### EVALUATION OF THE RESULTS OF TRAWL SELECTIVITY EXPERIMENTS BY POLAND, SPAIN AND USSR IN 1978/79, 1981/82 AND 1986/87

W. Slosarczyk, E. Balguerias, K. Shust and S. Iglesias

#### Abstract

Trawl selectivity for several species of Antarctic fish was evaluated taking into account additional data obtained by Poland, Spain and USSR during selectivity experiments in Statistical Area 48 in 1978/79, 1981/82 and 1986/87 seasons. These data comprise different characteristics of experimental codends, length frequency distribution of stocks sampled, catch rates and catch composition. Details of these data were analyzed and minimum mesh sizes for several species were calculated. It is recommended that introduction of these mesh sizes should be considered for commercial fishery in Statistical Area 48.

#### Résumé

La sélectivité des chaluts pour plusieurs espèces de poissons de l'Antarctique a été évaluée, compte tenu des données complémentaires obtenues par la Pologne, l'Espagne et l'URSS au cours des expériences de sélectivité dans la zone statistique 48 pendant les saisons 1978/79, 1981/82 et 1986/87. Ces données comprennent les différentes caractéristiques de culs de chalut expérimentaux, la distribution de fréquences de longueurs des stocks échantillonnés, les taux de capture et la composition des captures. Les détails de ces données ont été analysés et les tailles minimales du maillage ont été calculées pour plusieurs espèces. Il est recommandé que l'introduction de ces tailles du maillage soit considérée pour la pêcherie commerciale dans la zone statistique 48.

#### Резюме

Селективность трала для нескольких видов антарктических рыб была оценена С учетом дополнительных данных, полученных ходе в экспериментов по селективности в Статистическом районе 48, проводившихся Польшей, Испанией и СССР в течение сезонов 1978/79, 1981/82 и 1986/87 гг. Эти данные включают различные характеристики экспериментальных кутков, частотное распределение длины в запасах, где брались пробы, интенсивность промысла и состав уловов. Был произведен подробный анализ этих данных, и для некоторых видов были вычислены минимальные размеры ячеи. Рекомендуется рассмотреть вопрос о введении этих ячеи для коммерческого размеров промысла R Статистическом районе 48.

#### Resumen

Selectividad de arrastre para varias especies de peces Antárticos fue evaluada tomando en consideración los datos adicionales obtenidos por Polonia, España y la URSS durante los experimentos de selectividad realizados en el Area Estadística 48 en las temporadas 1978/79, 1981/82 y 1986/87. Esta información comprende diferentes características de los copos de malla experimentales, distribución talla-frecuencia de las poblaciones muestradas, composición y tasas de capturas. Detalles de estos datos fueron analizados y se calculó la luz mínima de malla para varias especies. Se recomienda que la implementación de estas luces de malla deben ser consideradas para la pesca comercial en el Area Estadística 48.

#### 1. INTRODUCTION

Available data on the selectivity of various trawl codends on Antarctic fish were evaluated in the light of additional information presented to the CCAMLR Scientific Committee. This included: parameters of the codends and netting used, the length distribution of fish in the stock sampled, catch rates and catch composition. All these factors may influence the selectivity and should, therefore, be taken into consideration, when selection parameters are calculated. They were, however, not analyzed by authors of the background documents submitted to the Scientific Committee of CCAMLR (Balguerias, 1988; Efanov et al., 1989; Zaucha, 1986 and 1988).

#### 2. COMMENTS ON METHODS

Some differences were noted in methods and equipment used in selectivity experiments. Some of them, such as number of panels in the codend (2 or 4), inside or outside position of fine-meshed liner in relation to bottom panel, were considered to have little or no influence on fish selection. Other attributes such as twine size and haul duration (which affects the amount of fish in codend) and length of fish caught has in some cases a significant effect on selectivity parameters.

In the first Polish experiment (1978/79), the single-layer codend of mesh size 124 mm was made of 7 mm twine. In the second experiment (1986/87), the size of twine in the codend was 4.2 mm. The Soviet (1981/82) and the Spanish (1986/87) selectivity experiments were conducted with 3.1 and 3.0 mm twine respectively. The relationship between the twine diameter and selection factors (SF) for *Champsocephalus gunnari* gives the range of likely change of some selectivity parameters when different twine is used in the codends (Figure 1). It should be noted, that the selection curve for 7 mm twine is not well defined and SF point in Figure 1 is only a rough estimate.

The effect of catch rates on fish selection cannot be properly evaluated on the basis of available data. Polish hauls of 2 to 3 hours resulted in some cases in large catches of 2 to 5 tonnes and thus affected the selectivity of the major species caught (*C. gunnari*). The significant decline of SF and the 50% selection length ( $L_{50}$ ) was observed (Figure 2). Some data points in Figure 2 were estimated from selection ogives which were not well defined, therefore the presented relationship should be taken with care. Thirty minute hauls in the Spanish experiment gave average catches of 290 to 580 kg and resulted in better conditions for fish selectivity. However, some single hauls with high catches did not result in the reduction of selection parameters of fish sampled (Figure 3; see also Table 1.1 of the Appendix). Similarly, no clear relationship was observed between SF and catch per tow for *Notothenia gibberifrons* in the Polish experiment (Figure 4; see also Table 9.2 of the Appendix). In this case the selection was probably influenced by a large by-catch of benthos (sponges).

An accurate evaluation of another factor, the length distribution of fish caught, was also difficult. Analysis of its effect on selectivity was limited to hauls with comparable catch rates. In general, observations of this relationship were not consistent for *C. gunnari* in both Spanish and Polish data sets. This relationship was, however, noted for *N. gibberifrons* in the Polish records, where gradual decrease of  $L_{50}$ , ranging from 33.5 to 23.4 cm, may clearly be related to an increasing amount of small specimens of this species (Figures 5 and 6; see also Table 9.2 of the Appendix).

3. EVALUATION OF THE RESULTS FOR SOME SELECTED, COMMERCIALLY EXPLOITED SPECIES

#### 3.1 Champsocephalus gunnari

#### 3.1.1 South Georgia (Subarea 48.3)

Polish, Spanish and Soviet mesh selectivity experiments in 1981/82 and 1986/87 were carried out in comparable conditions. Fish length distributions and catch rates were similar, an amount of *C. gunnari* in catches from 42 to 100%. The length distribution of that species in the South Georgia area in 1978/79 during the first Polish trawl selectivity studies was also close to that observed in 1986/87.

Information about CPUE and catch composition from the first Polish experiment is not available. Hauls of three hours or more in the second experiment resulted in the mean total catch of 2.9 tonnes and catch rate for *C. gunnari* of 0.52 tonnes per hour fished (tonnes/hf). Haul-by-haul information from the Soviet experiment is not available. Tows of 30 to 60 minutes yielded total catches of 0.6 to 1.0 tonnes. Mean catch rate for *C. gunnari* was 0.75 tonnes/hf. In the Spanish experiment 30 minute hauls produced total catches of about 0.3 to 0.6 tonnes on the average. However, several hauls over 1.5 tonnes per tow were also noted (Table 1.1 of the Appendix). Mean catch rates for *C. gunnari* were 0.45 and 0.49 tonnes/hf, similar to those in the Polish experiment.

The catch rates during selectivity experiments resemble those of the commercial fishery. The mean CPUE range observed from 1984 to 1988 for *C. gunnari* was 0.1 to 0.5 tonnes per hour in a mixed fishery and 1.0 to 1.5 tonnes per hour in the fishery targetted at this species. A less than expected increase was observed in  $L_{50}$  as a result of enlarging the mesh size from 68 through 88 to 124 mm. The 50% selection length for 88 mm mesh in the Polish experiment was decreased due to a large quantity of fish and benthos in the codend. The 50% selection length for codends having 124 mm and 125 mm meshes and the chafer having 220 mm meshes was estimated from the selection ogives. In the first case, a low  $L_{50}$  resulted from using 7 mm polyamide twine which was approximately twice the thickness of that used in the 68 and 88 mm netting. The number of fish sampled from the 125 mm mesh codend was small, so the selection ogives give two values of the 50% selection lengths, 21 and 29 cm. The low  $L_{50}$  values for this codend resulted most probably from the 220 mm mesh chafer used to protect the 3.5 mm codend netting.

#### 3.1.2 South Orkney Islands (Subarea 48.2)

The Spanish study was carried out in favourable conditions for fish selection (low catch rate). This resulted in a relatively high SF of 3.11. Because of the low catch rate, however, the experiment does not represent fishery conditions, where CPUE for *C. gunnari* was within the range of 0.3 to 0.9 tonnes per hour fished. Also, the number of fish measured seems to be insufficient: despite the small mesh size, the number of fish retained by a codend is more or less the same as the number of fish in the fine-meshed cover.

Information on CPUE in the Polish experiment is not available, and fish length distribution is different from that in the Spanish studies. Moreover, the Polish codend was protected by the 220 mm mesh chafer. Those differences made interpretation of SF and  $L_{50}$  estimates from the Polish selectivity studies difficult.

#### 3.1.3 Elephant Island and South Shetland Islands (Subarea 48.1), Table 3

Fish length distribution in the Elephant Island area did not show any significant changes throughout the whole period of selectivity experiments. Selection factors were relatively high (mean SF=3.05) for all meshes tested. The 50% selection length increased gradually as mesh-size increased.

The low estimate of selectivity parameters for the South Shetland Islands area are most probably related to the availability of juvenile fish in the area.

Selectivity parameters obtained in Subarea 48.1 are, however, not representative of commercial fishing, especially for *C. gunnari*. Catch rates in the Spanish experiment were lower than observed in the commercial mixed fishery (0.1 to 2.0 tonnes/hf) in the area, in 1979 to 1983. Total CPUE in the Polish experiment more closely resembled the CPUE in the mixed fishery, but the percentage of *C. gunnari* was very small (2.5 to 6.5%). Corresponding catch rates for this species were 6 and 24 kg/hf, therefore, they cannot represent selectivity conditions of the commercial fishery.

#### 3.2 *Chaenocephalus aceratus*, Tables 4, 5 and 6

The 50% selection length did not increase significantly over the range of mesh sizes from 68 to 125 mm. Selection factors differed considerably (1.4 to 2.63) and were generally low. All values of  $L_{50}$  were much lower than the length at 50% maturity for the South Georgia area of 46 cm for males and 47.4 cm for females (Kock, 1981). The morphology of this species, especially its large and spiny head, as well as its behaviour (stretching opercles in case of danger) seem to be mainly responsible for absence of any meaningful trend in selection characteristics.

