K.-H. Kock (FRG)

ESTIMATES OF FISH STOCK BIOMASS AROUND SOUTH GEORGIA IN JANUARY/FEBRUARY 1985

Abstract

Catch data from a bottom trawl survey in January/February 1985 have been used to estimate stock sizes of the commercially exploited Notothenia rossii, N. guntheri, N. gibberifrons, Dissostichus eleginoides, Champsocephalus gunnari, Chaenocephalus aceratus and Pseudochaenichthys georgianus around South Georgia. Due to the small data base and the scarcity of comparative information the state of N. guntheri and D. eleginoides stocks is difficult to assess. The by-catch species N. gibberifrons, Ch. aceratus and Ps. georgianus have been considerably affected by the fishery. Stock sizes of N. gibberifrons and Ps. georgianus were at a level of about 25 - 40% of that of the pristine state. The stocks most greatly affected by fishing are still N. rossii and C. gunnari. Biomass estimates indicate a reduction in stock size to 10 - 20% of that estimated before the onset of heavy fishing. In C. gunnari the fishery is dependant on the abundance of the recruiting year class. Conservation measures adopted by CCAMLR in 1984 are discussed. Their effect on a recovery of the stocks seems, however, doubtful.

ESTIMATIONS DE LA BIOMASSE DE POISSONS AUTOUR DE LA GEORGIE DU SUD EN JANVIER/FEVRIER 1985

Résumé

Les données de prises à partir d'une étude par chalut de fond en janvier/février 1985 ont servi à évaluer la biomasse, autour de la Géorgie du sud, des espèces suivantes exploitées sur le plan commercial: Notothenia rossii, N. guntheri, N. gibberifrons, Dissostichus eleginoides, Champsocephalus gunnari, Chaenocephalus aceratus et Pseudochaenichthys georgianus. Vu la petite base de données et le peu de renseignements comparatifs, il est difficile d'évaluer l'état des stocks de N. guntheri et D. eleginoides. Les espèces prises accidentellement, N. gibberifons, Ch. aceratus et Ps. georgianus, ont été considérablement affectées par la pêche. Le niveau de la biomasse de N. gibberifrons et Ps. georgianus était d'environ 25-40% du niveau originel. Les stocks les plus sérieusement touchés par la pêche sont encore N. rossii et C. gunnari. Les estimations de biomasse indiquent une réduction de 10-20% du stock

évalué avant le début de la pêche intensive. Dans le cas de <u>C. gunnari</u>, l'abondance de la classe d'âge recrutée est primordiale pour la pêche. Les mesures de conservation adoptées par la CCAMLR en 1984 font l'objet d'une discussion. On peut cependant douter de leur effet sur le repeuplement des réserves.

ОЦЕНКА БИОМАССЫ РЫБНЫХ ЗАПАСОВ В РАЙОНЕ О-ВА ЮЖНАЯ ГЕОРГИЯ В ЯНВАРЕ-ФЕВРАЛЕ 1985 г.

Резюме

Данные уловов, полученные путем проведения в январе-феврале 1985 г. съемок донным тралом, использовались для оценки величины запасов Notothenia rossii, N. guntheri, N. gibberifrons, Dissostichus eleginoides, Champsocephalus gunnari, Chaenocephalus aceratus и Pseudochaenichthys georgianus, подвергавшихся коммерческому вылову. Вследствие небольшой базы данных и скудости сведений для сравнения трудно придти к оценке состояния запасов <u>N. guntheri</u> и <u>D.</u> eleginoides. Промысел оказал значительное влияние на запасы видов N. gibberifrons, Ch. aceratus и Ps. georgianus, входящих в состав прилова. Размер запасов N. gibberifrons и Ps. georgianus находятся на уровне около 25-40% первоначальной величины. Запасы N. rossii и C. gunnari продолжают оставаться подверженными влиянию промысла. Оценки биомассы указывают на снижение размера запасов до 10-20% предполагаемой величины до начала интенсивного промысла. Промысел С. gunnari зависит от численности годового класса пополнения. Обсуждаются меры по сохранению, утвержденные АНТКОМ'ом в 1984 г. Их воздействие на восстановление запасов представляется, однако, сомнительным.

