
Introduction
Constable and de la Mare (1996) presented a 

generalised yield model (GYM), a stock assess-
ment model, for assessing the status of fish stocks 
under various levels of uncertainty using either 
stochastic or deterministic projections. The model 
was further developed over the subsequent eight 
years and used as the primary tool for setting catch 
limits for all target species including krill, tooth-
fish and icefish, and a number of bycatch species 
in the CAMLR Convention Area (Constable 2004; 
SC-CAMLR, 2004, paragraph 4.11). In addition to 
setting catch limits, the GYM has also been used 
to evaluate management strategies, for example 
Ziegler et al., (2011) or Welsford (2011). While 
statistically fitted stock assessment methods have 
been used for toothfish assessments since 2010, the 
GYM software is still being used to provide advice 
on catch limits for some icefish fisheries as well as 
a number of bycatch species (SC-CAMLR, 2018, 
paragraph 3.61).

In 2019, the Scientific Committee of CCAMLR 
noted the need to implement a revised management 
strategy that would incorporate contemporary 
information across a range of spatial and tem-
poral scales to improve the likelihood of achiev-
ing CCAMLR’s conservation objective for the 
krill fishery. As part of this process, the Scientific 
Committee also outlined a work plan and sched-
ule for implementing the adopted strategy for krill 
management (SC-CAMLR-2019, paragraphs 3.16 
and 3.34, Tables 1 and 2).

An action item and priority for the Scientific 
Committee’s working groups as part of the krill 
work plan was the reimplementation of the GYM 
in an open-source code (SC-CAMLR, 2019, para-
graph 13.4, Table 1). This is due to: (i) a lack of 
consensus on the utility of more current mod-
els, (ii) the GYM being the most recent software 
used to estimate catch limits consistent with the 
CCAMLR decision rules, and (iii) the FORTRAN 
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implementation becoming increasingly difficult to 
maintain on modern computers. A discussion of the 
implementation of the CCAMLR decision rules is 
outside the scope of this paper, but for more details 
on the decision rules see Constable et al. (2000) or 
the krill fishery management approach (CCAMLR, 
2020).

Here, we present the Grym package 
(Wotherspoon and Maschette, 2020). Designed to 
work within R (R Core Team, 2020), the Grym was 
built with the aim to provide a toolbox of func-
tions that replicate the existing core functionality 
of the GYM software (compiled version 501E; 
Constable, 2004). By combining different func-
tions, the effects of different decisions, for example 
varying recruitment relationships, can be tested. 
The Grym can be used as the underlying package 
for a range of stock assessment and management 
strategy evaluation applications to facilitate assess-
ments run by either non-specialist programmers or 
assessment scientists.

Implementation

The GYM software (Constable and de la Mare, 
1996: Constable, 2004) is a single monolithic exe-
cutable that performs either stochastic or determin-
istic stock projections under a variety of assumed 
recruitment, mortality and harvesting. The precise 
form of the assumed models of recruitment, mor-
tality and harvesting used in the projection is speci-
fied through a complex set of configuration files 
read at the beginning of each analysis. 

Where the FORTRAN code of the latest GYM 
executable (compiled version 501E; Constable 
2004) differed from the intent of the GYM 
described by Constable and de la Mare (1996), the 
Grym functionality was written to be consistent 
with the intent described by Constable and de la 
Mare (1996). This approach has led to some dif-
ferences in model outputs between the GYM exe-
cutable and the equivalent functions of the Grym 
package, which are discussed in more detail below.

The Grym performs stochastic stock projection 
under a variety of assumed recruitment, mortality 
and harvesting. However, the Grym is an R pack-
age that provides separate functions for each of the 
major computational tasks required for the projec-
tions. Similar to the GYM, which used checkboxes, 

here, the user provides the ‘control logic’ for the 
Grym, which calls these functions to perform an 
assessment in the desired configuration.

The core functionality of the GYM is to pro-
ject stock abundance, biomass and yield in each 
age class forward in time over a single year. The 
GYM projects forward over time by integrating a 
system of differential equations with an adaptive 
Runge–Kutta scheme. The GYM assumes the num-
ber , ( )a yN t , biomass , ( )a yB t  and yield , ( )a yY t  of 
individuals of age a in year y at time t within the 
year satisfy the system of differential equations 
(Constable and de la Mare, 1996)
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Here ( )w a t+  represents the weight at exact age 
( )a t+  and the total natural mortality , ( )y a yM m t  
has been decomposed into an annual component 

yM  that is constant in the year and a component 
, ( )a ym t  that varies within the year, and similarly the

total fishing mortality , ( )y a yF f t  has been decom-
posed into an annual component yF  that is constant 
in the year and a component ( , , )f a t y  that varies 
within the year. Both , ( )a ym t  and , ( )a yf t  may also 
vary from year to year, and so an appropriate nor-
malisation must be chosen for these components to 
ensure identifiability. The total yield in each year is 
the sum of the contributions from each age class at 
the end of the year (t=1)

, (1).y a ya
Y Y=∑ (2)

The GYM solves this system of differential 
equations for each year by assuming the time vary-
ing functions , ( )a ym t , , ( )a yf t  and ( )w a t+  are 
piecewise linear and integrating the system with an 
adaptive Runge–Kutta scheme.

The Grym takes a more direct approach. The 
system of governing equations has a solution:
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The Grym computes this directly by evaluating 
the required integrals with the composite trapezoi-
dal rule. As , ( )a ym t  and , ( )a yf t  are assumed piece-
wise linear, this yields exact solutions for ,a yN  and 

,a yB .

Many quantities of interest, such as the spawn-
ing, exploitable or vulnerable biomass are computed 
as temporal averages over a specified reference 
interval. The GYM calculates temporal averages as 
simple sums, but for internal consistency with the 
above, the Grym calculates temporal averages with 
the composite trapezoidal rule.

To ensure that the annual scalings yM  and yF  
are identifiable, some appropriate normalisation 
must be imposed upon the intra-annual patterns of 
mortality , ( )a ym t  and , ( )a yf t . In the GYM, identi-
fiability is enforced by requiring the intra-annual 
mortalities integrate to unity over a year; but this 
choice implies the same total fishing effort is 
expended in each year and complicates the interpre-
tation of yF  when the length of the fishing season 
changes dramatically over time. For this reason, in 
the Grym the choice of normalisation is left to the 
discretion of the user.

Aside from mortality and harvesting, the key 
determinant of stock survival is recruitment. The 
GYM offers a number of options for modelling 
recruitment, including (i) drawing from a lognor-
mal distribution with prescribed mean and coef-
ficient of variation; (ii) bootstrapping from a time 
series of recruitment estimates derived from survey 
data; and (iii) the proportional recruitment model 
described in de la Mare (1994), and these are repro-
duced in the Grym. 