#### 3.3 *Pseudochaenichthys georgianus*, Tables 7 and 8

Selectivity data available for this species are insufficient to justify any mesh regulation. It is obvious from the Spanish data (Tables 7 and 8) that 68 mm mesh is far too small. Also 88 mm mesh seems not to be adequate to ensure protection of undersized fish (Zaucha, 1988). As in the case of *C. aceratus*, the morphology and behaviour of this fish seems to be responsible for the low selectivity parameters in both experiments.

#### 3.4 *Notothenia gibberifrons*, Tables 9, 10 and 11

Fish length distribution was different in 1978/79 and 1986/87, and also in the five areas studied. Selection factors varied from 2.02 to 3.04 (mean SF=2.62) for various meshes and codends tested, so it was not possible to reach a clear conclusion about selection of this species. One conclusion emerges, however, from information shown in Tables 9, 10 and 11. All values of  $L_{50}$  for South Georgia are well below the length at 50% maturity of 31.7 cm (Boronin and Altman, 1979) or 34 cm (Hoffman, 1982).  $L_{50}$  values calculated for South Orkney Islands, Elephant Island and South Shetland Islands were 28.8 cm, 30.0 cm and 30.9 cm respectively (Balguerias et al. 1987). Only in one haul taken in the South Shetland area with a mesh of 110 mm (Table 11, data set (1)), the  $L_{50}$  of 31.2 cm was above the length at maturity. However, for the same mesh size in the Elephant Island area (Table 11, data set (3)), when the mean CPUE increased from 241 kg to 993 kg/hf, the  $L_{50}$  decreased to 23.6 cm.  $L_{50}$  values of 30 cm for mesh size 124 mm (Table 9) and of 29.4 cm for mesh 110 mm (Table 11) are difficult to interpret (rough estimate in the first case and a very low CPUE in the second).

Catch rates for this species in the experiments are more or less the same as those reported in the mixed commercial fishing in the Scotia Sea area from 1979 to 1983 (average CPUE of 0.01 to 0.4 tonnes/hf). It is, therefore, likely that selectivity on the exploited fishing grounds is similar.

#### 3.5 *Patagonotothen brevicauda guntheri*, Table 12

The fish length distribution and catch rates of the Spanish selectivity experiment were similar to those reported for the commercial fishery in this area. The bulk of the Soviet catches consisted of 14 to 17 cm long fish (Shust and Borodin, 1988). Reported CPUE for the 1984 to 1987 seasons were 0.3, 0.4 and 1.6 tonnes/hf (bottom trawl) and 2.1 tonnes/hf (midwater trawl). The average amount of fish in the codend during selectivity experiments was about 580 kg. For this reason the selection factor obtained may be taken as applicable for commercial fishing by bottom trawls. This estimatation is, however, preliminary and further selectivity studies with the mesh size and codends currently in commercial use, should be undertaken. High catch rates by midwater trawls is likely to result in substantially lower selectivity.

#### 4. SUMMARY AND CONCLUSIONS

#### 4.1 *Champsocephalus gunnari*

The selection factor (SF) of 2.95, obtained in the South Georgia area for mesh sizes of 68 and 88 mm, seems applicable for calculations of mesh size in the commercial trawl fishery for *C. gunnari*.

When referred to a nominal mesh of 80 mm, adopted by CCAMLR in 1984 as the minimum mesh size for *C. gunnari*, this value of SF gives  $L_{50}$  of 23.6 cm. This length is only slightly above the mean length at 50% maturity for the South Georgia area of 23.1 cm (Kock, Duhamel and Hureau, 1985), and well below the length of first spawning of 27 cm (Kock, 1989). The application of SF=2.95 corresponds in this case to the minimum mesh size of 92 mm. A mesh size of 108 mm would in turn correspond to the age at first capture of 4 years (i.e. around 32 cm), which was proposed as the optimum under conditions of high fishing mortality (Anonymous, 1988).

By using the mean SF from the South Georgia area in calculation of minimum mesh sizes for *C. gunnari* for the South Orkney and South Shetland areas, and applying the length at first spawning of 35 cm (Kock, 1989), the minimum mesh size of 119 mm was obtained.

#### 4.2 *Notothenia gibberifrons*

By assuming the mean SF of 2.62 for *N. gibberifrons* for the entire Statistical Area 48, and using mean lengths at 50% maturity for this species in South Georgia (32.9 cm) as well as South Orkney, Elephant and South Shetland Is (29.9 cm), we obtain mesh sizes of 126 and 114 mm respectively. It should be recalled, however, that SFs for *N. gibberifrons* vary considerably between the areas studied and there is no clear relationship between mesh size increase and  $L_{50}$ . For these reasons the above mesh sizes should to be taken as provisional.

#### 4.3 *Patagonotothen brevicauda guntheri*

SF of 3.21 when referred to 16 cm, which is the 50% length at maturity of *P.b. guntheri* (Balguerias and Quintero, 1989; Shlibanov, 1989), gives minimum mesh of 50 mm for this species.

#### 4.4 Chaenocephalus aceratus and Pseudochaenichthys georgianus

Selection parameters for *C. aceratus* differ considerably for various meshes and codends tested. In general, they are rough estimates resultant from insufficiently defined selectivity ogives. Selectivity data available for *P. georgianus* are inadequate for designation of a minimum mesh size.

#### 4.5 Mesh Regulation

Assuming that the actual size of twine mesh in commercially used codends is on the average 10% greater than the nominal mesh size (Zaucha, 1988), the introduction of the following mesh sizes in the commercial fishery in the Statistical Area 48 should be considered:

- (a) Subarea 48.3
  - (i) Fishery targeted at *C. gunnari*80 mm, to protect immature fish, or
    90 mm, to protect first spawners, or
    100 mm, to give an age at first capture of 4 years;
  - (ii) Fishery target at *P. guntheri* 50 mm, to protect immature fish;
  - (iii) Mixed fishery (not targeted at *C. gunnari* or *P.b. guntheri*)
     120 mm, to include *N. gibberifrons, C. aceratus* and *P. georgianus* in addition to *N. rossii* and *D. eleginoides*, which have been covered by this mesh regulation since 1984 Conservation Measure 2/III), to ensure better protection of immature fish;
- (a) Subareas 48.1 and 48.2

110 mm, to ensure protection of first spawners of *C. gunnari* and immature *N. gibberifrons*.

In addition to the above, the provision that topside chafers will not be used and codends will be made not thicker than 4.5 mm should also be included.

#### 4.6 Further Selectivity Experiments

Further research on mesh selectivity is recommended in order to improve the applicability of available selection factors. It is important that such studies reflect selectivity in the commercial fishery and therfore be undertaken using commercial fishing gear and techniques independently from biomass surveys.

It is worthy to note that the mean SF of 3.5 for *C. gunnari* and *N. gibberifrons*, obtained in the first Polish experiment using tape netting of 60 and 100 mm mesh, is considerably higher than that for twine netting currently in use in commercial trawls. One

of the properties of the tape netting is constant rectangular shape of meshes (Zaucha, 1986). Satisfactory parameters of fish selection, obtained for this kind of net, should encourage further experiments with the 'open mesh' netting.

There is no information available to evaluate whether or not the mortality of fish passed through nets is a significant problem for Antarctic fish. It is recommended that such studies be undertaken in future selectivity experiments.

#### REFERENCES

- BALGUERIAS, E. 1988. Selectivity parameters for *Notothenia gibberifrons* Lönnberg, 1905 and *Champsocephalus gunnari* Lönnberg, 1905 obtained during "Antartida 8611" expedition. SC-CAMLR-VII/BG/43.
- BALGUERIAS, E. and M.E. QUINTERO. 1987. Informe de resultados Antartida 8611. Pescas científicas, Instituto Español de Oceanografia. p. 63.
- BALGUERIAS, E. and M.E. QUINTERO. 1989. Algunos datos sobre la distribución, abundancia y biologia de *Patagonotothen brevicauda guntheri* (Norman, 1937) en Shag Rocks. SC-CAMLR-VIII/BG/27.
- BORONIN, A.V. and Y. ALTMAN. 1979. Growth and natural mortality of green notothenia. *Trudy, Atlant. Nanchno-issled. Ryb. Khoz. Okeanogr. 81:* 66-71. (In Russian).
- CCAMLR. 1988. Report of the Working Group on Fish Stock Assessment. SC-CAMLR-VII, Annex 5.
- EFANOV, S.F., G.E. BIDENKO and V.A. BORONIN. 1989. Selectivity of trawls with reference to icefish (*Champsocephalus gunnari* L.). WG-FSA-89/14.
- HOFFMAN, U. 1982. Zur Alterbestimmuug und zum Wachstum von Notothenia gibberifrons Lönnberg bei South Georgia. Fisch - Forsch., 20 (2): 49-53.
- KOCK, K.-H. 1981. Fischereibiologishe Uutersuchungen an drei antarktischen Fischarten: *Champsocephalus gunnari* Lönnberg, 1905, *Chaenocephalus aceratus* (Lönnberg, 1906) and *Pseudochaenichthys georgianus* Norman, 1937. (*Notothenioidei*, *Channichthyidae*). *Mitt. Just. Seefisch.* 32:1-226.
- KOCK, K.-H. 1989. Reproduction in the Mackerel Icefish *Champsocephalus gunnari* and its implications for Fisheries Management in the Atlantic Sector of the Southern Ocean. SC-CAMLR-VIII/BG/16.
- KOCK, K.-H., G. DUHAMEL and J.-C. HUREAU. 1985. Biology and status of exploited Antarctic fish stocks: a review. *Biomass Scientific Series No. 6*.
- SHLIBANOV, V.I. 1989. 1989/90 Stock Status and TAC Assessment for *Patagonotothen* guntheri in South Georgia Subarea (48.3). WG-FSA-89/21.
- SHUST, K. and R. BORODIN. 1988. *Notothenia (p.) guntheri* Stock Staus and TAC Estimation in the Area of Shag Rocks (Subarea 48.3). WG-FSA-88/33.
- ZAUCHA, J. 1986. Preliminary appraisal of Antarctic fish selection by the 32/36 bottom trawl combined with various codends. SC-CAMLR-V/BG/29.
- ZAUCHA, J. 1988. Selectivity of standard Polish commercial trawl codends on Antarctic fishing grounds. SC-CAMLR-VII/BG/11.