CALCULOS DE LA BIOMASA DE LAS RESERVAS DE PECES ALREDEDOR DE GEORGIA DEL SUR EN ENERO/FEBRERO DE 1985

Extracto

Se han utilizado los datos de una inspección de arrastre de fondo en enero/febrero de 1985 para calcular el tamaño de las reservas de las explotaciones comerciales de Notothenia rossii, N. guntheri, N. gibberifrons, Dissostichus eleginoides, Champsocephalus gunnari, Chaenocephalus aceratus y Pseudochaenichthys georgianus alrededor de Georgia del Sur. Debido a que la base de datos es pequeña y la información comparativa es escasa resulta difícil evaluar el estado de N. guntheri y D. eleginoides. Las especies de captura accidental N. gibberifrons, Ch. aceratus y Ps. georgianus han sido afectadas apreciablemente por la pesca. El tamaño de las reservas de <u>N. gibberifrons y Ps. georgianus</u> estaban a un nivel de aproximadamente un 25-40% del estado original. Las reservas que se encuentran más seriamente afectadas por la pesca siguen siendo <u>N. rossii y C. gunnari</u>. Los cálculos de la biomasa indican una reducción en el tamaño de las reservas de un 10-20% del que se calculaba antes de comenzar la pesca en grandes cantidades. En el caso de <u>C. gunnari</u> la pesquería depende de la abundancia del restablecimiento de la clase-año. Se delibera sobre las medidas de conservación adoptadas por **CCAMLR** en 1984. Sin embargo, parece ser dudoso el efecto que éstas tengan en la recuperación de las reservas.

1 Introduction

Published information on fish biomass in the Southern Ocean is still very limited, The "swept area" method (SAVILLE, 1977) has become an important tool in assessing Antarctic fish stocks quantitatively both in terms of weight and numbers. The method has its limitations (i.a. CARROTHERS, 1981; KOCK, 1985a) but nevertheless has been shown to provide acceptable results at least for some of the exploited fish stocks around South Georgia and Iles Kerguelen (KOCK, DUHAMEL & HUREAU, 1985).

In this paper catch data from a bottom trawl survey in January/February 1985 have been used to estimate stock sizes of commercially exploited species around South Georgia.

2 Material and methods

Before the survey the area had been stratified into the three depth zones 50 - 150 m, 151 - 250 m and 251 - 500 m based on data in EVERSON (1984). The number of hauls was allotted in proportion of the area of each depth stratum and weighted by the abundance from previous surveys. All sampling stations were chosen randomly but restricted to areas where fishing conditions were known to be moderate or good so as to reduce the chance of damage of the gear.

From 27 January to 10 February 1985 a total of 80 hauls operating the 200' bottom trawl used on previous surveys in the area (STEINBERG, 1978) were carried out by FRV "Walther Herwig" around Shag Rocks (7) and the mainland of South Georgia (73) during daylight hours. The following divisions (according to EVERSON, 1984) have been covered: 54-62, 64, 65, 91-93, 96, 99, 105 (fig. 1) and 89 around Shag Rocks (not shown here). They made up 10 064 nm² (= 34 516 km²) which is 75.7 % of the total area between 50 and 500 m depth (EVERSON, 1984).

The area swept by the net is given by the distance between the tips of the net wings: 23.5 m (= 0.0127 nm) the speed of the vessel (3.5-5.3 kn) and the duration of the haul. Net height was 6 m. Net selection should have been negligible due to the use of a small meshed liner of 20 mm. No data are available to estimate the catchability factor C. A catching efficiency of 100 % (i.e. C=1) had therefore to be adopted as a conservative approach.