The proportional recruitment model defines R 
the ratio of the number of individuals of a given 
reference age to all individuals of that age or older 
and assumes estimates of R are available from 
multiple surveys. The method derives estimates 
of natural mortality and the mean and variance of 
the recruitment required to reproduce the mean and 

variance of R observed in the surveys. The method 
described by de la Mare (1994) and several exten-
sions described in Pavez et al (2023) are imple-
mented in the Grym.

However, de la Mare (1994) advocates resam-
pling the mean and variance of R observed in the 
surveys from normal and chi-squared distributions 
respectively. But as R is a proportion it has bounded 
variation, and the sample variance of R will not 
follow a chi-square distribution. Resampling the 
variance of R from a chi-square distribution will 
produce variances that are unattainable, and it is 
likely this is the cause of the ‘premature termina-
tion’ issue reported by Kinzey, Watters and Reiss 
(2013). Instead, the Grym offers a parametric boot-
strap alternative to simulate new values for the 
mean and variance of R that are consistent with the 
observed values. If the observed mean and vari-
ance were estimated from n independent surveys, 
random recruits based on the observed mean and 
variance are used to generate n new age structures 
from which R, and hence the mean and variance of 
R, are estimated. This procedure is guaranteed to 
produce realistic variances and is described in more 
detail in Pavez et al. (2023).

The source code for the FORTRAN compiled 
version 501E was available for reference in order 
to compare the implementation and outputs with 
the Grym. In addition to the standard documenta-
tion, the Grym package provides a ‘vignette’ which 
shows how each function is used with their rele-
vant input parameters. The accompanying package 
GrymExamples contains examples for icefish, krill 
and toothfish assessments which are used here to 
compare projections from both the GYM software 
and the Grym package.

Comparisons of implementations

In order to ensure consistency between imple-
mentations, the GYM software (version 501E) and 
the Grym package (version 1.0.0) were compared 
for three different scenarios: 

(i) 2019 mackerel icefish (Champsocephalus
gunnari) assessment for Division 58.5.2 (Maschette 
et al., 2019) representing an assessment which 
uses constant fishing mortality (F) over a two-year 
deterministic projection.

, ,

, ,

, ,

, , ,

( ) (0)exp

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) .

a y a y

y t y t

y a y y a yy y

a y a y

y t

a y y a y a yy

N t N

M m t d F f t d

B t w a t N t

Y t F f t B d

 

 

 





    
 



 





Maschette et al.

72

(ii) 1996 krill assessment (Constable and de la
Mare, 1996), representing an assessment which 
allows for a 20-year stochastic projection with con-
stant gamma removals. 

(iii) 2006 Patagonian toothfish (Dissostichus
eleginoides) assessment for Division 58.5.2 
(Welsford et al., 2006), representing an assessment 
which does constant catch removals over a 35-year 
stochastic projection. 

These scenarios cover the typical range of stock 
assessments conducted with the GYM software 
within CCAMLR with each scenario testing differ-
ent configurations of the Grym package functional-
ity. 

It is worth noting that some estimates by 
Constable and de la Mare (1996) differ from those 
estimates using the GYM version 501E here due 
to internal changes in the GYM between 1996 and 
2004 (Constable, 2004). Comparisons were made 
using the parameters outlined in Table 2 with the 
Grym implementation code in Appendices 1 to 3.

The comparisons between the currently com-
piled GYM software and the Grym for these three 
types of assessments show that in most instances 
the Grym returns very similar results to the GYM 
software (Tables 3 to 6, Figures 1 and 2). The small 
overall differences between the estimates of the 
two models is primarily due to differences in the 
sequences of random deviates drawn in individual 
projection runs. Although Grym and the GYM use 
different integration schemes to compute projec-
tions, as noted previously the technique based on 
the composite trapezoidal rule used in Grym will 
be more precise than the Runge–Kutta scheme of 
the GYM.

Conclusions
The new open-source implementation of GYM 

in the R package Grym produces very consistent 
outputs compared to the existing GYM software for 
three types of fisheries assessment typically used 
in CCAMLR. The differences in these assessments 
highlight the flexibility of the Grym package.

The Grym package reproduces the core func-
tionality of the GYM software to conduct fisheries 
stock population projections, whilst also address-
ing some of the limitations in the GYM software, 

which caused software failure in some models with 
large recruitment variability. The Grym package 
also improves on the GYM software by providing 
greater precision by directly integrating the gov-
erning equations by means of the composite trap-
ezoidal rule.

The open source and interactive nature of R 
and the Grym package mean that the source code 
and any resulting outputs can be readily evaluated 
and assessed. The modular nature of the package 
provides increased flexibility, as the user can easily 
explore the effects of pairing alternative models of 
recruitment or mortality with existing GYM soft-
ware functionality. The GrymExamples package 
contains a number of examples for what these may 
look like under various scenarios. 

This modular nature also allows users to 
develop and test their own additional requirements 
for assessments as part of future developments, for 
example the potential for cyclical recruitment time 
series (Thanassekos, 2020) or incorporating multi-
ple fleets into models. 

Given the increased transparency and flexibility 
of the Grym package, and the demonstrated high 
degree of consistency in the outputs of the GYM 
software and Grym package; we recommend that 
the Grym package be used in future stock assess-
ments which would have otherwise used the GYM 
software. This would include the assessment in 
the krill management work plan as set out by the 
Scientific Committee of CCAMLR (SC-CAMLR, 
2019, paragraphs 3.16 to 3.18, Table 1).
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Code appendices 
Please note these appendices provide code that produced the results within the attached paper. Whilst the 

code was fully functional at the time of publication, changes between versions of R and the packages this 
code rely on may mean this is not always the case. 

The three appendices here are also recreated as vignettes within the Grym package. As such, the package 
should always have working version of these examples that have been updated to take account of changes 
in code dependencies. The package can be found here: https://github.com/AustralianAntarcticDivision/
GrymExamples

APPENDIX 1

Champsocephalus gunnari Grym assessment code

Icefish Assessment Comparisons

The icefish assessment aims to determine the fishing mortality and hence a total allowable catch that 
yields a prescribed two-year escapement relative to an unfished population (see https://fishdocs.ccamlr.org/
SAannex_HIMI_ANI_2021.pdf for more details).

library(Grym)

Projection

The current strategy is to project forward two years for a range of potential fishing mortalities, and then 
subsequently determine the mortality that yields the target relative escapement by inverse interpolation.