# Table 1:Species:Champsocephalus gunnariArea:South Georgia and Shag Rocks (R) (Subarea 48.3)Month/Year:November to December 1986<sup>(1)</sup>, September 1981<sup>(2)</sup>, December 1978 to March 1979<sup>(3)</sup>

| Mesh Size (mm)<br>Measured |                       | Selection<br>Factor      | 50% Selection<br>Lenath (cm) | Modal Length |         | Number of Fish<br>Measured |       | Mean Total<br>Catch Per Hour | Mean % of<br><i>C. gunnari</i> | Mean Catch of<br><i>C. gunnari</i> |
|----------------------------|-----------------------|--------------------------|------------------------------|--------------|---------|----------------------------|-------|------------------------------|--------------------------------|------------------------------------|
| (N                         | lominal)              |                          |                              | cm           | Range   | Codend                     | Cover | (kg)                         | in Total Catch                 | Per Hour (kg)                      |
| 68                         | (70) <sup>(1)</sup>   | 2.94                     | 20.0                         | 26           | 13 - 37 | 92770                      | 19854 | 583                          | 76.9                           | 448                                |
| 67                         | (70) <sup>(1)R</sup>  | 3.48                     | 23.5                         | 26           | 17 - 41 | 8055                       | 4551  | 1162                         | 41.9                           | 487                                |
| 88                         | (80)(1)               | 2.56                     | 23.0                         | 26           | 11 - 41 | 56342                      | 29851 | 970                          | 56.4                           | 547                                |
| 88                         | $(80)^{(2)}$          | 2.81                     | 24.8                         | 25           | 12 - 37 | 534                        | 10*   | 600-1000*                    | 90-100*                        | 750                                |
| 124                        | $(120)^{(3)}$         | (1.77)°                  | (21-23) <sup>e</sup>         | 25           | 18 - 49 | 2864                       | 2274  | na                           | na                             | na                                 |
| 125                        | (120) <sup>c(3)</sup> | (1.68;2.32) <sup>e</sup> | (21-29) <sup>e</sup>         | 25           | 18 - 49 | 430                        | 421   | na                           | na                             | na                                 |

na Data not available

e Estimated value

c Codend with the 220 mm mesh chafer

\* Codend and cover combined

Table 2:Species:Champsocephalus gunnariArea:South Orkney (Subarea 48.2)Month/Year:December 1986<sup>(1)</sup>, December 1978 to March 1979<sup>(2)</sup>

| Mesh Size (mm)<br>Measured                          | Selection<br>Factor | 50% Selection<br>Length (cm) | Modal Length |                    | Number of Fish<br>Measured |             | Mean Total<br>Catch Per Hour | Mean % of<br><i>C. gunnari</i> | Mean Catch of<br><i>C. gunnari</i> |
|-----------------------------------------------------|---------------------|------------------------------|--------------|--------------------|----------------------------|-------------|------------------------------|--------------------------------|------------------------------------|
| (Nominal)                                           |                     |                              | cm           | Range              | Codend                     | Cover       | (kg)                         | in Total Catch                 | Per Hour (kg)                      |
| 68 (70) <sup>(1)</sup><br>125 (120) <sup>c(2)</sup> | 3.11<br>(2.56)°     | 21.3<br>(32) <sup>e</sup>    | 22; 33<br>38 | 10 - 51<br>31 - 47 | 379<br>2272                | 329<br>1905 | 8 7<br>na                    | 4.6<br>na                      | 4<br>na                            |

na Data not available

e Estimated value

Codend with the 220 mm mesh chafer

#### Table 3: Species:

*Champsocephalus gunnari* Elephant I. and South Shetland Is (Subarea 48.1) Area:

Month/Year: December 1986 to January 1987(1), January to February 1987(2), November to December 1986(3), November 1986 to February 1987<sup>(4)</sup>

| Mesh Size (mm)<br>Measured                                                                              | Selection<br>Factor          | 50% Selection<br>Length (cm) | ection Modal Length<br>(cm) Ba         |                                         | th Number of Fish<br>Measured<br>Bange Codend Cover |                              | Mean Total<br>Catch Per Hour | Mean % of<br><i>C. gunnari</i> | Mean Catch of<br><i>C. gunnari</i> |
|---------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------------------|------------------------------|------------------------------|--------------------------------|------------------------------------|
| (Nominal)                                                                                               |                              |                              | CIII                                   | Hange                                   |                                                     | Cover                        | (Kg)                         | In Total Calch                 | Per Hour (kg)                      |
| 68 (70) <sup>(1)</sup><br>68 (70) <sup>(2)s</sup><br>88 (80) <sup>(3)</sup><br>110 (100) <sup>(4)</sup> | 3.11<br>2.89<br>3.22<br>2.82 | 21.3<br>19.7<br>28.0<br>31.1 | 22;32<br>14;23<br>22;32<br>22-23;32-34 | 19 - 39<br>9 - 36<br>15 - 52<br>15 - 52 | 4394<br>2666<br>2330<br>604                         | 1751<br>2730<br>1841<br>1035 | 121<br>70<br>241<br>369      | 38.7<br>12.8<br>2.5<br>6.5     | 47<br>9<br>6<br>24                 |

S. Shetland Islands s

#### Chaenocephalus aceratus Table 4: Species: Area: South Georgia (Subarea 48.3) Month/Year: November to December 1986<sup>(1)</sup>, December 1978 to March 1979<sup>(2)</sup>

| Mesh Size (mm)            | Selection           | 50% Selection | Nodal Length |       | Number of Fish |       | Mean Total     | Mean % of          | Mean Catch of      |  |
|---------------------------|---------------------|---------------|--------------|-------|----------------|-------|----------------|--------------------|--------------------|--|
| Measured                  | Factor              | Length (cm)   |              |       | Measured       |       | Catch Per Hour | <i>C. aceratus</i> | <i>C. aceratus</i> |  |
| (Nominal)                 |                     | J ( )         | cm           | Range | Codend         | Cover | (kg)           | in Total Catch     | Per Hour (kg)      |  |
| 68 (70) <sup>(1)</sup>    | (2.63) <sup>e</sup> | (17.9)°       | 15;25;32     | 13-67 | 639            | 301   | 615            | 1.3                | 8                  |  |
| 88 (80) <sup>(1)</sup>    | 2.29                | 20.6          | 15;25;34;51  | 13-69 | 2954           | 133   | 966            | 11.9               | 115                |  |
| 124 (120) <sup>(2)</sup>  | (1.41) <sup>e</sup> | (17.5)°       | 24           | 12-68 | 3490           | 1161  | na             | na                 | na                 |  |
| 125 (120) <sup>c(2)</sup> | (1.75) <sup>e</sup> | (21.0)°       | 24           | 12-68 | 1008           | 325   | na             | na                 | na                 |  |

na Data not available

Estimated value е

Codend with the 220 mm mesh chafer used С

# Table 5:Species:Chaenocephalus aceratusArea:South Orkney Is (Subarea 48.2)Month/Year:December 1986<sup>(1)</sup>, December 1978 to March 1979<sup>(2)</sup>

| Mesh Size (mm)            | Selection           | 50% Selection       | Modal Length |       | Number of Fish |       | Mean Total     | Mean % of          | Mean Catch of      |  |
|---------------------------|---------------------|---------------------|--------------|-------|----------------|-------|----------------|--------------------|--------------------|--|
| Measured                  | Factor              | Length (cm)         |              |       | Measured       |       | Catch Per Hour | <i>C. aceratus</i> | <i>C. aceratus</i> |  |
| (Nominal)                 |                     | <b>~</b> ` `        | cm           | Range | Codend         | Cover | (kg)           | in Total Catch     | Per Hour (kg)      |  |
| 68 (70) <sup>(1)</sup>    | (2.22) <sup>e</sup> | (15.2) <sup>e</sup> | 13,20,28,42  | 11-62 | 1058           | 1609  | 8 2            | 14.7               | 1 2                |  |
| 125 (120) <sup>c(2)</sup> | (1.68) <sup>e</sup> | (21.0) <sup>e</sup> | 57           | 23-70 | 164            | 36    | na             | na                 | na                 |  |

na Data not available

e Estimated value

c Codend with the 220 mm mesh chafer

| Table 6: | Species:    | Chaenocephalus aceratus                                                                                |
|----------|-------------|--------------------------------------------------------------------------------------------------------|
|          | Area:       | Elephant I. and South Shetland Is (Subarea 48.1)                                                       |
|          | Month/Year: | October to November 1986 and February 1987 <sup>(1)</sup> , December 1978 to March 1979 <sup>(2)</sup> |

| Mesh Size (mm)           | Selection               | 50% Selection        | Modal Length |         | Number of Fish |       | Mean Total     | Mean % of          | Mean Catch of      |  |
|--------------------------|-------------------------|----------------------|--------------|---------|----------------|-------|----------------|--------------------|--------------------|--|
| Measured                 | Factor                  | Length (cm)          |              |         | Measured       |       | Catch Per Hour | <i>C. aceratus</i> | <i>C. aceratus</i> |  |
| (Nominal)                |                         |                      | cm           | Range   | Codend         | Cover | (kg)           | in Total Catch     | Per Hour (kg)      |  |
| 88 (80) <sup>(1)</sup>   | 2.48                    | 21.5                 | 4 6          | 12 - 68 | 1801           | 44    | 241            | 14.2               | 34                 |  |
| 110 (100) <sup>(1)</sup> | 2.09                    | 23.0                 | 4 6          | 12 - 68 | 1691           | 125   | 434            | 14.4               | 62                 |  |
| 124 (120) <sup>(2)</sup> | (1.61;2.1) <sup>e</sup> | (20;26) <sup>e</sup> | na           |         | 827            | 106   | na             | na                 | na                 |  |

na Data not available

e Estimated value

Table 7: Species: *Pseudochaenichthys georgianus* Area: South Georgia (Subarea 48.3) Month/Year: November to December 1986

| м | lesh S<br>Mea | ize (mm)<br>sured | Selection<br>Factor | 50% Selection<br>Length (cm) | Modal L  | ength | Number<br>Meas | of Fish<br>sured | Mean Total<br>Catch Per Hour | Mean % of<br><i>P. georgianus</i> | Mean Catch of <i>P. georgianus</i> |
|---|---------------|-------------------|---------------------|------------------------------|----------|-------|----------------|------------------|------------------------------|-----------------------------------|------------------------------------|
|   | (Non          | ninal)            |                     |                              | cm       | Range | Codend         | Cover            | (kg)                         | in Total Catch                    | Per Hour (kg)                      |
|   | 68            | (70)              | 2.00                | 13.8                         | 19;34;48 | 13-56 | 382            | 58               | 583                          | 1.0                               | 6                                  |