3 Results

Evaluations were carried out for the following species: <u>Notothenia gun-</u> theri, <u>N. rossii</u>, <u>N. gibberifrons</u>, <u>Dissostichus eleginoides</u>, <u>Champso-</u> cephalus gunnari, <u>Chaenocephalus aceratus</u>, <u>Pseudochaenichthys georgianus</u>.

3.1 Notothenia guntheri

<u>Notothenia guntheri</u>, a benthopelagic species, is so far only know from the Shag Rocks area. Evalutions are thus confined to division 89. Length frequency composition (fig. 2) shows that our catches cover a similar length range (9-23 cm) as the Soviet commercial catches (ANON. 1984). Evaluation of mean trawlable biomass is considerably biased by the small number of hauls and the exclusive use of a bottom trawl for the survey. The total biomass of 7256 t is similar or even below the annual catches and for this reason it appears unrealistically low.

3.2 Notothenia rossii

Although the species is known from the entire shelf area the main catches were concentrated to the east and southeast of the island in divisions 61 and 62 (fig. 3, fig. 1) mostly in the 250-500 m depth zone. This stratum was therefore further stratified by the observed fish abundance in estimating the biomass.

Length frequency distribution (fig. 4) indicate that the offshore part of the population was probably adequately covered by the sampling. The bulk of specimens were 45-55 cm long (see KOCK, 1985b). The biomass estimate (table 1) is however considerably biased by the patchy distribution of the species. Even though the variance is very high indicating that the estimated stock size may only be correct to within an order of magnitude it is clear that the stock size is very small and only a small proportion of its unexploited state.

3.3 Notothenia gibberifrons

The species was more or less evenly distributed over the whole shelf area with some larger concentrations in the southeast (fig. 5). The length composition (fig. 6) indicates that with the exception of the early juveniles (age class 0 and 1) the entire population had been sampled adequately. In comparison to the latest length frequency (SLOSARCYK et al., 1984) distribution available from 1981/82 the proportion of specimens>40 cm had slightly increased.

Stock size of 15 762 t (table 1) is obviously still at a low level and was only little more than one third of the 40 000 t estimated for the virgin stock in 1975/76 (KOCK, DUHAMEL & HUREAU, 1984, table 50).

3.4 Champsocephalus gunnari

Except for one haul yielding 1.4 t/30 min catches of <u>C. gunnari</u> were in general less than 100 kg/30 min which indicates an even distribution of the species over the shelf (fig. 7).

The length frequency distribution shows that catches consisted mostly of age classes I (mean length ~ 17 cm) and II (mean length ~ 25 cm) and a minor proportion of age classes III-V. Only single specimens larger than 40 cm was caught (fig. 8).

The biomass estimate was considerably biased by the single haul of 1.4t. Furthermore the benthopelagic mode of life of this species may have led to an underestimate of the actual stock size. Even under these constraints, however, stock size is assumed to be very low in comparison to that of 141 000 t at the onset of large scale commercial fishing in 1975/76 (KOCK,DUHAMEL & HUREAU, 1985).

3.5 Chaenocephalus aceratus

<u>Chaenocephalus aceratus</u> was more or less evenly distributed over the shelf with some larger concentrations in Royal Bay and the station on the eastern shelf where <u>C. gunnari</u> was abundant (fig. 9).

Catches consisted of juveniles from age class I onwards and adults (45 - 60 cm). Individuals larger than 60 cm which were still abundant in 1977/78, were only encountered occasionally (fig. 10).

The biomass estimate of 11 542 t (table 1) is similar to the 10 013 t given by SLOSARCZYK et al. (1984) for 1982/82 and about 62 % of that evaluated for the pristine stock in 1975/76 (KOCK, DUHAMEL & HUREAU, 1985).

3.6 Pseudochaenichthys georgianus

The species was evenly distributed over the shelf forming no concentrations (fig. 11).

Sampling covered mostly older juveniles (30-40 cm) and the adult part of the population. Length composition of the adults shows a distinct peak at 48-49 cm (fig. 12) which is an increase of more than 3 cm in comparison to the latest available length frequency distribution from 1981/82 (SLOSAR-CZYK et al., 1984).