The function icefishPr projects forward two years for a specified range of fishing mortalities. A pro-
jection is performed for the current year and scaled to the survey data to determine the initial abundance 
for the following year. If the catch limit for the year has been reached, the projection is done assuming 
zero fishing mortality (as no further fishing can occur) but if some catch allocation remains after the survey 
period, it is assumed the remaining allocation will be caught between the end of the survey and the start of 
the following year. The initial abundances are then projected forward using the fish demographic param-
eters and fishery parameters for two years for a range of fishing mortalities, and annual summaries collated.

The model assumes a von Bertalanffy relationship between length and age, and a power law relation-
ship between weight and length. The user must also supply values used to compute fishing selectivity as a 
function of age.

The arguments are

M – Natural mortality estimate. 

F - Fishing mortalities to test

Catch - Remaining catch allocation after survey in survey year

surveyN - Relative numbers (per km2) in each cohort from survey

surveyB - Biomass estimate from survey

surveyI - Increments (ie days of season) over which survey is taken

https://github.com/AustralianAntarcticDivision/GrymExamples
https://github.com/AustralianAntarcticDivision/GrymExamples
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spawnI - Increments (ie days of season) over which spawning numbers and biomass are estimated

VB.t0, VB.K, VB.Linf - Parameters for von Bertalanffy length at age relationship

WLa, WLb - Parameters for allometric weight at length relationship

age.selectivity - Age selectivity function.

Fmax - Maximum allowable fishing mortality

icefishPr <- function(M,F,Catch=0,surveyN,surveyB,surveyI,spawnI, 
VB.t0=0.06671238,VB.K=0.36842178,VB.

Linf=489.73706791, 
WLa=9.157E-10,WLb=3.316, 
age.selectivity=approxfun(c(0,2.5,3),c(0,0,1),ru

le=2), 
Fmax=2.5) { 

  ## Ensure 0 included in test fishing mortalities 
  F <- sort(union(0,F)) 

  ## Two year projections of 10 age classes with a daily time step 
n.yr <- 2
n.inc <- 365
Ages <- 1:10
Days <- seq(0,1,length=n.inc+1)

  ## Matrices of ages, lengths and weights for each day and age class 
  as <- outer(Days,Ages,FUN=”+”)   
  ls <- vonBertalanffyAL(as,t0=VB.t0,K=VB.K,Linf=VB.Linf) 
  ws <- powerLW(ls,a=WLa,b=WLb) 

  ## Constant intra-annual natural mortality 
  ms <- matrix(1,n.inc+1,length(Ages)) 
  Ms <- ctrapz(ms,1/n.inc) 
  MMs <- M*Ms 

  ## Within year fishing mortality is determined by an age based selec-
tivity 
  fs <- array(age.selectivity(as),dim(as)) 
  Fs <- ctrapz(fs,1/n.inc) 

  ### Projection to end of year from survey data 
  if(Catch>0) { 
    ## Adjust within-year fishing mortality for post-survey Catch 
    fs0 <- rep.int(c(0,1),c(max(surveyI),n.inc+1-max(surveyI))) 
    fs0 <- fs0/trapz(fs0,1/n.inc)*fs   
    Fs0 <- ctrapz(fs0,1/n.inc) 
    pr0 <- projectC(ws,MMs,Fs0,fs0,Catch,surveyN,surveyI,surveyB,surve
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yI,yield=1,Fmax=Fmax) 
    if(pr0$F==Fmax) warning(“Target catch could not be recovered”) 
  } else { 
    pr0 <- project(ws,MMs,0,0,surveyN,surveyI,surveyB,surveyI,yield=0) 
    pr0$F <- 0 
  } 
  SSB0 <- meanStock(pr0$B,1,spawnI) 

  ## Annual cohort totals 
  d <- data.frame(Year=c(rep(0:n.yr,length(F))),F=0,Nf=0,Bf=0,Y=0,SSN=
0,SSB=0,Escapement=0) 
  k <- 0 

  ## Project forward for prescribed fishing mortalities. 
  for(Fk in F) { 
    ## Reset to survey year 
    pr <- pr0 
    d[k <- k+1,] <- data.frame(Year=0,F=Fk,Nf=sum(final(pr$N)),Bf=sum(fi
nal(pr$B)),Y=sum(pr$Y), 
    SSN=meanStock(pr$N,1,spawnI),SSB=SSB0,Escapement=1) 
    for(yr in seq_len(n.yr)) { 
      ## Project 
      N0 <- advance(pr$N) 
      pr <- project(ws,MMs,Fk*Fs,Fk*fs,N0,yield=1) 
      SSB <- meanStock(pr$B,1,spawnI) 
      d[k <- k+1,] <- data.frame(Year=yr,F=Fk,Nf=sum(final(pr$N)),Bf=su
m(final(pr$B)),Y=sum(pr$Y), 
      SSN=meanStock(pr$N,1,spawnI),SSB=SSB,Escapement=SSB/SSB0) 
    } 
  } 
  d 
}

2019 assessment

Define the reference date that sets the start of the season

SeasonDate <- as.Date(“2018-12-01”) 
SurveyDate <- as.Date(“2019-04-04”) 
surveyI <- as.numeric(SurveyDate-SeasonDate)+c(0,1) 
surveyN <- c(127.106,617.426,1988.91,rep(0,7)) 
surveyB <- 3723.761 
SpawnDate <- as.Date(“2019-11-30”) 
spawnI <- as.numeric(SpawnDate-SeasonDate) + c(0,1)

d <- icefishPr(M=0.4,F=seq(0.11,0.20,0.001),Catch=0,surveyN,surveyB,sur
veyI,spawnI, VB.t0=0.06671238,VB.K=0.36842178,VB.Linf=489.73706791, 

WLa=1.078e-09,WLb=3.286) 
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d2 <- d[d$Year==2,] 
d2$RelEscape <- d2$Escapement/d2$Escapement[1] 
F75 <- approx(d2$RelEscape[-1],d2$F[-1],0.75)$y 

d2019 <- icefishPr(M=0.4,F=c(F75),Catch=0,surveyN,surveyB,surveyI,spaw
nI, 

VB.t0=0.06671238,VB.
K=0.36842178,VB.Linf=489.73706791, 

WLa=1.078e-09,WLb=3.286) 
d2019$Scenario<-rep(c(“Grym no fishing”,”Grym 75 escapement”), each=3) 
d2019 

APPENDIX 2

Euphausia superba Grym assessment code

This document aims to reproduce the example presented in Constable and de la Mare (1996).

library(Grym) 
library(ggplot2) 
library(dplyr) 
library(tidyr) 
library(furrr) 
set.seed(31) 

Model

The EsuperbaProjection function returns a function that generates a single set of random projec-
tions that differ only in gamma. The projections within each set use a common random selectivity and matu-
rity curves, virgin biomass and recruitment series, so within a set the projections only differ by the level 
of fishing applied. The resulting function takes a single numerical argument that is used to identify the set.