Table 8:Species:Pseudochaenichthys georgianusArea:South Orkney (Subarea 48.2)Month/Year:December 1986 to January 1987

| Mesh Size (mm)<br>Measured | Selection<br>Factor | 50% Selection<br>Length (cm) | Modal Ler   | Number of Fish<br>Measured |        | Mean Total<br>Catch Per Hour | Mean % of<br><i>P. georgianus</i> | Mean Catch of<br><i>P. georgianus</i> |               |
|----------------------------|---------------------|------------------------------|-------------|----------------------------|--------|------------------------------|-----------------------------------|---------------------------------------|---------------|
| (Nominal)                  |                     |                              | cm          | Range                      | Codend | Cover                        | (kg)                              | in Total Catch                        | Per Hour (kg) |
| 68 (70)                    | 2.25                | 15.4                         | 14;27;39;50 | 12-52                      | 14     | 230                          | 80                                | 1.7                                   | 1             |

## Table 9:Species:Notothenia gibberifronsArea:South Georgia (Subarea 48.3)Month/Year:November to December 1986<sup>(1)</sup>, December 1978 to March 1979<sup>(2)</sup>

| Mesh Size (mm<br>Measured | ) Selection<br>Factor | 50% Selection<br>Length (cm) | Modal | Length | Number<br>Meas | of Fish<br>sured | Mean Total<br>Catch Per Hour | Mean % of<br><i>N. gibberifrons</i> | Mean Catch of<br>N. gibberifrons |
|---------------------------|-----------------------|------------------------------|-------|--------|----------------|------------------|------------------------------|-------------------------------------|----------------------------------|
| (Nominal)                 |                       | - · ·                        | cm    | Range  | Codend         | Cover            | (kg)                         | in Total Catch                      | Per Hour (kg)                    |
| 68 (70) <sup>(1)</sup>    | 2.87                  | 19.5                         | 16;38 | 5 - 49 | 347            | 646              | 556                          | 1.8                                 | 10                               |
| 88 (80) <sup>(1)</sup>    | 2.02                  | 18.2                         | 16;40 | 5 - 51 | 6814           | 2198             | 971                          | 24.1                                | 234                              |
| $124 (120)^{(2)}$         | (2.42) <sup>e</sup>   | (30.0) <sup>e</sup>          | 25;40 | 9 - 51 | 1663           | 1093             | na                           | na                                  | na                               |
| 125 (120)°(2)             | *                     | *                            | 25;40 | 9 - 51 | 1898           | 979              | na                           | na                                  | na                               |

na Data not available

e Estimated value

c Codend with the 220 mm mesh chafer used

\* All selection estimates were over 50% level

## Table 10:Species:Notothenia gibberifronsArea:South Orkney Is. (Subarea 48.2)Month/Year:December 1986<sup>(1)</sup>, December 1978 to March 1979<sup>(2)</sup>

| Mesh Size (mm)<br>Measured                   | Selection<br>Factor | 50% Selection<br>Length (cm) | Modal Length |              | Number of Fish<br>Measured |              | Mean Total<br>Catch Per Hour | Mean % of<br>N. gibberifrons | Mean Catch of<br>N. gibberifrons |
|----------------------------------------------|---------------------|------------------------------|--------------|--------------|----------------------------|--------------|------------------------------|------------------------------|----------------------------------|
| (Nominal)                                    |                     |                              | cm           | Range        | Codend                     | Cover        | (kg)                         | in Total Catch               | Per Hour (kg)                    |
| $68 (70)^{(1)}$<br>125 (120)c <sup>(2)</sup> | 3.04                | 20.8                         | 1 9<br>na    | 9 - 43<br>na | 6247<br>6562               | 4047<br>2288 | 8 1<br>na                    | 36.1<br>na                   | 2 9<br>na                        |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,      |                     |                              |              |              |                            |              |                              |                              |                                  |

na Data not available

c Codend with the 220 mm mesh chafer used

\* All selection estimates were over 50% level

#### Table 11: Species: Notothenia gibberifrons

Area: Elephant I., Joinville I. and South Shetland Is (Subarea 48.1)

Month/Year: October to November 1986<sup>(1)</sup>, December 1986 to March 1987<sup>(2)</sup>, January to February 1987<sup>(3)</sup>, December 1978 to March 1979<sup>(4)</sup>

| Mesh Size (mm)<br>Measured |                       | Selection<br>Factor | 50% Selection<br>Length (cm) | Modal L  | _ength | Number<br>Meas | of Fish<br>sured | Mean Total<br>Catch Per Hour | Mean % of<br>N. gibberifrons | Mean Catch of N. gibberifrons |
|----------------------------|-----------------------|---------------------|------------------------------|----------|--------|----------------|------------------|------------------------------|------------------------------|-------------------------------|
| (N                         | lominal)              |                     |                              | cm       | Range  | Codend         | Cover            | (kg)                         | in Total Catch               | Per Hour (kg)                 |
| 68                         | (70) <sup>(2)</sup>   | 2.86                | 19.6                         | 31       | 17-46  | 566            | 42               | 121                          | 28.6                         | 35                            |
| 68                         | $(70)^{(3)s}$         | 2.70                | 18.4                         | 21;32;38 | 12-49  | 329            | 89               | 69                           | 20.0                         | 14                            |
| 88                         | $(80)^{(1)}$          | 2.28                | 19.8                         | 30       | 11-46  | 20701          | 2826             | 241                          | 71.8                         | 173                           |
| 88                         | (80) <sup>(1)s</sup>  | 2.88                | 25.0                         | 30       | 11-47  | 3217           | 420              | 750                          | 74.3                         | 557                           |
| 110                        | $(100)^{(1)}$         | 2.84                | 31.2                         | 30       | 11-47  | 7053           | 8526             | 241                          | 71.8                         | 173                           |
| 110                        | $(100)^{(3)}$         | 2.10                | 23.6                         | 29       | 18-48  | 3090           | 1328             | 993                          | 76.9                         | 764                           |
| 110                        | $(100)^{(1)j}$        | 2.64                | 29.4                         | 30       | 11-47  | 835            | 761              | 8                            | 25.8                         | 2                             |
| 124                        | (120) <sup>(4)s</sup> | (1.3;1.6)°          | (16;20)°                     | na       |        | 10609          | 4253             | na                           | na                           | na                            |

na Data not available

e Estimated value

j Joinville Is

s S. Shetland Is

Table 12:Species:Patagonotothen brevicauda guntheriArea:Shag Rocks (Subarea 48.3)Month/Year:November 1986

| Mesh Size (mm)<br>Measured | Selection<br>Factor | 50% Selection<br>Length (cm) | Modal Length |         | Number of Fish<br>Measured |       | Mean Total<br>Catch Per Hour | Mean % of<br>P.b. guntheri | Mean Catch of<br>P.b. guntheri |
|----------------------------|---------------------|------------------------------|--------------|---------|----------------------------|-------|------------------------------|----------------------------|--------------------------------|
| (Nominal)                  |                     | 5 ( )                        | cm           | Range   | Codend                     | Cover | (kg)                         | in Total Catch             | Per Hour (kg)                  |
| 67 (70)                    | 3.27°               | 21.5°                        | 12           | 10 - 22 | 451                        | 634   | 1163                         | 57                         | 663                            |

na Data not available

e Estimated value



Champsocephalus gunnari

Figure 1: Relationship between the diameter of twine (mm) codends used in the selectivity experiments and the selection factor for Champsocephalus gunnari.





(a) L<sub>50</sub>; (b) Selection Factor



Figure 3: Relationship between catch-per-tow and the selection factors for (a) *Champsocephalus gunnari* and (b) *Notothenia gibberifrons* in the Spanish experiment.



Figure 4: Relationship between catch-per-tow and the selection factors for Notothenia gibberifrons in the Polish experiment.



Figure 5: Effect of the length structure of the stock sampled on the 50% selection length of fish in experiments with 110 mm mesh size. Shaded area represents fish retained by the trawl codend. Dots on the left are percentage of fish retained in particular length classes. Vertical lines are  $L_{50}$ .



Figure 6: Relationship between mean fish length in the stock sampled and selectivity parameters: the 50% selection length and the selection factor.

APPENDIX

#### HAUL-BY-HAUL SELECTIVITY DATA OBTAINED FROM THE POLISH AND SPANISH EXPERIMENTS<sup>\*</sup>

<sup>\*</sup> Table 1.1 refers to Table 1of this paper Table 2.1 refers to Table 2 and so on.