Evaluated stock size of 8 134 t (table 1) may be an underestimate of the actual stock size as <u>Ps. georgianus</u> exhibits regular vertical migrations. It is nevertheless low (about 25 %) compared to the estimated stock size of 36-39 000 t before the onset of commercial exploitation (KOCK, DUHAMEL & HUREAU, 1985).

3.7 Dissostichus eleginoides

Except for some concentrations observed in the Shag Rocks area <u>D. eleginoides</u> was evenly distributed with catches rarely exceeding 50 kg/30 min. Juveniles of 30-70 cm predominated in the catches (fig. 13). In 1975/76 and 1977/78 catches consisted mostly of individuals of 50-80 cm.

Stock size evaluation was considerably influenced by some catches around Shag Rocks yielding up to 640 kg/30 min. Estimated stock size of 8 159 t may thus be rather inaccurate (table 1). It is in the order of the estimate for 1977/78 (KOCK, DUHAMEL & HUREAU, 1985).

4. Discussion

Due to the small data base and the scarcecity of comparative information from recent years the state of <u>N. guntheri</u> and <u>D.eleginoides</u> stocks is difficult to assess. Our catches of <u>N. guntheri</u> sampled the same length range as given for the Soviet commercial catches. A length composition from February 1979 (NAUMOV et al., 1983) shows the same distinct peak at 15-16 cm as exhibited in fig. 2. The proportion of individuals > 16 cm was, however, considerably larger than in NAUMOV's length frequency distribution. According to Soviet investigations there has been little effect on the stock so far (ANON., 1984), although about 100,000 t had been taken from 1978/79 to 1982/ 83. In <u>D. eleginoides</u> a considerable decrease in mean length in the catches at the end of the 1970s has been observed compared to 1975/76 - 1977/78 (SLOSARCZYK et al., 1984). A similar trend is evident from our surveys. Due to the low annual catches reported for the species these changes can be hardly attributed to fishing influence. Furthermore it should be noted that it is still not known which proportion of the juvenile part of the population lives actually within the range of the fishery. The Patagonian stock has a vertical range down to 1500 m (KOCK, DUHAMEL & HUREAU, 1985).

Apart from single seasons <u>N. gibberifrons</u>, <u>Ch. aceratus</u> and <u>Ps. georgianus</u> does not appear to have supported a directed fishery. They have nevertheless been considerablyaffected by the fishery. In <u>Ch. aceratus</u> the proportion of individuals larger than 60 cm, which are exclusively females, has been considerably reduced compared to 1977/78. Mean length in catches of <u>N. gibberifrons</u> and <u>Ps. georgianus</u> in 1981/82 were close to length at sexual maturity after 6 or 7 years of fishing (KOCK, DUHAMEL & HUREAU, 1985). During our survey stock sizes were still at a level of about 25 - 40 % of that of the pristine state in 1975/76. An increase in the proportion of longer (= older) individuals in the populations both of <u>N. gibberifrons</u> and <u>Ps. georgianus</u> compared to 1981/82 may, however, indicate a slight improvement of the situation.

The stocks most greatly affected by fishing are still <u>N. rossii</u> (see KOCK, 1985b) and <u>C. gunnari</u> and are in need for conservation measures. Biomass estimate in <u>C. gunnari</u> indicates a reduction in stock size to 10 - 20 % of that estimated for 1975/76. Similar values had, however, been found already at the end of the 1970s in Polish surveys (SLOSARCZYK et al., 1984). Since the period of intensive fishing in 1976/77 when fish older than 5 years

(> 35 cm) were still common, recent catches were seen dominated by 3 years old fish (age class II) which is presumably the recruiting year class. Variability in annual catches and CPUE may therefore directly reflect variability in recruitment. The dramatic increase in catches in 1982/83 to 128,000 t can thus partly be explained by the recruitment of one or two abundant year

- 8 -

classes. The dependance of the fishery on the abundance of the recruiting year class, however, makes fishing extremely vulnerable to any change in recruitment pattern.