EsuperbaProjection <- function(gamma=c(0,0.1,0.136,0.15,0.2),n.
years=20) { 

  ## Daily time steps with 8 age classes 
  nsteps <- 365 
  Ages <- 0:7 
  Days <- seq(0,1,length=nsteps+1) 
  h <- 1/nsteps 

  ## Spawning and monitoring interval 
  spawnI <- 121:213 
  monitorI <- 92 

  ## Ages, length at age and weight at age 
  ages <- outer(Days,Ages,FUN=”+”) 
  ls <- vonBertalanffyRAL(ages,t0=0.0,K=0.45,Linf=60,f0=0,f1=93/365) 
  ws <- powerLW(ls,1,3) 
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  ## Constant intra-annual natural mortality 
  ms <- matrix(1,nsteps+1,length(Ages)) 
  Ms <- ctrapz(ms,h) 
  Msf <- final(Ms) 

  ## Within year fishing pattern - season is first 90 days 
  fwy <- double(nsteps+1) 
  fwy[31:120] <- 1 
  fwy <- fwy/trapz(fwy,h) 

  B0logsd <- sqrt(log(1+0.3^2)) 

  ## This function performs a projection for each prescibed gamma. 
  function(run) { 

    ## Length based maturity and selectivity - ramp width is constant 
    ## but the midpoint is selected uniformly from a range. 
    gs <- rampOgive(ls,runif(1,34,40),12) 
    ss <- rampOgive(ls,runif(1,38,42),10) 

    ## Construct fishing mortalities from season and selectivity 
    fs <- fwy*ss 
    Fs <- ctrapz(fs,h) 
    Fsf <- final(Fs) 

    ## Uniform natural mortalities 
    M <- runif(1,0.4,1.0) 
    MMs <- M*Ms 

    ## Uniform (log) recruitment std dev.  
    sigmaR <- sqrt(log(1+runif(1,0.4,0.6)^2)) 

    ## Median spawning biomass estimated from 1001 samples 
    R <- matrix(rlnorm(1001*length(Msf),-sigmaR^2/2,sigmaR),1001,lengt
h(Msf)) 
    ssb0 <- spawningB0S(R,gs,ws,Ms,M,spawn=spawnI)$median 

    ## Stochastic initial age structure in the absence of fishing 
    N0 <- ageStructureS(rlnorm(length(Msf),-sigmaR^2/2,sigmaR),Msf,M) 

    ## Recruitment series 
    Rs <- rlnorm(n.years,-sigmaR^2/2,sigmaR) 

    ## Matrix of annual summaries 
    n <- (1+n.years)*length(gamma) 
    df <- matrix(0,n,11+ncol(ages)) 
    colnames(df) <- c(“Year”,”Gamma”,”R”,”N”,”B”,”B0”,”SSN”,”SSB”,”SSB
0”,”Catch”,”F”,paste0(“Na.”,1:ncol(ages))) 
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    ## Initial projection assuming no fishing 
    pr0 <- project(ws,MMs,Nref=N0,yield=0) 
    pr0$F <- pr0$Y <- 0 

    ## Initial biomass in monitoring period + log Normal error 
    b0 <- meanStock(pr0$B,period=monitorI) 
    b0 <- rlnorm(1,log(b0)-B0logsd^2/2,B0logsd) 

    k <- 0 
    ## Project for each gamma ratio 
    for(g in gamma) { 
      ## Target catch 
      catch <- g*b0 

      ## Reset to virgin state 
      pr <- pr0 
      ssb <- spawningStock(pr$B,gs,spawnI) 

      for(yr in 0:n.years) { 

if(yr > 0) { 
## Recruitment depletion 
r <- min(1,ssb/(0.2*ssb0)) 
## Project over year 
N0 <- advance(pr$N,r*Rs[yr]) 
pr <- projectC(ws,MMs,Fs,fs,catch,Nref=N0,yield=1,Fmax=1.5) 
#if(pr$F==1.5) return(NULL) 

} 
ssb <- spawningStock(pr$B,gs,spawnI) 

## Collate annual summaries 
df[k<-k+1,] <- c(yr,g,initial(pr$N)[1],sum(initial(pr$N)),sum(

initial(pr$B)),b0, 
spawningStock(pr$N,gs,spawnI),ssb,ssb0,sum(pr

$Y),pr$F,initial(pr$N)) 
      } 
    } 
    data.frame(Run=run,M=M,df) 
  } 
}

Projection

Calling EsuperbaProjection returns a function that generates a single ‘un’ of the simulation

sim <- EsuperbaProjection() 
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The function takes a single argument that is used to label the results. Within a single call to sim, a com-
mon set of random maturity, selectivity, initial ages and recruitment series are used to make projections for 
each requested gamma.

df <- sim(1) 
head(df) 
tail(df)

For these parameters, the recruitment variability has greater impact than increased fishing pressure

library(ggplot2) 
library(dplyr) 
ggplot(df %>% mutate(Gamma=factor(Gamma)),aes(x=Year,y=N,colour=Gamma)
)+geom_line()

Generate 10001 runs and bind them into one large dataframe. The runs are performed in parallel with 
the furrr library

plan(multiprocess) 
#system.time(df <- future_map_dfr(1:10001,sim)) 
df <- future_map_dfr(1:10001,sim, .progress = TRUE) 
saveRDS(df, “Esup96_sim.rds”)

dat<-read.csv(“./esup96/esup96.PG”) #load GYM output 
names(dat)

df %>% group_by(Gamma,Run) %>% summarize(Dep=min(SSB/SSB0)) %>% 
summarize(Pr=mean(Dep < 0.2)) #Grym depletion 

dat %>% group_by(Test,Trial) %>% summarize(Dep=min(SSB.Status)) %>% 
summarize(Pr=mean(Dep < 0.2)) #GYM depletion 

#GYM Escapement 
gymesc<- dat %>%  group_by(Test) %>% filter(Year %in% max(Year)) %>% 
summarise(Med=median(SSB.Status))  

gymtar<- gymesc %>% filter(Test==0) %>% mutate(Target=Med*0.75) 

gymesc$Target<-gymtar$Target 

#Grym Escapement 

grymesc<- df %>%  group_by(Gamma) %>% filter(Year %in% max(Year)) %>% 
summarise(Med=median(SSB/SSB0)) 

grymtar<- grymesc %>% filter(Gamma==0) %>% mutate(Target=Med*0.75) 

grymesc$Target<-grymtar$Target 
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grymesc 
gymesc

APPENDIX 3

Dissostichus eleginoides Grym assessment code

This document aims to reproduce the Patagonian toothfish assessment presented in Welsford et al. 
(2006).

library(Grym) 
library(ggplot2) 
library(dplyr) 
library(furrr) 
set.seed(31)

Historic Data

Survey Data

Recruitment is backprojected from survey data. In this case, natural mortality is assumed constant, so it 
suffices to backproject the recruitment once and use the same recruitment series in all projections.