| Table 1.1: | Species:             | Champsocephalus gunnari                                                                                       |                                                                                                                                                                                       |
|------------|----------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Area:                | South Georgia, Shag Rocks (Subarea 48.3)                                                                      |                                                                                                                                                                                       |
|            | Month/Year:          | November to December 1986                                                                                     |                                                                                                                                                                                       |
|            | Mesh size (mm):      |                                                                                                               |                                                                                                                                                                                       |
|            | Measured (nominal):  | 68 (70) and 67 (70) <sup>r</sup>                                                                              |                                                                                                                                                                                       |
|            | Twine diameter (mm): | 3.0                                                                                                           |                                                                                                                                                                                       |
|            | Table 1.1:           | Table 1.1: Species:<br>Area:<br>Month/Year:<br>Mesh size (mm):<br>Measured (nominal):<br>Twine diameter (mm): | Table 1.1: Species:Champsocephalus gunnariArea:South Georgia, Shag Rocks (Subarea 48.3)Month/Year:November to December 1986Mesh size (mm):68 (70) and 67 (70)rTwine diameter (mm):3.0 |

| Station         | Haul Time | Total Catch | Total Catch | Species<br>Por T | Catch | Number | of Fish | Modal | Length | Selection | 50% Selection |
|-----------------|-----------|-------------|-------------|------------------|-------|--------|---------|-------|--------|-----------|---------------|
|                 | (1111)    | (kg)        | (kg)        | kg               | %     | Codend | Cover   | cm    | Range  | T actor   | Length (Chi)  |
| 19 <sup>r</sup> | 30        | 30.22       | 60.44       | 9.92             | 33    | 56     | 124     | 18;24 | 16-39  | 3.42      | 23.06         |
| 28 <sup>r</sup> | 30        | 276.75      | 553.50      | 54.70            | 20    | 103    | 62      | 25    | 18-40  | 3.44      | 23.18         |
| 29 <sup>r</sup> | 30        | 1590.50     | 3181.00     | 684.10           | 43    | 117    | 129     | 25    | 19-28  | 3.65      | 24.60         |
| 32 <sup>r</sup> | 30        | 213.92      | 427.84      | 195.00           | 91    | 107    | 112     | 25    | 21-32  | 3.89      | 26.27         |
| 47              | 30        | 1687.72     | 3375.44     | 1687.70          | 100   | 176    | 68      | 26;31 | 22-39  | 3.97      | 26.99         |
| 48              | 30        | 325.16      | 650.32      | 325.00           | 100   | 170    | 246     | 27    | 16-37  | 4.03      | 27.41         |
| 55              | 30        | 342.55      | 685.10      | 250.50           | 73    | 93     | 110     | 27    | 22-35  | 3.86      | 26.27         |
| 62              | 30        | 21.64       | 43.28       | 20.35            | 94    | 89     | 125     | 15    | 13-30  | 2.42      | 16.49         |
| 69              | 30        | 53.79       | 107.58      | 17.12            | 32    | 150    | 19      | 14;28 | 13-37  | 2.94      | 19.98         |
| 70              | 30        | 428.16      | 856.32      | 23.15            | 5     | 280    | 61      | 23    | 20-40  | 3.08      | 20.95         |
| 71              | 30        | 32.22       | 64.44       | 8.90             | 28    | 78     | 27      | 15;24 | 13-39  | 3.25      | 22.14         |
| 75              | 30        | 80.46       | 160.92      | 25.90            | 32    | 214    | 144     | 23    | 20-31  | 3.30      | 22.40         |
| 83              | 30        | 1599.06     | 3198.12     | 211.01           | 13    | 135    | 234     | 14;23 | 13-33  | 3.42      | 23.20         |
| 84              | 30        | 1296.00     | 2592.00     | 19.50            | 2     | 68     | 112     | 13;23 | 12-35  | 3.66      | 24.90         |
| 97              | 30        | 88.32       | 176.64      | 41.25            | 47    | 88     | 74      | 28    | 19-36  | 3.68      | 25.01         |
| 105             | 30        | 160.34      | 320.68      | 9.18             | 6     | 69     | 62      | 13;27 | 13-42  | 3.04      | 20.68         |
| 111             | 30        | 598.06      | 1196.12     | 590.00           | 99    | 120    | 141     | 24    | 19-30  | 3.55      | 24.17         |
| 112             | 30        | 107.91      | 215.82      | 93.50            | 87    | 83     | 125     | 24    | 21-40  | 3.81      | 25.92         |
| 113             | 30        | 167.54      | 335.08      | 112.00           | 67    | 97     | 132     | 27    | 20-35  | 3.78      | 25.72         |
| 120             | 30        | 4288.75     | 8577.50     | 4258.00          | 99    | 155    | 126     | 26    | 21-36  | 3.71      | 25.25         |
| 122             | 30        | 218.85      | 437.70      | 45.10            | 21    | 60     | 47      | 27    | 21-31  | 3.69      | 25.11         |
| 124             | 30        | 36.38       | 72.76       | 3.53             | 10    | 100    | 39      | 26    | 14-30  | 3.31      | 22.53         |
| 126             | 30        | 97.40       | 194.80      | 69.35            | 71    | 86     | 42      | 27    | 20-34  | 3.49      | 23.74         |
| 127             | 30        | 77.35       | 154.70      | 17.80            | 23    | 73     | 19      | 27    | 21-34  | 3.48      | 23.65         |
| 128             | 30        | 20.30       | 40.60       | 3.25             | 16    | 32     | 14      | 15;24 | 13-29  | 3.23      | 21.98         |

| Station | Haul Time<br>(min) | Total Catch<br>Per Tow | Total Catch<br>Per Hour | Species (<br>Per To | Catch | Number<br>Meas | <sup>·</sup> of Fish<br>sured | Modal | Length | Selection<br>Factor | 50% Selection<br>Lenath (cm) |
|---------|--------------------|------------------------|-------------------------|---------------------|-------|----------------|-------------------------------|-------|--------|---------------------|------------------------------|
|         | (,                 | (kg)                   | (kg)                    | kg                  | %     | Codend         | Cover                         | cm    | Range  |                     | - 3- (- )                    |
| 131     | 30                 | 315.31                 | 630.62                  | 90.60               | 29    | 117            | 154                           | 22    | 14-29  | 3.25                | 22.14                        |
| 133     | 30                 | 147.65                 | 295.30                  | 13.20               | 9     | 100            | 58                            | 13;25 | 13-31  | 3.41                | 23.19                        |
| 147     | 30                 | 540.79                 | 1081.58                 | 518.00              | 96    | 172            | 159                           | 22    | 19-29  | 3.23                | 21.96                        |
| 155     | 30                 | 268.37                 | 536.74                  | 184.00              | 69    | 203            | 116                           | 22    | 16-36  | 3.20                | 21.74                        |
| 161     | 30                 | 156.52                 | 313.04                  | 70.00               | 45    | 157            | 109                           | 23    | 19-36  | 3.46                | 23.57                        |
| 162     | 30                 | 367.09                 | 734.18                  | 328.00              | 89    | 237            | 123                           | 25    | 19-38  | 3.43                | 23.30                        |
| 165     | 30                 | 60.84                  | 121.68                  | 47.00               | 77    | 167            | 92                            | 22    | 14-35  | 3.13                | 21.28                        |
| 168     | 30                 | 127.75                 | 255.50                  | 16.10               | 13    | 110            | 164                           | 16;22 | 14-31  | 3.51                | 23.87                        |
| 169     | 30                 | 244.83                 | 489.66                  | 22.20               | 9     | 162            | 115                           | 22;25 | 13-42  | 3.41                | 23.70                        |
| 170     | 30                 | 113.61                 | 227.22                  | 23.05               | 20    | 192            | 140                           | 15;22 | 13-50  | 3.07                | 20.86                        |
| 179     | 30                 | 86.95                  | 173.90                  | 37.30               | 43    | 370            | 88                            | 26    | 21-34  | 3.13                | 21.19                        |
| 180     | 30                 | 134.58                 | 269.16                  | 45.40               | 34    | 68             | 70                            | 26    | 21-31  | 3.85                | 26.17                        |
| 184     | 30                 | 69.61                  | 139.22                  | 26.50               | 38    | 181            | 69                            | 25;38 | 15-55  | 3.61                | 24.56                        |

r Shag Rocks

*Champsocephalus gunnari* South Georgia (Subarea 48.3) December 1986 Table 1.2: Species: 186 Area: Month/Year: Mesh size (mm): Measured (nominal): 88 Twine diameter (mm): 4.2 88 (80)

| Station | Haul Time<br>(min) | Total Catch<br>Per Tow | Total Catch<br>Per Hour | Species<br>Per T | Catch<br>ow | Number<br>Mea | <sup>r</sup> of Fish<br>sured | Modal  | Length | Selection<br>Factor | 50% Selection<br>Length (cm) |
|---------|--------------------|------------------------|-------------------------|------------------|-------------|---------------|-------------------------------|--------|--------|---------------------|------------------------------|
|         |                    | (kg)                   | (kg)                    | kg               | %           | Codend        | Cover                         | cm     | Range  |                     |                              |
| 123     | 180                | 2219.3                 | 739.8                   | 1452.5           | 65          | 743           | 1101                          | 23;26  | 18-47  | 3.0                 | 26.8                         |
| 124     | 180                | 452.4                  | 150.8                   | 381.6            | 84          | 260           | 410                           | 26     | 20-35  | 3.6°                | 31.5°                        |
| 126     | 180                | 2306.9                 | 769.0                   | 1249.2           | 54          | 352           | 653                           | 23*;26 | 19-39  | 2.5                 | 22.2                         |
| 127     | 180                | 4802.1                 | 1606.3                  | 2053.7           | 43          | 298           | 499                           | 26     | 18-37  | 2.4 <sup>e</sup>    | 21.5 <sup>e</sup>            |
| 128     | 230                | 4497.8                 | 1173.3                  | 3100.8           | 69          | 535           | 450                           | 27     | 21-38  | 2.3 <sup>e</sup>    | 20.0 <sup>e</sup>            |

Estimated value е

Modal length with high frequency (in polymodal length distributions) \*

| Table 2.1: | Species:             | Champsocephalus gunnari       |
|------------|----------------------|-------------------------------|
|            | Area:                | South Orkney (Subarea 48.2)   |
|            | Month/Year:          | December 1986 to January 1987 |
|            | Mesh size (mm):      |                               |
|            | Measured (nominal):  | 68 (70)                       |
|            | Twine diameter (mm): | 3.0                           |

| Station | Haul Time<br>(min) | Total Catch<br>(Per Tow) | Total Catch<br>(Per Hour) | Species<br>Per T | Catch<br>ow | Number<br>Meas | <sup>·</sup> of Fish<br>sured | M <oda< th=""><th>al Length</th><th>Selection<br/>Factor</th><th>50% Selection<br/>Length (cm)</th></oda<> | al Length | Selection<br>Factor | 50% Selection<br>Length (cm) |
|---------|--------------------|--------------------------|---------------------------|------------------|-------------|----------------|-------------------------------|------------------------------------------------------------------------------------------------------------|-----------|---------------------|------------------------------|
|         | · /                | (kg)                     | (kg)                      | kg               | %           | Codend         | Cover                         | cm                                                                                                         | Range     |                     | - · ·                        |
| 347     | 30                 | 144.44                   | 288.88                    | 32.50            | 23          | 164            | 111                           | 23;34                                                                                                      | 20-50     | 3.62                | 24.77                        |
| 350     | 30                 | 12.08                    | 24.16                     | 7.44             | 62          | 44             | 26                            | 23                                                                                                         | 12-36     | 3.21                | 21.94                        |

