -          | 34.0    | (71)         |
| Yantar 31 -            | 11.6    | (93)         |
| Paloma V -             | 18.6    | (95)         |
| Punta Ballena –        | 8.6     | (46)         |
| Ross Star –            | 3.3     | (39)         |
| Antarctic Discovery -  | 28.3    | (58)         |
| Hong Jin No. 701 -     | 6.0 (1  | Î00)         |
| Arnela -               | 1.0     | (98)         |
| Yeon Seong No. 829 -   | 0.4 (1  | (00)         |
| Sonrisa (NZL) -        | 1.8     | (74)         |
| Piscis -               | 0.5     | (15)         |
| Arges Holona (2004)    | 0.4 (1  | 100)         |
| Angus Helelia (2004) - | 5.0     | (99)         |
| America L -            | 4.3     | (99)         |
| Anterica               |         |              |
|                        |         |              |
| (                      | ) 1 2 3 | 4            |

40





|                        |                  |     |   | n (%)     |  |
|------------------------|------------------|-----|---|-----------|--|
| Ross Mar               | _                |     |   | 155 (52)  |  |
| Paloma V               |                  | -   |   | 31 (10)   |  |
| Argos Frovanes         | 4                |     |   | 1097 (34) |  |
| San Liberatore         |                  |     |   | 33 (9)    |  |
| Argos Georgia          |                  |     |   | 1426 (52) |  |
| Ugulan                 |                  |     |   | 124 (53)  |  |
| Selievaer              | _                |     |   | 839 (59)  |  |
| Avro Chieffain         |                  |     |   | 411 (21)  |  |
| Ostrovka               |                  |     |   | 6 (33)    |  |
| Argos Helena           |                  |     |   | 540 (34)  |  |
| Antarctic Chieftain    |                  |     |   | 598 (33)  |  |
| San Aspiring           |                  |     |   | 3191 (61) |  |
| Argenova XXI           |                  | 1   |   | 30 (73)   |  |
| Sparta                 |                  |     |   | 177 (35)  |  |
| Frovanes               | 4 <del>- i</del> |     |   | 343 (34)  |  |
| Insung No. 22          | <u> </u>         |     |   | 27 (8)    |  |
| San Aotea II           |                  |     |   | 2309 (49) |  |
| Jan Aolea II<br>Tronio |                  |     |   | 2508 (73) |  |
| lanas                  |                  |     |   | 1808 (40) |  |
| Isla Eden              |                  |     |   | 12 (8)    |  |
| Veon Seong No. 829     |                  |     |   | 12 (46)   |  |
| South Princess         |                  |     |   | 14 (12)   |  |
| Vantar                 |                  |     |   | 356 (27)  |  |
| Hong lin No. 701       |                  |     |   | 490 (34)  |  |
| lung Woo No. 2         |                  |     |   | 519 (38)  |  |
| Insung No. 1           |                  |     |   | 143 (31)  |  |
| Insung No. 3           |                  |     |   | 232 (93)  |  |
| Antartic III           |                  |     |   | 68 (17)   |  |
| Gold Cate              |                  |     |   | 62 (44)   |  |
| Vantar 31              |                  |     |   | 554 (58)  |  |
|                        |                  |     |   | 371 (47)  |  |
| Sung Woo NO. 3         |                  |     |   | 706 (65)  |  |
| Dunta Dallona          |                  |     |   | 31 (7)    |  |
| Punta Dallena          |                  |     |   | 345 (30)  |  |
| Volna                  |                  |     |   | 196 (27)  |  |
| Chio Moru No. 2        |                  |     |   | 254 (39)  |  |
|                        |                  |     |   | 297 (70)  |  |
| Hong lin No. 707       |                  |     |   | 1337 (59) |  |
| Polimer                |                  |     |   | 613 (71)  |  |
| Painer                 |                  |     |   | 799 (59)  |  |
| Kostar                 | ]                |     |   | 19 (5)    |  |
| Antartic II            |                  |     |   |           |  |
|                        |                  |     |   |           |  |
|                        | 0                | 1 2 | 3 | 4         |  |

Index



42

Using effective tagging survival and effective tag detection

- Effective tagging survival: number of tagged fish
  - For each year and vessel a set number of tagged fish are randomly selected and removed from the data to reflect survival rates
- Effective tag detection: number of scanned fish in the tag recapture observations
  - For each year and vessel the number of fish caught is discounted by the detection rate



### Model results



### Summary

- Diagnostics suggest the model fits to observations were mostly adequate
- Similar trend over time from each assessments



### "Precautionary" catch limit

- Catch limit (R1):
  - 3234 t 3258 t: MPA and various splits
  - -Range 3213 t all slope to 3378 t all north
- CM 91-05: maximum 3157 t (don't ask why)
   After two years limit would be 3268 t



### Likelihood profile



Bad ice years: 2001, 2008, 2015

NIWA Taihoro Nukurangi



### Fits to tags



Residual pattern a function of year of recapture rather than year of release, likely linked to location of fishing.