Import the survey data

survey.df <- read.csv(textConnection(“ 
Survey,Year,Frac,Age,Density,SE,Area,ObsTotal,ExpTotal 
1,1989,0.49,3,0.01,0.01,53383.16,70.32,74.57 
1,1989,0.49,4,30.56,8.96,53383.16,70.32,74.57 
1,1989,0.49,5,6.83,7.13,53383.16,70.32,74.57 
1,1989,0.49,6,0.01,0.01,53383.16,70.32,74.57 
1,1989,0.49,7,0.01,0.01,53383.16,70.32,74.57 
2,1992,0.77,3,8.01,8.97,53383.16,67.54,85.22 
2,1992,0.77,4,27.06,12.9,53383.16,67.54,85.22 
2,1992,0.77,5,0.01,0.01,53383.16,67.54,85.22 
2,1992,0.77,6,16.8,19.26,53383.16,67.54,85.22 
2,1992,0.77,7,5.66,21.84,53383.16,67.54,85.22 
3,1998,0.33,3,25.85,7.63,80660.77,373.59,371.54 
3,1998,0.33,4,0.01,0.01,80660.77,373.59,371.54 
3,1998,0.33,5,85.13,65.51,80660.77,373.59,371.54 
3,1998,0.33,6,174.83,104.99,80660.77,373.59,371.54 
3,1998,0.33,7,0.01,0.01,80660.77,373.59,371.54 
3,1998,0.33,8,66.34,31.68,80660.77,373.59,371.54 
4,2000,0.48,3,27.32,8.31,85693.96,198.46,200.63 
4,2000,0.48,4,5.8,15.56,85693.96,198.46,200.63 
4,2000,0.48,5,59.59,35.74,85693.96,198.46,200.63 
4,2000,0.48,6,32.98,47.78,85693.96,198.46,200.63 
4,2000,0.48,7,29.64,30.16,85693.96,198.46,200.63 
5,2001,0.48,3,14.4,9.37,85693.96,207.12,206.07 
5,2001,0.48,4,47.26,17.19,85693.96,207.12,206.07 
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5,2001,0.48,5,0.01,0.01,85693.96,207.12,206.07 
5,2001,0.48,6,101.72,42.56,85693.96,207.12,206.07 
5,2001,0.48,7,9.3,37.05,85693.96,207.12,206.07 
6,2002,0.42,3,24.57,10.36,42063.96,142.77,140.1 
6,2002,0.42,4,28.16,23.4,42063.96,142.77,140.1 
6,2002,0.42,5,18.55,30.15,42063.96,142.77,140.1 
6,2002,0.42,6,56.89,21.35,42063.96,142.77,140.1 
7,2003,0.43,3,0.01,0.01,85123.46,234.65,231.64 
7,2003,0.43,4,102.51,28.86,85123.46,234.65,231.64 
7,2003,0.43,5,24.19,66,85123.46,234.65,231.64 
7,2003,0.43,6,54.69,74.47,85123.46,234.65,231.64 
8,2004,0.43,3,0.01,0.01,85693.96,240.42,241.79 
8,2004,0.43,4,0.01,0.01,85693.96,240.42,241.79 
8,2004,0.43,5,168.88,29.37,85693.96,240.42,241.79 
8,2004,0.43,6,20.36,29.24,85693.96,240.42,241.79 
9,2005,0.47,3,0.01,0.01,85693.96,173.09,175.94 
9,2005,0.47,4,52.75,11.17,85693.96,173.09,175.94 
9,2005,0.47,5,0.01,0.01,85693.96,173.09,175.94 
9,2005,0.47,6,99.76,18.49,85693.96,173.09,175.94”),header=T)

The SurveyAdjust function scales the survey densities to abundance, computes the adjustment 
scale abundance to recruitment-based survival and forms the weighted geometric means of the estimates 
of recruitment.

SurveyAdjust <- function(survey.df,Ms,M,rec.age) { 
  ## Scale density to abundance 
  r <- survey.df$Area*survey.df$ObsTotal/survey.df$ExpTotal 
  ab.mn <- r*survey.df$Density 
  ab.se <- r*survey.df$SE 

  ## Compute log survival adjustment  
  inc <- ceiling((nrow(Ms)-1)*survey.df$Frac)+1 
  S <- surveySurvival(survey.df$Year,survey.
df$Age,inc,inc,Ms,M,rcls=rec.age) 

  ## Weight rescaled abundance by 1/cv^2  
  ab.wt <- (ab.mn/ab.se)^2 
  ## Compute the year of “recruitment” to the target age class 
  rc.yr <- survey.df$Year-survey.df$Age+rec.age 
  yr <- seq.int(min(rc.yr),max(rc.yr)) 
  rec.yf <- factor(rc.yr,yr) 
  ## Compute the weighted geometric means 
  data.frame( 
    Year=yr, 
    Rec=exp(tapply(ab.wt*(log(ab.mn)-log(S)),rec.yf,sum)/tapply(ab.
wt,rec.yf,sum))) 
}

Form natural mortalities and compute recruitment estimates.
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## Constant intra-annual natural mortality 
nsteps <- 24 
Ages <- 4:35 
Days <- seq(0,1,length=nsteps+1) 
h <- 1/nsteps 
ms <- matrix(1,nsteps+1,length(Ages)) 
Ms <- ctrapz(ms,h) 
M <- 0.13 
recruit.df <- SurveyAdjust(survey.df,Ms,M,4) 
recruit.df

Catch

Import the corresponding catch data

catch.df <- read.csv(textConnection(“ 
Year,Catch 
1986,0 
1987,0 
1988,0 
1989,0 
1990,0 
1991,0 
1992,0 
1993,0 
1994,0 
1995,3000000 
1996,9044000 
1997,7915000 
1998,3974000 
1999,4720000 
2000,4984000 
2001,6245000 
2002,4356000 
2003,3501000 
2004,3048000 
2005,2696000”),header=T)

Growth

Growth patterns are inferred from length-at-age data.