| Table 3.1: | Species:             | Champsocephalus gunnari                        |
|------------|----------------------|------------------------------------------------|
|            | Area:                | Elephant I., South Shetland Is. (Subarea 48.1) |
|            | Month/Year:          | January to February 1987                       |
|            | Mesh size (mm):      |                                                |
|            | Measured (nominal):  | 68 (70)                                        |
|            | Twine diameter (mm): | 3.0                                            |

| Station          | Haul Time<br>(min) | Total Catch<br>Per Tow | Total Catch<br>Per Hour | Species<br>Per T | Catch<br>ow | Numi<br>Fish M | per of easured | Modal L  | .ength | Selection<br>Factor | 50% Selection<br>Length (cm) |
|------------------|--------------------|------------------------|-------------------------|------------------|-------------|----------------|----------------|----------|--------|---------------------|------------------------------|
|                  | · · ·              | (kg)                   | .(kg)                   | kg               | %           | Codend         | Cover          | cm       | Range  |                     | <b>,</b> , ,                 |
| 413              | 30                 | 449.80                 | 899.60                  | 333.00           | 74          | 113            | 162            | 22;32    | 19-35  | 2.74                | 18.90                        |
| 434              | 30                 | 52.33                  | 104.66                  | 27.00            | 52          | 57             | 52             | 23       | 21-39  | 3.20                | 21.96                        |
| 448              | 30                 | 22.05                  | 44.10                   | 18.10            | 82          | 147            | 60             | 23;26;31 | 19-38  | 3.08                | 21.12                        |
| 477 <sup>s</sup> | 30                 | 137.99                 | 275.98                  | 137.60           | 100         | 176            | 180            | 13;22    | 12-31  | 2.89                | 19.66                        |
| 479 <sup>s</sup> | 30                 | 62.23                  | 124.46                  | 62.00            | 100         | 162            | 162            | 14:19:24 | 11-27  | 3.29                | 22.40                        |
| 499 <sup>s</sup> | 30                 | 15.21                  | 30.42                   | 13.80            | 91          | 75             | 141            | 14;21;25 | 13-48  | 3.61                | 24.59                        |
| 545s             | 30                 | 15.58                  | 31.16                   | 4.73             | 30          | 36             | 124            | 14;20;25 | 12-27  | 3.30                | 22.44                        |

s S. Shetland Is

| 2 | Table 3.2: | Species:             | Chan  | npsocephalus gunnari   |
|---|------------|----------------------|-------|------------------------|
| õ |            | Area:                | Elepł | nant I. (Subarea 48.1) |
|   |            | Month/Year:          | Octol | ber to November 1986   |
|   |            | Mesh size (mm):      |       |                        |
|   |            | Measured (nominal):  | 110   | (100)                  |
|   |            | Twine diameter (mm): | 4.2   |                        |

| Station | Haul Time<br>(min) | Total Catch<br>Per Tow | Total Catch<br>Per Hour | Species<br>Per Te | Catch<br>ow | Number<br>Meas | of Fish<br>Sured | Modal | Length | Selection<br>Factor | 50% Selection<br>Length (cm) |
|---------|--------------------|------------------------|-------------------------|-------------------|-------------|----------------|------------------|-------|--------|---------------------|------------------------------|
|         |                    | (kg)                   | (kg)                    | kg                | %           | Codend         | Cover            | cm    | Range  |                     |                              |
| I/14    | 120                | 1303.0                 | 651.0                   | 29.8              | 2           | 79             | 303              | 20;30 | 15-35  | 2.9                 | 32.0                         |
| I/16    | 180                | 1864.9                 | 621.0                   | 96.2              | 5           | 284            | 343              | 20;29 | 17-44  | 2.7                 | 30.0                         |
| I/41    | 105                | 613.3                  | 350.0                   | 17.0              | 3           | 37             | 92               | 20;30 | 18-44  | 3.1                 | 33.7                         |

\* Modal length with high frequency (in polymodal length distributions)

| Table 7.2: | Species:             | Notothenia gibberifrons      |
|------------|----------------------|------------------------------|
|            | Area:                | South Georgia (Subarea 48.3) |
|            | Month/Year:          | December 1986                |
|            | Mesh size (mm):      |                              |
|            | Measured (nominal):  | 88 (80)                      |
|            | Twine diameter (mm): | 4.2                          |

| Station | Haul Time<br>(min) | Total Catch<br>Per Tow<br>(kg) | Total Catch<br>Per Hour<br>(kg) | Species Catch<br>Per Tow |    | Number of<br>Fish Measured |       | Modal Length  |         | Selection<br>Factor | 50% Selection<br>Lenath (cm) |
|---------|--------------------|--------------------------------|---------------------------------|--------------------------|----|----------------------------|-------|---------------|---------|---------------------|------------------------------|
|         |                    |                                |                                 | kg                       | %  | Codend                     | Cover | cm            | Range   |                     | ,                            |
| 123     | 180                | 2219.3                         | 739.8                           | 557.2                    | 25 | 135                        | 56    | 17*;28;36*-39 | 9-50    | 2.6 <sup>e</sup>    | 23.0 <sup>e</sup>            |
| 124     | 180                | 452.4                          | 150.8                           | 38.0                     | 8  | 25                         | 180   | 17            | 12-37   |                     | * *                          |
| 126     | 180                | 2306.9                         | 769.0                           | 849.2                    | 37 | 110                        | 37    | 11;18*;30;38* | 10-49   |                     | * * *                        |
| 127     | 180                | 4802.1                         | 1606.3                          | 1708.7                   | 36 | 201                        | 139   | 9;17*,40*     | 8 - 4 8 |                     | * * * *                      |
| 128     | 230                | 4497.8                         | 1173.3                          | 419.0                    | 9  | 98                         | 70    | 16*-20*;37-40 | 9 - 4 2 | 2.2 <sup>e</sup>    | 19.0 <sup>e</sup>            |

Estimated value е

Modal length with high frequency (in polymodal length distributions) All selection estimates were below 50% level \*

\* \*

\* \* \* All selection estimates were over 50% level

\* \* \* \* Multiple 50% selection estimates

Table 9.2: Species:Notothenia gibberifronsArea:Elephant I., Joinville I., King George I. (Subarea 48.1)Month/Year:October to November 1986, February 1987k 1986Mesh size (mm):Measured (nominal):Mine diameter (mm):110 (100) and 88 (80)k

| Station           | Haul Time<br>(min) | Total Catch<br>Per Tow | Total Catch<br>Per Hour | Species (<br>Per To | Catch | Number<br>Meas | of Fish<br>sured | Modal Length |       | Selection<br>Factor | 50% Selection<br>Length (cm) |
|-------------------|--------------------|------------------------|-------------------------|---------------------|-------|----------------|------------------|--------------|-------|---------------------|------------------------------|
|                   | ,                  | (kg)                   | (kg)                    | kg                  | %     | Codend         | Cover            | cm           | Range |                     | <b>3</b> ( <i>'</i> ,        |
| I/ 9              | 125                | 327.4                  | 157.0                   | 274.0               | 84    | 613            | 169              | 24;34*       | 14-46 | 2.1                 | 23.1                         |
| I/10              | 120                | 837.9                  | 419.0                   | 691.0               | 82    | 438            | 644              | 24;36*       | 13-46 | 2.9                 | 32.0                         |
| I/11              | 120                | 253.8                  | 126.0                   | 201.0               | 79    | 315            | 641              | 26           | 11-43 | 2.7                 | 29.9                         |
| I/13              | 260                | 67.6                   | 16.0                    | 54.0                | 80    | 97             | 334              | 29-31        | 13-39 | 3.1                 | 34.5                         |
| I/14              | 120                | 1303.0                 | 651.0                   | 1028.0              | 79    | 408            | 568              | 29           | 16-42 | 2.8                 | 31.1                         |
| I/16              | 180                | 1864.9                 | 621.0                   | 1601.0              | 86    | 948            | 1278             | 29           | 13-44 | 2.9                 | 31.5                         |
| I/17              | 130                | 1170.9                 | 540.0                   | 866.2               | 74    | 494            | 1980             | 30           | 20-41 | 2.8                 | 30.5                         |
| I/41              | 105                | 613.3                  | 350.0                   | 437.0               | 71    | 224            | 297              | 30           | 19-43 | 2.7                 | 30.6                         |
| I/42              | 200                | 85.1                   | 25.0                    | 71.0                | 83    | 96             | 58               | 31;35        | 22-48 |                     |                              |
| I/33j             | 120                | 80.7                   | 40.0                    | 23.2                | 29    | 88             | 116              | 19*;26       | 14-37 | 2.1                 | 23.4                         |
| I/34j             | 115                | 888.7                  | 464.0                   | 84.6                | 10    | 113            | 200              | 22;30        | 17-39 | 2.4                 | 26.8                         |
| I/36j             | 60                 | 272.0                  | 272.0                   | 100.5               | 37    | 153            | 159              | 30-32        | 23-44 | 3.0                 | 33.5                         |
| I/37j             | 100                | 143.4                  | 86.0                    | 77.0                | 54    | 119            | 95               | 29-31;37*    | 18-44 | 2.8                 | 30.9                         |
| IV/7 <sup>k</sup> | 90                 | 599.7                  | 400.0                   | 440.0               | 73    | 361            | 137              | 27;41        | 19-47 | 3.3                 | 29.0                         |

\* Modal length with high frequency (polymodal length distributions)

i Joinville I.

k King George I.