Conservation measures were established by CCAMLR in 1984 which come into force from September 1985. The prohibition of fishing within 12 nm will protect its spawning grounds in nearshore and inshore waters. As far as it is known the spawning grounds have never been fished other than for scientific purposes. No direct effect can thus be expected from that measure.

A minimum mesh size of 80 mm, although its scientific basis (e.g. selectivity experiments) is not known, may increase size at first capture. A more suitable option to rebuild the spawning stock would, however, be to refrain from directed fishing for the species for two years on the premises of a normal recruitment. Minimum mesh size should then be set at 115 mm. Mean selection length (\triangleq length at first capture, 1_c) would then be 32 cm (\triangleq 3.8 years) (ANON. 1984). This would minimize the risk of recruitment overfishing that may occur at the present state of exploitation and would lead to a more stable situation both in the spawning stock as well as in the fishery. It would furthermore result in a gain in Y/R of about 15 - 20 %.

5. References

- ANONYMOUS (1984): Results of research into distribution and status of stocks of target species in the convention area - Atlantic, Indian and Pacific Ocean sectors of the Antarctic (from 1962 to 1983 inclusive). Selected papers presented to the Scientific Committee of CCAMLR 1982-1984, 1: 227-327
- CARROTHERS, P.J.G. (1981): Catch variability due to variations in groundfish otter trawl behaviour and possibilities to reduce it through instrumented fishing gear studies and improved fishing procedures. In: Doubleday, W.G. and Rivard, D. (eds). Bottom Trawl Surveys. Can. Spec. Publ. Fish. Aquat. Sci 58: 247-257
- EVERSON, J. (1984): Areas of seabed within selected depth ranges in the Southwest Atlantic and Antarctic Peninsula regions of the Southern Ocean. British Antarctic Survey Cambridge, England.

- KOCK, K.-H. (1985a): Krill consumption by Antarctic notothenioid fish. In: Siegfried, W.R.; Condy, P.R. and Laws, R.M. (eds). Antarctic Nutrient Cycles and Food Webs. Springer Verlag Berlin: 437-444
- KOCK, K.-H. (1985b): Preliminary results of investigations of the Federal Republic of Germany on <u>Notothenia rossii marmorata</u> Fischer 1885 in January/February 1985. (mimeogr.)
- KOCK, K.-H.; DUHAMEL, G. and HUREAU, J.C. (1985): Review of the biology and present status of exploited Antarctic fish stocks. BIOMASS Scientific Ser. 6: 1-143
- NAUMOV, A.G.; SVETLOV, M.F.; KOZLOV, A.N. and PINSKAYA, J.A. (1983): Some peculiarities of the distribution and feeding of <u>Notothenia</u> <u>guntheri</u> Norman (Nototheniidae). Vopr. Ikthiol. 23 (1): 156-159
- STEINBERG, R. (1978): Fangtechnische Untersuchungen. In: Sahrhage, D., Schreiber, W., Steinberg, R. and Hempel, G. Antarctis-Expedition 1975/76 der Bundesrepublik Deutschland: 64-71
- SLOSARCZYK, W.; SOSINSKI, J.; MUCHA, M. and SKORA, K. (1984): A review of Polish fishery and assessment of fish stock biomass off South Georgia. SC - CAMLR - III/BG 11, 14p.

Table 1: Mean trawlable biomass (t), standard deviation (s_d) of the mean and mean density D_r around South Georgia in January/February 1985.