### Sensitivity runs

- Flat-topped selectivity in the north
   ➢ Very little difference (0.4% in MPD B₀)
- Removal of survey data
   Without survey data, YCS was poorly estimated
- Try to fit survey biomass trend
  - biomass and AF disagree, biomass likely local processes (large fish are not always present)
- Exclude releases from one vessel where effective tagging changed a lot since the 2015 assessment
   ➢ Some influence (B₀ 3% lower than base case)



### Previous model runs

| Year | Changes from previous assessment                                       | Sensitivities                                                  |
|------|------------------------------------------------------------------------|----------------------------------------------------------------|
| 2005 | First model used for management purposes. Uses proportions at age,     | No tagging data, tag growth check estimated or ignored,        |
|      | CPUE indices, and tagging data from NZ vessels.                        | constant or no shift in fisheries selectivities, low mortality |
|      |                                                                        | value, single fishery, fixed fishing selectivity, 2- and 3-    |
|      |                                                                        | area models                                                    |
| 2006 | Revise length-weight and growth parameters, one additional year of     | Tagging data from all vessels, uncertainty added to natural    |
|      | data                                                                   | mortality, alternative data weightings                         |
| 2007 | Remove CPUE indices, one additional year of data                       | Tagging data from all vessels, tagging data from all           |
|      |                                                                        | vessels in 2006 only, logistic north selectivity               |
| 2009 | Tagging data from selected trips from all nations using new data       | Tagging data from NZ vessels only, 2007 maturity ogive         |
|      | quality method, update maturity curve, two additional years of data    |                                                                |
| 2011 | Update tag data selection, update tag-loss rates based on the analysis | Inclusion of IUU catch, inclusion of various levels of         |
|      | of double-tagging data, two additional years of data                   | additional mortality, tagging data from all vessels            |
| 2013 | New tagging survival and tag detection calculation method using        | Logistic selectivity in the North, retrospective analysis      |
|      | tagging data from all vessels, update maturity curve, change model     | (removing up to 210-2013 observations)                         |
|      | data weighting to Francis (2011), two additional years of data         |                                                                |
| 2015 | Add survey age frequencies and biomass estimates and estimate YCS,     | Logistic selectivity in the North, remove survey data, use     |
|      | remove annual selectivity shifts, update tagging survival and tag      | tagging data from the last 6 years only, change the catches    |
|      | detection rates, update data weighting, two additional years of data   | from quarantined data by +/- 50%,                              |
| 2017 | Update tagging survival and tag detection rates, update data           | Logistic selectivity in the North, remove survey data,         |
|      | weighting, two additional years of data                                | down-weight survey biomass estimates, exclude tag              |
|      |                                                                        | releases from a vessel with a large increase in tagging        |
|      |                                                                        | survival rates                                                 |



### Some issues and challenges



## Fits to survey biomass

- Not a good fit to the survey biomass
- Up-weighting that data doesn't fit AFs anymore
- Survey captures juveniles and a mode of older fish



Year

0.2



Year

### Fits to tag data

- Discrepancy between observed and expected
- Freeing tag shedding rate, initial tag loss rate did not improve fits





### Fits

• Go through <u>FSA-17/38</u>



## Future effects of the MPA on the assessment







### Potential impacts

- Catch split used for projections
- Location of effort and previously-released tagged fish (spatial bias)



### Catch split

• 2017 assessment: assumptions on the location of future catches to estimate the catch limit

- 2019 assessment:
  - Need to assess location of catches, potential biomass in new areas and propose new catch splits
  - Might need new fisheries as areas for the model



### Location of tagged fish

- 2017 assessment: no impact
- 2019 stock assessment onward:
  - Some areas with tagged fish will not be available to fish and recapture tagged fish
  - Some areas with no currently tagged fish might get fished: might create a small bias in 2019, which will increase after
  - Will need to account for the spatial heterogeneity between tagged and effort until the patterns settle



### Work plan for the assessment

- Medium Term Research Plan (FSA-14/60)
  - Stock structure, in particular with 88.2C-I
  - Improve estimates of tagging mortality and tag detection
  - Performance / dashboard of key parameters
  - MSE
- Assessment papers (SAM-17/41, FSA-17/37)
  - Bias due to the change in fishing effort distribution / index of tag overlap
  - Catch split / fisheries as areas
  - Effective tagging survival and tag detection rates
  - Residuals (e.g. sex ratio, tagged fish length)



### Thank you