Table 10.1: Species:Notothenia gibberifronsArea:South Orkney (Subarea 48.2)Month/Year:December 1986 to January 1987Mesh size (mm):68 (70)Twine diameter (mm):3.0

| Station | Haul<br>Time | Total Catch<br>Per Tow | Total Catch<br>Per Hour | Species (<br>Per To | Catch | Number<br>Mea | of Fish | Modal Length      | 1       | Selection<br>Factor | 50% Selection   |
|---------|--------------|------------------------|-------------------------|---------------------|-------|---------------|---------|-------------------|---------|---------------------|-----------------|
|         | (min)        | (kg)                   | (kg)                    | kg                  | %     | Codend        | Cover   | cm                | Range   |                     | 2011gtil (0111) |
| 267     | 30           | 64.600                 | 129.20                  | 37.09               | 57    | 190           | 60      | 19;25;30;37       | 12-37   | 2.91                | 19.91           |
| 268     | 30           | 234.660                | 469.32                  | 109.40              | 47    | 417           | 206     | 12;20;29;32       | 9-38    | 3.18                | 21.76           |
| 271     | 30           | 62.930                 | 125.86                  | 35.80               | 57    | 164           | 190     | 17;20;25;28       | 9-38    | 3.08                | 20.95           |
| 272     | 30           | 56.170                 | 112.34                  | 35.95               | 64    | 199           | 124     | 19;23;28;35       | 10-40   | 2.80                | 19.05           |
| 273     | 30           | 77.990                 | 155.98                  | 42.95               | 55    | 220           | 198     | 11;20;27;35       | 9-38    | 2.88                | 19.57           |
| 275     | 30           | 226.530                | 453.06                  | 132.00              | 58    | 946           | 149     | 20;32             | 11-36   | 3.10                | 21.13           |
| 276     | 30           | 146.380                | 292.76                  | 80.00               | 55    | 399           | 301     | 11;19;27;36       | 9 - 4 3 | 2.56                | 17.42           |
| 278     | 30           | 37.485                 | 74.97                   | 16.05               | 43    | 110           | 42      | 19;26             | 15-39   | 2.60                | 17.72           |
| 281     | 30           | 53.355                 | 106.71                  | 18.25               | 34    | 116           | 138     | 11;16;20;24;28;32 | 10-39   | 2.44                | 16.70           |
| 282     | 30           | 291.315                | 582.63                  | 86.90               | 30    | 451           | 402     | 11;18;24;28;32    | 9-39    | 2.73                | 18.59           |
| 322     | 30           | 72.620                 | 145.24                  | 35.30               | 49    | 175           | 37      | 21;26;31;35       | 15-40   | 2.80                | 19.15           |
| 323     | 30           | 44.675                 | 89.35                   | 30.85               | 69    | 120           | 79      | 12;21;27;34       | 10-42   | 2.93                | 20.02           |
| 327     | 30           | 34.880                 | 69.76                   | 16.30               | 47    | 78            | 85      | 10;14;21;27       | 8 - 4 0 | 2.64                | 17.95           |
| 328     | 30           | 41.795                 | 83.59                   | 9.65                | 23    | 62            | 154     | 14;20             | 9 - 4 1 | 2.91                | 19.78           |
| 333     | 30           | 18.965                 | 37.93                   | 9.85                | 52    | 40            | 164     | 10;17             | 8-39    | 3.31                | 22.52           |
| 340     | 30           | 285.155                | 570.31                  | 7.28                | 3     | 40            | 12      | 25;30             | 19-32   | 3.21                | 21.93           |
| 345     | 30           | 9.285                  | 18.57                   | 6.55                | 71    | 30            | 18      | 18;23;28;32       | 16-40   | 3.01                | 20.51           |
| 378     | 30           | 142.785                | 285.57                  | 74.05               | 52    | 341           | 374     | 11;19             | 10-39   | 2.96                | 20.23           |
| 379     | 30           | 25.490                 | 50.98                   | 14.80               | 58    | 109           | 85      | 10;21;27;30       | 9-38    | 2.47                | 16.78           |
| 380     | 30           | 46.680                 | 93.36                   | 8.80                | 19    | 41            | 41      | 10;20;26;30       | 9-40    | 2.80                | 19.16           |
| 385     | 30           | 27.030                 | 54.06                   | 15.60               | 58    | 88            | 47      | 11;20;27          | 9 - 3 4 | 2.71                | 18.44           |

Liste des tableaux

| Tableau 1:  | Espèce:<br>Zone:<br>Mois/année: | <i>Champsocephalus gunnari</i><br>Géorgie du Sud et Shag Rocks <sup>(R)</sup> (48.3)<br>Novembre - décembre 1986 <sup>(1)</sup> , septembre 1981 <sup>(2)</sup> ,<br>décembre 1978 - mars 1979 <sup>(3)</sup>                                                          |
|-------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tableau 2:  | Espèce:<br>Zone:<br>Mois/année: | <i>Champsocephalus gunnari</i><br>Iles Orcades du Sud (48.2)<br>Décembre 1986 <sup>(1)</sup> , décembre 1978 - mars 1979 <sup>(2)</sup>                                                                                                                                |
| Tableau 3:  | Espèce:<br>Zone:<br>Mois/année: | <i>Champsocephalus gunnari</i><br>lle Eléphant et îles Shetland du Sud (48.1)<br>Décembre 1986 - janvier 1987 <sup>(1)</sup> , janvier - février<br>1987 <sup>(2)</sup> , novembre - décembre 1986 <sup>(3)</sup> , novembre 1986 -<br>février 1987 <sup>(4)</sup>     |
| Tableau 4:  | Espèce:<br>Zone:<br>Mois/année: | <i>Chaenocephalus aceratus</i><br>Géorgie du Sud (48.3)<br>Novembre - décembre 1986 <sup>(1)</sup> , décembre 1978 - mars<br>1979 <sup>(2)</sup>                                                                                                                       |
| Tableau 5:  | Espèce:<br>Zone:<br>Mois/année: | <i>Chaenocephalus aceratus</i><br>lles Orcades du Sud (48.2)<br>Décembre 1986 <sup>(1)</sup> , décembre 1978 - mars 1979 <sup>(2)</sup>                                                                                                                                |
| Tableau 6:  | Espèce:<br>Zone:<br>Mois/année: | <i>Chaenocephalus aceratus</i><br>lle Eléphant et îles Shetland du Sud (48.1)<br>Octobre - novembre 1986 et février 1987 <sup>(1)</sup> , décembre<br>1978 - mars 1979 <sup>(2)</sup>                                                                                  |
| Tableau 7:  | Espèce:<br>Zone:<br>Mois/année: | <i>Pseudochaenichthys georgianus</i><br>Géorgie du Sud (48.3)<br>Novembre - décembre 1986                                                                                                                                                                              |
| Tableau 8:  | Espèce:<br>Zone:<br>Mois/année: | <i>Pseudochaenichthys georgianus</i><br>Iles Orcades du Sud (48.2)<br>Décembre 1986 <sup>-</sup> janvier 1987                                                                                                                                                          |
| Tableau 9:  | Espèce:<br>Zone:<br>Mois/année: | Notothenia gibberifrons<br>Géorgie du Sud (48.3)<br>Novembre - décembre 1986 <sup>(1)</sup> , décembre 1978 - mars<br>1979 <sup>(2)</sup>                                                                                                                              |
| Tableau 10: | Espèce:<br>Zone:<br>Mois/année: | <i>Notothenia gibberifrons</i><br>Iles Orcades du Sud (48.2)<br>Décembre 1986 <sup>(1)</sup> , décembre 1978 - mars 1979 <sup>(2)</sup>                                                                                                                                |
| Tableau 11: | Espèce:<br>Zone:<br>Mois/année: | Notothenia gibberifrons<br>Ile Eléphant, île Joinville et îles Shetland du Sud (48.1)<br>Octobre - novembre 1986 <sup>(1)</sup> , décembre 1986 - janvier<br>1987 <sup>(2)</sup> , janvier - février 1987 <sup>(3)</sup> , décembre 1978 - mars<br>1979 <sup>(4)</sup> |
| Tableau 12: | Espèce:<br>Zone:<br>Mois/année: | <i>Patagonotothen brevicauda guntheri</i><br>Shag Rocks (48.3)<br>Novembre 1986                                                                                                                                                                                        |

#### Liste des figures

- Figure 1: Relation graphique entre l'épaisseur du cordage des culs de chalut utilisés dans les expériences de sélectivité et le facteur de sélection obtenu pour *Champsocephalus gunnari.*
- Figure 2: Relation graphique entre la capture totale par trait de chalut et les paramètres de sélectivité obtenus pour *Champsocephalus gunnari* dans l'expérience polonaise.
  (a) L<sub>50</sub>; (b) Facteur de sélection.
- Figure 3: Capture par trait de chalut dans l'expérience espagnole et facteurs de sélection pour (a) *Champsocephalus gunnari* et (b) *Notothenia gibberifrons.*
- Figure 4: Capture par trait de chalut et facteurs de sélection pour *Notothenia* gibberifrons dans l'expérience de sélectivité polonaise.
- Figure 5: Effet de la structure en longueurs du stock pêché sur la longueur de 50% de sélection pour un maillage de 110 mm. La zone hachurée des distributions en longueurs représente les poissons retenus par le cul de chalut. Les pointillés à gauche indiquent les pourcentages retenus des classes d'âge particulières. Les lignes verticales représentent  $L_{50}$ .
- Figure 6: Relation graphique entre la longueur moyenne des poissons dans le stock échantillonné et les paramètres de sélectivité: la longueur de 50% de sélection et le facteur de sélection.

#### Список таблиц

| Таблица 1: | Вид:<br>Район:<br>Месяц/год: | <i>Champsocephalus gunnari</i><br>Южная Георгия и скалы Шаг <sup>(R)</sup> (Подрайон 48.3)<br>ноябрь - декабрь 1986 г. <sup>(1)</sup> , сентябрь 1981 г. <sup>(2)</sup> ,<br>декабрь 1978 г март 1979 г. <sup>(3)</sup>                                                          |
|------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Таблица 2: | Вид:<br>Район:<br>Месяц/год: | <i>Champsocephalus gunnari</i><br>Южные Оркнейские острова (48,2)<br>декабрь 1986 г. <sup>(1)</sup> , декабрь 1978 - март 1979 гг. <sup>(2)</sup> .                                                                                                                              |
| Таблица 3: | Вид:<br>Район:<br>Месяц/год: | <i>Champsocephalus gunnari</i><br>о. Элефант и Южные Шетландские о-ва (Подрайон<br>48.1)<br>декабрь 1986 - январь 1987 гг. <sup>(1)</sup> , январь - феварль<br>1987 г. <sup>(2)</sup> , ноябрь-декабрь 1986 г. <sup>(3)</sup> , ноябрь 1986-<br>февраль 1987 гг. <sup>(4)</sup> |
| Таблица 4: | Вид:<br>Район:<br>Месяц/год: | <i>Chaenocephalus aceratus</i><br>Южная Георгия (48.3)<br>ноябрь - декабрь 1986 г. <sup>(1)</sup> , декабрь 1978 - март<br>1979 гг. <sup>(2)</sup>                                                                                                                               |
| Таблица 5: | Вид:<br>Район:<br>Месяц/год: | <i>Chaenocephalus aceratus</i><br>Южные Оркнейские о-ва (Подрайон 48,2)<br>декабрь 1986 г. <sup>(1)</sup> , декабрь 1978 - март 1979 гг. <sup>(2)</sup>                                                                                                                          |