	50 <mark>-</mark> 150 m				151 - 250 m				251 - 500 m				total		
	No. of h auls	Mean trawl. biomass (t)	^s d (%)	D _r (t/nm ²)	No. of hauls	Mean trawl. biomass (t)	^s d (%)	D _r (t/nm ²	No. of)hauls	Mean trawl. biomass (t)	^s d (%)	D _r (t/nm ²	t)	^s d (%)	
N. gu ntheri Shag Rocks	1	5320	-	14.62	5	1902	203	2.66	1	100	-	0.07	7256	47.1	
N. rossii	18	177	120.4	0.1	34	4026	101.1	0.97	21	8577	142.1	-	12781	99.9	
N. gibberifrons	19	2625	49.6	1.21	39	9900	43.2	2.04	22	3236	33.2	1.07	15762	28.4	
C. gunnari	19	999	71.0	0.46	39	13918	117.5	2.88	22	904	66.4	0.30	15821	101.4	
Ch. aceratus	19	2904	95•4	1.33	39	6766	57.8	1.39	22	1872	30.5	0,62	11542	40.6	
Ps. georgianus	19	1736	47.2	0.80	39	5160	49.9	1.06	22	1238	42.6	0.41	8134	33.0	
D. eleginoides	19	1152	204.4	0.53	39	4892	116.9	1.01	22	2115	79.7	0.70	8159	76.5	

- 11 -

fig. 1: Location of fishing stations

- 12 -

- 14 -

fig. ļ٠, Catches of Notothenia gibberifrons around South Georgia

- 16 -

- 18 -

20 -

- 21 -

fig. 11: Catches of Pseudochaenichthys georgianus around South Georgia

- 22

around South Georgia

<u>fig. 13</u>: Length frequency distribution of <u>Dissostichus eleginoides</u> from Shag Rocks

24 -

List of Tables

Table 1: Mean trawlable biomass (t), standard deviation (s_d) of the mean and mean density D_r around South Georgia in January/February 1985.

List of Figures

- Fig. 1: Location of fishing stations.
- Fig. 2: Length frequency distribution of <u>Notothenia guentheri</u> from Shag Rocks.
- Fig. 3: Catches of Notothenia rossii around South Georgia.
- Fig. 4: Length frequency distribution of Notothenia rossii from South Georgia.
- Fig. 5: Catches of Notothenia gibberifrons around South Georgia.
- Fig. 6: Length frequency distribution of <u>Notothenia gibberifrons</u> from South Georgia.
- Fig. 7: Catches of Champsocephalus gunnari around South Georgia.
- Fig. 8: Length frequency distribution of <u>Champsocephalus gunnari</u> from South Georgia.
- Fig. 9: Catches of Chaenocephalus aceratus around South Georgia.
- Fig. 10: Length frequency distribution of <u>Chaenocephalus aceratus</u> from South Georgia.

- Fig. 11: Catches of Pseudochaenichthys georgianus around South Georgia.
- Fig. 12: Length frequency distribution of <u>Pseudochaenichthys georgianus</u> around South Georgia.
- Fig. 13: Length frequency distribution of <u>Dissostichus eleginoides</u> from Shag Rocks.

Liste des Tableaux

Tableau l : Biomasse moyenne pouvant être capturé au chalut(t), dévitation standard (s_d) de la moyenne D_r autour de la Géorgie du Sud en janvier/février 1985.

Liste des Figures

- Fig. 1 : Emplacement des stations de pêche.
- Fig. 2 : Répartition de fréquence de longueurs de <u>Notothenia</u> guentheri des Rochers Shag.
- Fig. 3 : Prises de Notothenia rossii autour de la Géorgie du Sud.
- Fig. 4 : Répartition de fréquence de longueurs de <u>Notothenia rossii</u> de la Géorgie du Sud.
- Fig. 5 : Prises de <u>Notothenia gibberifrons</u> autour de la Géorgie du Sud.
- Fig. 6 : Répartition de fréquence de longueurs de <u>Notothenia</u> gibberifrons de la Géorgie du Sud.
- Fig. 7 : Prises de <u>Champsocephalus gunnari</u> autour de la Géorgie du Sud.
- Fig. 8 : Répartition de fréquence de longueurs de <u>Champsocephalus</u> gunnari de la Géorgie du Sud.
- Fig. 9 : Prises de <u>Chaenocephalus aceratus</u> autour de la Géorgie du Sud.
- Fig. 10 : Répartition de fréquence de longueurs de <u>Chaenocephalus</u> <u>aceratus</u> de la Géorgie du Sud.