Import the length-at age-data

length.df <- read.csv(textConnection(“ 
Age, Length 
0, 197.56 
1, 251.01 
2, 307.54 
3, 367.28 
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4, 430.40 
5, 497.03 
6, 547.46 
7, 594.75 
8, 641.07 
9, 686.46 
10, 730.91 
11, 774.47 
12, 817.13 
13, 858.93 
14, 899.88 
15, 940.00 
16, 979.29 
17, 1017.79 
18, 1055.51 
19, 1092.46 
20, 1128.65 
21, 1164.11 
22, 1198.85 
23, 1232.88 
24, 1266.22 
25, 1298.88 
26, 1330.87 
27, 1362.22 
28, 1392.92 
29, 1423.00 
30, 1452.47 
31, 1481.34 
32, 1509.62 
33, 1537.33 
34, 1564.47 
35, 1591.06”),header=T) 
length.age <- approxfun(length.df$Age,length.df$Length,rule=2) 
plot(length.age,0,55)

Interpolation

Create an age or length-based array through interpolation

approxArray <- function(x,y,arr,rule=2) array(approx(x,y,arr,rule=rule
)$y,dim(arr))

Selectivity

Selectivity varies with year and may be length or age based. This function creates a list of selectivity 
matrices together with an index vector that matches year to the appropriate selectivity.

mkSelectivity <- function(ages,ls) { 
  select5pt <- function(x) approxArray(x,c(0,0,1,1,0),ages) 
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  ## Age based selectivity 
  ss <- list() 
  ## 1986-1994 - age based selectivity 
  ss[[1]] <- approxArray(x
=c(0.0,4.1,4.9,5.8,7.0,8.4,9.8,13.7,14.9,16.1,17.3,18.4), 

y=c(0.0,0.0,0.14,0.5,0.8,0.9,1.0,1.0,0.9,0.85
,0.4,0.3), 

ages) 
  ## 1995 - length based selectivity 
  ss[[2]] <- rampOgive(ls,670,250) 
  ## 1996 - age based selectivity 
  ss[[3]] <- select5pt(c(0.0,5.8,7.0,8.2,8.4)) 
  ## 1997 - age based selectivity 
  ss[[4]] <- select5pt(c(0.0,4.9,5.8,11.1,13.7)) 
  ## 1998 - age based selectivity 
  ss[[5]] <- select5pt(c(0.0,5.3,5.8,14.9,17.3)) 
  ## 1999-2004 - age based selectivity 
  ss[[6]] <- select5pt(c(0.0,4.1,8.4,16.1,17.3)) 

  ## Year 1 = 1986 
  list(index=setNames(c(rep(1,9),2:5,rep(6,6),1),1986:2005),ss=ss) 
}

Model

The ToothfishProjection function returns a function that generates a single set of random projec-
tions that differ only in target catch. The projections within each set use a common random selectivity and 
maturity curves, virgin biomass and recruitment series, so within a set the projections only differ by the 
level of fishing applied. The resulting function takes a single numeric argument that is used to identify the 
set.

The arguments are

Catches - the catch targets to test.

Catch.df - dataframe of historic catches - this must contain the catches for each year from the earliest 
modelled year up to the first projected year, ordered by year.

Recruit.df - dataframe of recruitment estimates from survey data.

Length.df - dataframe of length-at-age data.

n.years - the number of years to project ahead.

Year1 - the earliest modelled year.

ToothfishProjection <- function(Catches,catch.df,recruit.df,length.
df,n.years=35,Year1=min(catch.df$Year)) { 
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  ## Daily time steps with 8 age classes 
  nsteps <- 24 
  Ages <- 4:35 
  plus <- 55-35 
  Days <- seq(0,1,length=nsteps+1) 
  h <- 1/nsteps 

  ## Spawning and monitoring interval 
  spawnI <- 14:15 
  monitorI <- 1:25 

  ## Ages, length at age and weight at age 
  ages <- outer(Days,Ages,FUN=”+”) 
  ls <- approxArray(length.df$Age,length.df$Length,ages) 
  ws <- powerLW(ls,2.59E-9,3.2064) 

  ## Build selectivity matrices 
  sel <- mkSelectivity(ages,ls) 
  current.sel <- -1 

  ## Constant intra-annual natural mortality 
  ms <- matrix(1,nsteps+1,length(Ages)) 
  Ms <- ctrapz(ms,h) 
  Msf <- final(Ms) 
  M <- 0.13 
  MMs <- M*Ms 

  ## Length based maturity  
  gs <- rampOgive(ls,930,300) 

  ## Within year fishing pattern 
  fwy <- double(nsteps+1) 
  fwy[] <- 1 
  fwy <- fwy/mean(fwy) 

  ## Calculate recruitment parameters from historic data 
  ## By method of moments 
  rmn <- mean(recruit.df$Rec,na.rm=TRUE) 
  rsd <- sd(recruit.df$Rec,na.rm=TRUE) 
  rmn <- 3016520 
  rsd <- 1.62693*rmn 
  rlsd <- sqrt(log(1+(rsd/rmn)^2)) 
  rlmn <- log(rmn)-rlsd^2/2 
  ## By maximum likelihood 
  #rlmn <- mean(log(recruit.df$Rec)) 
  #rlsd <- sd(log(recruit.df$Rec)) 

  ## Drop missing and out of range recruitment estimates 
  recruit.df <- recruit.df[(recruit.df$Year %in% seq(Year1,length.
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out=nrow(catch.df)+n.years)) & 
!is.na(recruit.df$Rec),]

  ## This function performs a projection for each prescribed gamma. 
  function(run) { 

    ## Median spawning biomass estimated from 1000 samples 
    R <- matrix(rlnorm(1000*(length(Msf)+plus),rlmn,rlsd),1000,length(
Msf)+plus) 
    ssb0 <- spawningB0S(R,gs,ws,Ms,M,spawn=spawnI,plus=TRUE) 

    ## Stochastic initial age structure in the absence of fishing 
    N0 <- ageStructureS(rlnorm(length(Msf)+plus,rlmn,rlsd),Msf,M,plus=
TRUE) 
    ## Initial projection assuming no fishing 
    pr <- project(ws,MMs,Nref=N0,yield=0) 
    pr$F <- pr$Y <- 0 

    ## Recruitment series - log Normal + known from survey 
    Rs <- rlnorm(nrow(catch.df)+n.years,rlmn,rlsd) 
    Rs[recruit.df$Year-Year1+1] <- recruit.df$Rec 

    ## Annual summary quantities 
    n <- nrow(catch.df)+n.years*length(Catches) 
    Test<-rep(Catches, each=n/length(Catches)) 
    Year <- integer(n) 
    Target <- R <- N <- B <- SSN <- SSB <- Catch <- F <- double(n) 
    k <- 1 