| Таблица 6:  | Вид:<br>Район:                                                                                                                                                                                                                                | <i>Chaenocephalus aceratus</i><br>о. Элефант и Южные Шетландские о-ва (Подрайон<br>48.1)                                                                                            |  |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|             | Месяц/год:                                                                                                                                                                                                                                    | октябрь - ноябрь 1986 г. и февраль 1987 г. <sup>(1)</sup><br>декабрь 1978 - март 1979 гг. <sup>(2)</sup>                                                                            |  |  |  |  |  |
| Таблица 7:  | Вид:<br>Район:<br>Месяц/год:                                                                                                                                                                                                                  | <i>Pseudochaenichthys georgianus</i><br>Южная Георгия (Подрайон 48.3)<br>ноябрь - декабрь 1986 г.                                                                                   |  |  |  |  |  |
| Таблица 8:  | Вид:<br>Район:<br>Месяц/год:                                                                                                                                                                                                                  | <i>Pseudochaenichthys georgianus</i><br>Южные Оркнейские острова (Подрайон 48.2)<br>декабрь 1986 - январь 1987 гг.                                                                  |  |  |  |  |  |
| Таблица 9:  | Вид:<br>Район:<br>Месяц/год:                                                                                                                                                                                                                  | Notothenia gibberifrons<br>Южная Георгия (Подрайон 48.3)<br>ноябрь - декабрь 1986 г. <sup>(1)</sup> , декабрь 1978 - март<br>1979 гг. <sup>(2)</sup>                                |  |  |  |  |  |
| Таблица 10; | Вид:<br>Район:<br>Месяц/год:                                                                                                                                                                                                                  | Notothenia gibberifrons<br>Южные Оркнейские о-ва (Подрайон 48.2)<br>декабрь 1986 г. <sup>(1)</sup> , декабрь 1978 - март 1979 гг. <sup>(2)</sup>                                    |  |  |  |  |  |
| Таблица 11: | Вид:<br>Район:                                                                                                                                                                                                                                | <i>Notothenia gibberifrons</i><br>о. Элефант, о. Жуэнвиль и Южные Шетландские о-ва<br>(Подрайон 48.1)                                                                               |  |  |  |  |  |
|             | Месяц/год:                                                                                                                                                                                                                                    | октябрь - ноябрь 1986 г. <sup>(1)</sup> , декабрь 1986 - март<br>1987 гг. <sup>(2)</sup> , январь - февраль 1987 г. <sup>(3)</sup> , декабрь 1978<br>- март 1979 гг. <sup>(4)</sup> |  |  |  |  |  |
| Таблица 12: | Вид:<br>Район:<br>Месяц/год:                                                                                                                                                                                                                  | Patagonotothen brevicauda guntheri<br>скалы Шаг (Подрайон 48.3)<br>ноябрь 1986 г.                                                                                                   |  |  |  |  |  |
|             |                                                                                                                                                                                                                                               | Список рисунков                                                                                                                                                                     |  |  |  |  |  |
| Рисунок 1:  | График зави<br>эксперимент<br><i>Champsocepha</i>                                                                                                                                                                                             | симости диаметра дели кутков, использованных в<br>ах по селективности тралов, и вычисленного для<br>alus gunnari фактора селективности.                                             |  |  |  |  |  |
| Рисунок 2:  | График зависимости величины общего улова за одно траление и<br>параметров селективности, вычисленных для <i>Champsocephalus</i><br><i>gunnari</i> в ходе проведенного Польшей эксперимента.<br>(a) L <sub>50</sub> ; (b) фактор селективности |                                                                                                                                                                                     |  |  |  |  |  |
| Рисунок 3:  | График зависимости улова за траление и факторов селективности<br>для (a) Champsocephalus gunnari и (b) Notothenia gibberifrons,<br>полученных в ходе проведенного Испанией эксперимента.                                                      |                                                                                                                                                                                     |  |  |  |  |  |
| Рисунок 4:  | График зависимости улова за траление и факторов селективности<br>для <i>Notothenia gibberifrons</i> , полученные в ходе проведенного<br>Польшей эксперимента по селективности.                                                                |                                                                                                                                                                                     |  |  |  |  |  |

- Рисунок 5: Зависимость длины особи, соответствующей 50% удержанию при размере ячеи в 110 мм, от размерного состава облавливаемого запаса. Затемненная часть графика распределения длины изображает количество особей, удержанных кутком трала. Точки слева изображают процентное содержание удержанных особей отдельных размерных классов. Вертикальные линии - L<sub>50</sub>.
- Рисунок 6: График зависимости средней длины особи в исследуемом запасе и параметров селективности: длина особи, соответствующая 50% удержанию и фактор селективности.

#### Lista de las tablas

| Tabla 1: | Especie:<br>Area:<br>Mes/año: | <i>Champsocephalus gunnari</i><br>Georgia del Sur y Shag Rocks <sup>(R)</sup> (48.3)<br>Noviembre a Diciembre 1986 <sup>(1)</sup> , Septiembre 1981 <sup>(2)</sup> ,<br>Diciembre 1978 a Marzo 1979 <sup>(3)</sup>                                    |  |  |  |  |  |  |
|----------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Tabla 2: | Especie:<br>Area:<br>Mes/año: | <i>Champsocephalus gunnari</i><br>Orcadas del Sur (48.2)<br>Diciembre 1986 <sup>(1)</sup> , Diciembre 1978 a Marzo 1979 <sup>(2)</sup>                                                                                                                |  |  |  |  |  |  |
| Tabla 3: | Especie:<br>Area:<br>Mes/año: | Champsocephalus gunnari<br>I. Elephant, I. Shetland del Sur (48.1)<br>Diciembre 1986 a Enero 1987 <sup>(1)</sup> , Enero a Febrero 1987 <sup>(2)</sup><br>Noviembre a Diciembre 1986 <sup>(3)</sup> , Noviembre 1986 a Febrero<br>1987 <sup>(4)</sup> |  |  |  |  |  |  |
| Tabla 4: | Especie:<br>Area:<br>Mes/año: | <ul> <li>Chaenocephalus aceratus<br/>Georgia del Sur (48.3)</li> <li>Noviembre a Diciembre 1986<sup>(1)</sup>, Diciembre 1978 a Marzo<br/>1979<sup>(2)</sup></li> </ul>                                                                               |  |  |  |  |  |  |
| Tabla 5: | Especie:<br>Area:<br>Mes/año: | <i>Chaenocephalus aceratus</i><br>I.Orcadas del Sur (48.2)<br>Diciembre 1986 <sup>(1)</sup> , Diciembre 1978 a Marzo 1979 <sup>(2)</sup>                                                                                                              |  |  |  |  |  |  |
| Tabla 6: | Especie:<br>Area:<br>Mes/año: | <i>Chaenocephalus aceratus</i><br>I. Elephant, I. Shetland del Sur (48.1)<br>Octubre a Noviembre 1986 y Febrero 1987 <sup>(1)</sup> , Diciembre<br>1978 <sup>(2)</sup> , Marzo 1979 <sup>(2)</sup> ,                                                  |  |  |  |  |  |  |
| Tabla 7: | Especie:<br>Area:<br>Mes/año: | <i>Pseudochaenichthys georgianus</i><br>Georgia del Sur (48.3)<br>Noviembre a Diciembre 1986                                                                                                                                                          |  |  |  |  |  |  |
| Tabla 8: | Especie:<br>Area:<br>Mes/año: | <i>Pseudochaenichthys georgianus</i><br>Orcadas del Sur (48.2)<br>Diciembre 1986 a Enero 1987                                                                                                                                                         |  |  |  |  |  |  |
| Tabla 9: | Especie:<br>Area:<br>Mes/año: | Notothenia gibberifrons<br>Georgia del Sur (48.3)<br>Noviembre a Diciembre 1986 <sup>(1),</sup> Diciembre 1978 a Marzo<br>1979 <sup>(2)</sup>                                                                                                         |  |  |  |  |  |  |

- Tabla 10:Especie:Notothenia gibberifronsArea:Orcadas del Sur (48.2)Mes/año:Diciembre 1986<sup>(1)</sup>, Diciembre 1978 a Marzo 1979<sup>(2)</sup>
- Tabla 11:Especie:<br/>Area:Notothenia gibberifrons<br/>I. Elephant, I. Joinville y I. Shetland del Sur (48.1)<br/>Octubre a Noviembre 1986<sup>(1)</sup>, Diciembre 1986 a Enero<br/>1987<sup>(2),</sup> Enero a Febrero 1987<sup>(3)</sup>, Diciembre 1978 a Marzo<br/>1979<sup>(4)</sup>
- Tabla 12:Especie:Patagonotothen brevicauda guntheriArea:Shag Rocks (48.3)Mes/año:Noviembre 1986

#### Lista de las figuras

- Figura 1: Relación entre el diámetro del hilo del copo del arrastre utilizado en los experimentos de selectividad y el factor de selección obtenido para *Champsocephalus gunnari*.
- Figura 2: Relación entre la captura total por arrastre y los parámetros de selectividad obtenidos para *Champsocephalus gunnari* en el experimento polaco. (a)  $L_{50}$ ; (b) Factor de Selección.
- Figura 3: Relación entre la captura por arrastre y los factores de selección para (a) *Champsocephalus gunnari* y (b) *Notothenia gibberifrons* en el experimento español.
- Figura 4: Relación entre la captura por arrastre y los factores de selección para Notothenia gibberifrons en el experimento polaco.
- Figura 5: Efecto de la distribución de longitud de la población muestrada en el 50% de longitud de selección de peces en los experimentos con una luz de malla de 110 mm. El área oscura representa los peces retenidos por el copo de arrastre. Los puntos a la izquierda son porcentajes de peces retenidos en clases específicas de longitud. Líneas verticales son L<sub>50</sub>.
- Figura 6: Relación entre el promedio de la longitud de los peces en la población muestreada y los parámetros de selectividad: el 50% de longitud de selección y el factor de selección.