Fig.	11 :	Prises de <u>Pseudochaenichthys georgianus</u> authour de la
		Géorgie du Sud.
Fig.	12 :	Répartition de fréquence de longueurs de
		Pseudochaenichthys georgianus autour de la Géorgie du Sud
Fig.	13 :	Répartition de fréquence de longueurs de Dissostichus
		eleginoides des Rochers Shag.

Список таблиц

Таблица 1. Средняя величина биомассы промысловой части запасов (t), стандартное отклонение (S_d) этой средней и средняя плотность D_r в районе Южной Георгии в январе-феврале 1985 г.

Список рисунков

- Рис. 1. Расположение промысловых станций.
- Puc. 2. Распределение частоты длины особей вида <u>Notothenia</u> <u>guentheri</u> в районе Shag Rocks.
- Рис. 3. Уловы вида Notothenia rossii в районе Южной Георгии.
- Рис. 4. Распределение частоты длины особей вида <u>Notothenia</u> <u>rossii</u> в районе Южной Георгии.
- Рис. 5. Уловы вида <u>Notothenia gibberifrons</u> в районе Южной Георгии.
- Рис. 6. Распределение частоты длины особей вида <u>Notothenia</u> gibberifrons в районе Южной Георгии.
- Рис. 7. Уловы вида <u>Champsocephalus gunnari</u> в районе Южной Георгии.
- Рис. 8. Распределение частоты длины особей вида <u>Champsocephalus</u> gunnari в районе Южной Георгии.
- Рис. 9. Уловы вида <u>Chaenocephalus aceratus</u> в районе Южной Георгии.
- Рис. 10. Распределение частоты длины особей вида <u>Chaenocephalus</u> <u>aceratus</u> в районе Южной Георгии.

- Рис. 11. Уловы вида <u>Pseudochaenichthys georgianus</u> в районе Южной Георгии.
- Рис. 12. Распределение частоты длины особей вида <u>Pseudochae</u>nichthys georgianus в районе Южной Георгии.
- Рис. 13. Распределение частоты длины особей вида <u>Dissostichus</u> eleginoides в районе Shag Rocks.

Lista de Cuadros

Cuadro 1: Biomasa arrastrable media (t), desviación standard $\binom{S_d}{d}$ del término medio y la densidad media D_r alrededor de Georgia del Sur en enero/febrero de 1985.

Lista de Gráficos

- Gráfico 1: Ubicación de las estaciones pesqueras.
- Gráfico 2: Distribución de la frecuencia de tallas de <u>Notothenia</u> guentheri provenientes de las Shag Rocks.
- Gráfico 3: Capturas de Notothenia rossii alderador de Georgia del Sur.
- Gráfico 4: Distribución de frecuencias de tallas de <u>Notothenia rossii</u> provenientes de Georgia del Sur.
- Gráfico 5: Capturas de Notothenia gibberifrons alrededor de Georgia del Sur.
- Gráfico 6: Distribución de frecuencias de tallas de <u>Notothenia gibberifrons</u> provenientes de Georgia del Sur.
- Gráfico 7: Capturas de Champsocephalus gunnari alrededor de Georgia del Sur.
- Gráfico 8: Distribución de frecuencias de tallas de <u>Champsocephalus</u> gunnari provenientes de Georgia del Sur.
- Gráfico 9: Capturas de Chaenocephalus aceratus alrededor de Georgia del Sur.
- Gráfico 10: Distribución de frecuencias de tallas de <u>Chaenocephalus</u> aceratus provenientes de Georgia del Sur.

- Gráfico 11: Capturas de <u>Pseudochaenichthys georgianus</u> alrededor de Georgia del Sur.
- Gráfico 12: Distribución de frecuencias de tallas de <u>Pseudochaenichthys</u> <u>georgianus</u> alrededor de Georgia del Sur.
- Gráfico 13: Distribución de frecuencias de tallas de <u>Dissostichus</u> eleginoides de Shag Rocks.