    ## Project over historic period 
    for(yr in 1:nrow(catch.df)) {    

      ## Recompute fishing mortality when selectivity changes 
      if(sel$index[yr]!=current.sel) { 

current.sel <- sel$index[yr] 
ss <- sel$ss[[current.sel]] 
fs <- fwy*ss 
Fs <- ctrapz(fs,h) 

      } 

      ## Project over year 
      Year[k] <- catch.df$Year[yr] 
      Target[k] <- catch.df$Catch[yr] 
      R[k] <- Rs[yr] 
      N0 <- advance(pr$N,R[k],plus=TRUE) 
      pr <- projectC(ws,MMs,Fs,fs,Target[k],Nref=N0,yield=1,Fmax=5,tol
=1.0E-8) 

      ## Collate annual summaries 
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      N[k] <- sum(initial(pr$N)) 
      B[k] <- sum(initial(pr$B)) 
      SSN[k] <- spawningStock(pr$N,gs,spawnI) 
      SSB[k] <- spawningStock(pr$B,gs,spawnI) 
      Catch[k] <- sum(pr$Y) 
      F[k] <- pr$F 
      k <- k+1 
    } 

    ## Record pre-projection state 
    pr0 <- pr 

    ## Set projection selectivity 
    ss <- sel$ss[[1]] 
    fs <- fwy*ss 
    Fs <- ctrapz(fs,h) 

    ## Project for each catch 
    for(catch in Catches) { 
      ## Reset to pre-projection state 
      pr <- pr0 

      for(yr in seq(nrow(catch.df)+1,length.out = n.years)) { 
## Project over year 
N0 <- advance(pr$N,Rs[yr],plus=TRUE) 
pr <- projectC(ws,MMs,Fs,fs,catch,Nref=N0,yield=1,Fmax=5,tol=1

.0E-8) 

## Collate annual summaries 
Year[k] <- yr+Year1-1 
Target[k] <- catch 
R[k] <- Rs[yr] 
N[k] <- sum(initial(pr$N)) 
B[k] <- sum(initial(pr$B)) 
SSN[k] <- spawningStock(pr$N,gs,spawnI) 
SSB[k] <- spawningStock(pr$B,gs,spawnI) 
Catch[k] <- sum(pr$Y) 
F[k] <- pr$F 
k <- k+1 

      } 
    } 
    data.frame(Run=run,M=M,Year=Year,Target=Target, 

R=R,N=N,B=B,SSN=SSN,SSB=SSB,SSB0=ssb0$median,Catch=Catc
h,F=F) 
  } 
}
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Projection

Calling ToothfishProjection returns a function that generates a single ‘run’ of the simulation

sim <- ToothfishProjection(Catches=c(0,2.8e6,2.84e6,2.85e6,2.9e6,3e6,3.
2e6), 

catch.df=catch.df,recruit.df=recruit.
df,length.df=length.df)

The function takes a single argument that is used to label the results. Within a single call to sim, a com-
mon set of random maturity, selectivity, initial ages and recruitment series are used to make projections for 
each requested target catch.

df <- sim(1) 
head(df) 
tail(df)

For these parameters, the recruitment variability has greater impact than increased fishing pressure

ggplot(df %>% filter(Year > 2005),aes(x=Year,y=N,colour=factor(Target))
)+geom_line()

Generate 10001 runs and bind them into one large dataframe. The runs are performed in parallel with 
the furrr library

plan(multiprocess) 
system.time(df <- future_map_dfr(1:10001,sim)) 

saveRDS(df, “TOP_df_output.rds”)

#Spawning Stock Status escapement at quantiles

grymssStatus<-df %>% 
  filter(Year==2040) %>%  
  mutate(Status=SSB/SSB0) %>%  
  group_by(Target/1000) %>%  
  summarise(q2.5=quantile(Status,0.025), 

q45=quantile(Status,0.45), 
q50=quantile(Status,0.50), 
q55=quantile(Status,0.55), 
q97.5=quantile(Status,0.975), 
Median=median(Status)) %>%  

  mutate(Model=”Grym”) 

grymssStatus

#Spawning Stock Status depletion 

grymdep<-df %>% 
filter(Year>2006) 	 %>% 
group_by(Target,Run) 	 %>% 
summarize(Status=min(SSB/SSB0))	 %>% 
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summarise(Depletion_prob=mean(Status <= 0.2))	 %>% 
  mutate(Model=”Grym”) 

grymdep

Table 1: Grym package functions with brief descriptions. Typing ?function-name in R will display the full documentation 
for each function. * in recruitment functions denotes a given distribution, use ?prRecruitPars to see help for all 
available distributions. 

Functions Description

vonBertalanffyAL, vonBertalanffyLA, 
vonBertalanffyRAL, vonBertalanffyRAL 

von Bertalanffy age-length models, parameterised as in the GYM. 

powerLW, powerWL Power law length weight models, parameterised as in the GYM. 
rampOgive Ramp shaped ogive function for selectivity and maturity, parameterised as in 

the GYM. 
Trapz, ctrapz, trapzMeans  Numerical quadrature by the composite trapezoidal rule. 
project, projectC, advance, rescaleProjection Project the abundance, biomass and yield in each age class forward over one 

year. 
ageStructureD, ageStructureS Compute the initial age structure of the population. 
spawningStock, vulnerableStock, meanStock, 
exploitableStock, initial, final 

Calculate the stock summaries for a given monitoring period. 

spawningB0D, spawningB0S Estimate virgin spawning stock biomass. 
prRecruits*, prRecruitPars*, 
prRecruitsQuantile*, prBootstrap, 
resampleRGYM 

Generate random recruits using the proportional recruits model. 

surveySurvival, surveyAdjustGYM Adjustment of the surveyed age-class abundances to initial abundances at a 
reference age class. 
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Table 2: Input parameters for Grym and GYM software assessment comparisons conducted for mackerel icefish 
(Champsocephalus gunnari), Antarctic krill (Euphausia superba) and Patagonian toothfish (Dissostichus 
eleginoides). 

Category Parameter Icefish Krill Toothfish 

Ages First age class 1 0 4 
Last age class 10 7 35 

Von Bertalanffy 
growth 

t0  0.067 0 0 

L∞  490 mm 60 mm 170.8 cm 
k  0.368 0.45 0.088 
Date - start growth period 
(dd/mm) 

1-Dec 1-Nov 30-Nov

Date - end growth period 
(dd/mm) 

30-Nov 1-Feb 30-Nov

Weight at length (kg, 
mm) 

Weight-length parameter - 
A (kg) 

1.08E-09 1 2.50E-05 

Weight-length parameter - 
B 

3.286 3 2.8 

Maturity Min. length, 50% are 
mature 

- 34 mm 930- 

Max. length, 50% are 
mature 

- 40 mm - 

Range over which maturity 
occurs 

- 12 mm 300- 

Spawning Season First day of spawning 
season (dd/mm) 

30-Nov 1-Mar 1-Jul

Last day of spawning 
season (dd/mm) 

30-Nov 1-Jun 1-Jul

Mortality Min. mean Annual M 0.4 0.4 0.16 
Max. mean Annual M 0.4 1 0.16 

Recruitment Function - Lognormal Lognormal 
Mean recruitment  - 1 See Appendix 3 
Min. coefficient of variation - 0.4 1.162 
Max. coefficient of 
variation 

- 0.6 1.162 

Cohorts to project 127.106, 617.426, 
1988.91 

- - 

Fishery parameters Age fully selected 3 - See Appendix 3
Age first selected 2.5 - See Appendix 3
Min. length, 50% Selected - 38 mm - 
Max. length, 50% Selected - 42 mm - 
Range over which 
recruitment occurs 

- 10 mm - 

Season 1 Dec – 30 Nov 1 Dec – 28 
Feb 

Catch between survey and 
season 

0 0 0 

Initial biomass 3723.761 - - 
Simulation 
specifications 

Number of runs in 
simulation  

1 10001 10001 

Evaluation type Fishing mortality Gamma Constant catch 
Individual trial 
specifications 

Years to remove initial age 
structure 

1 1 1 

Year prior to projection  2019 2005 
Reference start date in year 1-Dec 1-Nov 1-Dec
Increments in year 365 365 24
Years to project stock in 
simulation 

2 20 35 

Reasonable upper bound for 
annual F 

5 1.5 5 

Tolerance for finding F in 
each year 

0.000001 0.000001 0.000001 

Target escapement 75% 75% 50% 
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Table 3: Comparison of the GYM software and Grym implementation of the 2019 mackerel icefish 
(Champsocephalus gunnari) assessment in Division 58.5.2 (Maschette et al., 2019). 

Year Spawning numbers Spawning Biomass Catch Escapement 

GYM Grym GYM Grym GYM Grym GYM Grym 
0 14928.0 14640.5 3986.1 3970.5 0.0 0.0 1.000 1.000 
1 8673.4 8532.4 3268.0 3240.3 526.9 523.1 0.820 0.816 
2 5032.5 4943.0 2369.3 2339.0 406.3 406.0 0.594 0.589 

Table 5: Comparison of the spawning stock status from the GYM software and Grym 
implementations of the 2006 Patagonian toothfish (Dissostichus eleginoides) 
assessment in Division 58.5.2 (Welsford et al., 2006) at year 35 in the projection 
period under various constant catch scenarios.  

Target 
Catch Model 

Depletion 
probability 

Spawning stock status 

10% 25% Median 75% 90% 

0 GYM 0.000 0.696 0.805 0.961 1.172 1.420 
0 Grym 0.000 0.699 0.814 0.972 1.176 1.420 

2800 GYM 0.050 0.268 0.363 0.506 0.704 0.939 
2800 Grym 0.053 0.267 0.367 0.511 0.703 0.933 
2850 GYM 0.058 0.260 0.355 0.498 0.695 0.931 
2850 Grym 0.060 0.259 0.359 0.503 0.695 0.924 
2900 GYM 0.067 0.252 0.347 0.490 0.686 0.922 
2900 Grym 0.070 0.251 0.351 0.494 0.686 0.915 
3000 GYM 0.084 0.237 0.331 0.473 0.668 0.904 
3000 Grym 0.089 0.235 0.334 0.477 0.668 0.897 
3200 GYM 0.126 0.206 0.298 0.439 0.633 0.868 
3200 Grym 0.133 0.203 0.302 0.443 0.633 0.861 

Table 4: Comparison of probability of depletion, and median spawning stock status, as 
well as the 10, 25, 50, 75 and 90% quantiles in the 1996 Antarctic krill (Euphausia 
superba) assessment presented in Constable and de la Mare (1996) at year 20 in 
the projection period under various constant gamma scenarios when fitted within 
the GYM software and the Grym package. Note that some estimates by Constable 
and de la Mare (1996) differ from those estimates using the GYM version 501E 
here due to internal changes in the GYM between 1996 and 2004 (Constable, 
2004). 

Gamma Model 
Depletion 
probability 

Spawning stock status 

10% 25% Median% 75% 90% 

0.000 Grym 0.000 0.75 0.86 1.00 1.17 1.35 
0.000 GYM 0.000 0.76 0.87 1.00 1.16 1.34 
0.100 Grym 0.096 0.35 0.51 0.68 0.86 1.04 
0.100 GYM 0.097 0.35 0.50 0.67 0.85 1.04 
0.136 Grym 0.267 0.18 0.36 0.55 0.75 0.94 
0.136 GYM 0.271 0.18 0.35 0.54 0.74 0.94 
0.150 Grym 0.340 0.14 0.30 0.50 0.71 0.90 
0.150 GYM 0.347 0.15 0.29 0.49 0.69 0.89 
0.200 Grym 0.567 0.07 0.18 0.34 0.55 0.76 
0.200 GYM 0.571 0.08 0.19 0.33 0.54 0.76 
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Figure 1: Grym and GYM software assessment projection comparisons for Antarctic krill (Euphausia superba) 
under various gamma tests over 20 years showing 90% and 80% confidence intervals with 
median.

Table 6: Comparison of the spawning biomass from the GYM software and Grym 
implementations of the 2006 Patagonian toothfish (Dissostichus eleginoides) 
assessment in Division 58.5.2 (Welsford et al., 2006) at year 35 in the projection 
period under various constant catch scenarios. 

Target 
Catch Model 

Depletion 
probability 

Spawning biomass 

10% 25% Median 75% 90% 

0 GYM 0.000 76413 88388 105547 128772 156048 
0 Grym 0.000 76129 88697 105957 128224 154769 

2800 GYM 0.050 29404 39856 55541 77123 102829 
2800 Grym 0.053 29087 40074 55813 76678 102062 
2850 GYM 0.058 28542 38974 54639 76168 101913 
2850 Grym 0.060 28213 39168 54891 75698 101037 
2900 GYM 0.067 27714 38053 53716 75206 100951 
2900 Grym 0.070 27354 38284 53970 74713 100026 
3000 GYM 0.084 26004 36289 51839 73257 99025 
3000 Grym 0.089 25572 36514 52085 72789 97978 
3200 GYM 0.126 22563 32681 48123 69409 95138 
3200 Grym 0.133 22121 32946 48415 68937 93929 
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Figure 2: Grym and GYM software assessment projection comparisons for Patagonian toothfish (Dissostichus 
eleginoides) under constant catch scenarios over 35 years showing 90% and 80% confidence 
intervals with median.


